+ All Categories
Home > Documents > w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Date post: 07-Apr-2022
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
85
Transcript
Page 1: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu
Page 2: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

V Application of complex trace attributes

{ to re-flection seismic data near

Charleston, South Carolinaw

S bb Sß Steven B. Miller

J. K. Costain, Chairman

Geological Sciences

(ABSTRACT)

Complex trace attribute analysis has been applied to 24-fold

VIBROSEIS reflection data acquired on the Atlantic Coastal Plain near

Charleston, S. C. , to yield an expanded interpretation of a Mesozoic basin

concealed beneath Coastal Plain sediments. Complex trace attributes ex-

press the seismic trace in terms of a complex variable and emphasize

different components of the original seismogram. Attributes derived from

synthetic seismograms of thin beds are used to interpret the patterns

observed on the real data. Complex trace attributes derived from the

original seismic trace complement the interpretation of a Mesozoic basin

originally imaged by conventional data. The combination of single-sweep

recording and use of complex trace attributes is believed to support an

interpretation of a transition from basin border conglomerates into

finer-grained siltstones nearer to the center of the basin.

Page 3: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

·Introduction ....... . ...... . . . . ......... 1

Geologie setting ...........„............. 3

complex trace attribute: . . . . . . . . . „ . . . ........

C

9

Application of complex trace attribute: to synthetics ...... 10

Preliminary observations . . . . • . . . . . . . . . . . . . . . . 37

Application to reflection seismic line VT-5 ....g....... 38

conclusions ..... • ........ , ............ 44

Appendix . . . . . . . . . . . . . . . . . . . . . ........ 46

Reference: ............. . . . . . . ......... 47

vita ......... . . . . . . . . . . . . . . . . . . .|. . . 49

Table of Contents iii

Page 4: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 1. Map of field area .................. 4

Figure 2. Interpreted seismic section for VT-5 ......... 5

Figure 3. Single-sweep seismic section for VT-S ........ 6

Figure 4. Line drawing interpretation of single-sweep section forVT-5 . . ....................... 7

Figure 5. Mathematical model for wedge ............. 11

Figure 6. 20 Hz Ricker convolved with noise-free spike synthetic 12

Figure 7. Instantaneous amplitude of noise-free synthetic . . . 13

Figure 8. Instantaneous phase of noise-free synthetic ..... 14

Figure 9. Instantaneous frequency of noise-free synthetic . . . 15

Figure 10. Wedge synthetic seismogram with 1% noise .·...... 17

Figure 11. Instantaneous amplitude with 1% noise . ....... 18

Figure 12. Instantaneous phase with 1% noise. .......... 19

Figure 13. Instantaneous frequency with 1% noise ........ 20

Figure 14. Wedge synthetic seismogram with 10% noise ...... 22

Figure 15. Instantaneous amplitude with 10% noise ........ 23

Figure 16. Instantaneous phase with 10% noise .......... 24

Figure 17. Instantaneous frequency with 10% noise ........ 25

Figure 18. Wedge synthetic with low impedance contrast ..... 27

Figure 19. Instantaneous amplitude of low contrast synthetic . . 28

Figure 20. Instantaneous phase of low contrast synthetic .... 29

Figure 21. Instantaneous frequency of low contrast synthetic . . 30

Figure 22. Mathematical model for a section of VT-5 ....... 32

Figure 23. Synthetic seismogram for model of VT-5 ........ 33

Figure 24. Instantaneous amplitude for model of VT-5 ...... 34

List of Illustrations iv

Page 5: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 25. Instantaneous phase for model of VT-5 ........ 35

Figure 26. Instantaneous frequency for model of VT-5 ...... 36

Figure 27. Section of single-sweep data for VT-5 ........ 40

Figure 28. Instantaneous amplitude for VT-5 ........... 41

Figure 29. Instantaneous phase for VT-5 ............. 42

Figure 30. Instantaneous frequency for VT-5 ........... 43

List of I llustrations v

Page 6: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

_

I thank whose dream has brought this reflection seismic community

together. I also thank my committee for their critical reviews of the

manuscript. The student community helped me through the hard times,

especially Tom P introduced me to median filters. In addition Bob

Montgomery, Mildred Memitt, and Alfred Ott of thkept the system up and

graciously put down their work to help me with the VAX. And finally,

this thesis was possible because the Virginia Tech VIBROSEIS crew took

the time to do the job right in the field.

Financial support during the period 6/16/83 to 8/15/83 came from the

Naval Weapons Center under contracts NC 0530·83•M·760Q and N

60530-83-M-589Q to John K. Costain and L. Glover, III.

My family has encouraged me in my education. provided emotional

support. Also, NL Baroid provided me with the desire to strive towards

further education in geophysics.

vi

Page 7: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

This study uses complex trace attributes to identify thin beds on

reflection seismograms as part of a continuing program of thin-bed in-

vestigations at the Regional Geophysics Laboratory. The detection and

description of thin beds is an important goal of reflection seismology.

Complex trace attributes transform the data to display components of

standard seismic traces in such a manner as to accentuate thin beds and

potentially refine the understanding of the subsurface. For example,

Sheriff and Geldhart (1983) state that complex trace attributes sometimes

reveal features which are not as obvious otherwise, especially lateral

changes along bedding associated with stratigraphic changes or

hydrocarbon accumulations. While the seismic trace simultaneously dis-

plays the amplitude, phase, and frequency content of the reflections from

the subsurface, the complex trace attributes analyze the trace into its

constituent components of instantaneous amplitude, instantaneous phase,

and instantaneous frequency versus two-way travel time. Instantaneous

amplitude exhibits tuning associated with thin beds (e. g. , Lawrence,

Sengbush, and MacDonal, 1961), as does the instantaneous frequency

(Neidell and Robertson, 1984). The salient feature of these two tuning

phenomena is that they occur at different intrinsic bed thicknesses, so

their use allows different but compatible plots to evaluate thin beds

imaged on conventional seismograms.

1

Page 8: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

In order to recognize the tuning patterns of complex trace attri-

butes, numerical modeling with AIMS (trademark of GeoQuest International,

Inc.) is used to generate synthetic seismograms from mathematical modelsl

of thin beds. Complex trace attributes are applied here to synthetics,

and to seismic reflection line VT-5 to explore changes in instantaneous

frequency and tuning from suspected thin beds.

2

Page 9: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

.

The current understanding of the geology near Charleston, S.C. , is

summarized in Rankin (1977), Gohn (1983), and Coruh and others (1981).

Regionally, the Atlantic Coastal Plain is a seaward thickening wedge of

Cenozoic and Cretaceous sediments unconformably overlying one of four

rock types: Triassic/Lower Jurassic sedimentary rocks, Mesozoic mafic

igneous rocks, Pre-Mesozoic metasedimentary rocks, or Pre-Mesozoic crys-

talline basement rocks (Dillon, 1983). The stratigraphy has been deter-U

mined by Gohn (1983) from the deepest of three coreholes drilled

approximately 40 km WNW of Charleston, S.C. and shown in Figure 1. In

this location 750 m thickness of Cenozoic and Cretaceous sediments

unconformably overlie a 250 m thickness of _basa1t flows and associated

sedimentary rocks. In turn, the basalt overlies red beds of unmeasured

thickness due to the premature termination of drilling. Gohn's provenance

study (1983) of the recovered core, however, shows that the red beds

contain detrital clasts of felsic·p1utonic rocks, basaltic rocks, and

their cataclastic derivatives, from which it is inferred that the red beds

lie directly on crystalline basement.

In conjunction with the drilling, the Regional Geophysics Laboratory

at Virginia Tech recorded and processed 51 km of 24-fold seismic re-

flection data of which this study re-analyses 2 km of seismic reflection

data from line VT-5.

3

Page 10: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 1. Map of field area: showing location of Virginia Techseismic line VT-5 and U. S. Geological Survey ClubhouseCrossroads Coreholes.

4a

Page 11: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

UG5E2'G2Una“äU”é\·:

/ *5Q 1

’S8°‘§

08

= äÄ äUÄ?

g ·!5EE”§

VC g5EE0

-2ä

U)

E3

]ä’

V l+

Page 12: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 2. Interpreted seismic section for VT-5: final stackedsection from Coruh and others (1981) who infer structurebetween 1.2 s and 1.8 s due to a Mesozoic basin.

Sa

Page 13: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

LUS. E: _

Z Fl T T T T°°I- ...-2.2-1- 3*:2 2*

J; *-3

$1*'—·‘=-· ***5:-}* vi i·I F22~· *2 :2 --:*5*f?·.:U=5€

£i€é$2E* 5 *5....1-.F

* 2 2}-* S Z- .* *2212 :-2 'gli _v sz ' .· 1*-I -56..*4 ··-:°?£=.*§-Lé .2 -2* „:-¢ *—-F- 12 -2 3-*:-,- ·* · 1** -+2*2*;- ° *

··- — •¤2I üä15*LO’.

I -Ä-}¤¢* ."E ··ff}, Ä 1 . T22-1~ •··.·.- :-·..·—.~.Ä.—$ *2 „. :1 Ü?}I X1:'; iq 3;

v-- :1*-*: 2.-,- 2-;;; , *1 7an ÄÖÜ?

*1*z-- .*'?2a·=·.1-1*}.. · * {F .2*1 ;. · 2 1* J 2f. .-..._·

..-...-..1 .1 I. . . Ä•E I_ Q-; =!A-*'-2

Ä?EääF“>

V7. . ;. -*-6; 2;.-- -1* * .-1 1;- 1* F5.5

1cn Ä

-2 2- .2;*-*2 *2

·*.L-1,. *° .·5.:2-;;-.I. ._ 1-_1I A. .I. I

·· -: .-1.- -*rt *1*

X *1 -7 CDu.

7 ·

5

Page 14: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 3. Single-sweep seismic section for VT-5: from Belcher(1984).

6a

Page 15: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

21 ä ua u.1 0 o1z cz cn 1}. 1111 11*·?s;7¤=1· 9 . -;:1

T I6 X? RI.I?**61 1*1 ?11116§1*1;=·**1’11“'??*$$1 ‘TI§II="—·¥1= ..,1*1-11+ 61* .11

" 1 nä I-‘*·*”='1«¤—¥.$" FI*?:·*1—:.6 11·==* T2 ' *****9*1

‘. ..1 .1x:E

1E*1T ° 1.'117*

61-1= Y111>12 1#·ä%1§11*?*2 I5 1. 11 11il.9

,„ 1 111F·ä"'1 J1 Il°.ä°;1?1T Ü

’1% I 1——’ 6I1i+1111*‘Jä··; I:'—aa1 ‘ {11 1—§ §—1T}·¢1‘;< ig 6; ,2 .|S 1 II1°°1 s lg 1 .:6* '§·§¢—§·61_‘=¤

-1 · JE . 1~*$\; °§~.. ,. .*1 · I, «—' _° , 1

g_;

Q •¥- ~„

6

Page 16: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 4. Line drawing interpretation of single-sweep section forVT-5: from Belcher (1984) showing Mesozoic sedimentaryrocks overlying basement with horizontal exaggeration ap-proximately 2.5 to 1.

7a

Page 17: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

I

I1

EI-;

I

C

15

-—"—·

·‘*

34

I

3Io-

2ä .

:—rI_

E

II

gc7

I:

E

[

I

III

*E

I „

.g

E E1

Z

tm

ä

•¤

:

"

ääZ

Z1 ‘I

= S ä

>•Q

gI g

I

{I3I E

I

I‘?

ä1 ä

E‘

3I.

I

O><.J,_

<

~_

I:·:I—TI

0:

° 3'“

:III

*5

ÄD

I I S

I III

ZID

I

:'

¤

1

1Ii;-I

iIä

I

äI1

S

11

-—·‘3

11 *1S

.5

II._*

~

E·=

I ‘‘1

IS

1

S

1

S

-0**

ä

I

”L NM

511**

.S) 3

7

Page 18: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Line VT·5 was chosen for this study because its field parameters and

processing yield the best section for interpretation of the deeper data

which imaged a buried Mesozoic bas:I.n. '1'he processing of Coruh gives the

. final stacked section, shown in Figure 2 which is notable for the re-

flections below approximately 0.6 s compared with the other VT seismic

lines. The interpretation proposed is that of a buried Mesozoic basin

between 1 and 2 s. The results of reprocessing by Belcher (1984) em-

ploying the techniques of VIBROSEIS whitening (Coruh and Costain, 1983)

and single-sweep processing are shown in Figure 3. Be1cher's interpre-

tation in his line drawing (Figure 4) uses the reflector geometry and

velocity analyses to infer either diabase sills or wedging sediments be-

tween 1.2 and 1.8 s. The primary goal of this study is to examine the

Mesozoic basin boundary and interior using complex trace attributes.

8

Page 19: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Taner and others (1977) first applied complex trace attributes to

reflection seismic data using the theoretical work of Gabor (1946).

Displays of complex trace attributes have been used for

lithostratigraphic interpretations (Taner and others; 1977, 1979).

Nogami and Robertson (1984) refined the method using instantaneous fre-

quency to analyze and interpret a sandstone pinchout imbedded in shale.

This application to thin·bed analysis for the interpretation of real

seismograms sparked this research.

Following Taner°s (1979) definitions, the three complex trace at-

tributas under consideration are instantaneous amplitude, instantaneous

phase, and instantaneous frequency. (See Appendix for definitions). The

qualifier "instantaneous" serves to distinguish complex trace attributes

of related but different functions of amplitude, phase, and frequency from

Fourier theory. Uulike Fourier theory where amplitude and phase are

evaluated in the frequency domain, all complex trace attributes are ex-

pressed in the time domain. The term °°instantaneous" refers to the value

of the the function at a particular instant of time.

9

Page 20: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Complex trace attributes are best understood using synthetic

seismograms. Synthetic seismograms produced in this study image the

reflectivity of idealized thin beds. Th:I.n·bed seismograms are modeled

numerically with an approximation of Kirchhoff-Helmholtz diffraction

theory (Trorey, 1970 and 1977) using the Advanced Interpretive Modeling

System, AIMS, from GeoQuest (AIMS and GeoQuest are trademarks of GeoQuest

International, Inc). AIMS takes a particular mathematical model, speci-

fied by compressional wave velocities expressed as functions of depth,

and then synthesizes a common-depth-point stacked seismogram as a func-

tion of two·way travel time.

A simple 3-layer representation of a wedge (Figure S) is used for

the idealization of a thin bed. The wedge geometry is held constant for

the next four models while the reflectivity contrast and noise content

are varied to study the effects on complex trace attributes. For each

model there is a suite of four plots to illustrate the conventional

seismogram, instantaneous amplitude, instantaneous phase, and instanta-

neous frequency.

The first wedge model (Figure 6) derived from Nogami and Robertson

(1984) is a dipole reflectivity sequence convolved with a 20 Hz Ricker

wavelet. The resultant seismogram substantiates the tuning phenomena of

thin beds when decomposed into its complex trace attributes. The in-

stantaneous amplitude (Figure 7) shows the function has its highest am-

10

Page 21: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure S. Mathematical model for wedge: where dipole spike seriesof positive and negative unit magnitude define thethinning layer.

11a

Page 22: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

E'0

_O00N

(DU!'¤ .§n.O

*0-

E5'O va anQ s

~E E E

° 33 O_Q ~:· <·

-0-*(UE .‘ GJ

. S4-*(UE

cnN

EOQO

V 01

E EO 0

OO

· (6

11

Page 23: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 6. 20 Hz Rieker couvolved with noise-free spike syuthetic

12a

Page 24: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

E 3

R3

\/ ,-

ndS

Ä

Page 25: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 7. Instautaneous amplitude of noise-free syuthetic: Avariable area display shows the large magnitudes of theinstantaneous amplitude tuning in the presence of a

thirming layer.

13a

Page 26: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

EOCD

.!-ON {

0"Öj 1

5 . Y’

•j

·tj-

*** 4 $·Q-« Q ä

<‘ éQ.Q

Q .G.) i'¤ §(Q ;

¤ E .G!.‘.• r' . T

_ (IJ

"‘E

O(D (D

Q 1-*" 1;

13

Page 27: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 8. Instantaneous phase of noise-free synthetic: The in-

stantaneous phase follows the continuity of the wedge, but

exaggerates the side-lobes of the wavelet.

14a

Page 28: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

1 Irr

II

E I

v

-.¤>-¤

Ä:(Äcc:H1:

I1° 1

I 1I cn

$-41 Q ..11-4

14

Page 29: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 9. Instantaneous frequency of noise-free synthetic: Thecontour plot presents darker shades as larger values ofinstantaneous frequency. The high values of instantaneous

frequency associated with thin beds constitute tuning.

15a

Page 30: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

E a-2;IO0=*

:2:S"girirärli?iéié

“·iii?S....irizäri:22:2¤><¤Srägigi

rg;.‘‘‘‘‘¤* --~·rärägäg······VJ ‘‘‘°rißirigräxirä:2:2:""c

**1F-; 1-1

15

Page 31: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

plitude, or equivalently is tuned (by the definition of Sengbush,

Lawrence, and McDonal, 1961) at around 6000 m and 1.0 s where the layer

thickness is 1/2 the two-way travel time of the dominant period of the

Rieker wavelet. The instantaneous phase (Figure 8) exaggerates the

side-lobes of the Rieker wavelet, but otherwise the display is similar

to the eonventional seismogram. The instantaneous frequency (Figure 9)

has been restricted to the passband of the source wavelet, filtered with

a 2-dimensional 3 X 3 running median filter (Hoaglin and others, 1983),

and contoured. The instantaneous frequency shows the tuning due to the

thin bed; however, the maximum values of instantaneous frequency corre-

spond to two different effects. First, the peak values at 7500 m and 1.0

s are higher frequeneies due to differentiation of the source wavelet by

the thin bed. Where the source wavelet encounters the thinnest part of

the wedge, the wedge differentiates the wavelet. Differentiation in-

creases the frequency content of the source wavelet, and this is observed

in the instantaneous frequency. Second, the high values towards the the

center at 4000 m and 1.05 s correspond to the complete separation of two

reflected wavelets (Crammer and Leadbetter, 1967; Taner, 1979; Nogami and

Robertson, 1984). Only some high values of instantaneous frequency can

be attributed to tuning.

The second wedge model is a synthetic from AIMS with 1% additive

noise. The noise generated with AIMS is white with magnitudes normalized

to a chosen percentage of the maximum value on the entire seismogram.

AIMS calculates a reflectivity series with acoustic wave theory, con-

volves the series with the source wavelet, and then adds noise. The

synthetic data are transferred from AIMS format to DISCO format, resampled

16

Page 32: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 10. Wedge synthetic seismogram with 1% noise: The wedgeis defined by compressional velocities of the layers interms of depth.

17a

Page 33: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

=

V-—-:%:-2%*

ä

äägäé§22*¢2

2

-ävä/”’·'

;§\23

2

Page 34: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 11. Instantaneous amplitude with 1% noise: shows the max-imum magnitudes associated with amplitude tuning of athin bed are robust in the presense of a small amount ofnoise. '

18a

Page 35: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

O?

CD{

tn{

N

!*1 1

1

q;.21

¤E

Q 1 18

. .

.C2- *1

PZ.

; .

SÜ 2

::‘ 2

=l.

{..

W¤ ‘ ä

Q1:

2‘;

M2

*" .2

.

_O

‘ E

cn — w1

° OI

?

1- 'F * {

18‘

Page 36: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 12. Instantaneous phase with 1% noise.: images wedge, butedges of wavelet degraded by noise.

19a

Page 37: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

J

'”E

V?o

rgär-äß<¤

'-

Ü

·

mo

_J

aß„,

vp-

«»

-6

"tévrß

aß V

‘a·¢ß W?

aßaß

aßaß

aéi-

···2

aßaß V!

aßv-

5

V""

aßaß

aß V!

aß6aß75

ß-——"·=?

aß<¤7*

o

Page 38: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 13. Instantaneous frequency with 1% noise: tuning at 7500

m and 1.0 s, but noise also gives peak values along top

and bottom edges.

20a

Page 39: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

‘°‘°

6JiEJ2

fiäiJ;J*‘JE

1;:G.

€”

J.1;¢E

J2

ääE{J1m·

"’V0 "Z1;

1"

20

Page 40: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

from 0.001 s to 0.004 s, filtered with a low-pass Henning window, and

displayed as a synthesized stacked seismogram. A noise level of 1% has

been added to the seismogram shown in Figure 10. The resultant complex

trace attributes are shown in Figure 11 through Figure 13. A small amount

of noise leaves tuning phenomena undisturbed; however, high values of

instantaneous frequency occur in regions of pure noise in addition to the

two effects for tuning of thin beds and the separation point of thick

beds.

The noise is iucreased to 10% in the third model, but all other pa-

rameters are the same. Similar to previous examples, the standard

seismogram (Figure 14), instantaneous amplitude (Figure 15), and instan-

taneous phase (Figure 16) adequately image the wedge, although the in-

stantaneous frequency (Figure 17) is severly degraded. The noise

displayed in the instantaneous frequency causes numerous high frequency

peaks making it difficult to distinguish thin beds from noise. Amplitude

tuning is more robust than frequency tuning in the presence of noise as

shown by comparing the pair Figure 15 and Figure 17 with the pair

Figure 11 and Figure 13.

The fourth wedge model returns to a low noise condition, but also

changes the velocities to decrease the acoustic impedance contrast in

order to diminish the interference effect between the two reflectors.

The reflection from the top layer on the conventional seismogram

(Figure 23) and on the instantaneous amplitude (Figure 24) masks the

presence of the bottom layer. On the other hand, the instantaneous fre-

quency (Figure 26) has characteristic high values associated with tuning.

21

Page 41: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 14. Wedge synthetic seismogram with 10% noise

° 22a

Page 42: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

~

Page 43: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 15. Instantaxxeous amplitude with 10% noise: shows tuningof instantaneous amplitude due to wedge.

23a

Page 44: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

OCDLOß Y-

G.9OC

8Q i1- .

S

3

3 Q 1.::1 1:9: :2:E ._ :E :

. :zu ...1:

**4:lg :O 1:O I

...1:Q :ß :

:

g: S17;E Y :W

’ Y :1*.:_ :

:•

:Y :

OCl) (D

C =— ·I

I_

1* 1*

23

Page 45: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 16. Instantaneous phase with 10% noise: images the wedgedespite the noise.

2l+a

Page 46: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

E

° -· wexx v— 21 nw- -.. „<°E?=¤ yen- ‘·yrx P „,v ä? »— ··eß w-

%%ä?·»vv äé ··äé2äé2ää„-„ Z - - '- ' ‘*M22? äé .·5 -nge, xyir··2äé3q,

äé3F

‘iwuE ää·- vr, xx xxxxY

V \/ \/\,2äéx}ivv7 xx xx xrqrrenv¤'— vv ää äävwn#*2* xi \!äé

äéE\/ääO—v ' \/

‘ \„/ \¢· 4Cf) U)

Q 1-

1" 1*

' 2 24

Page 47: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 17. Instantaneous frequency with 10% noise: Noise degradesthe tuning effect of instantaneous frequency by coalesc·ing the high values due to tuning and due to noise intothe same contour.

2Sa

Page 48: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

EG

66

66:o

‘TQ

1-1*

25

Page 49: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 18. Wedge synthetic with low impedance contrast: Thedeepest region has an impedance much closer to that ofthe wedge compared with previous models which diminishesthe amplitude of the second reflector.

26a

Page 50: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu
Page 51: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 19. Instautaueous amplitude of low coutrast synthetic: Thetuning shows a slight broadeniug of the top reflector,while the bottom reflector is poorly imaged.

27a

Page 52: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

EO_<D

.I.Q 4N 4.

;

EC>·•"·‘

4*5 .N 'C

°4

Q 4

E2 '

2

3 i*6 4E¤ D .cn 4D

Q)c 4

4

I

4

E - 4

E ._

Q 1"

1- 1*

27

Page 53: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 20. Iustantaneous phase of low coutrast syuthetic: givesequal weight to both reflectors without regard to theabsolute magnitude of the impedance coutrast.

286

Page 54: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

E

V

ivNs1/ gf VW •'*w"v · M

.- V ..1T5va= ¥V—~‘·’V'= gg

Vgg15IVV" ¤ \! V¤¤

ggää?gg „„ggZW? V; VV: -

¤ >V \/ äj 'Wgg "'‘=WgW! V.!O2

gg°°gi gg

\!ggYä?Z\! V.6O „. ggcn

ua1*

28

Page 55: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 21. Instantaneous frequency of low contrast synthetic: Thehigh values of instantaneous frequency tune between 1/4and 1/2 the dominant wavelet, yet is insensitive to therelative amplitudes between the reflectors.

29a

Page 56: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

E

3-

Ü>~3

3———~EiE3Z1?

ÜÜ2E

äEc>

3Wrn

Q *9v- 1J

29

Page 57: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

In this manner instantaneous frequency is insensitive to the amplitude

response of thin beds. Instantaneous frequency helps to emphasize the

tuning phenomena of thin beds compared with the conventional seismogram.

Before analysis of the real data, a simplified model representing

VT-5 was created using AIMS, and the synthetic was subjected to complexl

trace analysis.

A 10-80 Hz Klauder wavelet used in lieu of the 20 Hz Ricker wavelet

complicates the instantaneous frequency because the side lobes give high

instantaneous frequency values in addition to the main lobe tuning phe-

nomena. The Klauder wavelet is filtered to enhance the interpretability

of the instantaneous frequency by tapering the side lobes at the expense

of broadening the main lobe (Berkout, 1984). The tapered 10-80 Hz Klauder

wavelet represents the source wavelet used. on. VT-5, although the re-

flections near the basin/basement boundary are poor in the higher fre-

quencies with the majority of the energy around 20-40 Hz. The higher

frequencies may have been lost by, for example, attenuation, dispersion,

source and receiver array response, or stacking. The cumulative effect

is that reflections near the basin/basement boundary· contained zux the

final single-sweep section have dominant frequencies around 30 Hz. A

1ow·pass filter is applied to the model synthetic for VT-5 to give the

synthetics presented in Figure 22 through Figure 26.

The mathematical model is an idealization of the angular unconform-

ity between the basin boundary and crystalline basement. The synthetic

seismogram and the instantaneous phase display the changes in polarity

and magnitude along the unconformity as the reflectivity contrast changes

between different layers and the basement. Prominent diffractions occur

30

Page 58: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

at the termination of the horizontal layers against basement. The in-

stantaneous amplitude (Figure 24) is high where the acoustic impedance

contrast is large and also where tuning occurs as beds pinch out against

basement.

31

Page 59: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 22. Mathematical model for a section of VT-5: represents

horizontal sedimentary beds in angular unconformity with

basement. The interval velocities are idealized from

Be1cher°s (1984) Velocity functions determined by con-

stant Velocity analyses.

32a

Page 60: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

E ·QQQ•—

‘i‘F*‘ „> I

·

L

Wg

8ag!

T5 S2!"¤

Zw

OG l’

-5E

u °.*,3 ä

E.1:* ‘

é'

EQ

E EQ Q

QQ.rn

32

Page 61: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 23. Synthetic seismogram for model of VT·S: Acoustic wavesolution from AIMS displays reflections from the layersand diffractions from the pinchouts against the basement.

33a

Page 62: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu
Page 63: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 2h. Instantaneous amplitude for model of VT·5: tuning oc-curs at the pinchouts.

“34a

Page 64: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Z

in

._·Lv

u

j'“

W:

” *¤i€'=;.Y

‘*

_ „

—Ä‘ A

‘ ·¤

'° r

=

‘AAAA

¢*·

"

é

.

gg:3,;,

r‘*;:2-:1:T

_„f

5:;

n

Ü

x' L

iq

;_ff

ll

g'

i6—5;

'¥_·ij·

··,

A

A*'»·-

·

7ÜQ

*‘

A

‘· ä

I‘¢ -,;:7.

3*;

·

€’ ‘ i

‘~¤@’;:¢

*“‘-‘

A-

—Z

„,

A

=‘ A

-·'EET-

«f.•=,;’

„;;rf

"‘·‘¢;'é._·§

A -

g„.‘

"·’

—*

„,

_,

1

-_

‘« j:i

‘ -7;.j

—_

i_

—‘L--;

Ü‘ -'

:I

1Äh;.

,1g.

— --

_: A

·-

—·

A

=;¤Y-$7-;···}

-2* · ä

5-*

:«.

FSP-.-gs

·

*r%;

—.**1 -

·

°

··,„-

ÜÜ

—'—a—Ia_Tä

‘TF-

;;·

. -- J

Vi

E;

·«

F

? A

zA

-

A

;·i-'$“Z;I;ä

.

;;·§;*$‘¤‘é

a•i·„-a

^

—A

F ·

‘ ·.—;;:

if;?

F.

j

„, ··

_;.1jg;~··

_·e.;:

=,r·-vg,

=

V

„V:

A;i»;5,_*

gf:

·

·

?z#é?·

7*6;¥

,,$$&«·‘i

g_

1_;

L;

A.

3

A.

‘-

«

·:‘¢‘

·-—’

‘ L;.·«é'

r;¢„>·1;-«··—i:„.=—;·;„

=·,;·

._;- 6„·

_; „A

A

..

··A5·-

A;

Üß

A1"

3.;{1

~,-‘_“ ;,„

’f' ]~

-_¥;':·f‘§·¤‘¢.Q,

3;**;;

—;‘~?’j«;

Ü

„_

,_

.3.;

‘=

”,·-*‘=‘

S4L

-

„ ,bg:

**··

'ßsv.

~;£=$ü.:a¥¤__„4g

·=E;—4gi?

‘ I

éf

.1;}:%¤-é

'Y

gägsg.

..r_

.

¢,...·

:.— ·.·

A

··

„= ·- A..A

„„

A

·;A.

‘.A

‘·';;-

J?'*

'”7:

‘·f AA

¢’·*t=«-‘

‘?‘=

A,

Q.‘

e·_

A

,‘ Yj

V,»=

„.¤w

Y:

__

·‘_=__g_

‘ .-

_;„rr·;;«,.

-

*—

„¢—„

A

AK,

cäggä -

.____

r\;«,,

_,

A

ä·1._

-.

P.;

,,-„

EPA.;

7.;*.;

,,

A

9;-%-*;

”· -!‘ ,:7-..

‘ ?¤*£~Ü -

‘Ew

vi‘ —’;~_,__;

¥·,Z1,~"

„;*J??‘=

Lo

_ .7

Sr•.: ,,„· ¢ ;~

Af:5;

—— „ =„ ·

„,„,

..;¢.;_ ee

é-Ü;-„_

’L-4--.--

,

-1-,,,2,

‘a-

'-

*-,6.,.

—-·

—-

‘·

rz.

;«’—.|-

j'

€„

··..;_

_ ·,_ ;‘

·,°°ö'Ü'

je

.,¤

V,‘

.4

·-?'

J

,

.J

‘*_

'.

’ 5

=-_'-vi

__

12

Q,

‘ -}?—

#2

’ *~

;-·—

Z

1,;:;O

AA-,

,,..»..,.

J,

Y

A

Q

,.

_

2

J5!

iv

A

Z2

Ü-‘7A-ä.•·

„··;-

q;=:·„_;·>

·„ '

1g

»«„_·.

x— :§—l;.„

,.i-V,

‘«

·g3m

LA " Ü ‘

$*3****

?€%¢$aI

Q.—

"*fil-·"""i‘

’°”‘

—,=

=_

.»=<%‘

’¤ ·

.E

"-._I.„

’ ‘ ‘.,..··»

">«.é

~;é'7—#T aß

L,_

-

_¤.•_ .__, « -

-·v-,„+_._

Y-;

¤-

‘ .

Hr

_

11j*F·

»,_‘alg

,

E

‘._-.

jFr

;=‘;;·»‘1E

;:§Q

_

‘_„;¢j·:*%g‘=§V_

‘;,

.

;

‘ *2·;¤·~;;Y

;-,;.

j,_

;x_

__:.+;„.;

*-¤·

g...,

,r_

_Ä„_;=§,

_Ä_ __! YA

--

,g_Q.)

,_*,:_,

,Y

_

·, , -

1«„«;;—;;;

___,l

_ _Y·z,‘Y

u;

*

l·é:""r .

”.'ä‘

,_._1_:

ggf;

~-‘„_

_ ;:;,;*2:

·~

cn

6

;::j1;~;

L

#*5°*··‘

"

?*"*l

‘ ·L

*;%%:2

‘·

-·.

;„ ·

;.'„-

_=§·—aa-

gl

.v

..f~

“* 2

-.‘

·—;-rr;.

.rn,

n.

'

_ä. ',,

‘a¢.:.;_

Q:

‘ -,

L

#_; 6’BÄ"*"

__~;·a"

r-:_;.}·„,»

.,4*-—

„,_

2

,

Qi;

‘Q

7;*6L.

;'•'i·€.;.‘:·

¥ '

·""’- -A. · :

;i’~”;·"‘?=-

:2;*2·..

·

é

·-1

;;·-’ä?F:«

·—_

f’;=;r__;l*¥;"'L

Z·1=~.ä}·‘

E

Q

§%;«¥~—

—s·„aj=;;’;,·§¤=

·;

—.

2

—’ ··

--

gg

“j

^‘

»,:7

V'

=

61*i

gw

L;.

-4:;.‘*£’—=.

1't

’„

·iT·Y

.

Ü: ·5·

' *'

7;

- ;·-§TFf"'°”;,

#;§_;;,j‘g¤;

;’i

5

éL?.,_'TQ%;é;'Tif‘ij

't

;_-.g

_„

räijg-[

1_

gge;_

g

"—

>?J;i_;.;#·:·?‘;”¥—_

fää?

·-

wi

».

ä}e;;‘

‘ Af

‘j.@‘„**;gf,gü;£_‘%_gg

-

.éig*·

:?*;—;L=.

.''

_-_’

"‘*~* ·

gg

+._,;._~

.·LV;

,_:~ *

A ri

Page 65: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 25. Instantaneous phase for model of VT-5: at the com-pressed horizontal scale appears similar to the conven-tional seismogram.

35a

Page 66: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

-4-,

6

..*6.*..,

·-. ,-äh ·— .1 ,,‘ .-6.: .

l.5

ää #7 *‘

-.E. gg

'*‘* ' ' _ . **6 * - .7 *“"‘

:37

mj} Ä'- ._

gfz- Ü

«.

‘.

*1;

L~_

r .‘Wü

**7* '*‘‘7 **3* *"°;*‘ "* * ‘

7%

3*6é.é··

..„ ‘ "J'}. --.6;

‘L; L.gü

ä

—_ .;_ ;_ ' Ä Y1} EG-

;_E‘;„:.-**3

--*

’lf;.

*‘_{7i *—.:;—i· Ä?-«€ Z -3

‘a

‘.— .

_-Ü aw

’ „ .. Y,' ki-? Y '

7%-. E V. __ j6 .

::6. .

__

_.

,,.7·*-=-'€*

=* ,.,,7 .1

Q *· ·T *_ · 3... E .-

*-%*3*3 ä*éi".V Ö°E€Y‘«:l“=¤==?'

._-

‘ "-.. ·· V, ;' :917*;;; «6*:‘

-Y!-T-¤ - · -42 -6- ····-= ä ‘*' .„-·—- ·—

:;=-¤,_.__.., * _ __.._-. :1.;;__:

„;„;,_¤.,SF.:%=-«.

•—-=*""".,,„.-.*j· ;.‘ - 1.;.. i_ . ‘· · - . — Z

;

Ü.P."

_,':1_{f·.'

.,..,.:P·-— J ·

F-”

E-.·«-f*·—”"T -—°

T7 4@rz1

'‘ ;

{· V

. q_. :~j___ :7:**-%-3 _«_ .

B$1: .. 1.:

· ·- ....4-··.é,_-

Q,)*¤ =* .6 :.5-O

· __.-

.~ _;_gf;‘·

?—‘ -***~*l? 3;% {Ä

’* ‘ -"§ä¢”*2

3% t:*_

· Y ‘ * , .,€“ www

‘!-6; * · V7 L

\*‘$?_°*1·*

Li

E.-_ .

.=;·—-

Q2 · Eli-

" "

=— ."l --

—~—°’—·"'?

7** *

7} -= ¢ 6 E?6:

Qä-

.. ..1.*,.** .« ·. _:;‘ A -

¤¤

=£‘:-1-..,-*.1

,?‘—;-.-"·___—--—,,ä

am

—- >

_-

L

Y'

gé;

;=•—-*•~_§* _ g . V

·:--_:_ -_;V1; P

— T—*

.¢“ ·*;€‘

-.T‘— TT ~—

.-_: _: .7 _

._ . nw;

‘ . Ü'; · .A Ü. * · ... äÄ . *. _; ·-ls-

's

W””ilwY

•· {D64

35

Page 67: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 26. Instantaneous frequency for model of VT-5: exhibiting

tuning where the beds pinch out against basement.

36a

Page 68: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

. 6 Q —-¤-·‘ gig Q? ¢= QQ_-*

'l_-1;__;·• Q: _ — -'' 6-; •• • _ ; ._.. .Q : ' ;;"

Q[ [[ Q? ,6 .-ÜÜÄgf _, 3

"'T Af:6- ; ;* _‘ ‘Q-_-Li" °’ jj" Q;

cg---°° ‘="L . zi ' -6 °. - ’E ¥·‘@ **;**1 ,

vg-• {‘

Q‘="·—_;ä=:>L

Q ;Q '¤¤¤¤=»—« __ .·;i; Q =¢ —j Q;ßi

— -2:

"Ü. E L ·

·,

§__§Q?==—'*‘ Q- .? [Ä é·5-.,===g:¤__,_%·:;_;’i=__>_AH _

I.. ·¤

-= ·=·-T ‘¢‘Z Q -=··-7°.;. Q i?" \Q:"

-2*****‘• .g

-"

o .Q" _ T äE 6a·¤_ ' pi Lg: E"‘*!;$>-i>.«. __ <>c ;Q •

4"“""Q_.

L__

L ¤Q

6 ..""’ Q _..· _. $-;‘*L‘%=4__

· —· - v- » Q Q„"'"%:'.,,;$'*.Q§" " ° «{ "¢=> { ' 6-QR;

- .~=·<=· - dä? ·· ; -··¤.·> :-6‘F\-‘§··" **1*vQQ E . i

__ -6**·im? ;‘ l 21*71 ‘TQ-

.-·T':‘£s-’ ° ‘· '“' €=

Q'-- ·~¤ ·- 2 Q

·~‘bé·‘QVT; ·=~ 1-... r -6] ‘=" Q

"P T: „ . /

"”Q:

“°=_·•-{"•.. .€ G, - - Q-:

O - ig _· °

‘ ___;__‘_ W.— $--..9-: "

‘ —. 2^·-3—°

..,s=·:- @3 JF'? · °ä„_ sse. ä: ‘-

;_ FQ-

vj·.g_§L_¢>__Q; ¢ ., 1

' i ' - gf _ _

0 Q. · "‘ ·$¤‘-‘§·=·

° =· -6 ° ~·• Q '° --¤— ~-6;,¤‘ :-6* 6·—¢»- -62263 ey ~ --..-9**

= . .- 6‘ -Q-„.;~== ····«-3-.Qq__

w=*‘· 2-2;°L‘»=g‘

.„. ,, [—“=-6

Q- -”'

-6 "3 .:“Öi'<."‘ä, L I __ 'x·<::=•-6O.-.‘_

_ , L , __,„,« 6 . _°_

1}. "'52 Uv . °· "' "? °o

-*:2,... "';. .. ·=ä ·-r:.—- ‘ ·’ '“ ‘ ‘ ‘ ‘Q°"

.- „=——· ---—·' ..‘-T

no-__

·Q R‘»I:er Q Q .— T W ' * .; · _‘~- . ————· · ° .

W

<r‘9

-•- ··

36

Page 69: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Instantaneous frequency tunes at less than 1/4 the period of the

source wavelet, and amplitude tuning occurs at 1/2 the period of the

source wavelet (Nogami and Robertson, 1984) for single wedge models. Both

functions are applicable to seismic line VT-5. The real data on VT·5,

however, exhibit variable noise and acoustic impedance contrasts, so the

model of Nogami and Robertson (1984) has been extended to include these

complexities. For example, amplitude tuning is robust in the presence

of noise and if the seismic trace is not too noisy, instantaneous fre-

quency tunes with characteristic peak values where the bed thins, even

if the reflectivity contrast is too small to be easily perceived on the

conventional seismogram. The regions of tuning between instantaneous

amplitude and instantaneous frequency tend to overlap at the scales

plotted for single-sweep data.

37

Page 70: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

A segment (Figure 27) of single sweep processed data for VT-5

(Belcher, 1984) has been subjected to complex trace attribute analysis.

The instantaneous amplitude and phase demarcate the curvilinear re-

flections imaged on the conventional seismogram. The variability in re-

flection strength within the rocks makes amplitude tuning ambiguous on

the instantaneous amplitude plot. The instantaneous phase provides a

measure of the character of individual reflections which helps to confirm

continuity of reflections across the section.U

The instantaneous frequency shows peak values in the 40-45 Hz range,

less than the bandwidth expected for a 10-80 Hz Klauder wavelet. In ad-

dition, the instantaneous frequency is noisy, so determining which peak

values are due strictly to tuning is a matter of interpretation. The

largest areas of high instantaneous frequencies occur when several re-

flections merge on the conventional seismogram. For example, Station 97

at 1.55 s, Station 99 at 1.65 s and Station 101 at 1.50 s support the

hypothesis that pinchouts are the cause of tuning on the instantaneous

frequency plot. The character of the instantaneous frequency changes

across the inferred basin/basement contact which is shown, for example,

between the upper left and lower left sections of the display.

A prominent trend in instantaneous frequency occurs around Station

107 and 1.6 s marking a distinct area of low instantaneous frequency even

though the reflections are of large amplitude at this location on the

38

Page 71: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

other complex and conventional plots. Instantaneous frequency values

less than 27 Hz are representative of the elliptically-shaped white area.

Several hypotheses may explain this large region of low frequency:

71. The lack of high frequencies is an artifact of processing; however,

neighboring reflections contain higher frequencies.

2. Fracturing of an otherwise homogeneous rock could scatter the

higher frequencies in the returning sigel.

3. A lithology with a low Q value could attenuate the sigel through

intrinsic damping. Coal has a low Q, but rarely forms beds over

3 m thick (Pettijohn, 1975) which makes it difficult to account

for the observed thickness of the low frequency zone.

4. Shale and siltstone may have a sufficiently low Q relative to

conglomerate and sandstone (Waters, 1981) to create the pod shaped

area of low instantaneous frequency seen on VT·5. In eastern

Mesozoic basins, sandstone and siltstone grade into each other,

and border conglomerates are common at basin boundaries

(Pettijohn, 1975). The instantaneous frequency plot may be imag-

ing lithologic changes within the basin sediments. The best in-

terpretation of the low-frequency zone on VT·5 may be a transition

from basin border conglomerates (high Q) into finer-grained

siltstones (low Q) nearer to the center of the basin.

39

Page 72: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 27. Section of sing1e·sweep data for VT-5: expanded por-tion from Belcher (1984) imaging the inferred

basin/basement contact.

l•0a

Page 73: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

EM-

Q=·

OILIII"

Q)

'

.‘

:· -— I

II

Q,

Y

4

I!

·.

I

4

éé._

ZCi

_I

Y,

*44

I

II

II

gg

I'·

I-

*5

I‘I

I’*

I5‘

4/,.’-4

Y

I4*

‘—‘‘Y

_;

4,I

—-Q

Y'

-l4 4

C.—

";

"„

3*

3I··

Q;

Q,}4

„_.

=.‘—

Q- II

$4 :3

Q

Y.

J

aa°’

4*.*

Y__

E

äv

I

III75

:5

_,

I

*I4

=‘

Z

E-

IIZII4;;

I

3

YW

— ·II *

"‘54**

g4-

*4

I iI’

I II Iä

LI

:_

I

\”

ZI:°I 4*

*'Q

I4·‘

—=-=«"~*

—-

'I

IZ

IZ:‘

';

I I

4-

4-

...*

",„

4

YajY

5*

I

I

•-

4

gr““'I

*

**4;

I

ja

I

Q; — , ,

I

IIIII

"*

I

(D

.,,.

j;:I

I

IIJ

Page 74: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 28. Instautaneous amplitude for VT-5: marks highreflectivity contrasts within the inferred sediments.

l•1a

Page 75: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

._'l 6 1ä _— nä." Q·E—— — —-% 6 —~ **” _

__ -13*6 ___-6

1* -7- ·— 1 6 *221 .·—· [Q *21 ***1 _- ·— 2--~

--°'_

L-—¤=¤• .1 ' _ —_A _

*—~ ___„ 6-*+1-V '___.;-4****...1-1··¢2 - M.:

- -;..-ä'-'**. S. SO ~ * 2- **:2:; .' ~

6Y2

"“°_ * ‘-7 —• ·•

2-1„-1

_ -— _- ‘__ — A-- g I 6 - -—— - -. - -1 -

I_f' * 22

-;-61*-*

” ‘ ‘. - '

—• Y° . °

-_

-l_.‘ ‘*:.6""‘6I$

ä2*ik *22 —

IO _ _ _ 6 ._ ~— ' V --••;·

. -1 _, ·-4-*:°°_ _ 1L- . " ‘· .; -¤*·_ .-.6 ___ ·· __

1 ____. —; _- II

* — .. ***;-1.1* -—=· . . = *- $1·-=""‘I—. - -- .- -- * —..1•¤'6.’_

— ***—·—— ;‘·· , . ’$— 1

-

._ -.. *‘ .*;§ .-1 ‘*Z? -·-2··==—-1--1 ..- —* .. —-

'·=- _:'.;$2‘.—-= ‘-."2,__ F3 · °‘*2.;I,I 6 — . - . gl =-;=*Q..— 2 2;- __ - __. 1;.- W I -6

1**-Ӵ~

*· =· 2**-62lD »

‘-——. 2-2 _ ,6-2:6-&·I -.

____--

=- ,I-1,,..->

-::.1.-_ ?;¤ "I _6 :--*:6-Q = ·*-Y ' *·¢‘-’—-”'—=—'..*

‘ ..1:.g- ä_" _ 2•-6

W? -*2 ‘ _ _ Y A- ••— °‘ .

g—- ir

_ 'A"6L--__ . 6--:*- ...=—"..-"*— ——- -1- - L.

é - -*== ‘· i'__ _—-I

E **:.2-. —— : .:¤-nc :-;....76:.*“ —— -.*

N gn ’~—— 6 _ 2'T 1 _ j ’ ‘_ _-;

· 1-.-...2°° ··-=— I I *""’- 4- " *—* I

O ___ 2O

— 6-- _$$__ 2 2* __

Ü .„,._—„„,2" '°°~ __·

ee 2 .,3 U)

E-.1,.2-;-_-—•-6 _ -_

-“-

,,,,,2. Ä-? __‘ —--- -2 1.c 6q;

cn

·=r Q 'q; !*

41

Page 76: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 29. Instantauecus phase for VT-5: measures the coutinuityof reflectious.

— l•2a

Page 77: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

1:;YY

äY

YYYYYYY

„'=¤_

.‘¤

-I:-EQ-4

‘_

1::

_‘=;—lQ,;_·

'4;

1;;;-

Y-

ÄÄ -

-

-:;;-4..·?*Y:Q;¤;g

4-T?-¤

Y

.4;—-

Q-;—

7.-Q-··

-.;

_3___§;é7;

„-·=

YY

YY gYYYYYYY

—‘;‘

-’;;=4#;j—4_j;Q;;_ :·-

4-

Ä?

Yuu‘

«-

~ *5:- ;

_,=-:-:1;;-Léäé;-—*;:•-i—°

-

‘:?§Y"§Ä?'YY.„.:iY?’-i

«

·—=—¤'

-+9-j;,·.Tf‘}•$

"EYY

-Y-yé

‘Y:YlY’Y

;.YY··

YY"’

7*i;-i

7:1;

7-,Q;

75

.---7.-:;;

;;

"¥’·.

·—__ ——··-_;4j«v,¢:„;é.‘

I;. —

p n

’-ir--

-‘•¤ki

,.

Q-

;_:,;äQ_;

-7-.76.

-.6

g„._i_;;;g

.

.g_-Q

7

-;€,;*-.Q

ij:

E

__

'gi:

;’ ·

„"—"‘

1Z"__

Y1

-Y,._

¤_:„;_

.;Y Y

9-

E

:,34,-

4,-.

.

=—§·—.4-;

— 4-7

__;i..-Q_Q‘

.

I

liéiian

--44-7-;..-5.+;:;;.:

4

€_Q_-§,‘=-;‘ä$_4-?“"§-5;

44

,;

YYYYYYE'*’

' 7 =" %‘°

*7;2

Sär

4

,,.1.:-;-

J.>,

1%

„:;g_'__·j

;;.

Y;__ ;?_,'

gk,-.

c-

.:fl

·—

{

Y°’Y«;

w

:1-

7;;;-g_q;;:i;;%·a;—_*Y:.E;,--3-«¤

L:

Q"’

YO

L’

iiY‘..__

;_;Y

—i:_,Q=,§;-„:

~-

";Q_«-'777

"Y—

+-1;

-7--

,,;-;*7Q;

-

:.-:1

v

‘„<D1;%

ii

Page 78: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Figure 30. Instantaneous frequency for VT-5: Some maximum valuesby the hollow-wide arrows are due to tuning within thewedging sediments. The low frequency between the solid-narrow arrows is attributed to lithologic change fromconglomerate/sandstone to siltstone/shale.

· 43a

Page 79: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Ü? * I,_ I I

c ,·__;_-{1__-„__

-.7---}-"<1.&

I*°'.

·¤ kg

-*1-g-

gibst;.‘·=~.Q-., 7 '·~·~3'l*--„_}„7

. »;(-Fg-.,-,·‘ -„ ·

_”S;¤__ °

·‘

5“

pi ~'*i.I?·-,.

'5* " .·> "*

‘ L Q -— -·—

-=-3{· .-#2-, Q,-,

T,-· _-n I

°_Ö

*""-S__ -9

-2"”“

‘ J 1L1 JE-

“g°' «·~

g

__-

*' ¥¤·*,,·q’-·=-E ,,~==

7(ggg

V—·

7

,-,-qäfgr

1

1‘

__ -S;-{~

"—g$·~ I. - .;

,; . c-Q--._, ·

' '2--*- . .

• .gg,

anz-

·f',

I,___J

§._ V, :-

\_-A-_;__

7.‘

1

., -„•_ ·

TP1* _g·~~ -

” -*3 -

’·~• _- g-Vc6;_

1,% -7;* « -

-*•-

E ··•

7·l.“·‘

1_·.¤>*··Z;__-LVj—*I Q-.i=Z„

Q '1 _; <_ —;-•..

,3.‘

,• -~-L

"“ --”'é-5-„·=·.

'IL}1°_~;* -FP -

gw W W ‘"’ L~f§i°?¤~W@L W1 1*ä °*1*

..,.,

<'I ,

‘ '°' ·

9 { -___·‘* . . *'

O · F 'fl1--.

_--

Ü III, *;,¤:&?‘” L _ —E ; z* *-2

W}1) xp

I ä ·.

g 3 g

.

-i?- L 7G~

‘ Q-F?.-og;. - ~L? ,„

W ---‘

gJ

*

gi gg6

9

--Q;

,’· -$5-—„.._ .· e -•i_

‘—--L „¤ ° ·Q-! _ g Z

--7-—

-— \/**,5

.. ',-‘> _ »

, 5,··•~:*: .. .a

’ ,

.

.„.,-5;°" 1. -

·,-,

1

“ —·—-·

1 °"¥? W‘~$‘>'=-·¤¢··‘g¢W- ‘¥“1‘g'·—"»

I--·«-

__

_ä J.,5

, rifu-—_ ” La

_,___ “-Q

*'#‘7’ ·-‘ __ ät

7

o5:

,5- ggg-ff .5F*i Lk7

¤—

'“

°•

F. T·•„>—g¤·~¤¤_:-—· - - Q-; L „..,.5-*- -- F

· nn*·

'gä- •*7* -

‘* 7 ,.’ > ,39 °

l

'Y

.-— _*"‘Q__

„. ,,

I-

1;,;- «g;--,._„--‘ .2*

‘ 1 ·-Z?

„ ---.--*—‘ , ·-

*·' ·=VB -1-

‘ ·•·- "*“‘¢-’ ‘*C¤

Ö__ ,7,2: QQ

I_ _ Y,

*6

.,<--."'

,___‘* c Z B

'7-6

>•~

—· -1, -. ·-7 ¢ V ~— Sg- «. . "-·—-

··1-

1 gQ.

W *W'?'“g' Q1 E;

-;-.g@,€Ä.W Ö 7

GJ

,--__ jj;

$“- ',—-*·

V V 4*-· .

__7 "'„?_‘,,„$" ·

5. ;!"‘*

:°*¤—--, —-L ~"

.. ·

. -7„,,g

L- 5 6 ,;=- - --1- *—-5

**1 ;Ü gez-

v'·-· §T>°- Q ·

' ,2{_

V5;-_ Q :*1

°" [D _-O)

‘- " g;—.én§:·:·-—

_ E

~‘-‘"·O

anP-- J ;,""···"’1

,,·’°W3

—..‘1‘°-:53-2.

·—_7Ü

C;, -

A. (Q•~ZL;_>\_, -

' .. Q -j\....V

_

.9Lp

I, 54*- '*¤"== Q‘

5•- -

,+7_,,t„_ E

_0

_;_7 c·;_ ~ ;F='•·=é

g 2„·

^‘ 4-I?7-

1)** 7g?1“'

-

”‘*-· *

Q

•-· cn

‘**‘ w' ·$4**

Zig, — ‘~—— 75- ' " - /

U)

‘*

-_

c

W 7"**"*·"gg

i ‘ ·777*-;;;.

—E

‘ f_i_

"‘Q -4 - E,6-wh?-._

‘?· .·1f#;··*;-i;-

<>O Q*7--**°'.‘ ¤ -- 1-

"’· 7 ,**-

WQ-·· 0)

_,_

1-

(D

' ~'—*-·

•-Y

l+3

Page 80: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Instantaneous frequency and instantaneous amplitude tune for simple

thin beds. Adding complexity to the synthetics reveals that instantaneous

frequency is more sensitive to a low reflectivity contrast than is in-

stantaneous amplitude. On the other hand, tuning of instantaneous am-

plitude is more robust in the presence of noise than is instantaneous

frequency. The truism is that any combination of too much noise and too

little reflectivity contrast will degrade any seismogram, whether dis-

played conventionally or with complex trace attributes. or complex.

’l‘un:Lng phenomena depend on the source wavelet as well as the geology.

Taner (1979) and Neidell and Robertson (1984) express tuning in terms

of the Ricker wavelet. This study has been extended to include the

Klauder wavelet, specifically the Klauder 1Q-80 Hz wavelet which is rep-

resentative of the source wavelet used to sound the sub-surface along line

VT-S. Using the Klauder on synthetics, plotting and display character-

istics of tuning in complex trace attributes have been calibrated and then

1:Lne VT-S has been subjected to complex trace attribute analysis.

The results are consistent with the previous interpretation given

by Coruh and others (1981). The complex trace attributes exhibit tuning

patterns consistent with an angular unconformity at depth between base-

ment and basin sediments of heterogeneous red beds. The technique allows

a different perspective with which to view the data. The original inter-

pretation for line VT-5 discovered a buried Mesozoic basin, The applica-

tion of complex trace attributes has explored this basin. Searching for

/+1+

Page 81: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

tuning phenomena on VT-5 means looking for large instantaneous amplitudes

(loudness) or large instantaneous frequency (high pitch), but this en-

tails measuring the lows along with the highs. The juxtaposition of the

low instantaneous frequencies next to high instantaneous frequencies in-

itiated a re·examination of the conventional data in a new light. The new

interpretation is the proposal that the data on VT-5 and its complex trace

attributes have imaged a lithologic transition between

conglomerate/sandstone and siltstone/shale within a subsurface Mesozoic

basin.

45I

Page 82: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

AEEEEHIK

Let g(t) represent the seismic trace and H[ g(t)] be the HilbertU

transform (Guillemin, 1949) of the seismic trace. Also let D g(t) and D

H[g(t)] be the first derivatives with respect to time of the trace and

Hilbert transform of the trace (Kuo and Kaiser, 1966; Hamming, 1983;

Ziemer, 1983). From Taner and others (1979) or Bracewell (1978):

The instantaneous amplitude, A(t), is

A(1=) = Sqrt{g(t)**2 + (H[s(t)1)**2}-

The instantaneous phase, P(t), is

PU:) = ¤r<=¤=¤¤{H{s(t>l/z(t)}-

The instantaneous frequency, FQ(t), is

FQ(¤) = (D s(¤)*H[s(t)] · s(t)*D H[s(t)]) / A(t)**2-

The use of black and white instead of color displays for complex

trace attributes has necessitated the following modifications to the

functions. The instantaneous amplitude has its mean removed and then

further biased before displaying on a variable area plot. The cosine of

the instantaneous phase is plotted instead of the instantaneous phase

itself. Before contouring, the instantaneous frequency has been re-

stricted to the passband of the source wavelet, and been subjected to at

least one 2-dimensional 9 point (the same as a 3-by-3 box array) runn:|.ng

median filter.

I 46

Page 83: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Belcher, S-W-,1984,RgggggsigggMasters Thesis, Virginia Polytechnic Institute andState University.

Berkcat, A- J-,1984,Eghg__Igghgjggg;* Handbook of Geophysical Exploration, V. 12,Geophysical Press, 228p.

Bracewell, R-N-, 1978, 2nded., McGraw-Hill, New York, chapters 6,12, and 18.

Coruh, C., Costain, J.K., Behrendt, J.C., and Hamilton,R.M., New re-flection seismic evidence for deformation of Mesozoic sedimentsnear* Charleston, South. Carolina, 1981, Annual. meeting of GSA,Cincinnatti, Ohio. Abstracts with Programs, v. 13, no. 7, p. 431.

Cremer H-, and Leadbetter, M- R- ,1967,RggggssgsgJohn Wiley & Sons, New York. _

Dillon, W.P., Klitgord, K.M., Paull, C.K., 1983, Mesozoic development andstructure of the continental margin off South Carolina, in StudiesRelated to the Charleston, South Carolina, Earthquake of 1886-Tectonics and seismicity, G. Gohn ed., USGS PP 1313, Washington,Section N.

Gohn, G., 1983, Geology of the basement rocks near near Charleston, SouthCarolina- Data from detrital rock fragments in lower Mesozoic(?)rocks in Clubhouse Crossroads test hole, #3, in Studies relatedto the Charleston, South Carolina, Earthquake of 1886- Tectonicsand Seismicity, Gohn, G., ed., USGS PP 1313, Washington, SectionE.

Guillemin, E- A- ,1949,;g_;hg_Mg;hgmg§iggl Training of Electrical Engineers, MIT Press,Boston, chapters 6 and 7.

Hoaglin, D.C., Mosteller, F., Tukey, J.W., 1983, §ggg;;;g¤g1gg_;ghg;;LgggJohn Wiley 8 Sans, New Yerk-

Henning, R- W- , 1983, Prentice-Hall, Inc- ,Englewood Cliffs, New Jersey.

Kac, F- F- , and Kaiser, J-F- ,1966,JohnWiley & Sons, New York.

Pettijohn, F, 1975, §ggjmgg;g;y_Rggk;, Third Edition, Harper & Row, NewYork, p. 216.

”47

Page 84: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Phillips, J.D., 1983, Paleomagnetic investigations of Clubhouse Cross-roads basalt in Studies related to the Charleston, South Carolina,Earthquake of 1886-- Tectonics and Seismicity, USGS PP 1313,Washington, Section C.

Rankin. D-W-. 1977.USGS PP 1028.

Washington.

Robertson, J.D., and Nogami,H.H., 1984, Complex seismic trace analysisof thin beds: Geophysics, v. 49, no 4, p. 344-352.

Sengbush, R.L., Lawrence, P.L., and McDonal, F.J., 1963, Interpretationof synthetic Seismograms: Geophysics, v. 26, n. 2, pp. 138-157.

Taner, M.T., Koehler,F., and Sheriff, R.E., 1979, Complex seismic traceanalysis: Geophysics, v. 44, no. 6, p. 1041-1063.

Taner, M.T., and, Sheriff, R.E., 1977, Application of amplitude, fre-quency, and other attributes to stratigraphic and hydrocarbon de-termination, in Seismic Stratigraphy- Applications to hydrocarbonexploration, Am. Assoc. Petr. Geol., Mem., 26, Tulsa, p. 301-327.

Sheriff, R.E., and Geldart,L.P., 1983, Exg1g;g;jgn_sgi5mg1ggy, volume 2:Data-processing and interpretation, Cambridge University Press,Cambridge, p. 73, p. 173.

Waters, K., 1981, Rgf1gg;1gg_§gj5mg1ggg, Second Edition, John Wiley and_ Sons, New York, p.30.

Ziemer, R. E.; Tranter, W. H.; and Fannin, D. R., 1983,Macmillan. 487pp-

48

Page 85: w bb S ß Steven B. Miller - vtechworks.lib.vt.edu

Recommended