+ All Categories
Home > Documents > W o r k s h o p o n Accelerated Deployment of Field … Anderson, DOE; Dan Bond, Univ. Minn.; Scott...

W o r k s h o p o n Accelerated Deployment of Field … Anderson, DOE; Dan Bond, Univ. Minn.; Scott...

Date post: 29-Jun-2019
Category:
Upload: hoangxuyen
View: 212 times
Download: 0 times
Share this document with a friend
23
W o r k s h o p o n Accelerated Deployment of Field-Scale Models for Microbially-Mediated Groundwater Remediation Sponsored by ERSP co-chaired by Jack Parker, Univ. Tennessee and Tony Palumbo, ORNL Participants: Todd Anderson, DOE; Dan Bond, Univ. Minn.; Scott Brooks, ORNL; Bill Burgos, Penn State; Frank Chapelle, USGS; Yilin Fang, PNNL; Tim Ginn, UC Davis; Terry Hazen, LBNL; Jack Istok, Oregon State; Jian Luo, Ga Tech; Peter Kitanidis, Stanford; Krishna Mahadevan, U. Toronto; Eric Rodin, Univ. Wisconsin; Chris Schadt, ORNL; Tim Schiebe, PNNL; Pat Sobecky, Ga Tech; Mark Widdowson, Va Tech; Steve Yabusaki, PNNL; Fan Zhang, ORNL
Transcript

W o r k s h o p o n

Accelerated Deployment of Field-Scale Models forMicrobially-Mediated Groundwater Remediation

Sponsored by ERSP

co-chaired byJack Parker, Univ. Tennessee and Tony Palumbo, ORNL

Participants:Todd Anderson, DOE; Dan Bond, Univ. Minn.; Scott Brooks, ORNL;

Bill Burgos, Penn State; Frank Chapelle, USGS; Yilin Fang, PNNL;Tim Ginn, UC Davis; Terry Hazen, LBNL; Jack Istok, Oregon State;

Jian Luo, Ga Tech; Peter Kitanidis, Stanford; Krishna Mahadevan, U. Toronto;Eric Rodin, Univ. Wisconsin; Chris Schadt, ORNL; Tim Schiebe, PNNL;

Pat Sobecky, Ga Tech; Mark Widdowson, Va Tech;Steve Yabusaki, PNNL; Fan Zhang, ORNL

Workshop Motivation

ERSP Goal: Develop improved models for coupled field-scale processes

Much uncertainty regarding modeling of microbial reactions…

Accelerate progress with better communication between modelers andmicrobiologists!

Workshop Objectives and Format

Objectives…

• Narrow communication gap between modelers and microbiologists

• Identify current knowledge/data gaps

• Develop a “roadmap” for collaborative model development

Format…

• Web-based meetings using Live Meeting

• Five weekly two-hour sessions January 7 – February 4, 2008

• Roughly split between presentations and open discussion

• Presentations and auxiliary material on workshop web site

(contact me for URL and access code)

Session 1: State-of-the-Science of Microbial ProcessesAffecting Subsurface Contamination – Terry Hazen, LBNL

Overview

Factors affecting microbialgrowth microbially-mediatedcontaminant attenuation

Session 1: State-of-the-Science of Microbial ProcessesAffecting Subsurface Contamination – Terry Hazen, LBNL

Geochemistry and Transport Processes

dominant influence on microbialgrowth and reactions

e.g., electron acceptor (EA) andelectron donor (ED) fluxes

Session 1: State-of-the-Science of Microbial ProcessesAffecting Subsurface Contamination – Terry Hazen, LBNL

New Technologies

For characterizing andmonitoring communitydynamics

Session 1: Metabolic and Multi-Scale Models– Tim Scheibe, PNNL

Upscaling Issues

Imbedding pore scalemodels within primarycontinuum models

Session 1: Metabolic and Multi-Scale Models– Tim Scheibe, PNNL

Hybrid Multiscale Models

Linking metabolic modelswith continuum transportmodels (SciDAC)

Session 2: Model Identification, Calibration, Validation,Uncertainty, and Scale – Peter Kitanidis, Stanford Univ.

Practical Upscaling Issues

Useful to evaluate form of field-scale constitutive models, but notpracticable for calibration

(too many parameters)

Session 2: Model Identification, Calibration, Validation,Uncertainty, and Scale – Peter Kitanidis, Stanford Univ.

Optimal Model Resolution

Tradeoff between data availabilityand model accuracy

Session 2: Continuum Modeling of Microbially-MediatedSubsurface Reactions – Jian Luo, Ga. Tech

Model Application to Oak Ridge FRC Field Pilot Test

uranyl-carbonate and uranyl-phosphate surface complexes, acid-base chemistry, etc.

microbial electron-acceptors: nitrate, ferrihydrite, sulfate, U(VI)

mass transport limitations >> Monod kinetic limitations

0

50

100

CO

D (

mg

/L)

0

50

100

SO

4−2 (

mg

/L)

6

6.5

7

pH

0

5

HC

O3− (

mM

)

0

0.5

NO

3− (

mM

)

398 399 400 401 402 403 404 405 406 407 408 409 4100

0.5

1

Time (Day)

U(V

I) (

mg

/L)

COD

pH

SO42−

HCO3−

NO3−

U(VI)

Phase I Phase II Phase III

Session 3: Lessons learned regarding bioremediation oforganic chemicals – Tony Palumbo, ORNL

Hydrocarbon and Chlorinated Solvent Plume Bioremediation

- Organic bioremediation and models used routinely

- Lessons that can be extrapolated to metals and rads?

Session 3: Lessons learned regarding bioremediation oforganic chemicals – Tony Palumbo, ORNL

Chlorinated Solvent Biodecay

•Usually insensitive to initial communitystructure (except for anaerobic dechlorinators)

•Usually transport-limited rates

• ED/EA limiting at low populations,nutrients may be limiting at highpopulations

Session 3: Practical Use of Models for Bioremediation ofOrganics – Mark Widdowson (Va Tech) and Frank Chapelle (USGS)

Reactive Transport Model with Microbial Reactions

Sequential TEAs based on energy yield (e.g., O2>NO3>Fe(II)>SO4>H2)

++=

=

1

1 ,

,max,,,sin

le

li lilile

lile

VCelc

VCEAVC

yEAbioVCk ECK

CMR

Electron Donor

& Acceptor Flux

Contaminant

Mass Flux

Natural Attenuation

Capacity

Sediment ED & EA Pool

Monod kinetics model

EA and ED mass balance

Session 3: Practical Use of Models for Bioremediation ofOrganics – Mark Widdowson (Va Tech) and Frank Chapelle (USGS)

Used in Numerous Field Applications

- Reaction rates depend on EA and ED fluxes

- Not sensitive to Monod rate coefficients

- MNA sustainability controlled by carbon flux

$T#Y#Y

#Y

#Y#Y#Y#Y

#Y

%U%U%U%U%U%U%U%U

%U%U #Y#Y

#Y#Y#Y#Y#Y#Y#Y#Y#Y#Y#Y#Y#Y#Y

#Y#Y %%%%

AA Pilot StudyVegetable Oil Study

0 500 1000 Feet

Session 4: A Thermodynamically-Based Model for U and TcBioreduction – Jack Istok, Oregon State

Approach

•Define microbial groups based on EA and ED

•Derive growth equations and energy yield for each group

•Assume ‘fast’ reaction kinetics (i.e., transport-limited)

Acceptor Donor YDx Acceptor Donor YDx

Group Half-Reaction Half-Reaction Group Half-Reaction Half-Reaction

1 O2/CO2 Ethanol/CO2 0.56 22 MnO42-/Mn

2+Acetate/CO2 0.12

2 Acetate/CO2 0.41 23 Ethanol/Acetate 0.29

3 Lactate/CO2 0.56 24 Lactate/Acetate 0.06

4 Ethanol/Acetate 0.14 25 H2/H+

0.15

5 Lactate/Acetate 0.14 26 CO2/CH4 Acetate/CO2 0.02

6 H2/H+

0.13 27 H2/H+

0.02

7 CH4/CO2 0.55 28 H+/H2 Acetate/CO2 0.11

8 NO3-/N2 Ethanol/CO2 0.27 29 Ethanol/Acetate 0.01

9 Acetate/CO2 0.41 30 Lactate/Acetate 0.06

10 Lactate/CO2 0.27 31 UO2++/U

4+Acetate/CO2 0.22

11 Ethanol/Acetate 0.29 32 Ethanol/Acetate 0.19

12 Lactate/Acetate 0.06 33 H2/H+

0.12

13 H2/H+

0.17 34 CrO42-/Cr

+++Acetate/CO2 0.32

14 Fe3+/Fe

2+

Acetate/CO2 0.12 35 Lactate/Acetate 0.06

15 Ethanol/Acetate 0.13 36 H2/H+

0.12

16 Lactate/Acetate 0.13 37 TCO4-/TcO

2+Acetate/CO2 0.07

17 H2/H+

0.07 38 Ethanol/Acetate 0.06

18 SO42-/HS

-Acetate/CO2 0.10 39 H2/H

+0.04

19 Ethanol/Acetate 0.04

20 Lactate/Acetate 0.04

21 H2/H+

0.07

(O2-H2O)(H2-H)

(MnO4-Mn2)(acet-CO2)

(NO3-N2)(ethn-CO2)

(H-H2)(ethn-acet)

(O2-H2O)(CH4-CO2)

(MnO4-Mn2)(H2-H)

(Fe3-Fe2)(H2-H)

(UO2-Uran)(acet-CO2)

(SO4-HS)(ethn-acet)

(Fe3-Fe2)(acet-CO2)

(CO2-CH4)(H2-H)

(CO2-CH4)(acet-CO2)

Session 4: A Thermodynamically-Based Model for U and TcBioreduction – Jack Istok, Oregon State

• Successful applications to FRC Area 1, OldRifle, and Hanford 100 H

• Only 4 adjustable parameters regardless ofnumber of groups

• Allows more detailed description ofmicrobial communities

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10 12 14

Acetate Reacted (mmol/kg)

Co

mp

os

itio

n U Groups

Mn Groups

Nitrate groups

Aerobe Groups

Fe Groups

Sulfate Groups

CO2-CH4

H-H2

Acetate Reacted (mmol/kg)

UO2++

Can simple models describe complex biogeochemical systems? – Yes…

Session 4: In Situ U Biostimulation: Challenges for Field-Scale Modeling – Steve Yabusaki and Yilin Fang, PNNL

Comprehensive 3-D reactive transport model

• Redox, sorption, aqueous and surfacecomplexation reactions

• Thermodynamically-constrained Monodmicrobial kinetics

Microbial Reactions

Iron TEAP

0.125CH3COO- + 0.6FeOOH(s) + 1.155H+ + 0.02NH4+ = 0.02BM_iron + 0.6Fe++ + 0.96H2O + 0.15HCO3

-

Sulfate TEAP

0.125CH3COO- + 0.0057H+ + 0.0038NH4+ + 0.1155SO4

-- = 0.0038BM_sulfate + 0.0114H2O + 0.231HCO3- +

0.1155HS-

Uranium TEAP

0.1250CH3COO- + 0.3538H2O + 0.0113NH4+ + 0.3875UO2

++ = 0.0113BM_iron + 0.855H+ + 0.1938HCO3- +

0.3875UO2(s)

0 2 4 6 8 10 12 14–.8

–.4

0

.4

.8

1.2

pH

Eh

(vo

lts) O2 (gas)

H 2O

H2O

H2 (gas)

Uranini te (UO 2)

U4+

UO22+

UO2(OH)20(aq)

Ca2UO2(CO3)30(aq)

CO2

Fe(III)Fe(II)

Session 4: In Situ U Biostimulation: Challenges for Field-Scale Modeling – Steve Yabusaki and Yilin Fang, PNNL

Application to Rifle, Colorado Mill Tailings Site

• calibrate to 2002 acetate biostimulation experiment

• verify with 2003 experiment (3x higher acetate injection)

Observed and predicted dissolved Uranium

2002

2003

• How much model complexity is needed?

• Optimum complexity depends on

• Decrease in “intrinsic error” with morecomplexity versus…

• Increase in parameter propagation errorwith too many parameters relative todata for calibration

• Prediction uncertainty tolerance formodel-based decision?

Complex =============== Simple

0

20

40

60

80

100

120

Pre

dic

tio

n U

ncert

ain

ty

Intrinsic error

Parameter error - low data

Parameter error - high data

Total error - low data

Total error - high data

Optimum

low data

Optimum

high data

• Models can be used to prioritize data needs and research efforts

Session 5: Discussion of Challengesand Approach to Accelerate Progress

There ain’t no so thing as a free lunch!

A road forward…

• Priority research issues

• Identify rate limiting processes (EA, ED, nutrients, inhibitors, metabolicstate, mass transport, etc.) and formulate growth equations

• Identify microbial groups that capture metabolism based on genomics

• Correlate functional groups with genomics data

• Evaluate effect of model formulation, resolution and calibration data onprediction uncertainty?

without a map, its easy to get lost inthe rush of traffic…

Session 5: Open Discussion of Challengesand Approach to Accelerate Progress

• Modelers need to• Determine processes/parameters that control field-scale uncertainty• Identify model-data anomalies and design experiments to identify data

needs for validation/refinement

• Evaluate tradeoffs that affect prediction uncertainty

• Experimental scientists (e.g., microbiologists, chemists) need to• Perform studies to refine processes/parameters to reduce model uncertainty

• Formulate hypotheses and perform experiments to resolve anomalies• Develop improved methods for obtaining calibration/validation data

Iterative process with short cycle timeand flexible work plans

- Encourage collaborative proposals

- Create biomodeling working group tofoster ongoing interactions

Session 5: Open Discussion of Challengesand Approach to Accelerate Progress

Collaboration is critical to make headway…

In Progress

A report on the workshop is in progress that will bepublished in:

Questions and Comments…?

Eos, Transactions, American Geophysical Union


Recommended