+ All Categories
Home > Documents > W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1,...

W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1,...

Date post: 19-Jan-2018
Category:
Upload: chloe-ginger-williamson
View: 215 times
Download: 0 times
Share this document with a friend
Description:
P OWER D ISTRIBUTION N ETWORK (PDN) Power supply noise Resistive IR drop Inductive Ldi/dt noise PDN model 3
26
WORST-CASE NOISE AREA PREDICTION OF ON-CHIP POWER DISTRIBUTION NETWORK Xiang Zhang 1 , Jingwei Lu 2 , Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE Dept., University of California, San Diego, CA, USA 2 CSE Dept., University of California, San Diego , CA, USA 3 Institute of Electronic CAD, Xidian University, Xi’an, China 2014-06-01 1
Transcript
Page 1: W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1, Jingwei Lu 2, Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE.

WORST-CASE NOISE AREA PREDICTION OF ON-CHIP POWER DISTRIBUTION NETWORK

Xiang Zhang1, Jingwei Lu2, Yang Liu3 and Chung-Kuan Cheng1,2

1 ECE Dept., University of California, San Diego, CA, USA2 CSE Dept., University of California, San Diego , CA, USA3 Institute of Electronic CAD, Xidian University, Xi’an, China

2014-06-01

1

Page 2: W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1, Jingwei Lu 2, Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE.

EXECUTIVE SUMMARY Problem: Previous works focus on the worst-peak

droop to sign off PDN. Worst-peak noise ≠ Worst timing (delay)

Our goal: To predict a PDN noise for better timing sign off.

Observation: The noise area of PDN => Behavior of circuit delay

Case study: Design the worst-case PDN noise area Provide analytical solution for a lumped PDN model Design an algorithm for general PDN cases

Results: Worst-area noise introduces 1.8% additional propagation delay compared to worst-peak noise from our empirical validation under a complete PDN path.

2

Page 3: W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1, Jingwei Lu 2, Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE.

POWER DISTRIBUTION NETWORK (PDN)

Power supply noise Resistive IR drop Inductive Ldi/dt noise

PDN model

3

Page 4: W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1, Jingwei Lu 2, Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE.

MOTIVATION

Performance sensitivity on PDN voltage drop Increased signal delay [Saint-Laurent’04]

[Jiang’99] Clock jitter [Pialis’03]

Delay vs supply voltage(courtesy of [Saint-Laurent’04])

4

Page 5: W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1, Jingwei Lu 2, Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE.

PDN NOISE AREA VS DELAY

Delay is measured under a modified C432 of ISCAS85 circuit in 130nm node5

Page 6: W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1, Jingwei Lu 2, Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE.

PROBLEM FORMULATION PDN Characterization

Impulse Response h(t)

Voltage Noise:

• Input to PDN system• Transient load current

demand i(t)• Assumption:

• All on-die loads lumped into a single load

• Total current is bounded

6

Page 7: W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1, Jingwei Lu 2, Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE.

PROBLEM FORMULATION Worst-case peak noise [Hu et al @ SLIP2009]

where the worst-current :

Voltage Noise Area Integral within sliding window Window size T corresponds to

one clock cycle Defined as , a function of

input current

Worst-case optimization Design of current and voltage drop Achieve maximum noise area Aw and interval Can be solved by polynomial-time method

0

( ) ( ) ( )t

peakv t h i t d when when

7

Page 8: W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1, Jingwei Lu 2, Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE.

PROBLEM SIMPLIFICATION Binary-valued worst current

Can be proved that only switches between 0 and 1 Current decomposition

equals the superposition ofa series of step inputs

Single step input & response Step response Integrate into ramp response Noise area function

8

Page 9: W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1, Jingwei Lu 2, Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE.

SIMPLIFIED PROBLEM FORMULATION

A linear-constrained linear optimization problem

Input A power network system with impulse response

h(t) Given window size T

Output Window location Phase delay of step inputs,

Objective Maximum noise area Aw within

Constraints , t is

9

Page 10: W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1, Jingwei Lu 2, Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE.

CASE STUDY: RLC TANK MODEL Impedance Profile: , where

Assume Q>0.5, system is underdamped Step Response :

where

Ramp Response :

where

10

Page 11: W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1, Jingwei Lu 2, Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE.

WORST NOISE AREA PREDICTION FOR RLC TANK Given a window size T, worst-area noise is

is set to a relatively large value when . is

is the time when local peaks/valleys of occur. Solved by setting since is piecewise-defined func.

Case 1 (): is the solution of , i.e.

Case 2 ():

where.

11

Page 12: W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1, Jingwei Lu 2, Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE.

CASE STUDY: WORST NOISE AREA PREDICTION FOR GENERAL PDN CASES

Real PDN structure is complicated Consists of multiple frequency components Develop algorithm

Algorithm design for general cases– Given window size T and arbitrary impulse response – Determine the phase delay of each step input – Constructs by superposing – Maximum noise is achieved

12

Page 13: W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1, Jingwei Lu 2, Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE.

INTUITION Align all together to generate

Select one point from to determine the phase delay Maximize (+) by choosing peak points Minimize (-) by choosing valley points Determine as the last peak of .

= sum of all peaks- sum of all valleys13

Page 14: W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1, Jingwei Lu 2, Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE.

ALGORITHM DESIGN Given &

Impulse response and window size

Generate , and Step responses and its

transformation Extract all peaks and valleys of

Linear scanning on Calculate each peak-to-valley

distance Determine phase delay

accordingly Determine (t) by and its sign (±)

Construct adding up all together 14

Page 15: W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1, Jingwei Lu 2, Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE.

COMPLEXITY ANALYSIS

Our algorithm consists of finite operations Step response transformation Linear scan for peaks & valleys extraction Worst-case current construction

Overall complexity is O(n) Finite amount of operations Each operation consumes no larger than linear

runtime

15

Page 16: W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1, Jingwei Lu 2, Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE.

EXPERIMENTAL DESIGN AND RESULTS Setup:

Matlab R2013a HSPICE D-2013.03-SP1 Cadence Allegro Sigrity Power SI 16.6 Ansoft Q3D 12.0 ISCAS85 circuit under 0.13um cell lib Intel i7 Qual-Core 3.4GHz w/16GB PCDDR3

PDN test cases Single RLC tank Cascaded RLC tanks A complete PDN path extracted from industrial design

16

Page 17: W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1, Jingwei Lu 2, Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE.

WORST-PEAK AND WORST-AREA NOISE OF A SINGLE RLC TANK CASE

Nominal Vdd= 1V, T=17nsBoth load current activities stop at

10mΩ 250pH

33nF

12mΩ

i(t)

17

Page 18: W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1, Jingwei Lu 2, Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE.

WORST-AREA AND WORST-PEAK NOISE OF MULTI-STAGE CASCADED RLC TANKS Circuit Model

Three Cases Case I can be approximated to three single RLC tanks:

18

Page 19: W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1, Jingwei Lu 2, Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE.

WORST-AREA AND WORST-PEAK NOISES OF MULTI-STAGE CASCADED RLC TANKS Compare the worst-case noise predcition

from the analytical solution approximations from RLC tank decomposition vs solution of Algorithm 1

for

Prediction Error (on average) : 7.75% for the worst-peak noise 12.3% for the worst-area noise 19

Page 20: W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1, Jingwei Lu 2, Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE.

WORST-PEAK AND WORST-AREA NOISE OF A COMPLETE PDN PATH Impedance Profile:

20

Page 21: W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1, Jingwei Lu 2, Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE.

WORST-PEAK AND WORST-AREA NOISE OF A COMPLETE PDN PATH Worst-peak and worst-area noise solved by Alg. 1 ,

21

Page 22: W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1, Jingwei Lu 2, Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE.

DELAY MEASUREMENT OF A COMPLETE PDN PATH

Send input pulse every 100ps and record delay of the datapath at the output port of C432 (ISCAS85) case

Compare the delay under worst-peak and worst-area noise

Results:

22

Page 23: W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1, Jingwei Lu 2, Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE.

CONCLUSIONS Problem: Previous works focus on the worst-peak

droop to sign off PDN. Worst-peak noise ≠ Worst timing (delay)

Our goal: To predict a PDN noise for better timing sign off.

Observation: The noise area of PDN => Behavior of circuit delay

Case study: Design the worst-case PDN noise area Provide analytical solution for a lumped PDN model Design an algorithm for general PDN cases

Results: Worst-area noise introduces 1.8% additional propagation delay compared to worst-peak noise from our empirical validation under a complete PDN path. 23

Page 24: W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1, Jingwei Lu 2, Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE.

Q & A

Thank You!

24

Page 25: W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1, Jingwei Lu 2, Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE.

Backup Slides

25

Page 26: W ORST -C ASE N OISE A REA P REDICTION OF O N -C HIP P OWER D ISTRIBUTION N ETWORK Xiang Zhang 1, Jingwei Lu 2, Yang Liu 3 and Chung-Kuan Cheng 1,2 1 ECE.

DELAY MEASUREMENT OF SINGLE RLC TANK CASE Send input pulse every 100ps and record delay of

the datapath at the output port of C432 (ISCAS85) case

26


Recommended