+ All Categories
Home > Documents > Ward 2017 Microbial diversity and iron oxidation at Okuoku...

Ward 2017 Microbial diversity and iron oxidation at Okuoku...

Date post: 12-Oct-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
19
Geobiology. 2017;15:817–835. wileyonlinelibrary.com/journal/gbi | 817 © 2017 John Wiley & Sons Ltd Received: 03 October 2016 | Accepted: 21 September 2017 DOI: 10.1111/gbi.12266 ORIGINAL ARTICLE Microbial diversity and iron oxidation at Okuoku-hachikurou Onsen, a Japanese hot spring analog of Precambrian iron formations L. M. Ward 1 | A. Idei 2 | S. Terajima 3 | T. Kakegawa 3 | W. W. Fischer 1 | S. E. McGlynn 2,4,5 1 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA 2 Department of Biology, Tokyo Metropolitan University, Tokyo, Japan 3 Department of Geosciences, Tohoku University, Sendai City, Japan 4 Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan 5 Blue Marble Space Institute of Science, Seattle, WA, USA Correspondence L. M. Ward, Caltech GPS Division, Pasadena, CA, USA. Email: [email protected] or S. E. McGlynn, Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan. Email: [email protected] Funding information NASA NESSF, Grant/Award Number: (#NNX16AP39H; NSF, Grant/Award Number: #OISE 1639454; NSF GROW, Grant/ Award Number: #DGE 1144469; MEXT KAKENHI, Grant/Award Number: 15K14608; NASA Exobiology, Grant/Award Number: #NNX16AJ57G; David and Lucile Packard Foundation; Stanford University Blaustein Fellowship Abstract Banded iron formations (BIFs) are rock deposits common in the Archean and Paleoproterozoic (and regionally Neoproterozoic) sedimentary successions. Multiple hypotheses for their deposition exist, principally invoking the precipitation of iron via the metabolic activities of oxygenic, photoferrotrophic, and/or aerobic iron-oxidizing bacteria. Some isolated environments support chemistry and mineralogy analogous to processes involved in BIF deposition, and their study can aid in untangling the factors that lead to iron precipitation. One such process analog system occurs at Okuoku- hachikurou (OHK) Onsen in Akita Prefecture, Japan. OHK is an iron- and CO 2 -rich, circumneutral hot spring that produces a range of precipitated mineral textures con- taining fine laminae of aragonite and iron oxides that resemble BIF fabrics. Here, we have performed 16S rRNA gene amplicon sequencing of microbial communities across the range of microenvironments in OHK to describe the microbial diversity present and to gain insight into the cycling of iron, oxygen, and carbon in this ecosystem. These analyses suggest that productivity at OHK is based on aerobic iron-oxidizing Gallionellaceae. In contrast to other BIF analog sites, Cyanobacteria, anoxygenic pho- totrophs, and iron-reducing micro-organisms are present at only low abundances. These observations support a hypothesis where low growth yields and the high stoi- chiometry of iron oxidized per carbon fixed by aerobic iron-oxidizing chemoauto- trophs like Gallionellaceae result in accumulation of iron oxide phases without stoichiometric buildup of organic matter. This system supports little dissimilatory iron reduction, further setting OHK apart from other process analog sites where iron oxi- dation is primarily driven by phototrophic organisms. This positions OHK as a study area where the controls on primary productivity in iron-rich environments can be fur- ther elucidated. When compared with geological data, the metabolisms and mineral- ogy at OHK are most similar to specific BIF occurrences deposited after the Great Oxygenation Event, and generally discordant with those that accumulated before it.
Transcript
Page 1: Ward 2017 Microbial diversity and iron oxidation at Okuoku ...web.gps.caltech.edu/~wfischer/pubs/Wardetal2017a.pdf818 | WARD et Al. 1 | BACKGROUND Banded iron formation (BIF) is a

Geobiology. 2017;15:817–835. wileyonlinelibrary.com/journal/gbi  | 817© 2017 John Wiley & Sons Ltd

Received:03October2016  |  Accepted:21September2017

DOI: 10.1111/gbi.12266

O R I G I N A L A R T I C L E

Microbial diversity and iron oxidation at Okuoku- hachikurou

Onsen, a Japanese hot spring analog of Precambrian iron

formations

L. M. Ward1 | A. Idei2 | S. Terajima3 | T. Kakegawa3 | W. W. Fischer1 | 

S. E. McGlynn2,4,5

1Division of Geological and Planetary

Sciences,CaliforniaInstituteofTechnology,Pasadena,CA,USA2DepartmentofBiology,TokyoMetropolitanUniversity,Tokyo,Japan3DepartmentofGeosciences,TohokuUniversity,SendaiCity,Japan4Earth-LifeScienceInstitute,TokyoInstituteofTechnology,Tokyo,Japan5BlueMarbleSpaceInstituteofScience,Seattle,WA,USA

Correspondence

L.M.Ward,CaltechGPSDivision,Pasadena,CA,USA.Email:[email protected]

S.E.McGlynn,Earth-LifeScienceInstitute,TokyoInstituteofTechnology,Tokyo,Japan.Email:[email protected]

Funding informationNASANESSF,Grant/AwardNumber:(#NNX16AP39H;NSF,Grant/AwardNumber:#OISE1639454;NSFGROW,Grant/AwardNumber:#DGE1144469;MEXTKAKENHI,Grant/AwardNumber:15K14608;NASAExobiology,Grant/AwardNumber:#NNX16AJ57G;DavidandLucilePackardFoundation;StanfordUniversityBlausteinFellowship

AbstractBanded iron formations (BIFs) are rock deposits common in the Archean andPaleoproterozoic (andregionallyNeoproterozoic)sedimentarysuccessions.Multiplehypothesesfortheirdepositionexist,principallyinvokingtheprecipitationofironviathemetabolicactivitiesofoxygenic,photoferrotrophic,and/oraerobiciron-oxidizingbacteria.SomeisolatedenvironmentssupportchemistryandmineralogyanalogoustoprocessesinvolvedinBIFdeposition,andtheirstudycanaidinuntanglingthefactorsthat lead to ironprecipitation.OnesuchprocessanalogsystemoccursatOkuoku-hachikurou (OHK)Onsen inAkitaPrefecture,Japan.OHK isan iron-andCO

2-rich,

circumneutralhotspringthatproducesarangeofprecipitatedmineraltexturescon-tainingfinelaminaeofaragoniteandironoxidesthatresembleBIFfabrics.Here,wehaveperformed16SrRNAgeneampliconsequencingofmicrobialcommunitiesacrosstherangeofmicroenvironments inOHKtodescribethemicrobialdiversitypresentand to gain insight into the cycling of iron, oxygen, and carbon in this ecosystem.TheseanalysessuggestthatproductivityatOHKisbasedonaerobic iron-oxidizingGallionellaceae.IncontrasttootherBIFanalogsites,Cyanobacteria,anoxygenicpho-totrophs, and iron-reducing micro-organisms are present at only low abundances.Theseobservationssupportahypothesiswherelowgrowthyieldsandthehighstoi-chiometry of iron oxidized per carbon fixed by aerobic iron-oxidizing chemoauto-trophs like Gallionellaceae result in accumulation of iron oxide phases withoutstoichiometricbuildupoforganicmatter.Thissystemsupportslittledissimilatoryironreduction,furthersettingOHKapartfromotherprocessanalogsiteswhereironoxi-dationisprimarilydrivenbyphototrophicorganisms.ThispositionsOHKasastudyareawherethecontrolsonprimaryproductivityiniron-richenvironmentscanbefur-therelucidated.Whencomparedwithgeologicaldata,themetabolismsandmineral-ogyatOHKaremost similar to specificBIFoccurrencesdepositedafter theGreatOxygenationEvent,andgenerallydiscordantwiththosethataccumulatedbeforeit.

Page 2: Ward 2017 Microbial diversity and iron oxidation at Okuoku ...web.gps.caltech.edu/~wfischer/pubs/Wardetal2017a.pdf818 | WARD et Al. 1 | BACKGROUND Banded iron formation (BIF) is a

818  |     WARD et Al.

1  | BACKGROUND

Banded iron formation (BIF) is a characteristic lithotype in manyPrecambrian basins. These finely laminated, iron-rich (>15% Fe byweight) sedimentary deposits are not only economically criticalsourcesofironore(particularlyafterpost-depositionalweatheringandhydrothermalprocessesoxidize, leach,andupgrade theore,Morris,1980;Beukes,1984),butmayprovidearecordofbiologicalactivityontheearlyEarth(e.g.,Harder,1919;Kappler,Pasquero,Konhauser,&Newman,2005;Konhauseretal.,2002).

Despitetheirprevalenceintheearlyrockrecord,theprocessesbywhichBIFsaredepositedarenotwellunderstood.Itisgenerallyhy-pothesizedthatBIFsformedasaresultoftransportandconcentrationof ferrous iron (as Fe

2+

(aq))inseawaterunderanoxicandsulfur-poorcon-ditions,followedbyoxidationandprecipitationof ironasferric ironphases(Drever,1974;Holland,1973,1984).However,itisimportanttonotethattheprimarymineralogythatmadeuptheprecursorsed-imentstoBIFremainsuncertaininmanycases,andthesignificanceofironoxidationduringBIFdepositionremainsanareaofactivede-bate (Bekker etal., 2014;Kappler&Newman,2004;Kappler etal.,2005; Konhauser etal., 2002; Posth, Konhauser, & Kappler, 2013;Rasmussen,Krapež,Muhling,&Suvorova,2015;Rasmussen,Meier,Krapež,&Muhling,2013;Rasmussen,Muhling,Suvorova,&Krapež,2016;Tosca,Guggenheim,&Pufahl,2016).DifferenthypothesesforBIFdeposition invokearangeof ironoxidationprocesses, includingabioticironoxidationbyUVlight(e.g.,Cairns-Smith,1978;Francois,1986),indirectlybiologicallybyO

2sourcedfromoxygenicphotosyn-

thesisbyCyanobacteria(e.g.,Cloud,1973),ordirectlybiologicallybyaerobiciron-oxidizingbacteria(e.g.,Chan,Emerson,&Luther,2016)or by anaerobic iron-oxidizing phototrophic bacteria (e.g., Kappleretal., 2005;Widdel etal., 1993). BIFs do not form inmarine sedi-mentarybasinstodayduetotheO

2 and sulfate content of seawater

(Canfield, 1998), which prevents the mobilization and concentra-tionofsufficientamountsofdissolvedironinseawaterandshallowpore fluids (Holland, 1973). However, a range of potential analogenvironmentscanbeobservedtodaythatmayrevealkeyprocessesassociatedwith the deposition of BIFs. These include permanentlystratifiedlakes,suchasLakeMatanoinIndonesia(Croweetal.,2008),and iron-rich hot springs, such as Chocolate Pots in YellowstoneNational Park (Pierson, Parenteau, & Griffin, 1999). These systemscontainanoxic, iron-richwaters thatproduce ironoxidesandotherFe-bearingphasesthrougharangeofprocesses.InLakeMatano,ironoxideproductionisthoughttobedrivenlargelybyphotoferrotrophy(Croweetal.,2008),whileatChocolatePots,hotspring ironoxida-tion isdrivenprimarilybyabioticreactionof ironwithO

2produced

byCyanobacteria (Pierson&Parenteau, 2000;Piersonetal., 1999;Trouwborst,Johnston,Koch,Luther,&Pierson,2007).Terrestrialhotsprings can provide unique environments inwhich high concentra-tionsofdissolved ironcanexist at circumneutral conditionsdue torockweathering by anoxic sourcewaters; they also provide accesstonovelmicrobialdiversitywhichisrareorabsentfromtypicalsur-faceenvironments.Whilethesehotspringfluidsarenotperfectcom-positional mimics of Precambrian seawater, the geomicrobiological

processestheysupportandtheresultingfaciesandfabricscanpro-videprocessanalogsforunderstandingdepositionalmechanicsofatleastsomeBIFs.Thisisparticularlyusefulforevaluatingtherelativerolesthatdifferentmicrobiologicalprocesses(e.g.,photoferrotrophy,aerobicironoxidation,andoxygenicphotosynthesis)mayhaveplayedinthedepositionofdifferentBIFfacies.Acrucialbutunderstudiedas-pectofBIFdepositioninmodernanalogenvironmentsistherelativedelivery fluxesof ironoxidesandorganiccarbon tosediments,andtheaverageoxidation stateof the resultant iron formations; trendsin theproportionof ferrous to ferric iron inancientBIFshave longbeenobserved in the rock record (e.g.,Klein,2005)—andthesecanreflecttheredoxstateoftheenvironmentatthetimeofdeposition,aswellastheparticularphysiologiesandmetabolismsresponsibleforironoxidation (Fischer&Knoll,2009) (AppendixS1).Although littleexplored,themetabolicyieldandefficiencyofthemicrobialmetab-olisms driving iron oxidationwill be a factor in themineralogy andredoxchemistryofdiageneticallystabilizedironformationlithologies.Currently, knowledge of the microbial metabolisms and processesthat leadtodifferentmineralassemblages (andferric:ferrous ratios)inmodernenvironmentsremainsmeager.Characterizationofthemi-crobialcommunitiesinthecontextoftheorganiccarboncontentandredoxstateofironinthesolidsaccumulatinginBIFanalogsdepositeddifferentially by photoferrotrophs, Cyanobacteria, and aerobic ironoxidizerswillhelptoconnectobservationsofancientBIFstothegeo-biologicalprocessesresponsibleforironoxidedeposition.

Inthisstudy,weinvestigatedanovelBIFanalogenvironmentatOkuoku-hachikurou Onsen (OHK) in Akita Prefecture, Japan. OHKis an iron- andcarbonate-rich, circumneutralhot springwithanoxicsource waters, which produces extensive iron oxide and aragonitetravertine with mineralogical and textural features resembling BIF(Takashima, Okumura, Nishida, Koike, & Kano, 2011). To study themicrobialdiversityofOHKandevaluatethepotentialrolesofdiffer-entmicrobialmetabolismsinproducingmineraldepositsatOHK,wecollectedmineral precipitates and filtered springwater from pointsalong the outflow of the stream for analysis usingmicroscopy andcharacterizationofthemicrobialcommunityvia16SrRNAgeneam-pliconsequencing.Thesedatarevealthatproductivityandironoxida-tionatOHKisprimarilydrivenbyaerobic,iron-oxidizingtaxarelatedto the genusSideroxydans, and consequently, the environment pro-ducessedimentsthatareorganic-leanandcontainahighproportionof ferric ironphases—anearlydiageneticprecondition to thehighlyoxidizedBIFfaciesdepositedincertainenvironmentsaftertheGreatOxygenationEvent.

2  | MATERIALS AND METHODS

2.1 | Geological context and sedimentology of OHK

OHK is located in Akita Prefecture, Japan, at 40.407925N,140.754744E(Figure1),inanactiveregionoftheTohokuvolcanicarc, generated by the subduction of the Pacific Plate; the localbedrock geology consists of Miocene–Holocene green tuff andfelsicvolcanicrocks (Shimazu,Yamada,Narita,&Igarashi,1965).

Page 3: Ward 2017 Microbial diversity and iron oxidation at Okuoku ...web.gps.caltech.edu/~wfischer/pubs/Wardetal2017a.pdf818 | WARD et Al. 1 | BACKGROUND Banded iron formation (BIF) is a

     |  819WARD et Al.

OHKconsistsofasinglesubsurfacewatersourcethatoriginatesfromaminingexplorationboreholedrilledinthe1960s.Thisbore-holeemergesintoa2-m-diametersourcepool,withasubmergedshelfaroundtheedgeoftheboreholeat1.2mdepth.Atthetimeof our study inNovember 2015,water emerged from the bore-holeat44.3°C,highinFe(II),verylowinoxygen(Table1),anddis-playedcontinuousandvigorousebullitionofCO

2 (Figure2).The

source pool contains abundant suspended fine flocs of hydrousironoxides.TheearlycrystallineironoxidephasesatOHKconsistof ferrihydrite (Takashimaetal.,2011), thoughthismayage intomore ordered iron oxideminerals such as hematite, goethite, orlepidocrociteintravertines.Fromthesourcepooltotherotenburo(Figure2), the stream flows over a mineralized substrate com-prisedofwell-lithified, finely laminatedaragonite and ironoxidetravertinewith a smooth texture andmottled coloration rangingfrom white aragonite to orange and red iron oxides (Figure2).Surfacesofpools,channels,andcanalsarecoatedinfine,orange-colored ironoxideflocs.Mature ironoxidephaseswithintraver-tine appear dark red. Travertine accumulates around pool edgesas lobate walls ~10cm in width.Where spring water overflowstheedgesofpools travertine terracesdevelopwith a character-istic~5cmstepsizeanduptoaboutahalfmeterintotalheight.Theseterracessuperficiallyresemblethosefoundinbothcircum-neutralandacidic iron-richsystemselsewhere (e.g.,YellowstoneNationalPark,Fouke,2011;andtheTintilloRiver,Spain,España,SantofimiaPastor,&LópezPamo,2007);theoccurrenceofsimilarlarge-scalemorphologiesacrossverygeochemicallydifferenten-vironmentssuggeststhathydrology—asmuchasgeochemistryor

microbial processes—plays a role in the travertinemorphologies(Fouke,2011).

Anoldoutflowchannel emerges from the sourcepool, butwaslargelyinactiveatthetimeofoursampling;flowintothischannelhasbeen blocked and redirected through canals to the rotenburo.Thischannel is ~5cmdeep, partiallymixeswith the source pool due toswashing caused byCO

2 ebullition, but is otherwise stagnant.Thin

platesofaragonite(<1mm)coatthewatersurfaceofthechannel,andinsomeareas,thinmicrobialbiofilmshavedevelopedonthebottomofthechannel.

Wateremergingfromthesourcepoolpredominantlyflowsthroughshallow(5–10cm)canalsintoa~1-m-diameterpoolusedforbathing(rotenburo).Rocksurfacesinthecanalsandrotenburoarecoatedin

F IGURE  1 LocationofOkuoku-hachikurouOnsen(OHK)inAkitaPrefecture,Japan.InsethighlightsthelocalgeologyoftheLakeTowadaregion,modifiedfromGeologicalSurveyofJapan(2012).ThebedrockgeologyatOHKconsistspredominantlyoffelsicvolcanics[Colourfigurecanbeviewedatwileyonlinelibrary.com]

TABLE  1 GeochemicalcharacteristicsofOHKsourcewater

T 44.3°C

pH 6.8

DO <15μm

Fe2+114 μm

NH3/NH

4

+22 μm

Cl− 38 mm

SO4

2−6.5 mm

NO3

− <1.6μm

NO2

− <2.2μm

HPO4

− <1μm

TOC <0.005Cwt%

Page 4: Ward 2017 Microbial diversity and iron oxidation at Okuoku ...web.gps.caltech.edu/~wfischer/pubs/Wardetal2017a.pdf818 | WARD et Al. 1 | BACKGROUND Banded iron formation (BIF) is a

820  |     WARD et Al.

ironoxide flocs.Water flowsout from the rotenburo throughaddi-tionalshallowcanalsandultimatelydevelopsintoasheetedflowonthehillslope,wherecontinualdegassingofCO

2 leads to formation of

bubbles.Manybubblesbecomeencrustedwitharagoniteandminer-alized(Figure2).

While no substantial accumulation of microbial biomass is visi-blewithinthesourcepool,rotenburo,orcanals,thin(<1mm)patchygreenbiofilmsoccuralongtherimofthesourcepoolandoldstream(Figure2d). These were sampled for the Shallow Source and OldStreamMineralsamples.

Downstream, OHK preserves unique mineralized bubbles. AsCO

2degassesfromthespringwater,thepHrises,dissolvedinorganic

carbon concentrations drop, and the carbonate saturation state in-creases prompting aragonite precipitation. This occurs sufficientlyquickly inOHK that bubbles develop coatings of aragonite and aremineralized in situ. These bubbles encrust and provide a possiblepreservation mechanism for a wide range of organic materials, in-cludingleaves,arthropods,andbiofilmsinthissectionofthespring.Preservationoforganicstructuresbyironmineralshasbeenobservedpreviouslyinacidiciron-richenvironmentsatRioTinto,Spain,wherefossil structures endure formillions of years (Fernández-Remolar &Knoll,2008).TherapidmineralizationofironoxidesandaragoniteatOHKmaythereforealsoserveasamechanismforpreservingkeybio-logicalfeaturesofthisenvironmentovergeologictimescales.

F IGURE  2 ContextphotographsofOHK.(a)PhotographofOHKfacingnorthtowardsourcepool.Sourcepool(1),oldstream(2),canal(3),androtenburo(4)visible.Peopleforscale(~1.8m).(b)ImageofOHKfacingsouthwesttowardrotenburoandbubblepool.Waterflowingfromtherotenburo(4)developsintoasheetedflowwhichspreadsacrossthehillside,fillingthebubblepool(5)wheredegassingCO

2

bubbles become encrusted in aragonite.

Personforscale(~1.8m).(c)Underwaterphotographofsource.WaterandCO

2

bubblesemergefromtheboreholeatright.Scalebaris10cm.(d)Lobatewalloftravertineattherimofthesourcepool,withgreen-pigmentedbiofilms(sampledasShallowSourceMineralsample)visible.Scalebaris10cm.(e)Close-upoftravertineonthewestedgeofthesourcepool.Scalebaris50cm.(f)Close-upphotographofthebubblepool,showingaragonite-mineralizedCO

2bubbles.Scale

bar5cm.(g,h)Close-upsofferrihydriteand aragonite laminations in travertine.

Redlayersareprimarilycomposedofferrihydrite,whilewhitelayersarepredominantlyaragonite.Scalebarsshownare5mm[Colourfigurecanbeviewedatwileyonlinelibrary.com]

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Page 5: Ward 2017 Microbial diversity and iron oxidation at Okuoku ...web.gps.caltech.edu/~wfischer/pubs/Wardetal2017a.pdf818 | WARD et Al. 1 | BACKGROUND Banded iron formation (BIF) is a

     |  821WARD et Al.

2.2 | Sample collection

Samples for sequencing and geochemical analysis were collectedfromfivesitesatOHK(Figure2):DeepSource(1.2mdeepinthesourcepoolattheborehole),ShallowSource(surfacewaterandathinbiofilmalongtheedgeofthesourcepool),OldStream(waterand thin biofilm along the semi-stagnant blocked outflow), Canal(alongtheflowfromthesourcepooltotherotenburo),andBubblePool (downstream in a 15cm deep pool coated in mineralizedbubbles).

Fromeachsite,botha“Mineral”anda“Water”samplewerecol-lectedfor16Sampliconsequencing,targetingsurface-associatedandpelagicmicrobial communities, respectively. “Mineral” samples con-sistedofscrapingsofthinbiofilms,mineralprecipitates,orwholemin-eralizedbubblesfromsurfacesoftravertinesorcobblesinthebottomofwaterchannels.Mineral sampleswerecollectedusingsterile for-cepsandspatulas(~0.25cm3ofmaterial).“Water”samplesconsistedof cells and sediment filtered from water using sterile syringes and

0.2-μmSansyo (SansyoCo.,Tokyo,JP) filters (~50–200ml ofwaterfiltered,untilfilterbegantoclog).CellswerelysedandDNA-preservedinthefieldusingZymoTerralyzerBashingBeadMatrixandXpeditionLysisBuffer(ZymoResearch,Irvine,CA).Cellsweredisruptedimme-diatelybyattachingtubestothebladeofacordlessreciprocatingsaw(Black&Decker,Towson,MD)andoperatingfor1minute.Samplesforgeochemical analysis consistedofwatercollectedvia sterile syringeandfilteredimmediatelythrougha0.2-μmSansyofilter.

2.3 | Geochemical analysis

Dissolved oxygen (DO), pH, and temperature measurements wereperformedinsituusinganExtechDO7008-in-1PortableDissolvedOxygen Meter (FLIR Commercial Systems, Inc., Nashua, NH). Ironconcentrations were measured using the ferrozine assay (Stookey,1970)followingacidificationwith40mmsulfamicacidtoinhibitironoxidation byO

2 or oxidized nitrogen species (Klueglein & Kappler,

2013).Ammonia/ammoniumconcentrationsweremeasuredusingaTetraTestNH

3/NH

4

+Kit(TetraPond,Blacksburg,VA)followingman-ufacturer’s instructions butwith colorimetry of samples andNH

4Cl

standardsquantifiedwithaThermoScientificNanoDrop2000cspec-trophotometer(ThermoFisherScientific,Waltham,MA)at700nmtoimprovesensitivityandaccuracy.Anionconcentrationsweremeas-ured via ion chromatography on a Shimadzu Ion Chromatograph(ShimadzuCorp.,Kyoto,JP)equippedwithaShodexSI-904Eanioncolumn(ShowaDenko,Tokyo,JP).

Total organic carbon (TOC) contents were assessed for filteredwaterandmineralprecipitatesfromthesourcepool,aswellasmineralprecipitates near the canal. For dissolved organic carbon measure-ments, 3L of springwaterwas filtered using 0.45-μmSansyo glassfiberfilters.Formineralprecipitates,approximately300gofsampleswas collected. Carbonate carbonwas removed via dissolutionwithHCl,andresidueswerefoldedintotincapsulesandanalyzedforcar-bon content via elemental analyzer (Thermo Scientific Flash 2000)withadetectionlimitof0.005%Cbyweight.

SamplesofsedimentfromthesourcepoolwerecharacterizedviaSEM-EDS (SU5500;Hitachi, Tokyo, JP) and μm X-ray diffraction byTEM(JEM-3010;JEOL,Tokyo,JP).

2.4 | 16S rRNA gene amplicon sequencing and analysis

Followingreturntothelaboratory,microbialDNAwasextractedandpurifiedwithaZymoSoil/FecalDNAextractionkit.TheV4-V5regionofthe16SrRNAgenewasamplifiedfromeachextractusingarchaealandbacterialprimers515F(GTGCCAGCMGCCGCGGTAA)and926R(CCGYCAATTYMTTTRAGTTT) (Caporaso etal., 2012). DNA wasquantifiedwithaQubit3.0fluorimeter(LifeTechnologies,Carlsbad,CA)accordingtomanufacturer’s instructionsfollowingDNAextrac-tionandPCRsteps.AllsamplesyieldedPCRampliconswhenviewedonagel after initialpre-barcodingPCR (30cycles).DuplicatePCRswerepooledandreconditionedforfivecycleswithbarcodedprimers.SamplesforsequencingweresubmittedtoLaragen(CulverCity,CA)foranalysisonanIllumniaMiSeqplatform.Sequencedatawerepro-cessed using qiimeversion1.8.0(Caporasoetal.,2010).Rawsequencepairswere joinedandquality-trimmedusing thedefaultparametersin qiime. Sequences were clustered into de novo operational taxo-nomicunits (OTUs)with99%similarityusinguclustopenreferenceclusteringprotocol(Edgar,2010).Then,themostabundantsequencewaschosenasrepresentativeforeachdenovoOTU(Wang,Garrity,Tiedje,&Cole,2007).Taxonomicidentificationforeachrepresenta-tivesequencewasassignedusingtheSilva-115database(Quastetal.,2012)clusteredatseparatelyat99%andat97%similarity.Singletonsandcontaminants(OTUsappearinginthenegativecontroldatasets)were removed; 16S sequences were aligned using mafft (Katoh,Misawa,Kuma,&Miyata, 2002), and a phylogenywas constructedusing fasttree(Price,Dehal,&Arkin,2010).Alphadiversitywasesti-matedusingtheShannonindex(Shannon,1948)andinverseSimpsonmetric(1/D)(Hill,1973;Simpson,1949).Allstatisticswerecalculatedusing scripts inQIIME and are reported at the99%and97%OTUsimilarity levels.Multidimensional scaling (MDS) analyses and plotstoevaluatethesimilaritybetweendifferentsamplesandOHKenvi-ronmentswereproducedinrusingthevegan and ggplot2packages(Oksanenetal.,2016;RCoreTeam2014;Wickham,2009).

3  | RESULTS AND DISCUSSION

3.1 | Geochemistry

GeochemistrymeasurementsofOHKsourcewateraresummarizedinTable1,whilegeochemicalgradientsalongthestreamoutflowaresummarizedinFigure3.Wateremergingfromthesourcewas44.3°C,very lowindissolvedoxygen(<15μm),hadapH6.8,andcontainedsubstantial concentrations of dissolved iron (114 μmFe2+),and22μm

NH3/NH

4

+.Afteremergingfromtheborehole,thespringwaterrapidlyexchangesgaseswiththeairduetoturbulentmixingassociatedwithwaterflowandCO

2ebullition,andDOroseto30μmattheShallow

Source.Dissolvedorganiccarbon in thesourcepoolwasbelowthe

Page 6: Ward 2017 Microbial diversity and iron oxidation at Okuoku ...web.gps.caltech.edu/~wfischer/pubs/Wardetal2017a.pdf818 | WARD et Al. 1 | BACKGROUND Banded iron formation (BIF) is a

822  |     WARD et Al.

limitofdetection (0.005%Cbyweight).Organiccarboncontentofmineralprecipitatesatthesourcepoolwas0.01%byweight,risingto0.02%nearthecanal.SEM-EDSanalysisofsourcepoolprecipitatesdetectedFeandOasthemajorelements,andselectedareaX-raydif-fractionbyTEMrevealedamorphousFehydroxidesasthesolidphasewithnodetectionofhematiteorothercrystallinephases (Figure4).Aswater flows downstream from the source pool, it cools slightly,degassesCO

2,andcontinuestoabsorbatmosphericO

2.Bythetime

waterreachestheBubblePoolthespringwateris40°C,pH7.5,con-tains 7.7 μmNH

3/NH

4

+,109μm O2,andnodetectabledissolvediron.

Concentrationsofmajoranionswere largelystablealongthespringoutflow, with 1,350mg/L Cl−, 620mg/L SO

4

2−, and no detectableNO

2

−,NO3

−,orHPO4

−(limitofdetection0.1mg/L).

LikemanymodernBIFanaloghotspringsites,undertheenviron-mentalconditionsatOHK,abioticironoxidationisexpectedtopro-ceedspontaneously.FollowingrateequationsforabioticironoxidationfromSingerandStumm(1970),therateofabioticironoxidationpro-ceedsproportionatelytoconcentrationsofdissolvedFe2+,O

2,andthe

activityofOH−,oftheform—d[Fe2+]/dt = k[Fe2+

]PO2[OH−]2,wherek is

arateconstantequaltoabout8×1013L2 mole

−2 atm

−1 min

−1at25°C,andincreasingapproximately10-foldforevery15°Coftemperatureincrease (Stumm&Lee,1961).AttheDeepSource,where[O

2] was

belowthedetectionlimitof0.5mg/L(~15μm),abioticironoxidationratesare thereforeexpected tobe less than~4.35μm/min.Thisex-pectedratewouldbeexpectedto increasebetween~8.7μm/min at

theShallowSourcesiteand~12.7μm/minattheCanalsite,the last

F IGURE  3 Summaryofthegeochemistryandiron-oxidizingcommunitycompositionofOHKordinatedalongtheflowpathsinthesystem.(a)SchematicofOHKflowpaths,keyedtothesamplenames.MineralandWatersampleswerecollectedfromOldStream,DeepSource,ShallowSource,Canal,andBubblePoollocalities.(b)Relativeabundanceofphototrophicandiron-oxidizingtaxainthewater(top,solidbars)andmineral(bottom,crosshatchedbars)samplesalongtheflowpath.DatahereincludetaxalistedinTable3anddiscussedinthetextwithconfidentlyassignedmetabolisms,butnotincludingtaxasuchasAnaerolineaewhosemetabolismscannotbepredictedwithavailabletaxonomicresolution.Aerobicironoxidizersareshowninred,anoxygenicphototrophsinpurple,andoxygenicCyanobacteriaingreen.Aerobicironoxidizersarecommonthroughoutthewatersamples,andintheDeepSourcemineralsample,butdecreaseinrelativeabundancesomewhatdownstream.AnoxygenicphototrophsareconcentratedintheOldStreamandShallowSourceMineralsamples,whileoxygenicCyanobacteriaincreaseinabundancedownstream,particularlyinwatersamples.(c)ConcentrationsofdissolvedO

2andFe2+.Sourcewatersaredepletedin

O2buthighindissolvediron,whiledownstreamFe2+concentrationsdropandO

2increases.Themajorityofironoxidationappearstooccur

undermicrooxicconditionswhereaerobicironoxidizersaremostprevalent,whileanoxygenicphototrophsarelargelyrestrictedtopatchybiofilms,andCyanobacteriaareonlysignificantaftertheironhasalreadybeenremovedfromsolution.Changesintemperature(44.3–40.7°C)andconcentrationsofchloride(~37–39mm)andsulfate(~6.3–6.65mm)alongthehotspringoutflowwereminorandnotexpectedtocontributesignificantlytochangesinmicrobialcommunityormineralprecipitates,andsoarenotdisplayedhere[Colourfigurecanbeviewedatwileyonlinelibrary.com]

(a)

(b)

(c)

Page 7: Ward 2017 Microbial diversity and iron oxidation at Okuoku ...web.gps.caltech.edu/~wfischer/pubs/Wardetal2017a.pdf818 | WARD et Al. 1 | BACKGROUND Banded iron formation (BIF) is a

     |  823WARD et Al.

samplinglocationatwhichdissolvedironwasdetectable.Thesevaluesaresignificant,andasaresult,abioticironoxidationlikelycontributessubstantially to theproductionof ironoxidesatOHK.Nonetheless,theabundanceofiron-oxidizingbacteriaandmorphologyofironoxideprecipitates demonstrate that there is aviable and active niche for

biologicalironoxideproduction.Thisisfurthersupportedbyestimatesof flowrates throughOHKcorrelatedagainstchanges in ironoxideabundance from theedgeof theShallowSourcePool to theCanal,whereflowratesof~0.33m/sthroughcanalswithcrosssectionsof~10cmby5cmsuggestflowratesof~1.67L/s.Overdistancesof2mfromtheShallowSourcetotheCanal, [Fe2+

] declines from ~114 μm

to ~83 μm, ora changeof31μm inapproximately6seconds; this isequivalenttoabout100-foldfasterthanexpectedforpurelyabioticrates. Even assuming substantial backflow andmixing, this leaves asubstantialroleforaerobiciron-oxidizingbacteriainexplainingthede-clineinironconcentrationsalongthehotspringoutflow.TheseresultsarealsoconsistentwithestimatesfromKasamaandMurakami(2001)that suggest aerobic iron-oxidizingbacteria can increase ironoxida-tionratesbyupto4ordersofmagnitudeabovethoseexpectedfrompurelyabioticreactions.

3.2 | Recovered microbial diversity

In total, we recovered 141,125 sequences from the 10 samples atOHK (Table2). Reads per sample ranged from 2,176 for theCanalMineralsample to27,454reads for theOldStreamMineralsample(median15,247,mean14,112, and standarddeviation8,654).WiththeexceptionoftheOldStreamMineralsample,watersamplescon-sistentlyrecoveredmoresequencereadsthanmineralsamples(meanof5,926versus18,983).AssessmentofsamplingdepthwasestimatedusingGood’sCoverage(Good,1953).Onaverage,90%ofthemicro-bialcommunitywasrecoveredfromOHKsamplesatthe99%OTUlevel(rangingfrom75%coverageintheCanalMineralsampleto96%in theOld StreamMineral sample) and94%at the97%OTU level(83%fortheCanalMineralsampleto98%fortheOldStreamsample).

Mostofthetaxonomicandabundancevariationwasrelatedtolo-cationalong theoutflowand therefore the localenvironmental andredoxconditionsandconsequentmetabolicopportunities (Figures3and5).Thecommunitycompositionofthewatersamplesallappearedrelativelysimilartoeachother,with lowdissimilaritybetweenwatersamplesandmineralsamplesfromthesourcepool.Downstream,min-eralsamplesappeardissimilarbothfromwatersamplesandfromeachother(Figure5).

Relativeabundancesofmicrobialtaxaasrevealedby16Ssurveyscanbeuseful forpredictingmetabolismsdrivinggeochemicalcyclesand producing themineral deposits observed at OHK (Table3 andFigure3).Inparticular,thecontributionsofvariousironoxidizersandphototrophstoprimaryproductivityalongthespringpath (Figure3)can be estimated due to these metabolisms being fairly well con-servedwithinbacterialtaxa(e.g.,Chanetal.,2016;Emerson,Fleming,&McBeth,2010).AnalysisofthemostabundanttaxaatOHKrevealedsignificant roles fororganismsassociatedwithdiverse ironmetabo-lisms, including aerobic and phototrophic iron oxidation, aswell astraceironreducers.Whiletherelativecontributionofabioticironoxi-dationatOHKisnotconstrained,sequencedatasuggestthataerobiciron-oxidizingbacteriaarethedominantbiologicaldriversofironoxi-dationinthehotspring.Alsopresentwerediversephototrophsasso-ciatedwithbothoxygenicandanoxygenicphototrophicclades;these

F IGURE  4 Electronmicroscopyimagingofprecipitatesfromsourcepoolwall.Back-scatteredelectronimagescollectedbySEMofthinsectionsamplesofsolidscollectedfromthetravertinewallofthesourcepool(Figure2d).Thissampleshowsalternatinglaminationsofaragonite-richzonesandironoxide-richzones.(a)Overviewimageillustratesalternationofcarbonate-andironoxide-richlayers.(b)Enlargedimageofironoxide-richzoneof(a),showingaggregationofironoxidenanoparticlesintoadendritictexture.(c)ImageofdendriticironoxideaggregatesfollowingremovalofcarbonatephasesviatreatmentwithHCl,revealingsheath-liketubularandamorphousparticulateironoxidemorphotypes

(a)

(b)

(c)

Page 8: Ward 2017 Microbial diversity and iron oxidation at Okuoku ...web.gps.caltech.edu/~wfischer/pubs/Wardetal2017a.pdf818 | WARD et Al. 1 | BACKGROUND Banded iron formation (BIF) is a

824  |     WARD et Al.

organismswereobservedatonly traceabundance inmostsamples,butanoxygenicphototrophswereenriched inbiofilmsfromtheOldStream,therimoftheSourcePool,whileCyanobacteriawereabun-dantintheBubblePool.AsmallbutdiverseassortmentofmicrobesassociatedwithnitrogencyclingwaspresentatOHK,despitelowcon-centrationsofnitrogencompoundsinthespringwater(AppendixS1).

3.3 | Aerobic iron- oxidizing bacteria

AmongthemostabundanttaxaatOHKaremembersofthebetapro-teobacterialfamilyGallionellaceae,mostlikelymembersorcloserela-tivesoftheaerobiciron-oxidizinggeneraGallionella or Sideroxydans.

Gallionella and Sideroxydans are neutrophilic iron oxidizers that usemolecularoxygentooxidizedissolvedFe(II)toFe(III)oxideswhilecon-servingenergyforgrowthandautotrophiccarbonfixation(Emerson&Moyer,1997;Emersonetal.,2013;Kucera&Wolfe,1957);theyarecommonlyfoundinterrestrialiron-richsystems(Emersonetal.,2010).Aerobic iron-oxidizing bacteria have characteristically low growthyields (Neubauer, Emerson,&Megonigal, 2002) due to themodestpotentialsofFe(II)/Fe(III)redoxcouplesandresultingrequirementforreverseelectrontransfertoachievethesufficientlylowpotentialelec-tronsneededforcarbonfixation(Bird,Bonnefoy,&Newman,2011).

Gallionellaceaeareabundantinboththemineralandwaterfrac-tionsoftheDeepSource(37%and18%,respectively),butotherwiseappeartobedominantlyassociatedwiththewaterfractionofothersamples(28%averageinwatersamples,8.5%averageinmineralsam-ples) (Table3).Thismay indicateapreferenceof theGallionellaceaeat OHK for a planktonic over surface-attached modes of growth,althoughthis is impossible tostatewithcertainty in theabsenceofcellquantificationbetweenthesesampletypesanddeterminationofdifferencesinabsoluteratherthanrelativeabundance.Basedonthesequencedata,membersoftheGallionellaceaeappeartobethefirstironoxidizersandprimaryproducers toacton theupwelling springwaterasitmixeswithatmosphericO

2,drivingthebulkofearlybio-

logical ironoxidationatOHKandproducingmuchofthe ironoxidesedimentthatistransportedalongthespringoutflow.Gallionellaceaewere fairly diverse, including169OTUs at the97% identity cutoff;however, the twomost abundantOTUswereboth~97% similar toSideroxydans lithotrophicusES-1andrepresentedmorethan92%ofthetotalGallionellaceaesequencesatOHK.TheabundanceofthesetwoOTUsdrivestheoveralltrendinironoxidizerabundance(Figure3).

Also present, albeit at lower abundance (up to ~1.5% relativeabundance) (Table3),aremembersof thezetaproteobacterial familyMariprofundaceae,anothergroupofneutrophilicironoxidizers.Iron-oxidizing Zetaproteobacteria are more commonly found in marinesettings,particularlyindeepoceanbasinsassociatedwithhydrother-malironsources(Emersonetal.,2010).Despiteasimilarphysiology,MariprofundaceaearenotcloselyrelatedtoGallionellaceaeorotheraerobic iron oxidizers, instead forming a distinct class within theProteobacteria(Emersonetal.,2007).Zetaproteobacteriahaveprevi-ouslybeenidentifiedinrelativelysalineterrestrialiron-andCO

2-rich

systems(e.g.,Emerson,Thomas,Alvarez,&Banfield,2016),sometimesco-occurringwithGallionella(Crosseyetal.,2016);thediscoveryoftheT

ABLE 2 DiversitymetricsofOHKsequencing.Diversitymetricscalculatedforboth99%and97%sequenceidentitycutoffsforassigningOTUs

Dee

p So

urce

M

ine

ra

l

Dee

p So

urce

W

ate

r

Shal

low

Sou

rce

Min

era

l

Shal

low

So

urce

Wat

erO

ld S

trea

m

Min

era

l

Old

Str

eam

W

ate

r

Ca

na

l

Min

era

lC

an

al

Wa

te

r

Bubb

le P

ool

Min

era

l

Bubb

le P

ool

Wa

te

r

Re

ad

s6,456

20,067

6,512

25,306

27,454

19,052

2,176

17,893

3,608

12,601

ObservedOTUs(99%)

906

1,928

1,045

2,450

1,775

1,842

74

02,455

85

71,595

Goodcoverage(99%)

0.9035

0.9388

0.8948

0.941

0.9615

0.9423

0.7

46

80.9076

0.8

28

70.911

Shannonindex(99%)

5.9544

6.0339

7.6849

6.4

78

56

.83

02

6.3

40

38

.11

36

.84

82

7.2

74

75.896

InverseSimpson(99%)

9.4959

12.9196

62

.63

37

11

.50

82

37

.01

68

11.4379

10

5.3

15

31

2.7

88

13

2.6

02

58

.64

75

ObservedOTUs(97%)

43

1895

57

21,059

74

7869

490

1,281

55

5910

Goodscoverage(97%)

0.9588

0.9737

0.9459

0.9768

0.9834

0.9738

0.8359

0.9529

0.8911

0.951

Shannonindex(97%)

4.7

60

34.6789

6.4739

5.0

55

45

.57

85

5.0959

7.0

60

35

.47

67

6.1

73

64

.57

11

InverseSimpson(97%)

6.5

62

38.4309

33

.13

31

7.5

28

82

2.6

65

87

.70

54

55

.62

31

8.1

76

31

8.5

50

45

.56

7

Page 9: Ward 2017 Microbial diversity and iron oxidation at Okuoku ...web.gps.caltech.edu/~wfischer/pubs/Wardetal2017a.pdf818 | WARD et Al. 1 | BACKGROUND Banded iron formation (BIF) is a

     |  825WARD et Al.

co-occurrenceof theseorganisms atOHKprovides further supporttotheoverlappingecologicalnichesoftheseclassically“marine”and“terrestrial” iron-oxidizingbacteria.Thismayberelatedtothe inter-mediatesalinityofOHKwater(~38mmCl−,~6.5mmSO

4

2−),providinganenvironmentconducivetoorganismsadaptedtobothfreshwaterandsaltwater,resultinginthemixedpopulationofGallionellaceaeandMariprofundaceae.

MembersoftheGallionellaceaearetypicallyassociatedwithcoldiron-oxidizingenvironments,andnothotsprings(Hallbeck&Pedersen,2013);whilemembersoftheMariprofundaceaehavebeenobservedtohaveanuppergrowthtemperatureof30°C(Emersonetal.,2010).OHK,withsourcewatertemperatures~44°Cmaythereforesupportuniquethermotolerantstrainsofthesebacteria.

Members of the family Comamonadaceae were also fairlyabundant (~1%–12%) in OHK samples (Table3). This family ofBetaproteobacteria includes members such as Acidovorax ebreus, a

nitrate-reducing anaerobic iron oxidizer (Byrne-Bailey etal., 2010),aswell as iron reducers such asRhodoferax ferrireducens (Finneran,Johnsen,&Lovley,2003)andtheiron-oxidizingbacteriumLeptothrix

(vanVeen,Mulder,&Deinema,1978).However,thetaxonomicaffin-ityoftheComamonadaceaeatOHKisinsufficientlyresolvedtocon-fidently assess the contribution of this group to iron cycling in thisenvironment.

Electronmicroscopyofmineralprecipitatesfromthesourcepoolandcanalrevealedalternatinglaminationsofaragonite-richandironoxide-richmaterial;imagingofironoxidebandsfollowingdissolutionofcarbonateswithHClrevealedthatironoxidesweremadeupofamixture of amorphous and sheath-like tubular structures (Figure4).While iron oxide sheaths are typically associatedwith the betapro-teobacterial iron-oxidizing genus Leptothrix (Emerson etal., 2010),they can alsobeproducedbydiverse ironoxidizers including somestrainsofZetaproteobacteria(Flemingetal.,2013).Althoughweten-tatively regard thesemineralized filaments as biological in origin, it

isunclearwhatorganismsareresponsiblefortheproductionof ironoxide sheaths observed at OHK, particularly as structures appearhighly mineralized, potentially reflecting encrustation of biogeniciron oxides by subsequent abiotic precipitation. Sub-micrometer,amorphous particulate iron oxides are characteristic of iron oxida-tion by Sideroxydans(Emerson&Moyer,1997),andsotheprevalenceof this iron oxide morphology is consistent with this genus of theGallionellaceaebeingmajorcontributorstoironoxidationatOHK.Theabundance of amorphous iron oxide particles also supports the as-signmentofGallionellaceaeOTUsatOHKtoSideroxydansratherthanstalk-formingGallionella(Emersonetal.,2010).However,asdiscussedabove,asignificantportionofironoxidationatOHKlikelyproceedsabioticallyandmaycontributesimilarmorphologiesofamorphousironoxideparticles,sothepresenceoftheseformsisconsistentwith,butnotnecessarilydiagnosticof,theactionofSideroxydans and may in-steadreflectthecombinedactionoftheseorganismswithabioticironoxidation.

3.4 | Cyanobacteria

Cyanobacteria were abundant in the Bubble Pool Water sam-ple,where theymadeup~37%of all sequence reads, butwere ofmuch lower abundance in samples collectedupstream (Table3 andFigure3).AlthoughCyanobacteria are sometimesunderrepresentediniTagdatasetsasaresultofpoorDNAyieldoramplificationbiases(e.g.,Parada,Needham,&Fuhrman,2015;Trembath-Reichertetal.,2016), thepaucityofCyanobacteria inupstreamOHKsampleswasconfirmed by epifluorescencemicroscopy, inwhich cells displayingcyanobacterial autofluorescence were observed abundantly in sam-ples from thedownstreamBubblePool but not in the SourcePool(Fig.S2).

It has been demonstrated that in iron-rich systems whereCyanobacteriaareabundantandproductive,only~1%ofO

2 released

F IGURE  5 MultidimensionalscalinganalysisofOHKsamples.Eachpointrepresentstherecoveredmicrobialcommunityfromagivensample,withsitesidentifiedbycolorandsampletypebyshape.Pointsclosetoeachotherinthistwo-dimensionalspaceshareasimilarcommunitycomposition.Relativeabundance data were transformed by

the4throottodown-weighttheeffectofabundanttaxainthesamples.Watersamplesclustertogether,andwithSourcepoolmineralsamples,whiletheBubblePoolWaterandtheotherMineralsamplesstandoutalongdifferentcurvesinthisspace.Stressvalueis0.0465[Colourfigurecan be viewed at wileyonlinelibrary.com]

Water

Mineral

Bubble Pool

Canal

Deep Source

Old Stream

Shallow Source

Page 10: Ward 2017 Microbial diversity and iron oxidation at Okuoku ...web.gps.caltech.edu/~wfischer/pubs/Wardetal2017a.pdf818 | WARD et Al. 1 | BACKGROUND Banded iron formation (BIF) is a

826  |     WARD et Al.TABLE 3 RelativeabundanceoftaxatotheFamilylevel.Overall,10mostabundanttaxalisted,aswellasothertaxaofinterestmentionedinthetextandSI,orderedbyrelativeabundance

averagedacrossallsamples.Taxacolorcodedbyputativemetabolism:redforaerobicironoxidizers,purpleforanoxygenicphototrophs,greenforoxygenicphototrophs,bluefornitrifiers,and

yellowfortaxawithmembersperformingadiverserangeofmetabolismsthatcannotberesolvedwithtaxonomicresolutionofavailabledata[Colourtablecanbeviewedatwileyonlinelibrary.com]

Taxo

nD

eep

Sour

ce

Min

era

l (%

)

Dee

p So

urce

W

ate

r (

%)

Shal

low

So

urce

M

ine

ra

l (%

)

Shal

low

So

urce

W

ate

r (

%)

Old

Str

eam

M

ine

ra

l (%

)

Old

Str

eam

W

ate

r (

%)

Ca

na

l

Min

era

l (%

)

Ca

na

l W

ate

r

(%)

Bubb

le P

ool

Min

era

l (%

)

Bubb

le P

ool

Wa

te

r (

%)

Ave

rage

(%)

Bacteria;__

Proteobacteria;__

Betaproteobacteria;__

Nitrosomonadales;__

Gallio

ne

llace

ae

36.94

18

.23

1.09

34

.05

3.2

73

3.5

70

.46

31

.77

0.4

42

3.5

81

8.3

4

Bacteria;__

Proteobacteria;__

Zetaproteobacteria;__

Mariprofundales;__

Mariprofundaceae

0.6

51

.32

0.0

50

.52

1.5

10

.52

1.0

10

.58

0.1

70

.17

0.6

5

Bacteria;__

Cyanobacteria;__

Cyanobacteria;__

SubsectionIII;__FamilyI

0.1

50

.24

2.5

04

.46

0.2

11

.41

0.4

62

.30

0.3

33

7.4

54.95

Bacteria;__

Cyanobacteria;__

Cyanobacteria;__

SubsectionV;__FamilyI

0.0

80

.11

0.09

5.1

60

.01

0.3

10

.00

1.29

0.0

60

.20

0.7

3

Bacteria;__

Proteobacteria;__

Alphaproteobacteria;__

Rhodospirillales;Other

0.09

0.0

56

.68

0.0

42

.57

0.1

70.09

0.1

30.19

0.0

31

.00

Bacteria;__

Proteobacteria;__

Betaproteobacteria;__

Rhodocyclales;__

Rhodocyclaceae

0.94

0.5

50

.15

0.4

22

.61

3.3

10

.00

0.99

0.5

30

.38

0.99

Bacteria;__

Proteobacteria;__

Alphaproteobacteria;__

Rhodobacterales;__

Rhodobacteraceae

0.1

10

.34

1.8

00

.47

2.8

50

.26

0.7

40

.87

0.2

50

.14

0.7

8

(Continues)

Page 11: Ward 2017 Microbial diversity and iron oxidation at Okuoku ...web.gps.caltech.edu/~wfischer/pubs/Wardetal2017a.pdf818 | WARD et Al. 1 | BACKGROUND Banded iron formation (BIF) is a

     |  827WARD et Al.

Taxo

nD

eep

Sour

ce

Min

era

l (%

)

Dee

p So

urce

W

ate

r (

%)

Shal

low

So

urce

M

ine

ra

l (%

)

Shal

low

So

urce

W

ate

r (

%)

Old

Str

eam

M

ine

ra

l (%

)

Old

Str

eam

W

ate

r (

%)

Ca

na

l

Min

era

l (%

)

Ca

na

l W

ate

r

(%)

Bubb

le P

ool

Min

era

l (%

)

Bubb

le P

ool

Wa

te

r (

%)

Ave

rage

(%)

Bacteria;__

Proteobacteria;__

Alphaproteobacteria;__

Rhodospirillales;__

Rhodospirillaceae

0.0

30

.01

3.1

30

.04

0.0

70

.06

0.09

0.3

00.19

0.29

0.4

2

Bacteria;__Chloroflexi;__

Chloroflexia;__

Chloroflexales;__

Chloroflexaceae

0.0

00

.00

0.0

50

.02

0.0

00

.00

1.19

0.2

70

.83

0.1

20

.25

Bacteria;__Chlorobi;__

Chlorobia;__

Chlorobiales;__OPB56

0.09

0.2

10

.06

0.0

30

.17

0.3

00

.14

0.1

70

.03

0.0

20

.12

Bacteria;__

Proteobacteria;__

Gammaproteobacteria;__

Chromatiales;__

Chromatiaceae

0.4

20

.00

0.0

00

.04

0.0

00

.18

0.0

00

.01

0.0

30

.21

0.09

Bacteria;__

Proteobacteria;__

Gammaproteobacteria;__

Xanthomonadales;__

Xanthomonadaceae

0.2

20

.61

3.0

60

.41

10

.01

0.3

09.33

1.7

024.89

1.39

5.19

Bacteria;__Chloroflexi;__

Anaerolineae;__

Anaerolineales;__

Anaerolineaceae

7.1

31

0.7

51

0.1

03

.52

2.3

20.91

1.4

73

.67

2.2

20

.60

4.2

7

Bacteria;__

Proteobacteria;__

Betaproteobacteria;__

Burkholderiales;__

Comamonadaceae

1.5

01

.88

2.0

32

.35

12

.12

1.5

11

.42

4.1

52

.52

4.3

83.39

Bacteria;__Nitrospirae;__

Nitrospira;__

Nitrospirales;__

Nitrospiraceae

0.39

1.19

0.2

55

.07

4.6

51

2.8

10

.18

3.8

20

.03

2.1

03

.05

Archaea;__

Thaumarchaeota;__

Marine_Group_I;__o;__f

0.99

0.2

30

.00

0.09

0.0

10.98

0.0

00

.44

0.0

00

.04

0.2

8

TABLE 3 (Continued)

(Continues)

Page 12: Ward 2017 Microbial diversity and iron oxidation at Okuoku ...web.gps.caltech.edu/~wfischer/pubs/Wardetal2017a.pdf818 | WARD et Al. 1 | BACKGROUND Banded iron formation (BIF) is a

828  |     WARD et Al.

Taxo

nD

eep

Sour

ce

Min

era

l (%

)

Dee

p So

urce

W

ate

r (

%)

Shal

low

So

urce

M

ine

ra

l (%

)

Shal

low

So

urce

W

ate

r (

%)

Old

Str

eam

M

ine

ra

l (%

)

Old

Str

eam

W

ate

r (

%)

Ca

na

l

Min

era

l (%

)

Ca

na

l W

ate

r

(%)

Bubb

le P

ool

Min

era

l (%

)

Bubb

le P

ool

Wa

te

r (

%)

Ave

rage

(%)

Bacteria;__Chlorobi;__

Ignavibacteria;__

Ignavibacteriales;Other

6.7

23

4.2

53

.67

5.3

812.95

2.2

30

.37

11

.85

4.49

1.6

68

.36

Bacteria;__

Proteobacteria;__

Deltaproteobacteria;__

Bdellovibrionales;__

Bacteriovoracaceae

2.29

0.97

0.2

14

.31

0.2

11

1.3

80

.14

4.2

10

.08

3.7

52

.76

Bacteria;__Candidate_divi-

sion_OP11;__c;__o;__f

0.1

51

.73

0.1

40

.46

2.09

0.4

26

.34

0.2

51

1.0

30

.06

2.2

7

Bacteria;__

Bacteroidetes;__

Sphingobacteriia;__

Sphingobacteriales;__env.

OPS_17

4.2

03

.28

0.2

57.09

0.1

40

.68

1.2

43

.85

1.1

40

.64

2.2

5

Bacteria;__

Proteobacteria;__

Gammaproteobacteria;__

Enterobacteriales;__

En

tero

bacte

riace

ae

3.4

41

.01

3.49

1.1

60.69

1.4

74

.18

0.39

2.19

0.5

31

.86

Bacteria;__

Proteobacteria;__

Deltaproteobacteria;__

Desulfuromonadales;__

Ge

ob

acte

race

ae

0.0

20.79

0.0

00

.03

0.1

40

.03

0.0

50

.06

0.0

00

.14

0.1

3

Bacteria;__

Cyanobacteria;__

ML635J-21;__o;__f

0.0

30

.06

0.0

20

.06

0.0

00

.34

0.0

00

.02

0.0

00

.23

0.0

8

Bacteria;__

Cyanobacteria;__SHA-

109;__o;__f

0.0

00

.00

0.1

00

.00

0.90

0.0

00

.00

0.0

00

.00

0.0

00

.10

TABLE 3 (Continued)

Page 13: Ward 2017 Microbial diversity and iron oxidation at Okuoku ...web.gps.caltech.edu/~wfischer/pubs/Wardetal2017a.pdf818 | WARD et Al. 1 | BACKGROUND Banded iron formation (BIF) is a

     |  829WARD et Al.

oxidizesferrousiron,withtheremainderescapingtotheatmosphere(Rantamäki etal., 2016). Thus, given the inefficiency of cyanobac-terial oxygen fluxes for oxidizing dissolved iron, and the scarcity ofCyanobacteriaupstreamatOHKwhereironoxidationistakingplace,Cyanobacteriadonotappeartobemajorcontributorstoironoxida-tionatOHK.

CyanobacteriapresentarepredominantlymembersofSubsectionIII,FamilyI.ThisgroupincludesLeptolyngbya,agenusoffilamentousnon-heterocystousCyanobacteriathathasappearedinclonelibrariesfromOHK(Takashimaetal.,2011)andiscommoninotherhotspringsofsimilartemperatures(e.g.,Bosaketal.,2012;Roeselersetal.,2007).

Members of deeply branching non-phototrophic CyanobacteriacladesareaminorbutnotablecomponentofOHKsamples(upto0.9%abundance).While theCyanobacteriaphylumhas traditionallybeenconsideredtoexclusivelycontainoxygenicphototrophs,severaldeep-branching non-phototrophic clades have recently been describedwithintheCyanobacteriaphylum, includingMelainabacteria,asistergroup tooxygenicCyanobacteria (i.e.,Oxyphotobacteria), aswell asdeeper-branchingclades(DiRienzietal.,2013;Johnsonetal.,2013b;Leyetal.,2005;Soo,Woodcroft,Parks,Tyson,&Hugenholtz,2015;Soo etal., 2014).These deep-branching Cyanobacteria—particularlythecladesSHA-109andML635J-21,whichbranchbasaltoallotherCyanobacteria—are thought to be ancestrally non-phototrophic andcanhelptobetterconstraintheevolutionaryhistoryofCyanobacteriaandthereforeoxygenicphotosynthesis(e.g.,Fischer,Hemp,&Johnson,2016;Shih,Hemp,Ward,Matzke,&Fischer,2017;Soo,Hemp,Parks,Fischer,&Hugenholtz,2017).Thesecladesarefoundathigherabun-danceatOHKthanmostotherenvironments,andOHKcouldprovidea valuable resource for investigatingmembers of this understudiedgroupviametagenomicsequencing,incubations,orisolation.

3.5 | Anoxygenic phototrophs and relatives

Membersofseveraltaxamadeupoforcontaininganoxygenicphoto-trophswerepresentatlowabundanceinOHKsamples(Table3).Theseinclude the Rhodospirillales, Rhodobacteraceae, Rhodocyclaceae,Chloroflexaceae, Chlorobiales, and Chromatiaceae. Some of thesetaxa (e.g.,Chloroflexaceae,Chlorobiales)aremadeupalmostexclu-sivelyofphototrophs,whileothers(e.g.,Rhodobacteraceae)containmemberswithawidediversityofmetabolisms,onlysomeofwhichare phototrophic (Fischer etal., 2016; Overmann & Garcia-Pichel,2013).Shotgunmetagenomicorculture-basedanalysiswillbeneces-sarytoconfirmwhetherthemembersofthesetaxapresentatOHKarephototrophic.Althoughthesetaxaindividuallyrepresentnomorethanafewpercentofthesequencereadsatanygivensite(overallav-erage~0.88%ofreadspertaxon),thispopulationisquitediverseandinsumrepresentsasizablefractionofthetotalmicrobialcommunity(3%–20%)(Figure3).Putativeanoxygenicphototrophsaremostabun-dant intheShallowSourceandOldStreamMineralsamples(13.8%and20.4%oftotalabundance,respectively),droppingto~3%intheDeepSourcesample.EveninthedownstreamBubblePoolsamples,anoxygenicphototrophsmakeup~5%ofthetotalabundanceofse-quences. Sequences associated with anoxygenic phototrophs were

more abundant inmineral samples than inwater samples (~9% vs.~5%),thoughasdiscussedaboveinthecaseofGallionellaceae, it isunclearwhetherabsoluteabundancescaleswithrelativeabundanceandthereforewhethertheseorganismsgrowpreferentiallyattachedtosolidsurfacesratherthanplanktonically.

All samples contained relatively abundant sequence reads be-longingtotheChlorobiphylum(Table3).TheChlorobiareclassicallyknown as the Green Sulfur Bacteria due to the anaerobic sulfur-oxidizing anoxygenic phototrophic lifestyle of its earliest describedmembers (Bryant & Liu, 2013; Davenport, Ussery, & Tümmler,2010). This includes iron-oxidizing anoxygenic phototrophs such asChlorobium ferrooxidans (Heising, Richter, Ludwig, & Schink, 1999),which employ ametabolism thought to be relevant toArcheanBIFdeposition(e.g.,Kappleretal.,2005).Duetoincreasedenvironmentalsequencingandnewisolationefforts,however,theChlorobiphylumis nowknown to also contain aerobic photoheterotrophs (Liu,Klattetal., 2012; Stamps, Corsetti, Spear, & Stevenson, 2014) and non-phototrophs(Podosokorskaya,Kadnikovetal.,2013).ThemajorityofChlorobisequencesfoundinOHKappeartofallwithintheChlorobiorderIgnavibacteria,abasalcladeofChlorobiwhoseknownmembersincludeversatileheterotrophicmetabolismsbutnoknownphototro-phypathways(Iinoetal.,2010;Liu,Frigaardetal.,2012).ItthereforeappearsthatphotoferrotrophybyChlorobi isnotdriving ironoxida-tionatOHK,althoughmetagenomicsequencingandassemblyofOHKChlorobi genomeswill be necessary to confirm that phototrophy isnotpresent in theseorganisms. Ignavibacteria appear tobe a com-moncomponentofhotspringmicrobialcommunities:theseorganismswerefirstisolatedfromaJapanesehotspring(Iinoetal.,2010)andarefoundathighabundanceinChocolatePotshotspringsinYellowstoneNationalPark(Fortneyetal.,2016).

The Ignavibacteria found atOHKhadonly low similarity to de-scribedstrains,withmorethan50%of Ignavibacteriareads (primar-ily from the Deep Source and CanalWater samples) from anOTU~91%similartoMelioribacter roseusP3M,amoderatelythermophilicfacultative anaerobe (Kadnikov etal., 2013). Approximately 20% ofIgnavibacteriareads(primarilyfromtheDeepSourceWaterandOldStreamMineralsamples)were93%similartoIgnavibacteria albumJCM16511.

Members of the bacterial phylum Chloroflexi were remarkablyabundant inOHKsamples (Table3).TheChloroflexiwereclassicallydescribedasthegreennon-sulfurbacteriaduetotheanoxygenicpho-totrophicmetabolismoftheirearliestdescribedmembers(Overmann,2008),butitisnowrecognizedthatthephylumismuchmoregeneti-callyandmetabolicallydiverse(Yamada&Sekiguchi,2009).Metaboliccharacters in the Chloroflexi largely follow class-level taxonomicpatternsbutwithanumberofnotableexceptions,suchas thenon-phototrophicpredatoryHerpetosiphonwithinthepredominantlypho-totrophic Chloroflexia class (Kiss etal., 2011;Ward,Hemp, Pace,&Fischer,2015b).ThemostabundantChloroflexiatOHKbelongtotheclassAnaerolineae,whichwereabundantinallsamples(upto~11%).TheAnaerolineaehavegenerallybeen isolatedasobligatelyanaero-bicheterotrophs(e.g.,Sekiguchietal.,2003;Yamadaetal.,2006),butgenomesequencinghasrevealedthecapacityforaerobicrespiration

Page 14: Ward 2017 Microbial diversity and iron oxidation at Okuoku ...web.gps.caltech.edu/~wfischer/pubs/Wardetal2017a.pdf818 | WARD et Al. 1 | BACKGROUND Banded iron formation (BIF) is a

830  |     WARD et Al.

indiversemembersofthisclade(e.g.,Hemp,Ward,Pace,&Fischer,2015a, 2015b; Pace, Hemp, Ward, & Fischer, 2015; Ward, Hemp,Pace, & Fischer, 2015a). Furthermore, a genome for an organismcloselyrelatedtotheAnaerolineaewithgenesforphotosynthesishasbeenassembledfromaYellowstoneNationalParkmetagenome(Klattetal.,2011;Tank,Thiel,Ward,&Bryant,2017;Thieletal.,2016).Itisthereforeunclearwhatmetabolismsmaybepresent inAnaerolineaeatOHK,andisolationormetagenomicsequencingoftheseorganismswillbenecessarytodeterminewhatroletheymaybeplayinginthisenvironment.TheAnaerolineaeatOHKwereverydiverse, including480OTUsatthe97%cutoff.ThisincludedadistinctpopulationattheDeepSource (bothWaterandMineralSamples), theShallowSourceMineralsample,andmoredownstreamsamples.Thethreemostabun-dantAnaerolineaeOTUsweremostcloselyrelatedtoThermomarilinea lacunifontana (84%–88% similarity); T. lacunifontana is an anaerobic

heterotroph isolated from a shallow hydrothermal system in Japan(Nunouraetal.,2013).ThemostabundantAnaerolineaeOTUintheShallowSourceWatersample(makingup~7%ofallAnaerolineaeatOHK)was89% identical toOrnatilinea apprima.Themost abundantOTUintheOldStreamMineralsamplewas91%identicaltoLongilinea arvoryzae. Both O. apprima and L. arvoryzae are described as obli-gatelyanaerobicfermenterscapableofdegradingsugarsandproteins(Podosokorskaya, Bonch-Osmolovskaya etal., 2013; Yamada etal.,2007).

3.6 | Low biomass yield of the OHK microbial community

OHKisauniqueecosystemsupportingnovelmicrobialcommunitiesaswellasservingasanintriguingprocessanalogforPrecambrianbandedironformationdeposits.Futureactivitymeasurementsofcommunitymembers,forexample,bymetagenomicsandstableisotopeprobingwillbenecessarytofurtherdefinemicrobialactivitiesinthissystem.Basedonmicroscopyand16Samplicondata,themicrobialcommuni-tiesatOHKappeartobesupportedprimarilybyaerobicironoxida-tionoccurring in andnear the sourcepool.At theOldStream site,mineral-attached anoxygenic phototrophs becomemore significant,whileCyanobacteriabecomeabundantonlyinthemostdownstreamsamples (Figure3).Thispredominanceof lithoautotrophsoverpho-totrophsisrareattheearth’ssurfacetodayandprovidesacontrasttoothermodernBIFanalogsites.Forinstance,inLakeMatano,ironoxidationisthoughttobedrivenlargelybyphotoferrotrophs(Croweetal., 2008). AtChocolate Pots hot spring in YellowstoneNationalPark—perhaps themost geochemically similar system toOHK thathasbeenextensivelystudied—ironoxidationisthoughttobeprimar-ily driven abiotically by O

2 produced in situbycyanobacterialmats

(Trouwborst etal., 2007). Furthermore, relative to Chocolate Pots,OHKsupportsverylittleinthewayofwell-developedmicrobialmats,withonlythin,patchybiofilms.

TheabsenceofsubstantialmicrobialbiomassaccumulationnearthesourcepoolatOHKcanbeconsideredtheresultoftwoseparatephenomena:(i)thepaucityofphotosyntheticCyanobacteriaand(ii)thepoorgrowthyieldsoftheiron-oxidizingbacteriathatdooccur.Neither

oftheseissuesisfullyresolved,buthypothesesfortheircausescanbemadebasedonthegeochemistryandmineralogyofOHKandrelatedsystems,aswellasaspectsofthephysiologiesdrivingironoxidation.

It has been proposed that high iron concentrations are toxic toCyanobacteria and that thismayhaveplayed a role indelaying theoxygenation of the Archean atmosphere (Swanner etal., 2015).In principle, ferrous iron toxicity may help explain the absence ofCyanobacteria in OHK until the most downstream samples, wheremostironhasalreadybeenoxidizedandprecipitated.TheabsenceofCyanobacteriaatOHKischallengingtoexplain,however,asotheriron-richsystems(e.g.,ChocolatePotsHotSpring,Trouwborstetal.,2007)supportproductivecyanobacterialpopulations,andinothersystems,oxygenicphotosynthesisandaerobicironoxidationhavebeenshownto co-occur (Hegler, Lösekann-Behrens, Hanselmann, Behrens, &Kappler,2012;Morietal.,2015).AtFuschnaSpringintheSwissAlps,Gallionella-dominatedcommunitiesoccurintheiron-rich,low-oxygen,high-flowconditionswithintheflowchannel,butCyanobacteria-andiron reducer-richmicrobialmats accumulate along the edgeswhereflowislesspronounced(Hegleretal.,2012).Thissuggeststhatflowregimemayalsoplayarole indeterminingthemicrobialcommunityofiron-richsystems;OHKexperienceshighflowrates,andturbulentmixinginthesourcepool,andthismayplayaroleinlimitingthede-velopmentofphototrophicmicrobialmats.Turbulencemayinhibitthedevelopment of phototrophic microbial mats, while simultaneouslybeingadvantageoustoaerobiciron-oxidizingbacteriabyhelpingthemshed accumulated iron oxides, limiting encrustation by their meta-bolic byproducts.However, futureworkwill be necessary to betterdeterminetheroleoffluidflowregimeandotherfactorsininhibitingCyanobacteriaatOHK.

Areasonablehypothesisforthepoordevelopmentofbiofilmsbyaerobic iron-oxidizing bacteria atOHK could be related to the lowgrowthyieldofaerobic iron-oxidizingmicrobesrelativetophototro-phs. Based on electron balance and assuming an average oxidationstateofzerofororganiccarbon,themaximumpossibleefficiencyofautotrophicironoxidationis1moleofCO

2fixedforevery4molesof

Fe(II)oxidized.However,measuredyieldsofaerobicironoxidizersaretypicallymuch lower,ontheorderof1moleofCO

2 fixedforevery

40molesofFe(II)oxidized (Neubaueretal.,2002).Yieldsforphoto-ferrotrophsappeartobemuchmoreefficient,approximatingtheidealstoichiometryof4Fe:1C (Ehrenreich&Widdel,1994).Whileelec-tron transfer inneutrophilic ironoxidizershasnotbeenextensivelycharacterized,thisdifferenceinyieldappearstofundamentallycomedowntotheredoxpotentialofironoxidationreactions,which(whilequitevariabledependingonenvironmentalpHandmineralogyofironoxides)aretooelectrochemicallypositivetodirectlyreduceNAD(P)+

andthereforebeusefulforcarbonfixation(Birdetal.,2011).Inordertogrow, theseorganismsmustconsumeprotonmotiveforce (PMF)torunelectrons“uphill”tolowerredoxpotentialsinordertogeneratetheNAD(P)HneededtoreduceCO

2(Birdetal.,2011).Inaerobiciron

oxidizers,thisrequireslargefluxesofironoxidationtomaintainsuffi-cientPMFtofixcarbon,whilephototrophicironoxidizerscanrelyoncyclicelectronflowthroughtheirreactioncenterstobuildPMFsuffi-cientlytoallowstoichiometricironoxidationandcarbonfixation.The

Page 15: Ward 2017 Microbial diversity and iron oxidation at Okuoku ...web.gps.caltech.edu/~wfischer/pubs/Wardetal2017a.pdf818 | WARD et Al. 1 | BACKGROUND Banded iron formation (BIF) is a

     |  831WARD et Al.

relativelypoorgrowthyieldofaerobiciron-oxidizingbacteriaatOHKresults in organic carbon-lean mineral precipitates (<0.02% organiccarbonbyweight),incontrasttophototroph-dominatediron-richsys-tems likeChocolatePotshot springwhereorganic carboncontentscanbeinexcessof1%organiccarbonbyweight(Parenteau&Cady,2010).Ultimately,itislikelythattheoverproductionofferricironrel-ativetocarbonfixationduringaerobicironoxidationsetsthebudgetsforsubsequentcarbonandironcyclinginthisenvironment.

Significantly, 16S sequence reads associated with environ-mentally common iron-reducing microbes (e.g., Shewanellaceae,Geobacteraceae) occur at only very low abundances at OHK,with a maximum abundance of the Deltaproteobacteria familyGeobacteraceaeof0.79%intheDeepSourceWatersample(Table3).Thisisincontrasttootheriron-rich,neutralpHsystemsincludinghotandcoldspringsandgroundwaterseeps(e.g.,Blöthe&Roden,2009;Fortneyetal.,2016;Hegleretal.,2012;Rodenetal.,2012).Thismaypartiallyreflecttherelativefluxesofironoxidationversusorganiccar-bonfixationatOHK;thatis,thereisinsufficientorganiccarbonbeingfixed in this environment to fuel substantial iron oxide respiration.Meanwhile,turbulentmixingensuresthatoxygen-poormicroenviron-mentsdonotdevelop.Asmolecularoxygenisavailableinsubstantialexcessoforganiccarbon,heterotrophyatOHKneverdepletesO

2 suf-

ficientlytomakeironoxidesafavorableelectronacceptor.Incontrast,insystemswithmoresubstantiallydevelopedmicrobialmatsor lessefficientmixing,oxygencanbecomedepleteddeeperinmatfabricsorindiffusion-limitedboundarylayers,drivinglocalanoxiaandtheshifttowardironrespiration.ThelackofsubstantialironreductionatOHKisconsistentwiththepredominanceofferricironmineralsintheOHKdeposits(Takashimaetal.,2011)(Figure3).

4  | CONCLUSIONS

The relative paucity of organic carbon, the dominantly ferric ironcontentofsedimentary laminations,andtheprimaryroleofaerobicironoxidationtogethermakeOHKmostsimilartoProterozoic-typeBIFs,depositedaftertheGOE.BIFcompositionvariesthroughtime,with BIFs of different ages likely forming via different processes.Thisvariabilityislikelydrivenbychangesinprimaryproductivityandremineralizationpathwayscausedbytheevolutionofoxygenicpho-tosynthesisinCyanobacteriaandthesubsequentoxygenationoftheatmosphere at theGOE ca. 2.3Ga.While substantial debate existsabouttheantiquityofCyanobacteria,multiplelinesofevidencesug-gest that oxygenic photosynthesis evolved only shortly before theGOE (Fischer etal., 2016; Johnson etal., 2013a; Shih etal., 2017;Ward,Kirschvink,&Fischer,2016),andtherefore,molecularoxygenderivedfromphotosynthesiswasunlikelytoplayaroleinArcheanBIFformation.ThehypothesisthatthedepositionoftheseBIFsoccurredviaphototrophicironoxidationisconsistentwiththepredominantlyferrous composition of Archean and early Paleoproterozoic ironformations (Fischer&Knoll,2009) (AppendixS1), and isdiscordantwithmechanismsrelyingonaerobicironoxidation;photoferrotrophyresults in stoichiometric amounts of iron oxide and organic carbon

delivered to sediments,whichpromotes an environment conduciveto substantial amounts of iron reduction during burial and diagenesis

(Johnson,Beard,Klein,Beukes,&Roden,2008;Konhauser,Newman,& Kappler, 2005; Li, Konhauser, Kappler, & Hao, 2013). After theGOE,molecularoxygenwassufficientlyabundantintheatmosphereEarthsurfaceenvironmentsthatitcouldbeusedtodriveaerobicironoxidation.Additionally,ithasbeenobservedthattheorganiccarboncontentofBIFtendstobeinverselycorrelatedtotheproportionofresidualferriciron,withthemostironoxide-dominatedBIFscontain-ingontheorderof0.01%orlessorganiccarbonbyweight(Fischeretal., 2014; Klein, 2005). Proterozoic BIFs, such as the syn-glacialiron formations that co-occurwith Snowball Earth episodes late inNeoproterozoic (Cryogenian) time (Hoffman, Kaufman, Halverson,&Schrag,1998;Kirschvink,1992),aredominantlycomprisedoffer-ricironphases.Thisisconsistentwithexpectationsfortheirdeposi-tionviaaerobic ironoxidation (i.e.,excessdepositionof ironoxidesrelative to organic carbon, limiting subsequent iron reduction), andmost closely resembles the mineralogy of the materials currentlybeingdepositedatOHK.BycontrastingOHKwithotherBIFprocessanalogsiteswhereironoxidationpredominantlyoccursbydifferentprocesses (e.g.,phototrophy), itmaybepossible toopenawindowintotheecology,mineralogy,productivity,andotheraspectsofBIFdeposition across theGOE,withOHK representing an endmemberinwhich the ironoxide componentofBIF sedimentwasdepositedprimarilybyaerobicironoxidation.

ACKNOWLEDGMENTS

LMW acknowledges support from NASA NESSF (#NNX16AP39H),NSF (#OISE1639454),andNSFGROW(#DGE1144469).SEMac-knowledges support from MEXT KAKENHI grant-in-aid for chal-lenging exploratory research (grant award number 15K14608).WWF acknowledges the support of NASA Exobiology award#NNX16AJ57G, the David and Lucile Packard Foundation, and aStanford University Blaustein Fellowship. The authors would liketo thank Katsumi Matsuura and the Environmental MicrobiologylaboratoryatTokyoMetropolitanUniversity for laboratorysupport,VictoriaOrphanandStephanieConnonattheCaliforniaInstituteofTechnology for sequencing support, and Nancy Merino and NorioKitadaiattheTokyoInstituteofTechnologyforassistancewith ionchromatographymeasurements.TheauthorswouldalsoliketothankElizabethTrembath-Reichert,JamesHemp,andRolandHatzenpichlerforhelpfuldiscussion,aswellasClaraChanandfouranonymousre-viewersforhelpfulcommentsonthemanuscript.

REFERENCES

Bekker,A.,Planavsky,N.,Rasmussen,B.,Krapez,B.,Hofmann,A.,Slack,J.,…Konhauser,K.(2014).Ironformations:Theiroriginsandimpli-cationsforancientseawaterchemistry.InH.Holland,&K.Turekian(Eds.),Treatise on geochemistry (Vol.9, pp. 561–628).Netherlands:Elsevier.

Beukes, N. J. (1984). Sedimentology of the Kuruman and Griquatowniron-formations,TransvaalSupergroup,GriqualandWest,SouthAfrica.Precambrian Research,24(1),47–84.

Page 16: Ward 2017 Microbial diversity and iron oxidation at Okuoku ...web.gps.caltech.edu/~wfischer/pubs/Wardetal2017a.pdf818 | WARD et Al. 1 | BACKGROUND Banded iron formation (BIF) is a

832  |     WARD et Al.

Bird,L.J.,Bonnefoy,V.,&Newman,D.K.(2011).Bioenergeticchallengesofmicrobial iron metabolisms. Trends in Microbiology,19,330–340.

Blöthe,M.,&Roden,E.E.(2009).Microbialironredoxcyclinginacircum-neutral-pH groundwater seep.Applied and Environment Microbiology,75,468–473.

Bosak,T.,Liang,B.,Wu,T.D.,Templer,S.P.,Evans,A.,Vali,H.,…Mui,J.(2012).Cyanobacterialdiversityandactivityinmodernconicalmicro-bialites. Geobiology,10(5),384–401.

Bryant,D.A.,&Liu,Z.(2013).Greenbacteria:insightsintogreenbacterialevolutionthroughgenomicanalyses. InJ.T.Beatty (Ed.),Advances in botanical research, volume 66, genome evolution of photosynthetic bacte-ria(pp.99–150).NewYork,NY:Elsevier.

Byrne-Bailey, K. G., Weber, K. A., Bose, S., Knox, T., Spanbauer, T. L.,Chertkov,O.,&Coates,J.D.(2010).Completedgenomesequenceoftheanaerobiciron-oxidizingbacteriumAcidovoraxebreusstrainTPSY.Journal of Bacteriology,192(5),1475–1476.

Cairns-Smith,A.G.(1978).Precambriansolutionphotochemistry, inverseseg-regation,andbandedironformation.Nature,276,807–808.

Canfield, D. E. (1998). A new model for Proterozoic ocean chemistry.Nature,396(6710),450–453.

Caporaso,J.G.,Kuczynski,J.,Stombaugh,J.,Bittinger,K.,Bushman,F.D.,Costello,E.K.,…Huttley,G.A. (2010).QIIMEallowsanalysisofhigh-throughputcommunitysequencingdata.Nature Methods,7(5),335–336.

Caporaso,J.G.,Lauber,C.L.,Walters,W.A.,Berg-Lyons,D.,Huntley,J.,Fierer,N.,…Gormley,N.(2012).Ultra-high-throughputmicrobialcom-munityanalysisontheIlluminaHiSeqandMiSeqplatforms.The ISME Journal,6(8),1621.

Chan,C.,Emerson,D.,&Luther,G.W.(2016).TheroleofmicroaerophilicFe- oxidizing microorganisms in producing banded iron formations.Geobiology,14(5),509–528.

Cloud,P. (1973).Paleoecologicalsignificanceof thebanded iron- forma-tion. Economic Geology,68,1135–1143.

Crossey,L.J.,Karlstrom,K.E.,Schmandt,B.,Crow,R.R.,Colman,D.R.,Cron,B.,…Ricketts,J.W. (2016).Continental smokers coupleman-tledegassinganddistinctivemicrobiologywithincontinents.Earth and Planetary Science Letters,435,22–30.

Crowe,S.A.,Jones,C.,Katsev,S.,Magen,C.,O’Neill,A.H.,Sturm,A.,…Fowle, D. A. (2008). Photoferrotrophs thrive in an Archean Oceananalogue. Proceedings of the National Academy of Sciences, 105(41),15938–15943.

Davenport,C.,Ussery,D.W.,&Tümmler,B.(2010).Comparativegenomicsof green sulfur bacteria. Photosynthesis Research,104(2–3),137–152.

DiRienzi,S.C.,Sharon,I.,Wrighton,K.C.,Koren,O.,Hug,L.A.,Thomas,B.C.,…Ley,R.E.(2013).Thehumangutandgroundwaterharbornon-photosyntheticbacteriabelongingtoanewcandidatephylumsiblingtoCyanobacteria.Elife,2,e01102.

Drever, J. I. (1974). Geochemical model for the origin of Precambrianbanded iron formations. Geological Society of America Bulletin, 85(7),1099–1106.

Edgar,R.C.(2010).SearchandclusteringordersofmagnitudefasterthanBLAST.Bioinformatics,26(19),2460–2461.

Ehrenreich,A.,&Widdel,F.(1994).Anaerobicoxidationofferrousironbypurplebacteria,anewtypeofphototrophicmetabolism.Applied and Environmental Microbiology,60,4517–4526.

Emerson, D., Field, E. K., Chertkov, O., Davenport, K.W., Goodwin, L.,Munk,C.,…Woyke,T. (2013). Comparative genomics of freshwaterFe-oxidizing bacteria: implications for physiology, ecology, and sys-tematics. Frontiers in Microbiology, 4, 254. https://doi.org/10.3389/fmicb.2013.00254

Emerson,D., Fleming,E.J.,&McBeth,J.M. (2010). Iron- oxidizingbac-teria: An environmental and genomic perspective. Annual Review of Microbiology,64,561–583.

Emerson,D.,&Moyer,C. (1997). Isolationandcharacterizationofnoveliron- oxidizing bacteria that grow at circumneutral pH. Applied and Environment Microbiology,63,4784–4792.

Emerson,D.,Rentz,J.A.,Lilburn,T.G.,Davis,R.E.,Aldrich,H.,Chan,C.,&Moyer,C.L.(2007).Anovellineageofproteobacteriainvolvedinfor-mationofmarineFe-oxidizingmicrobialmatcommunities.PLoS ONE,2(8),e667.

Emerson,J.B.,Thomas,B.C.,Alvarez,W.,&Banfield,J.F.(2016).Metagenomicanalysisofahighcarbondioxidesubsurfacemicrobialcommunitypopu-latedbychemolithoautotrophsandbacteriaandarchaeafromcandidatephyla.Environmental Microbiology,18(6),1686–1703.

España,J.S.,SantofimiaPastor,E.,&LópezPamo,E.(2007).Ironterracesinacidminedrainagesystems:Adiscussionabouttheorganicandin-organicfactorsinvolvedintheirformationthroughobservationsfromtheTintilloacidicriver(Riotintomine,Huelva,Spain).Geosphere,3(3),133–151.

Fernández-Remolar, D. C., & Knoll, A. H. (2008). Fossilization potentialof iron- bearingminerals in acidic environments of RioTinto, Spain:ImplicationsforMarsexploration.Icarus,194(1),72–85.

Finneran,K.T.,Johnsen,C.V.,&Lovley,D.R.(2003).Rhodoferaxferriredu-censsp.nov.,apsychrotolerant,facultativelyanaerobicbacteriumthatoxidizes acetatewith the reduction of Fe(III). International Journal of Systematic and Evolutionary Microbiology,53,669–673.

Fischer,W.W.,Fike,D.A.,Johnson,J.E.,Raub,T.D.,Guan,Y.,Kirschvink,J.L.,&Eiler,J.M.(2014).SQUID–SIMSisausefulapproachtouncoverprimarysignalsintheArcheansulfurcycle.Proceedings of the National Academy of Sciences,111(15),5468–5473.

Fischer,W.W.,Hemp,J.,&Johnson,J. E. (2016). Evolutionof oxygenicphotosynthesis. Annual Review of Earth and Planetary Sciences, 44,647–683.

Fischer,W.W.,&Knoll,A.H.(2009).AnironshuttlefordeepwatersilicainlateArcheanandearlyPaleoproterozoicironformation.Bulletin of the Geological Society of America,121,222–235.

Fleming,E.J.,Davis,R.E.,McAllister,S.M.,Chan,C.S.,Moyer,C.L.,Tebo,B.M.,&Emerson,D.(2013).Hiddeninplainsight:discoveryofsheath-forming,iron-oxidizingZetaproteobacteriaatLoihiSeamount,Hawaii,USA.FEMS Microbiology Ecology,85(1),116–127.

Fortney,N.W.,He,S.,Converse,B.J.,Beard,B.L.,Johnson,C.M.,Boyd,E.S.,&Roden,E.E.(2016).MicrobialFe(III)oxidereductionpotentialinChocolatePotshot spring,YellowstoneNationalPark.Geobiology,14(3),255–275.

Fouke,B.W.(2011).Hot-springsystemsgeobiology:Abioticandbioticin-fluencesontravertineformationatMammothHotSprings,YellowstoneNationalPark,USA.Sedimentology,58(1),170–219.

Francois,L.M.(1986).Extensivedepositionofbandedironformationswaspossiblewithoutphotosynthesis.Nature,320,352–354.

GeologicalSurveyofJapan,AIST (ed.) (2012).SeamlessdigitalgeologicalmapofJapan1:200,000.Jul3,2012version.Research InformationDatabase DB084, Geological Survey of Japan, National Institute ofAdvancedIndustrialScienceandTechnology.

Good,I.J.(1953).Thepopulationfrequenciesofspeciesandtheestimationofpopulationparameters.Biometrika,40,237–264.

Hallbeck, L., & Pedersen, K. (2013). The family gallionellaceae. In E.Rosenberg,E.F.DeLong,S.Lory,E.Stackebrandt&F.Thompson(Eds.),The prokaryotes.Heidelberg:SpringerBerlin.

Harder,E.C.(1919).Iron-depositingbacteriaandtheirgeologicrelations.U.S.GeologicalSurveyProfessionalPaper113,89p.

Hegler,F.,Lösekann-Behrens,T.,Hanselmann,K.,Behrens,S.,&Kappler,A. (2012). Influence of seasonal and geochemical changes on thegeomicrobiologyofanironcarbonatemineralwaterspring.Applied and Environmental Microbiology,78(20),7185–7196.

Heising,S.,Richter,L.,Ludwig,W.,&Schink,B.(1999).Chlorobiumferro-oxidanssp.nov.,aphototrophicgreensulfurbacteriumthatoxidizesferrous iron in coculturewith a ‘Geospirillum’ sp. strain.Archives of Microbiology,172,116–124.

Hemp,J.,Ward,L.M.,Pace,L.A.,&Fischer,W.W.(2015a).Draftgenomese-quenceofLevilineasaccharolyticaKIBI-1,amemberoftheChloroflexiclassAnaerolineae.Genome Announcements,3(6),e01357-15.

Page 17: Ward 2017 Microbial diversity and iron oxidation at Okuoku ...web.gps.caltech.edu/~wfischer/pubs/Wardetal2017a.pdf818 | WARD et Al. 1 | BACKGROUND Banded iron formation (BIF) is a

     |  833WARD et Al.

Hemp,J.,Ward,L.M.,Pace,L.A.,&Fischer,W.W.(2015b).DraftgenomesequenceofArdenticatenamaritima110S,athermophilicnitrate-andiron-reducingmemberoftheChloroflexiclassArdenticatenia.Genome Announcements,3(6),e01347-15.

Hill,M.O.(1973).Diversityandevenness:Aunifyingnotationanditscon-sequences.Ecology,54,427–432.

Hoffman,P.F.,Kaufman,A.,Halverson,G.,&Schrag,D.(1998).Aneopro-terozoicsnowballearth.Science,281,1342–1346.

Holland,H.D.(1973).Theoceans;apossiblesourceofironinironforma-tions. Economic Geology,68(7),1169–1172.

Holland,H.D.(1984).The chemical evolution of the atmosphere and oceans.

Princeton,NJ,USA:PrincetonUniversityPress.Iino,T.,Mori,K.,Uchino,Y.,Nakagawa,T.,Harayama,S.,&Suzuki,K.-I.(2010).

Ignavibacteriumalbumgen.nov.,sp.nov.,amoderately thermophilicanaerobicbacterium isolated frommicrobialmatsata terrestrialhotspringandproposalofIgnavibacteriaclassisnov.,foranovellineageattheperipheryofgreensulfurbacteria.International Journal of Systematic and Evolutionary Microbiology,60(Pt6),1376–1382.

Johnson,C.M.,Beard,B.L.,Klein,C.,Beukes,N.J.,&Roden,E.E.(2008).Ironisotopesconstrainbiologicandabiologicprocessesinbandedironformation genesis. Geochimica et Cosmochimica Acta,72(1),151–169.

Johnson,J.E.,Webb,S.M.,Thomas,K.,Ono,S.,Kirschvink,J.L.,&Fischer,W.W.(2013a).Manganese-oxidizingphotosynthesisbeforetheriseofcyanobacteria. Proceedings of the National Academy of Sciences,110(28),11238–11243.

Johnson,J.E.,Webb,S.M.,Thomas,K.,Ono,S.,Kirschvink,J.L.,&Fischer,W.W.(2013b).ReplytoJonesandCrowe:Correctingmistakenviewsof sedimentary geology, Mn-oxidation rates, and molecular clocks.Proceedings of the National Academy of Sciences,110(44),E4119–E4120.

Kadnikov,V.V.,Mardanov,A.V., Podosokorskaya,O.A., Gavrilov, S.N.,Kublanov,I.V.,Beletsky,A.V.,…Ravin,N.V.(2013).GenomicanalysisofMelioribacter roseus, facultatively anaerobicorganotrophicbacte-riumrepresentinganoveldeeplineagewithinBacteriodetes/Chlorobigroup.PLoS ONE,8(1),e53047.

Kappler,A.,&Newman,D.K.(2004).FormationofFe(III)-mineralsbyFe(II)-oxidizingphotoautotrophicbacteria.Geochimica et Cosmochimica Acta,68,1217–1226.

Kappler, A., Pasquero, C., Konhauser, K. O., & Newman, D. K. (2005).Deposition of banded iron formations by anoxygenic phototrophicFe(II)-oxidizingbacteria.Geology,33,864–865.

Kasama,T.,&Murakami,T. (2001).Theeffectofmicro-organismsonFeprecipitationrateatneutralpH.Chemical Geology,180,117–128.

Katoh,K.,Misawa,K., Kuma,K. I.,&Miyata,T. (2002).MAFFT: a novelmethod for rapidmultiplesequencealignmentbasedon fastFouriertransform. Nucleic Acids Research,30(14),3059–3066.

Kirschvink,J.L.(1992).LateProterozoiclow-latitudeglobalglaciation:ThesnowballEarth.The Proterozoic Biosphere,52,51–52.

Kiss,H.,Nett,M.,Domin,N.,Martin,K.,Maresca,J.A.,Copeland,A.,…Dalin,E.(2011).Completegenomesequenceofthefilamentousglidingpredatory bacteriumHerpetosiphon aurantiacus type strain (114-95T).Standards in Genomic Sciences,5(3),356.

Klatt, C. G.,Wood, J.M., Rusch, D. B., Bateson,M.M., Hamamura, N.,Heidelberg, J. F.,…Bryant,D.A. (2011). Community ecology of hotspringcyanobacterialmats:predominantpopulationsand their func-tionalpotential.The ISME Journal,5(8),1262.

Klein,C. (2005). SomePrecambrianbanded iron- formations (BIFs) fromaround theworld:Their age, geologic setting,mineralogy,metamor-phism,geochemistry,andorigin.American Mineralogist,90,1473–1499.

Klueglein,N.,&Kappler,A.(2013).AbioticoxidationofFe(II)byreactivenitrogen species in cultures of the nitrate- reducing Fe (II) oxidizerAcidovoraxsp.BoFeN1–questioningtheexistenceofenzymaticFe(II)oxidation.Geobiology,11(2),180–190.

Konhauser, K. O., Hamade, T., Raiswell, R., Morris, R. C., Ferris, F. G.,Southam,G.,&Canfield,D.E.(2002).CouldbacteriahaveformedthePrecambrian banded iron formations? Geology,30(12),1079–1082.

Konhauser,K.O.,Newman,D.K.,&Kappler,A.(2005).Thepotentialsignif-icanceofmicrobialFe(III)reductionduringdepositionofPrecambrianbanded iron formations. Geobiology,3,167–177.

Kucera, S., & Wolfe, R. S. (1957). A selective enrichment method forGallionellaFerruginea.Journal of Bacteriology,74,344–349.

Ley, R. E., Bäckhed, F., Turnbaugh, P., Lozupone, C.A., Knight, R. D., &Gordon,J. I. (2005).Obesityaltersgutmicrobialecology.Proceedings of the National Academy of Sciences of the United States of America,102(31),11070–11075.

Li,Y.L.,Konhauser,K.O.,Kappler,A.,&Hao,X.L. (2013).Experimentallow-gradealterationofbiogenicmagnetiteindicatesmicrobialinvolve-ment in generation of banded iron formations. Earth and Planetary Science Letters,361,229–237.

Liu, Z., Frigaard, N. U., Vogl, K., Iino, T., Ohkuma, M., Overmann, J., &Bryant,D.A. (2012).Complete genomeof Ignavibacteriumalbum, ametabolicallyversatile,flagellated,facultativeanaerobefromthephy-lumChlorobi.Frontiers in Microbiology,3,185.https://doi.org/10.3389/fmicb.2012.00185

Liu,Z.,Klatt,C.G.,Ludwig,M.,Rusch,D.B.,Jensen,S.I.,Kühl,M.,…Bryant,D.A. (2012). ‘CandidatusThermochlorobacteraerophilum:’anaerobicchlorophotoheterotrophicmemberofthephylumChlorobidefinedbymetagenomicsandmetatranscriptomics.The ISME Journal,6(10),1869.

Mori,J.F.,Neu,T.R.,Lu,S.,Händel,M.,Totsche,K.U.,&Küsel,K.(2015).Iron encrustations on filamentous algae colonized by Gallionella-relatedbacteriainametal-pollutedfreshwaterstream.Biogeosciences,12(18),5277.

Morris,R.C.(1980).Atexturalandmineralogicalstudyoftherelationshipofironoretobandediron-formationintheHamersleyironprovinceofWesternAustralia.Economic Geology,75(2),184–209.

Neubauer,S.C.,Emerson,D.,&Megonigal,J.P. (2002).Lifeattheener-geticedge:kineticsofcircumneutralironoxidationbylithotrophiciron-oxidizingbacteriaisolatedfromthewetland-plantrhizosphere.Applied and Environmental Microbiology,68(8),3988–3995.

Nunoura, T., Hirai, M., Miyazaki, M., Kazama, H., Makita, H., Hirayama,H., … Takai, K. (2013). Isolation and characterization of a thermo-philic, obligately anaerobic and heterotrophic marine Chloroflexibacterium from a Chloroflexi-dominated microbial community asso-ciated with a Japanese shallow hydrothermal system, and proposalforThermomarinilinea lacunofontalisgen.nov.,sp.nov.Microbes and Environments,28(2),228–235.

Oksanen,J.,GuillaumeBlanchet,F.,Kindt,R.,Legendre,P.,Minchin,P.R.,O’Hara,R.B.,…Wagner,H.(2016).vegan: Community ecology package.

Rpackageversion2.3-5.Retrievedfromhttps://CRAN.R-project.org/package=vegan

Overmann, J. (2008). Green nonsulfur bacteria. In Encyclopedia of Life Sciences (ELS).Chichester:JohnWiley&Sons.

Overmann,J.,&Garcia-Pichel,F.(2013).Thephototrophicwayoflife.InE.Rosenberg,E.F.DeLong,S.Lory,E.Stackebrandt&F.Thompson(Eds.),The prokaryotes(pp.203–257).Berlin:Springer.

Pace,L.A.,Hemp,J.,Ward,L.M.,&Fischer,W.W.(2015).DraftgenomeofThermanaerothrixdaxensisGNS-1,athermophilicfacultativeanaer-obefromtheChloroflexiclassAnaerolineae.Genome Announcements,3(6),e01354-15.

Parada,A.,Needham,D.M.,&Fuhrman,J.A.(2015).Everybasematters:Assessing small subunit rRNA primers for marinemicrobiomeswithmockcommunities,time-seriesandglobalfieldsamples.Environmental Microbiology,18,1403–1414.

Parenteau,M.N.,&Cady,S.L.(2010).Microbialbiosignaturesinironmin-eralizedphototrophicmatsatchocolatepotshotsprings,YellowstoneNationalPark,UnitedStates.Palaios,25,97–111.

Pierson,B.K.,&Parenteau,M.N.(2000).Phototrophsinhighironmicro-bialmats:Microstructureofmatsiniron-depositinghotsprings.FEMS Microbiology Ecology,32,181–196.

Pierson,B.K., Parenteau,M.N.,&Griffin,B.M. (1999).Phototrophs inhigh- iron- concentration microbial mats: Physiological ecology of

Page 18: Ward 2017 Microbial diversity and iron oxidation at Okuoku ...web.gps.caltech.edu/~wfischer/pubs/Wardetal2017a.pdf818 | WARD et Al. 1 | BACKGROUND Banded iron formation (BIF) is a

834  |     WARD et Al.

phototrophsinaniron-depositinghotspring.Applied and Environment Microbiology,65,5474–5483.

Podosokorskaya, O. A., Bonch-Osmolovskaya, E. A., Novikov, A. A.,Kolganova, T. V., & Kublanov, I. V. (2013). Ornatilinea apprima gen.nov., sp. nov., a cellulolytic representativeof the classAnaerolineae.International Journal of Systematic and Evolutionary Microbiology,63(1),86–92.

Podosokorskaya,O.A., Kadnikov,V.V., Gavrilov, S.N.,Mardanov,A.V.,Merkel,A.Y.,Karnachuk,O.V.,…Kublanov,I.V.(2013).CharacterizationofMelioribacterroseusgen.nov.,sp.nov.,anovelfacultativelyanaero-bicthermophiliccellulolyticbacteriumfromtheclassIgnavibacteria,andaproposalofanovelbacterialphylumIgnavibacteriae.Environmental Microbiology,15(6),1759–1771.

Posth, N. R., Konhauser, K. O., & Kappler, A. (2013). Microbiologicalprocesses in banded iron formation deposition. Sedimentology, 60,1733–1754.

Price,M.N.,Dehal,P.S.,&Arkin,A.P. (2010).FastTree2–approximatelymaximum-likelihoodtreesforlargealignments.PLoS ONE,5(3),e9490.

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., …Glöckner,F.O.(2012).TheSILVAribosomalRNAgenedatabaseproj-ect: improved data processing and web-based tools. Nucleic Acids Research,41(D1),D590–D596.

RCoreTeam(2014).R: A language and environment for statistical computing.

Vienna,Austria:RFoundationforStatisticalComputing.Rantamäki, S., Meriluoto, J., Spoof, L., Puputti, E. M., Tyystjärvi, T., &

Tyystjärvi,E.(2016).OxygenproducedbycyanobacteriainsimulatedArchaeanconditionspartlyoxidizesferrousironbutmostlyescapes—conclusions about early evolution. Photosynthesis Research,130(1–3),103–111.

Rasmussen,B.,Krapež,B.,Muhling,J.R.,&Suvorova,A.(2015).PrecipitationofironsilicatenanoparticlesinearlyPrecambrianoceansmarksEarth’sfirst iron age. Geology,43,303–306.

Rasmussen,B.,Meier,D.B.,Krapež,B.,&Muhling,J.R.(2013).Ironsilicatemicrogranulesasprecursorsedimentsto2.5-billion-yearoldbandediron formations. Geology,41,435–438.

Rasmussen,B.,Muhling,J.R.,Suvorova,A.,&Krapež,B. (2016).Dusttodust:Evidencefortheformationof‘primary’hematitedustinbandedironformationsviaoxidationofironsilicatenanoparticles.Precambrian Research,284,49–63.

Roden,E.E.,McBeth,J.M.,Blöthe,M.,Percak-Dennett,E.M.,Fleming,E.J.,Holyoke,R.R.,…Schieber,J.(2012).ThemicrobialferrouswheelinaneutralpHgroundwaterseep.Frontiers in Microbiology,3,172.https://doi.org/10.3389/fmicb.2012.00172

Roeselers,G.,Norris,T.B.,Castenholz,R.W.,Rysgaard,S.,Glud,R.N.,Kühl,M.,&Muyzer,G.(2007).DiversityofphototrophicbacteriainmicrobialmatsfromArctichotsprings (Greenland).Environmental Microbiology,9(1),26–38.

Sekiguchi,Y.,Yamada,T.,Hanada,S.,Ohashi,A.,Harada,H.,&Kamagata,Y. (2003).Anaerolinea thermophila gen.nov., sp. nov. andCaldilineaaerophilagen.nov.,sp.nov.,novelfilamentousthermophilesthatrep-resentapreviouslyuncultured lineageof thedomainBacteriaat thesubphylum level. International Journal of Systematic and Evolutionary Microbiology,53(6),1843–1851.

Shannon,C.E.(1948).Amathematicaltheoryofcommunication.The Bell System Technical Journal,27,379–423and623–656.

Shih, P. M., Hemp, J., Ward, L. M., Matzke, N. J., & Fischer, W. W.(2017).CrowngroupOxyphotobacteriapostdate the riseofoxygen.Geobiology,15(1),19–29.

Shimazu,M.,Yamada,K.,Narita,E.,& Igarashi,T. (1965).Geologyof theAinai- Kosaka-Oyu areas,Akita prefecture.Bulletin of the Geological Survey of Japan,16,22–30.

Simpson,E.H.(1949).Measurementofdiversity.Nature,163,688.Singer,P.C.,&Stumm,W.(1970).Acidminedrainage:Therate-determin-

ingstep.Science,167,1121–1123.

Soo,R.M.,Hemp,J.,Parks,D.H.,Fischer,W.W.,&Hugenholtz,P.(2017).Ontheoriginsofoxygenicphotosynthesisandaerobic respiration inCyanobacteria.Science,355(6332),1436–1440.

Soo,R.M.,Skennerton,C.T.,Sekiguchi,Y.,Imelfort,M.,Paech,S.J.,Dennis,P.G.,…Hugenholtz,P. (2014).Anexpandedgenomicrepresentationof the phylum Cyanobacteria. Genome Biology and Evolution, 6(5),1031–1045.

Soo,R.M.,Woodcroft,B.J.,Parks,D.H.,Tyson,G.W.,&Hugenholtz,P.(2015).Backfromthedead;thecurioustaleofthepredatorycyano-bacteriumVampirovibriochlorellavorus.PeerJ,3,e968.

Stamps,B.W.,Corsetti,F.A.,Spear,J.R.,&Stevenson,B.S.(2014).Draftgenome of a novel chlorobi member assembled by tetranucleotidebinning of a hot spring metagenome.Genome Announcements, 2(5),e00897-14.

Stookey, L. L. (1970). Ferrozine—a new spectrophotometric reagent foriron. Analytical Chemistry,42(7),779–781.

Stumm,W.,&Lee,F.G.(1961).Oxygenationofferrousiron.Industrial and Engineering Chemistry,53,143–146.

Swanner,E.D.,Mloszewska,A.M.,Cirpka,O.A.,Schoenberg,R.,Konhauser,K.,&Kappler,A.(2015).ModulationofoxygenproductioninArchaeanoceansbyepisodesofFe(II)toxicity.Nature Geoscience,8(2),126.

Takashima,C.,Okumura,T.,Nishida,S.,Koike,H.,&Kano,A.(2011).Bacterialsymbiosisforminglaminatediron-richdepositsinOkuokuhachikurouhotspring,AkitaPrefecture,Japan.Island Arc,20,294–304.

Tank,M.,Thiel,V.,Ward,D.M.,&Bryant,D.A.(2017).Apanoplyofpho-totrophs:Anoverviewof the thermophilic chlorophototrophsof themicrobialmatsofalkalinesiliceoushotspringsinYellowstoneNationalPark,WY,USA.InM.Topics(Ed.),Modern topics in the phototrophic pro-karyotes(pp.87–137).Netherlands:SpringerInternationalPublishing.

Thiel,V.,Wood,J.M.,Olsen,M.T.,Tank,M.,Klatt,C.G.,Ward,D.M.,&Bryant,D.A.(2016).ThedarksideoftheMushroomSpringmicrobialmat:lifeintheshadowofchlorophototrophs.I.Microbialdiversitybasedon16SrRNAgeneampliconsandmetagenomicsequencing.Frontiers in Microbiology,7,919.https://doi.org/10.3389/fmicb.2016.00919

Tosca,N.J.,Guggenheim,S.,&Pufahl,P.K. (2016).Anauthigenicoriginfor Precambrian greenalite: Implications for iron formation and thechemistry of ancient seawater.Geological Society of America Bulletin,128(3–4),511–530.

Trembath-Reichert,E.,Ward,L.M.,Slotznick,S.P.,Bachtel,S.L.,Kerans,C.,Grotzinger,J.P.,&Fischer,W.W.(2016).GeneSequencing-BasedAnalysisofMicrobial-MatMorphotypes,CaicosPlatform,BritishWestIndies. Journal of Sedimentary Research,86(6),629–636.

Trouwborst,R.E.,Johnston,A.,Koch,G.,Luther,G.W.,&Pierson,B.K.(2007).BiogeochemistryofFe(II)oxidationinaphotosyntheticmicro-bialmat: Implications forPrecambrianFe(II) oxidation.Geochimica et Cosmochimica Acta,71,4629–4643.

vanVeen,W.L.,Mulder,E.G.,&Deinema,M.H.(1978).TheSphaerotilus-Leptothrixgroupofbacteria.Microbiological Reviews,42,329–356.

Wang,Q.,Garrity,G.M.,Tiedje,J.M.,&Cole,J.R.(2007).NaiveBayesianclassifierforrapidassignmentofrRNAsequencesintothenewbacterialtaxonomy.Applied and Environmental Microbiology,73(16),5261–5267.

Ward,L.M.,Hemp,J.,Pace,L.A.,&Fischer,W.W.(2015a).Draftgenomesequence of Leptolinea tardivitalisYMTK- 2, amesophilic anaerobefromtheChloroflexiclassAnaerolineae.Genome Announcements,3(6),e01356-15.

Ward,L.M.,Hemp,J.,Pace,L.A.,&Fischer,W.W.(2015b).Draftgenomesequence of Herpetosiphon geysericola GC- 42, a nonphototrophicmemberoftheChloroflexiclassChloroflexia.Genome Announcements,3(6),e01352-15.

Ward,L.M.,Kirschvink,J.L.,&Fischer,W.W.(2016).Timescalesofoxy-genationfollowingtheevolutionofoxygenicphotosynthesis.Origins of Life and Evolution of the Biosphere,46(1),51–65.

Wickham,H.(2009).ggplot2: Elegant graphics for data analysis.NewYork,NY:Springer-Verlag.

Page 19: Ward 2017 Microbial diversity and iron oxidation at Okuoku ...web.gps.caltech.edu/~wfischer/pubs/Wardetal2017a.pdf818 | WARD et Al. 1 | BACKGROUND Banded iron formation (BIF) is a

     |  835WARD et Al.

Widdel,F.,Schnell,S.,Heising,S.,Ehrenreich,A.,Assmus,B.,&Schink,B.(1993). Ferrous iron oxidation by anoxygenic phototrophic bacteria.Nature,362,834–836.

Yamada,T., Imachi,H.,Ohashi,A.,Harada,H.,Hanada, S., Kamagata,Y.,& Sekiguchi,Y. (2007). Bellilinea caldifistulae gen. nov., sp. nov andLongilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamen-tous bacteria of the phylumChloroflexi isolated frommethanogenicpropionate-degradingconsortia.International Journal of Systematic and Evolutionary Microbiology,57(10),2299–2306.

Yamada, T., & Sekiguchi, Y. (2009). Cultivation of uncultured chloroflexisubphyla: Significance and ecophysiology of formerly unculturedchloroflexi ‘subphylumi’withnaturalandbiotechnologicalrelevance.Microbes and Environments,24,205–216.

Yamada,T.,Sekiguchi,Y.,Hanada,S.,Imachi,H.,Ohashi,A.,Harada,H.,&Kamagata,Y.(2006).Anaerolineathermolimosasp.nov.,Levilineasac-charolyticagen.nov.,sp.nov.andLeptolineatardivitalisgen.nov.,sp.nov.,novelfilamentousanaerobes,anddescriptionofthenewclassesAnaerolineaeclassisnov.andCaldilineaeclassisnov. in thebacterial

phylumChloroflexi.International Journal of Systematic and Evolutionary Microbiology,56,1331–1340.

SUPPORTING INFORMATION

Additional Supporting Informationmay be found online in the sup-portinginformationtabforthisarticle.

How to cite this article:WardLM,IdeiA,TerajimaS,KakegawaT,FischerWW,McGlynnSE.MicrobialdiversityandironoxidationatOkuoku-hachikurouOnsen,aJapanesehotspringanalogofPrecambrianironformations.Geobiology.

2017;15:817–835. https://doi.org/10.1111/gbi.12266


Recommended