+ All Categories
Home > Documents > Waterers and Watering Systems - Oklahoma State...

Waterers and Watering Systems - Oklahoma State...

Date post: 03-Mar-2018
Category:
Upload: hoangthu
View: 213 times
Download: 0 times
Share this document with a friend
151
Waterers and Watering Systems: A Handbook for Livestock Producers and Landowners Kansas State University Agricultural Experiment Station and Cooperative Extension Service
Transcript

Waterers and Watering Systems:

A Handbook for Livestock Producers and LandownersKansas State University Agricultural Experiment Station and Cooperative Extension Service

Table of Contents

Introduction .................................................................... 2Water Sources ................................................................. 7 Stream................................................................. 9 PondandPit..................................................... 13 DevelopedSpring............................................. 17 HorizontalWell................................................ 21 WetWell........................................................... 27 DrilledWell...................................................... 31 WaterHarvesting.............................................. 37 RuralWaterDistrict(PublicSupply)................ 45 HauledWater.................................................... 49Power Sources, Pumps, Pipelines and Storage Tanks ........................................................ 53 SolarPower....................................................... 55 Pump................................................................ 59 Wind-PoweredAirPressureSystem................. 65 Windmill.......................................................... 69 Animal-ActivatedPumpingSystem.................. 73 Water-PoweredPump....................................... 77 PipelineNetwork.............................................. 83 WaterStorageTank.......................................... 87

Animal Drink Delivery .................................................. 91 ConcreteWaterers............................................ 93 LimitedAccessWateringPoints....................... 97 HardenedSurfaceAccess.................................101 Super-InsulatedWaterer..................................105 BottomlessTank..............................................109 TireTank.........................................................113 FiberglassorGalvanizedTank.........................117Livestock Management Practices .............................. 121 HardenedMat(geosyntheticsandgravel).......123 GrazingManagementChanges forWaterQuality...........................................127 FencingthePond.............................................131Supplemental Materials ............................................. 135 WaterVolumeRequirementsforLivestock.....136 SitingWateringFacilities.................................137 CalculatingTankCapacity...............................138 CalculatingRequirePipelineSize....................139 CalculatingWetWellCapacity........................142 PermitsinKansas.............................................143 HelpfulResources............................................146Credits .......................................................................... 148

1

This reference should be cited as:Blocksome,C.E.andG.M.Powell(eds).2006.Waterersandwateringsystems:Ahandbookforlivestockownersandlandowners.KansasStateUniversityAgriculturalExperimentStationandCooperativeExtensionService,Manhattan,KS.

ThishandbookwillalsobeavailableinasmallerprintedformasKansasStateUniversityAgriculturalExperimentStationandCooperativeExtensionServicepublicationS-147.Order-inginformationisavailableathttp://www.oznet.ksu.edu/library/orbycalling(785)532-5830.

FinancialassistancefortheKansasGrasslandWaterQualityStewardshipProgramisprovided,inpart,throughEPASection319Non-pointSourcePollutionControlGrantK3-016byagrantagreementwiththeKansasDepartmentofHealthandEnvironment.

Kansas Grassland Water Quality Stewardship Program,

Dept. of Agronomy, Kansas State University

2

Why should I be concerned about where my cattle drink?Livestocktendtoconcentratearoundwatersources.Thisactivitycanleadtoreducedvegetativecoverandincreasedmanureconcentrationinandaroundwatersources.Thewatersourcecanbecomepollutedwithsediment,nutrients,andfecalcoliformandstreptococcusbacteria,leadingtoimpairedwaterquality.

How can I change my livestock drinking and loafing behavior?Livestockdistributioncanbealteredbymanipulatinglive-stockattractants.Wateristhestrongestattractant,bothfordrinkingandloafing.Otherattractantsaremineralandsaltfeeders,oilersandscratchingposts,gates,shade,windpro-tection(winter),breezyheights(summer),feedingareas,patchesofhighlypalatableforageandcattleinadjacentpas-tures.Removingoraddingattractantsorredistributingthemcanaltercattledrinkingandloafingbehavior.

Cattle defecate in the water and erode the streambank and pond edge.

Introduction

3

How can I use my water resources to meet both the needs of my livestock and water quality concerns?Existingwaterresourcescanberenovatedormodifiedandnewsourcesofwatercanbeadded.Frequentlyanexistingwatersourcecanbeusedwitharelocateddistributionpoint(watererortank).Theareaaroundawaterdistributionpointcanbeprotectedtoreducemudanderosionproblems.Cattlespendaslittleas4minutesadayactuallydrinkingbutcanspend10timesaslongloafingaroundthewatersource.1Loafingactivitiesincreasethewaterqualityproblemsassoci-atedwithwaterdistributionpoints.Thesedistributionpointscanbemadelessattractiveforloafingbyremovingnearbyattractants,placingotherattractantswellawayfromthedis-tributionpoint,andbymakingthedistributionpointlesscomfortableorlesseasilyaccessibleforloafing.Providingawatersourceawayfromastreamcanreducetimespentbycattleintheriparianareabyupto96percent.Pro-vidingshadeawayfromstreamscanalsoreducetheamountoftimecattlespendintheriparianarea.21Clawson,J.E.1993.Theuseofoff-streamwaterdevelopmentsandvariouswatergapconfigurationstomodifythewateringbehaviorofcattle.M.S.Thesis,OregonStateUniversity.2Byers,H.L,M.L.Cabrera,M.K.Matthews,D.H.Franklin,J.G.Andrae,D.E.Rad-cliffe,M.A.McCann,H.A.Kuykendall,C.S.HovelandandV.H.CalvertII.2005.CattleuseofriparianareasintheGeorgiaPiedmont,U.S.A.J.Environ.Quality34:2293-2300.

Cattle congregating under trees can destroy vegetation, especially if the trees are located near a water source.

4How is water made available to animals?Therearethreemainoptionsforprovidingwatertoanimals: •directaccesstoawatersource •gravityflowfromahigherelevation •pumpfromalowerelevationDo animals have a preference about where they drink?Severalstudieshaveexamineddrinkingpreferences.Hay-fedcattlehavebeenshowntopreferdrinkingfromatroughratherthanastream3.Crawfordetal.(2001)foundnodifferencesincattlepreferenceforpondvs.wellwater,eventhoughthepondwaterhadhighlevelsoffecalcoliformbacteria4.Anotherdemonstrationstudy5foundthat76%ofthetimecattledrankfromatankratherthanapondwhenbothwereavailable;tankwaterhadmuchlowerlevelsofsus-pendedsolids(sediment)thanpondwater.How do livestock respond to water quality?Livestockmayrespondtofecalcontaminationofwaterqualitybyreducingwaterintake6.Thismayaffectproductionthroughreducedfeedintake.3Miner,J.R.,J.C.Buckhouse,andJ.A.Moore.1992.Willawatertroughreducetheamountoftimehay-fedlivestockspendinthestream(andthereforeimprovewaterquality)?Rangelands.Soc.forRangeManagement.14(1):35-38.4Crawford,R.J.,andE.Cole.1999.Effectofwatersourceandqualityonwaterintakeandperformanceofcowsandcalvesgrazingtallfescue.1999ResearchRep.,South-westMissouriAgric.Res.EducationCenter,Mt.Vernon.5Suber,G.,K.WilliamsandM.Manoukian.2006.Drinkingwaterqualityforbeefcattleanenvironmentfriendlyandproductionmanagementenhancementtechnique.Beef:questionsandanswers.MontanaStateUniversityExtensionandMontanaBeefCouncil,Bozeman.6Willms,W.D.,O.R.Kenzie,T.A.McAllister,D.Colwell,D.Veira,J.F.Wilmshurst,T.Entz,andM.E.Olson.2002.Effectsofwaterqualityoncattleperformance.J.RangeManage.55(5):452-460.

5

How do I decide which option to use?Thepurposeofthishandbookistoassistyouinchoosingawateringsystemthatfitsyourbudgetandneeds.Somesys-temswillonlyworkincertainsituations.Theymayrequirespecificgeologicalformations(suchassprings)ordependonspecificelevationdifferences.Whilecomponentsmaybeoff-the-shelf,thearrangementandinstallationofawateringsystemmustbeadjustedtoeachsite.Asyoulookthroughthishandbook,keepinmindthecharacteristicsofyourlandandsite,thetimeyouhaveavailableformanagementandupkeep,andthesizeandtypeofanimalyouhave.Thesewillallfactorintoyourdecisionsaboutwhichoptiontochoose.

6

Water Sources Comparison Chart

Stream

Pond

Developed Spring

Horizontal Well

Wet Well

Drilled Well

Water Harvesting

Rural Water District

Hauled Water

Source Estimated CostPrimary Disadvantage(s)Primary Advantage(s)Naturallyoccurring,nodirectinstallationcost

Watermaybecomestagnantandofpoorqualityinlowflows;canincreaselevelsoffecalcoliformandotherbacteriainwater

Doesnotinvolvemechanicalorelectricalpartsthatcanfail;oftenusedforfishingandotherrecreationalactivities

Directlivestockaccesscancausepoorwaterquality;costofinitialconstructionandrestorationishigh

Relativelyinexpensive;smallflowscanbeturnedintoavaluablewatersupply

Springsmaynotbepresent

Canaccessasignificantlylargerwater-bearingzonethannormallycanbeaccessedwithaverticalwellborehole

Localwelldrillersmaybeunfamiliarwiththeprocess;horizontalwelldrillingequipmentmaynotbereadilyavailable

Simpleandinexpensive;lesssedimentandfewernutrientsenteringstreamsandponds

Streamaccessrequired;mayrequirerentedequipmentoracontractortoinstall;fewexamplesinKansas

Waterqualityfromwellsisusuallyquiteconsistent;typicallyhasalongusefullifewhenregularlymaintained

Groundwatermaybedeep,makingwelldrillingexpensive;aquifermaynotbepresent

Usefulinareaswherenaturalwatersourcesarescarce;canbelocatedinextremelyremoteareaswhereotherwatersourcesareimpractical

Waterquantityisdependentuponrainfallandharvestedarea;mostusefulforsmallnumbersoflivestock

Dependentontype;$300forsmallself-supportingstructure

Ruralwaterdistrictsuppliesaregenerallyreliablewithfewinterruptionsoroutages;wateristreatedandmeetspublicwatersupplystandards

Notavailableatalllocations;minimumwaterusechargesevenduringtimewhenwaterisnotused;membershipand/ormeterfees

Dependsondistancefromwatermaintodistributionpoint;$1,000-$2,000ormoreplusmonthlyfees

Verymobile;allowsshort-termgrazingoftemporaryforagesuppliessuchascropresidue

Haulingwaterislaborintensive;muddyorsnowyconditionscancomplicateorevenprohibitwaterdelivery

Usedanhydroustankandtrailercanbepurchasedforabout$500;recurringlaborandfuelcosts

$3,000ormore

Noneforunrestrictedaccess

$15-30/ft.todrill;$500-$1,000ormoreforapumpingsystem

$1,000ormore

$10/ft.todrill;smallsubmersiblepump$350;pumpcasing$150;4”PVCpipe$1/ft.;totalwellcost$1,500-$2,500(higherfigureincludeselectricityhookup)

$1,500-$2,500installed

7

Water Sources

8

9

Stream

OverviewSmallstreamsareacommonsourceoflivestockwaterinKansas.Whiletherearesomeadvantages,youshouldcare-fullyconsiderotherissues,suchasconcernsaboutreliability,bankerosionandwaterquality.Specialstepsshouldbetakentominimizetheseproblemsiflivestockwillbegivendirectaccesstostreams.

Advantages •Naturallyoccurring,nodirectinstallationcost •Waternormallycleanandfresh •Hardenedsurfaceaccesspointscanbeusedtominimize

animaldamage •MayprovideavehiclecrossingpointLimitations •Susceptibletobankerosion •Potentialinjurytolivestockslippingonbanksorgetting

caughtintreeroots •Needsregularrepairstowatergapsafterfloods •Serveasattractantsthatcancauseheavyuseofriparian

areasandpoorgrazingpatterns •Flowmaybeseasonalandstopduringdryperiods •Watermaybecomestagnantandofpoorqualityinlow

flows •Increaseslevelsoffecalcoliformandotherbacteriain

water

10

11

Stream

Design ConsiderationsRestrictingaccesstospecificpointsalongastreamshouldbeaprimarygoal.Thiswilleliminatemostofthebankerosioncausedbylivestocktrafficaswellaspotentiallivestockinju-ries.Developaccessrampsortrailswithhardenedsurfacessuchascoarsegravelovergeotextileandslopesof6:1orflat-ter.Theseshouldalloweasyaccesstopoolswithinthestreamthatlivestockpreferoverriffles.Locatingshade,salt,minerals,andwinterfeedingsitesinportionsofthepastureawayfromthestreamwillhelpreducethetimelivestockspendatoradjacenttothewater.Refertothe“LimitedAccessWateringPoints”section(p.97)foradditionaldesigninformation.Thispracticemayrequirepermits.Pleasereadthepermitsectionofthishandbook(p.143).

12

13

Pond and Pit

OverviewPondsarethemostcommonsourceoflivestockwaterthroughoutmuchofKansas.Theygenerallystorelargequan-titiesofwater,canbeconstructedinvarioussettings,andmayprovideotherbenefitslikerecreationandfloodcontrol.How-ever,concernsaboutsedimentationandwaterqualityjustifyconsiderationofalternatewatersources.

Advantages •Simpleandadaptabletomanylocations •Willgenerallystorealong-termsupply •Multipleexamplesandexperiencedcontractors

readilyavailable •Doesnotinvolvemechanicalorelectronicparts

thatcanfail •Oftenusedforfishingandotherrecreationalactivities •Oftendesignedfordetentionofheavyrunofftoreduce

floodingdownstream

Limitations •Sedimentationandbankerosionlimitlifeofreservoirstorage •Directlivestockaccesscancausepoorwaterquality •Initialconstructionandlaterrestorationcostsarehigh •Steepbanksarehazardstolivestockwhenmuddy •Animalswalkingonthepondinthewintermayfall

throughtheice •Aholemayneedtobechoppedintheicetoprovide

waterforlivestockinwinter •Erosioninemergencyspillwaysisacommonproblem •Runoffneededtorefillthereservoirwillbelimited

andsporadicinlowrainfallarea •Generallynotsuitableforsandyorrockysoils •Pondsthatdonotholdwateraredifficulttoremedy

14

Pond

EmergencySpillway

Dam

Longitudinal Section(not to scale)

Cross Section(not to scale)

15

Pond or Pit

Design ConsiderationsMostpondsareconstructedbyexcavatingmaterialthatisusedtobuildanembankment(dam)acrossaninciseddrain-age.Reservoirsizeisaresultofthenaturaldepthofthedrainageandexcavationofmaterialforthedam.Inbroad,flatdrainages,itmaybenecessarytocreateareservoirbysimplyexcavatingapit.Pitsmayalsobebuiltoutsideofdrainagesinsituationswheretheyaresuppliedbyundergroundflow.Sizeandlocationarecriticalfactorswhendesigninglivestockponds.Pondsshouldbelargeenoughtostoreenoughwatertosupplylivestockforextendeddryperiods(generallytwoyears)ofhighevaporationandnorunoff–withtheexceptionofpondssuppliedbyspringsandundergroundflow.Embankmentpondsusuallyincludeaprimaryspillwayortricklepipeforcontrolledreleaseofdetentionwateraswellasaflatemergencyspillwayattheendofthedamtocarryexcesswaterduringhighrainfallevents.Sizingthetricklepipeanddetentionstor-agerelativetothesizeandslopeofthedrainagewillprotecttheemergencyspillwayfromrepeatedflowsanderosion.

Pondsshouldbelocatedinareasthatgetlessgrazingpressurefromlivestock–oppositeprevailingsummerwindsandawayfromshade,streams,saltandmineralsites.Damsandotherdisturbedareasshouldbereseededsoonafterconstruction.Installationofwatersupplylinesunderorthroughthedamandfencingwillimprovewaterqualityandextendthelifeofthepond.Properlydesignedpondsofminimumsizegenerallycostatleast$3,000andlargerpondsmuchmore.AssistancewithdetaileddesignsiscommonlyavailablethroughlocalNRCSandconservationdistrictoffices.Thispracticemayrequirepermits.Pleasereadthepermitsectionofthishandbook(p.143).Damscanalsoinvolvewaterrights.Formoreinformation,checkhttp://www.ksda.gov/Default.aspx?tabid=324.Thelandownerisresponsibleforthesafeoperationandmaintenanceofthedam.Whensitingadam,considerdown-streamdevelopmentthatwouldbeaffectedifthedamshouldfail.

16

17

Developed Spring

OverviewSpringdevelopmentisarelativelyinexpensiveinvestmentcomparedtoawellorfarmpondtoprovidewaterforlive-stock.

Advantages

•Improvedwaterqualityforlivestock •Reducedriskofinjurytolivestockfallingthroughice

inwinter •Relativelyinexpensive •Evensmallflowscanbeturnedintoavaluable

watersupply •Maybepossibletodevelopwithoutelectricity •Maybepossibletodevelopwithon-farmsupplies

toreducecost

Limitations •Springsoccurnaturallyandinlimitedareas •Asmallspringrequiresconstructionofstoragecapacityto

haveareliablesupplyofwater •Supplementalpowerisrequiredifwateristobe

pumpeduphill •Thespringshouldbeprotectedfromlivestockdistur-

bances •Carefuldesign,planning,andconstructionarerequired

foraclean,reliablesupplyofwater •Springflowmaydeclineorstopduringdrought

18

4” Perforated DrainTile Collector

2” Delivery PipeImpervious Layer

Gravel Envelope

Channel to DivertFlow Around Spring

Minimum 3’ Soil Cover

Anti-seep wall

Delivery Pipe

Spring Box Inlet

StockTank

Over�ow

Outlet to Surfaceat Least 50 ft. Away

DiversionDitch

GeotextileFabric

Gravel

Impervious Stratum

Cuto� Wall

Cover with Soil

18” to 24”

21a. Concentrated Spring 21a. Low-area Spring

4” CollectionTile

Seep Area

4” Collection TileCuto� Wall,4’ high x 4” thick,length as neededPipe to Springbox

19

Lock 2” Min.

Surface WaterDiversion Ditch

Fence

Clay 10’ Min.

Water-Bearing Gravel

ScreenedDrain

Water Stop

Maximum Water Level

Over�ow

Valve& Box

To Storage

Steps

Cleanout Drain

PerforatedPipe

Developed Spring

Design ConsiderationsEvensmallflowscanbedevelopedtowaterlivestock.Ataminimum,aspringshouldhaveayear-roundflowrateofatleastonegallonaminute.Withproperstorage,thisminimumflowcanwaternearly100cattle.Itisimportanttomoni-torthespringflowthroughthedifferentseasonsoftheyear.Youcanconsultolderneighborsorpreviousownersaboutaspring’sdependabilityasawatersource.Forspringslocatedonslopesorridges,itmaybepossibletopipethewatertoaseriesoftanksinmultiplepasturesdown-hill.Whileyear-roundspringsarepreferred,“wetweather”springsmaybesatisfactoryifthepastureisusedforearlyintensivestocking.Inthiscasethespringsgenerallyproduceuntilthehot,dryperiodinJulyandAugust.Thesameprinci-palmayapplytopasturesusedforwintergrazingwhenmostofthevegetationisdormantandthereislittleevaporation.Propermanagementofthelandscapearoundthespringcanconservethequantityandqualityofthewater.Whileyoucan’tincreasethetotalwaterflowavailable,youcanremovecattails,shrubsandtreestodirectmoreofthespringflowintothelivestockwateringsystem.Fencinglivestockawayfromtheseepageareaorinstallingundergroundcollectiontilewillhelpprotectthequalityofspringwater.

Thelandscapearoundthespringshouldbeshapedtodivertsurfacewaterrunoff.Ifanundergroundcollectiontrenchischosen,abackhoecanbeusedtodigoutthecollectiontrench.Aplasticmembranecanbeusedtofunnelunder-groundseepageintoperforateddrainagepipe,usually3”orlarger.Thispipeshouldbesurroundedbyafabricfilterandwashedrock.Thewatercanthenbepipedtoastoragecon-tainerordirectlytoadownhilllivestockwatertank.Thecollectiontrenchwouldbecoveredwithclayandmoundedtopreventsurfacewaterinfiltration.Toproperlydesignaspring-fedwateringsystem,contactyourlocalNRCSfieldofficefortechnicalconstructiondetailssoyouwillbeassuredofhavingalow-maintenanceanddependablewateringsystem.Thispracticemayrequirepermits.Pleasereadthepermitsectionofthishandbook(p.143).

20

21

Horizontal Well

OverviewHorizontalwelldrillinganddirectionalboringtechnologyhavebeencommerciallyavailableinthepetroleumindustrysincethelate1980s.Theyhavesteadilygrowninuseandacceptabilityinmanyotherfields,includingutilities,hazard-ouswasteclean-up,andwaterwells.Intheoilindustry,hori-zontalwellshaveproducedat2.5to7timestherateofverti-calwells.Conventionalwaterwelldrillingequipmentcanbemodifiedtodrillinahorizontaldirection.Horizontalwaterwellshavebeenusedinaridandsemi-aridpartsoftheU.S.toaccesswaterbearingformationsfromthesideofahill.Thisinstallationmethodreducesdrillingdepthandcasinglengthwhileextendingthewellscreenlengthtoaccessalargerper-centageofgroundwater-bearingstrata.

Advantages •Canaccessasignificantlylargerwaterbearingzonethan

canbenormallyattainedwithaverticalwellborehole •Workswellinlowrainfallareas •Canbedrilledintothestreambedwithoutdisturbing

thestream •Oftenoffersashorterdrillinglengthandthusalesscostly

methodofreachingwaterbearingstratacomparedtodrillingfromthetopofthehill.

Limitations •Localwelldrillersmaybeunfamiliarwiththeprocess •Horizontalwelldrillingequipmentmaynotbereadily

available

22

Watertight Casing

Drilling Start

Stream

Screened Section of Well

Horizontal well under a small, intermittent stream

Very small, shallow alluvial aquifer

Water Table

23

Horizontal Well

Design ConsiderationsAlthoughhorizontalwellscanbeusedeffectivelyinanyrain-fallregion,theyhavebeenfoundtobeespeciallybeneficialinregionswhererainfallandassociatedgroundwaterrechargeareminimalandinfrequent.Someimportantfactorsforagoodhorizontalwellsiteinclude: •Geology and topography–geologicalformationswitha

fairlyshallowgroundwaterbearingzoneorstratum,withadequatesurfacespaceandterraintomoveandruntheequipment

•Alluvial sites–deepenoughwithoutmajorrockexcava-tionrequiredtoinstallgroundwatercollectiontrenches

•Location–closetoapowersourcetooperatepump-ingequipmentandawayfromdrainageditchesorotherfeatures(suchasrockoutcrops)thatcouldcauseperiodicflooding,sedimentation,fallingrockdamage,orinterfer-encewithuseofthesystem

Theareaaroundthewellfield,especiallyanexcavatedstreaminstallation,shouldbefencedtorestrictgrazinganimalsandassociatedmanurecontaminationandtopreventdamagetothewellfieldandstreambankbyhoovesandmillinganimals.Principalconsiderationsforahorizontalwellincludeawellscreenandgravelpack,apumpandcasing,andmaintenance.

Well screen and gravel pack:Thewellscreenisoneofthemostimportantcomponentsandcanbemadeofvariousmaterials,includingstainlesssteel,steel,claytile,orplasticpipe.Thegravelpackisequallyimportanttofilterincom-ingwaterandprotectthescreenandwellcasingfromplug-ging.Inlow-budgetagriculturalinstallations,perforatedhighdensitypolyethylene(HDPE)corrugatedtubingworkswellforthewellscreenandcomesinvariousstandardsizesfrom3inchto24ormoreinches.HDPEisreadyavailableforotheragriculturaluses,suchastiledrainageorlaterallines,andcomeswithafiltersock.Thefiltersockisnotrecommendedinmosthorizontalwellapplicationsbecauseofplugging.Thegravelpackshouldbemadefrompermeablematerialssuchasriverrockorcrushedlimestone.Inlocationswheretherearepluggingproblemswithwaterborneclaysandsilts,thegravelpackisdesignedandconstructedwithmultiplesizesofaggre-gatestofiltertheclayandsiltparticleswithoutpluggingthescreen.Astandard-sizedgravel-packmaterialforadirection-allydrilledsystemis3/8-inchdiameterandsmallergravel;foratrenchexcavatedsystem,1/2-inchdiametercrushedstone.Thediameterofthewellscreenandgravelpackislimitedtoamaximumofa4-inchdiameterscreenwith1-to2-inchgravelpackformosthorizontaldrillingequipment.Largersizescanbeinstalledbutthecostmaybeprohibitive.Becausethewellscreenandcasingarepulledthroughtheboreholebythedrillingequipment,thegravelpackcomespre-assembled(glued)withthescreenandisinstalledwiththescreen.

24

Perforated Tile Minimum 4” Diameter

Trench with Gravel Back�llMinimum 24” Below StreamBed Bottom

TopsoilMinimum 6”

Plant Disturbed Areawith Native Grass Mix

Horizontal Well Installation – Excavation Option

Stream Channel

Submersible Pump and PipingTo Water Trough

Fence

Fence

Perforated Tile End Capor Clean out

Approx. Water Table

Perforated Tile

Well CasingTrench withGravel Back�ll

25

Inanexcavated-trenchinstallation,thesizeofthewellscreencanbemuchlargerasthegravelisaddedseparately.GravelshouldbeinstalledsixinchesbelowtheflowlineoftheHDPEtubing,andaminimumof24inchesabovethetubingandbelowtheestablishedwatertable.Thesizeofthescreenandtrenchexcavation,andtheamountofgravelinstalled,canalsobeexpandedhorizontallyandverticallytocreatemoregroundwaterstoragewithinthewellfield.(See“SupplementalMaterials”sectionofthishandbook,p.135).Pump and casing:Submersiblewaterpumpsworkwellinhorizontalwells.Powerforthepumpcancomefromadedi-catedpowerline,anaturalgas/propaneorgasoline/dieselcombustionengine,solarpower,orawindmill.Thediameterofthewellcasingshouldbeseveralincheslargerthanthediameterofthepumpcasing,andapproximately1½timeslargerthanthehorizontalwellscreen.Thetopofthewellcasingshouldbecappedandelevatedatleast12inchesabovetheexistinggroundaroundthecasingtoavoidcontaminantsenteringthecasing.Thebottomofthecasingshouldbesetbelowtheinletflowlinefromthewellscreentocreateasumpforsettingthepumpwithadequatewaterdepth.Thebottomofthesumpshouldalsoallowatleast6to12inchesbelowthepumpinflowelevationtostoreaccumulatedsediments.SeveralranchsupplyandhardwarestorescarryprefabricatedwellsumpsandjunctionboxesthataredesignedforHDPEinstallations.

Maintenance:Thewellfield,pipingandscreenshouldbeperiodicallyinspectedtoensurethatpipesandscreensarenotclogged.Aclean-outcapcanbeinstalledateachendofthepipetoflushdebrisandsedimentfromthepipingandscreen.Ifaclean-outisdesired,itshouldbeinstalledwhenthetrenchisexcavatedandthescreenandpipingareinstalled.WelldrillingisregulatedbytheKansasDepartmentofHealthandEnvironment,BureauofWater,GeologySection.Wellsshouldbedrilledbyalicensedwaterwellcontractoraccordingtostatewaterwellregulations(http://www.kdheks.gov/water-well/).Somecountieshaveadditionalwelldrillingregulationsandmayrequirepermits.Statelawrequiresthatabandonedwaterwellsshouldbeplugged(http://www.kdheks.gov/water-well/download/WWC-5P.pdf).Thispracticemayrequirepermits.Pleasereadthepermitsectionofthishandbook(p.143).

Horizontal Well

26

27

Wet Well

OverviewInmanylocations,thechanceoffindingusablewaterwhendrillingawellisunfavorable.Inthoseareas,pondsandstreamsmaybeavailabletoserveassourcesofwater.Inordertousethewatersuppliesforlivestock,itmaybedesirabletoinstallapumpingsystem.Placingwaterintakesdirectlyintothestreamcanallowthemtobedamagedorlostwhenfloodingconditionsoccur.Awetwellservesasanidealloca-tiontoinstallapumporintakeline.Awetwellallowsintakethroughawiderangeofstreamflowordepth.

Advantages •Simpleandinexpensive •Reducedbankerosion •Lesssedimentandnutrientsenteringstreamsandponds •Extendedpondorstreamusefulness •Reducethemaintenanceofapumpingsite •Extendsthelifeofapumpinstallation •Improvesthequalityofwaterpumpedtolivestock

Limitations •Specializedequipmentmaybenecessaryforinstallation •FewexamplesinKansastouseasreferences

28

“T”

Water TightWet Well

Intake Line

Perforated intake pipe covered with gravel in pond or stream

Submersible Pump and Line

29

Wet Well

Design ConsiderationsInordertosupplywatertolivestockawayfromthestreamorpond,itoftenisnecessarytoinstallapumpingsystem.Awetwellcanprotectthepumpfromdamagewhenwaterdepthvariesorduringfloodconditions.Thewetwellisawaterintakesystemthatallowsthestreamorpondwatertoflowfromthestreamorpondtotheartificialwell.Variousmaterialscanbeused;thechoicemostlikelywilldependuponlocalavailability.Wetwellsystemstypicallycanbeconstructedusinganexca-vatororbackhoe.Thewellisconstructedbydiggingahole,deeperthanthewatersource,atadistanceof15feetormorefromtheedge.Acasingisthenplacedinthehole.Thecor-rectcasingsizeisdeterminedbytheflowrateofthestream,thepumpingratedesired,andthetypeofpumptobeused.Insomecasesaperforatedculverttubecanbeinstalledasthecasing.Inothercases,astandard6”or8”perforatedwellcas-ingisused.Theintakemediumistheninstalledaroundthebaseandsidesofthecasing.Afterthewellcasingisinstalled,atrenchisdugbetweenthewatersourceandthewellhole.Afiltermediumorplasticpipeisinstalledinthetrenchtotransportwaterfromthesourcetothewell.Thedepthofthetrenchshouldbeequaltoorbelowthebottomofthewatersource.Coarsesandorrivergravelaredesirablefilteringmedia.AplasticorPVClineisalsoacceptable.Alargebasinaroundthewellcasingfilledwithaclean,uniformgravel-sizedmediumcanserveasareservoirforstoringwaternearthecasing.

Apitlessadapterplacedinthesideofthecasingwherethewatersystemlineleavesthewellcasingcanreducefuturemaintenanceproblems.Pitlessadaptersserveasadisconnectbetweentheverticalpumpdischargepipeandthehorizon-talpipelinegoingtothesupplylineandshouldbebelowthefrostlevel.Ifafilteringmediumisused,somereferencesrecommendusingafilterfabricbarrierbetweenthemediumandthesoillayertopreventfinesfromaccumulating,thusextendingthelifeofthemedium.Onceallthelinesandmediaareinstalled,soilcanbereplacedonthesurfaceandreshaped.Soilcanbereplacedoverandaroundthewetwell.Raisingthesoilaroundthewetwellimprovesitsfunctioning.WelldrillingisregulatedbytheKansasDepartmentofHealthandEnvironment,GeologySection.Wellsshouldbedrilledbyalicensedwaterwellcontractoraccordingtostatewaterwellregulations(http://www.kdheks.gov/water-well/).Somecountieshaveadditionalwelldrillingregula-tions.Abandonedwaterwellsshouldbeplugged(http://www.kdheks.gov/waterwell/download/WWC-5P.pdf).Thispracticemayrequirepermits.Pleasereadthepermitsectionofthishandbook(p.143).

30

31

Drilled Well

Advantages •Aquifersupplyingawellisnotsubjecttowaterlosses,

suchasevaporationorseepage •Soilcoverprotectstheaquiferthatsuppliesawellfrom

contamination •Usuallyprovidestheshortestdistancefromawatersource

totheplaceofuse •Notsubjecttofreezing •Waterqualityisusuallyconsistent;changesareveryslow

overtime •Typicallyhasalongusefullife,especiallywhenmain-

tainedandprotectedLimitations •Duringextendeddrought,waterlevelsdropandwellyield

maydeclineorwellmaygodry •Insomeareas,groundwatermaybequitedeep,requiring

adeep,expensivewell •DrillingtoodeeplyyieldsbrackishwaterinmanyareasofKansas •NoaquiferstosupplywellsinlargeareasofEast-central

andSoutheastKansas •Testholes,poororunusedwells,orsurfaceactivitieshave

pollutedgroundwaterinsomeareas •Groundwatereasilypollutedbycarelessactionsorlackof

wellprotection •Groundwaterinaquifersisusuallymoving,sochangesin

well-waterqualitymayoccur

OverviewHistorically,wellshavebeenthewatersourceofchoiceforhomesandlivestock.Inareaswheregroundwaterisavailable,awellusuallyistheeasiestmethodtoobtainareliable,highqualitywatersource.About50percentofKansasiscoveredbyprincipalaquifersthatreliablyyieldenoughwatertosup-plyawell.Inareaswhereprincipalaquifersarenotfound,localaquifersmayprovideadequatewaterforasmallwell.

32

Soil

Aquifer formationsand, gravel

Well screenSubmersible pump

Gravel pack

Water Table

Approved �ll

Fill

Approved grout, thegreater of 20 ft. or 5 ft.into the �rst clay orshale layer

Approved sanitary sealGround slopesaway for 20 ft.

Discharge pipe

Pitless adapter

Electric conduit

Approved sanitary seal

Casing 1 ft. aboveground or high water

Ground slopesaway for 20 ft.

Electric conduitFill

Grout

33

Drilled Well

Design ConsiderationsAnimalsmayperformbetterwithgoodqualitywater.Safewaterwellsarethosethatmeettoday’slocationandconstruc-tionstandards.Wellsconstructedbefore1975rarelymeetthesestandardsandmanyaresourcesofgroundwaterpollution.KansaswelldrillersarelicensedbyKDHEandmustusewellcomponentsthatmeetstatestandards.Drilledwellsmustmeetthecriterialistedbelowtocomplywithcurrentlocationandconstructionstandards.•Thelocationshouldbeupslopeandawayfromcontamination

sources.Manywellsarepollutedbecauseofinadequatesepara-tionoralocationdownslopeofactivitiesthatdirectlyeffectit.

•Awatertightcasingextendsatleastonefootabovethegroundsurfacetopreventtheentryofsurfacewaterwithcontaminants.Sitessubjecttofloodingshouldbeatleastonefootabovethehighestfloodlevel.Thecasingmustbewatertightfromthetoptotheintakescreen,whichshouldbebelowthewatertable.Noholesarepermittedinthecas-ingexceptforanapprovedpitlessadapter,whichmustbesealedtothecasing.

•Anapprovedgroutsealsthecasingtotheboreholefromthesurfaceto5feetintothefirstclayorshaleconfininglayeror20feetbelowsurface,whicheverisgreater.Thegroutalsomustbeplacedadjacenttoallconfininglayerstoseparatewater-bearinglayers.Approvedgroutincludesbentoniteclay,neatcementandcement-waterslurry.

•Anapprovedpitlessadapterisusedtopreventfreezingunlessapumphouseisused.Theadapterenablesawater-

tightconnectionthroughthecasingbelowfrostlevel.Anapprovedpitlessunitalsomaybeusedtoreplacethetopportionofthecasing.Thepitlessunitattachmenttothecasingiswatertight.Theunitalsohasaconnectiontothewaterlinebelowfrostlevel.

•Anapprovedsanitarysealmustcaporplugthetopofthecasingtoprevententryofcontaminants.Thissealmustbesecurelyattachedtothewellcasingsoitistightandpre-ventstheentryofwaterandinsects.Ascreenedventonthesealallowsairtoentersothecasingdoesnotcollapseandpreventstheentryofinsectsanddebris.

•Slopethegroundsurfaceawayfromthewelltopreventwaterpondingwithin50feet.Theslopeshouldbeatleast6incheswithinthefirst20feetfromthewelltoassurepositivedrainage.

Maintenanceisessentialtoassurethatthewellcontinuestomeetalllocationandconstructionstandards.ComponentsshouldbecheckedatleastyearlyusingguidelinesinPri-vate Well Maintenance and Protection, MF-2396(aK-StateResearchandExtensionServicepublication).ThewellshouldbecleanedanddisinfectedbyshockchlorinationfollowingtheprocedureinShock Chlorination for Private Water Systems, MF-911.Awatertestaftermaintenanceisrecommendedtoassurethatnocontaminationisenteringthewell.Finally,manywellshavebeenpollutedbycarelessandthoughtlessactions.Thisisbestpreventedbyafencedexclu-sionzonewherenocontaminantsareallowed.Outsidetheexclusionzone,amanagementzoneshouldprovideadditionalprotectionifcontaminantsareallowedhere.

34

35

WelldrillingisregulatedbytheKansasDepartmentofHealthandEnvironment,BureauofWater,GeologySection.Wellsshouldbedrilledbyalicensedwaterwellcontractoraccordingtostatewaterwellregulations(http://www.kdheks.gov/waterwell/).Somecountieshaveadditionalwelldrillingregulationsandmayrequirepermits.Statelawrequiresthatabandonedwaterwellsshouldbeplugged(http://www.kdheks.gov/waterwell/download/WWC-5P.pdf).Thispracticemayrequirepermits.Pleasereadthepermitsectionofthishandbook(p.143).

Drilled Well

36

37

Water Harvesting

IntroductionWaterguzzlersarepassive,artificialstormwatercollectionandwateringdevicesthathavebeendevelopedforaridandsemi-aridpartsofthewestwherewatercanbealimitingfactorindevelopmentofwildlifehabitat.Originally,theywerereferredtoas“gallinaceousguzzlers”forGalliformes,theorderofbirdsthatincludesquail,grouse,turkey,andpheasants.“Guzzle”referstothesoundmadebythebirdswhentheydrinkfromapoolofwater.Guzzlersalsoprovidewatertoothercrea-turesthatrequiresurfacewaterforsurvival,includingmanyamphibiansandmammalsandsomereptilesandinverte-brates.Waterguzzlersarebeneficialtolivestockwhentheyarelargeenoughtoprovideadequatewatersuppliesforlargeranimals(suchascattle)orduringshort-termuseofextremelyaridrangelands.Waterharvestingsystemsplacedonslopinggroundthatcol-lectrunoffwaterforstorageandtransfertoawateringpointhavebeenusedinaridrangelandareas.

Advantages •Usefulinareaswherenaturalwatersourcesarescarce •Canbemadeofinexpensiveorrecycledmaterials •Easilyinstalled •Minimalsitepreparation •Canbelocatedinextremelyremoteareaswhereother

watersourcesareimpractical •Minimalupkeepexpenseandlabor

Limitations •Waterquantityisdependentuponrainfall •Mostusefulforsmallnumbersoflivestock

38

39

Water Harvesting

Design ConsiderationsAlthoughwaterguzzlerscanbeeffectivelyusedinanyrain-fallregion,theyhavebeenfoundtobeespeciallybeneficialinregionswhererainfallisminimalandinfrequent.ManyfederalagenciesandwildlifeorganizationshaveestablishedwildlifewateringprogramsinaridstatessuchasNevada,Utah,Colorado,Arizona,Texas,andNewMexico.Someoftheimportantfactorsforagoodguzzlersiteinclude:

•Sitewithlittletopographicalrelief,slopeof1percentorgreater,andadequateexpanseoffairlyflatsurfaceareatocollectausableamountofwater

•Adequatesoildepthtoburythewaterstoragetankandprovideanaccessramporport

•Locationawayfromdrainageditchesorotherfeatures,suchasrockoutcrops,thatcouldcauseperiodicflooding,sedimentation,fallingrockdamage,orinterferencewithuseofthesystem.

Theprincipalelementsofaguzzlersystemincludetherain-water/snowcollectionsurfaceorapron,awaterstoragetank,ananimalaccessramporport,awatercontrolorificeorvalve,fencing,andmaintenance.Rainwater/Snow Collection Surface or Apron: Thecollec-tionsurface(apron)ismadeofimpervioussurfacingmateri-alssuchascorrugatedmetalsheeting,UVprotectedplasticsheeting,fiberglasssheeting,asphaltpaving,oranyother

suitablematerialthatiseconomicaltobuyandinstall.Apronscanbeconstructedonthegroundsurfaceorelevatedwithasupportstructure.Supportstructuresnormallyrequiremorethoughtconcerningloadingfactorstoproperlysizethesup-portbeams,columns,etc.Groundconstructionisnormallylessexpensivethanconstructingsupports.However,sitecon-ditions(suchasarockysurface)mayrequirethattheapronbeelevatedwithsupports.Ifthewateringfacilityislocatednexttoanexistingbuildingwithappropriateroofingmaterial,thentheroofwouldprovideanopportunitytocollecttherainwaterorsnowmeltthroughagutter/downspoutsystemsimilartoacistern.However,mostwateringfacilitiesarelocatedlongdistancesfrombuildingsandelectricity,andtherefore,thetypicalwaterguzzlerisnormallyconsideredtobeastandalonewateringfacility.Thelocationandsizeoftheapronisafunctionoftheexist-ingtopography,soiltype,anddesiredamountofwatertobecapturedateachguzzler.Normally,theratioofdrainageareatostoragevolumeisafunctionoftheannualrainfallandsnowfortheregion.ThisinformationcanbefoundthroughthelocalNRCSofficeorpublishedsoilsurveyreport.Wateryieldcangenerallybeestimatedas1ft2ofapron/gallonofwater/1.6inchofrain(lessforsnow).

40

41

Typical water yields per square foot would be:Apron size Annual Water Yield (gal.) 20’x20’ 4,80040’ft.x40’ 19,200100’x100’ 120,0001acre 520,000

Forexample,aguzzlerlocatedinanareawith20inchesofaverageannualprecipitationwouldhaveanexpectedyieldofapproximately12gallonsofwater/ft2ofapronarea.Runoffestimatesarereducedby5percenttoreflectevaporationandsmallaprontransmissionlosses.Water storage tank:Thesizeofthewaterstoragetankisafunctionoftwoimportantfactors.Thosearetheamountofwaterneeded(gallonsofwaterperheadpermonth)andtheamountofwaterbeingdelivered(averagerainfallpermonth).Anadditionalone-monthsupplyisnormallyrequiredasasafetyfactorforperiodsofnorainorrunoff.Storagetanksizestypicallyrangefrom200to5,000gallons.Thewaterstoragetankisnormallyburiedbutcanbeabovegroundorpartiallyelevatedwheretheaproniseitherlocatedatahigherelevationorelevatedbygroundsupportsabovethelevelofthetank.Below-groundtanksshouldbeconstructedofcorrosionresistantmaterialssuchasplastic,fiberglass,orcathodicallyprotectedmetal.Above-groundtanksarecon-structedofUVprotectedplastic,galvanizedmetalorsimilarweatherresistantmaterials.Below-groundinstallationsareusuallypreferredbecausetheyprovideinsulationbysoilandeasyaccessforanimals.Coveringtanksreducesevaporation

lossesandpreventsforeignmattersuchasdirt,leaves,andbirddroppingsfromcontaminatingthewater.Animal access ramp or port:Dependingonthefinaleleva-tionofthetank,anopeningandrampshouldbeprovidedtoallowanimalsadequateroomandsecurefootingwhiledrink-ing.Ifarampisconstructed,itshouldbenosteeperthan190degreesora3:1slope.Gentlerslopesarepreferredifthesiteallows(intheabsenceofshallowrock).Therampwidthisnormallyafunctionofthenumberofanimalsthatneedaccessatonewateringevent.Anaccessportof4or5feetwillaccommodatethreeorfourcattle.Wideropeningsarenotrecommendedbecauseincreasedwatersurfaceareaincreasesevaporationlossesandcontaminationbydustanddebris.Therampsurfaceandsubgradeshouldbeconstructedofmaterialssimilartothoseusedaroundwatertroughsandwateringstructures.Theentrancetothewateringportshouldbeslightlyelevatedwithanearth-grassedberm.Thishelpskeepsurfacestormwatercontaminatedwithsedimentandanimaldroppingsfrombeingwashedintothedrinkingwater.Water control orifice or valve:Aorifice,pipe,and/orvalvefromthestoragetanktoaseparatedrinkingdeviceispre-ferredwhenlargenumbersofanimalsneedwater.Ifpowerisavailableatthesite,awaterpumpcanbeusedtomovewaterintotroughsorotherdrinkingdevices.Otherwise,gravity-flowsystemsmustbeused.

Water Harvesting

42

43

Fencing:Theareaaroundtheapronandstoragetankshouldbefencedtorestrictgrazinganimalsandassociatedproblemsofcontaminationbydroppingsanddamagetotheapronandtanksystembyhoovesandmillinganimals.Maintenance:Theapronandrampareasshouldbecleanedofdebris,animaldroppings,andotherwaterpollutantsquar-terlyandmorefrequentlyiftheareasarenotfenced.Tank,piping,valves,andotherstructuresshouldbeperiodicallycheckedtoensurethattheyarefunctioningcorrectly.Waterstoragelevelsshouldbecheckedtomakesurethereisanadequatesupplyforlivestock.

Water Harvesting

44

45

OverviewPeoplewholiveintownmostcommonlyreceivewaterfromapublicwatersystem.Ruralwaterdistricts,atypeofpublicwatersupply,deliverwatertoruralareasandmanysmallcom-munities.Kansasisanationalleaderinthenumberofruralwaterdistrictswithalonghistoryofsolvingwatersupplyneedsinruralareas.Ruralwaterdistrictsaregenerallyareli-ablesourceofwaterthatmeetsU.S.EPAsafedrinkingwaterstandards.Thissectionaddressesruralwaterdistrictsasasourceforlivestockwater.

Rural Water District (Public Supply)

Advantages •Generallyreliablewithfewinterruptionsoroutages •Producersneednotbeconcernedaboutpoweroutages

andequipmentfailure •Wateristreatedandmeetspublicwatersupplystandards

–ahigherstandardthangenerallyneededforlivestock •DistrictsareconcentratedincentralandeasternKansas,

whereprincipalgroundwateraquifersareabsentorwaterqualityispoor

•Waterisdeliveredunderpressurethatshouldsatisfymostneeds

Limitations •Waterlinestypicallyrunalongroadswheremorepeople

live,sodistrictwaterisnotavailableinalllocations •Ifalineisnotadjacenttothepropertywherewater

isneeded,theremaybeacosttoextendtheline •Longlinemayberequiredonpropertytodeliverwater fromthemetertothepointsofuse •Buildingandoperatingaruralwatersystemwithlong

supplylinesisexpensive,oftenmakingcostofruralwaterhigherthanproducerswanttopayforlivestockwater

•Existingruralwaterlinemaynothavecapacitytoaddanotheruser

46

47

Rural Water District (Public Supply)

Design ConsiderationsThereareseveralthingstoconsiderduringthetypicalpro-cessofobtainingandpayingforaconnectiontoaruralwaterdistrictsupply.Application for connection and fee:Ruralwaterdistrictstypicallyrequireanapplicationandhaveaconnectionfee.Thisfeeisusuallymodestwhenthedistrictisintheplanningstages.Oncethewaterlineshavebeenlaidtheconnectioncostincreasesbecausetheexpensestoinstallthesystemhavealreadybeenpaidandfinanced.Extension of the water line:Mostwaterdistrictsdonotaggressivelyseektoexpandtheirsystems.Themainreasonforthisisrelatedtofinances.Intheplanningstage,itisrela-tivelyeasytoaddadditionallinestoserveotherusersandthecostiscoveredbygrantsandlowinterestloanssharedbyall.However,oncethesystemhasbeenbuilt,itisoftennotfea-sibletoseekgrantstooffsetanextensiontoserveafewusers.Typicallythedistrictisnotwillingtoincurcoststoexpandbecausethatwouldincreasethecostforexistingusers.Thusanewuserusuallymustpaythetotalcostforanyneededexten-sionofawaterline.Dependingondistanceandconditionsthismaybesubstantial.

Minimum monthly cost:Thedistrictsetsaminimummonthlycostforwhichtheuserissuppliedaspecificquantityofwater.Sometimeslivestockwaterneedsareonlyseasonal,butthemonthlycostmustbepaidevenwhenthewaterisnotneeded.Theamountofwaterdeliveredhaslittleeffectonthedistrict’smonthlyexpenses.Cost for excess water use:Thedistricthasachargeforwaterusedinexcessoftheminimum.Thiscosttakesintoconsid-erationthecostofenergytosupplytheextrawaterandusu-allyalsoanincentivefortheusertoconservewateraswell.Ifuserscouldpurchaseextrawaterforjustthecostoftheextraenergy,theywouldtendtoincreasetheiruseandexceedthecapacityofthesystemtodeliverwater.

48

49

Hauled Water

OverviewInsomesituationshaulingwatermaybemoreeconomicalorfeasiblethantryingtodevelopapermanentsupplyforlivestockdrinkingwater.Situationswherepermanentwatersystemsareimpracticalcanincludewateringaverysmallherd,asitethathasaninsufficientornonexistentwatersource,andasitewherepowerisexpensive.Haulingwaterallowsuseoftemporaryoroccasionalsourcesofforage,suchascropresidues.

Advantages •Verymobile;watercanbesuppliedtoanylocationthat

canbeaccessedbythehaulingvehicle •Canreadilysupplytanksmovedtonewlocations •Cansupplymultiplesites •Numerousauxiliaryandtemporarytanklocationscanimprove

grazingdistributionandresultinfewerlivestocktrails •Canbeusedwhereinstallingapowersource

ordevelopingawatersourceiscost-prohibitive •Allowsshort-termgrazingoftemporaryforagesupplies,

suchascropresidueLimitations •Bothahaulingtankandavehicleareneeded •Muddyorsnowyconditionscancomplicateoreven

prohibitwaterdelivery •Pergallonofwaterdelivered,haulingwaterislabor

intensivecomparedwithmanyotherwatersources,andthusmaybeexpensive

•Timeconsumingasoperatormustwaitfortanktofillandunloadinadditiontohaulingtime;purchasingwatermayreducefilltimeandthustotalexpense

•Motorfuelcostsdirectlyaffectthecostofhaulingwater •Mayneedtoconstructaccessroads •Haulingmayberequireddailyorevenmultipletimes

adayinsomecases

50

51

Hauled Water

Design ConsiderationsThecostofhaulingwaterisestimatedtobe$1.00permiletraveledfora1,000-gallonload,notincludingthevehiclecost.Awaterhaulingtankshouldbecompletelyenclosedsowaterdoesn’tsplashoutontheroad.Thetankcanbeincorporatedintothevehicle,suchasarecycledmilktruck.Atankcanbeplacedinthebackofapickuportruckandremovedwhenthevehicleisneededforotherpurposes.Tankscanbeplacedontrailers,orexistingtanktrailers(suchasthosewitholdanhy-droustanks)canbeadaptedforhaulingwater.

Thetankwillneedtobemanuallyhookeduptoanddiscon-nectedfromawatersupply.Insomeinstances,afloatcanbeinstalledtoshutoffthewatersupplywhenthetankisfull,preventingoverflows.Insomeruraltowns,waterisavailablefromthepublicwatersupply.Thisisafast,reliablewaytofillwaterhaulingtanks.Waterwillcostabout$0.50perthousandgallons.Waterhaulingtanksneedtobefittedwithshut-offvalvesandhosestoreachthetankwherelivestockwillwater.Insomecasespumpingmayberequiredorbeneficial.

52

Power Sources, Pumps, Pipelines and Storage Tanks Comparison Chart

Solar Power

Pumps

Wind Powered Air Pressure System

Windmill

Animal Activated Pumping System

Water Powered Pump

Pipeline Network from Off-Site Source

Water Storage Tank

Longusefullife;lowoperationcostsandminimalmaintenance

Initialcostisrelativelyhigh

Modestinitialcostandafairlylonglife

Susceptibletointerruptionsofthepowersource(electricity,fuel,wind)

Thetechnologyissimpleandeasytounderstand,use,andmaintain;systemcomponentsaremoderatelypriced,longlived,andlowmaintenance

Windtendstobeintermittent;waterstorageisimportant

Usesanabundantfreeenergysource;wellsuitedtositeswhereelectricityisunavailable;hasalonglife(20+years)

Dependentonsteadysourceofwind;waterstorageimportant

New6’windmillheadcosts$1,800

Usuallylessthan$500Simple,ruggedandportable;adaptabletoponds,streams,orshallowwells;inexpensive

Aunitcanprovidewaterforonlyabout25cattle;pumpdrawswateronlyabout20feetverticallyor200feethorizontally

Relativelyeconomicaltopurchaseandinstall;noadditionalinputenergyrequired;relativelytrouble-freeoperation

Requiresayeararoundsurfaceflowtopowerthepump;operationinwintermaybeproblematic

RAMpumpcostsfrom$200(homemade)to$2,000

$450-$3,500,dependingonliftandvolume

$2,000+foracompletesystem,including2solarpanels

$700-$800forasubmersiblepump

Typicallyrequiresonlyonewatersourceandpumptosupplyseveraloutlets

Watersourcemustbeextensiveenoughtohandlemultiplewaterers;professionallydesigned

Wellsuitedtoasystemthathasasteadylowflowthatisadequatetomeetdailydemandbutnotadequatetomeetpeakflowrequirements;veryreliableandrequireslittlemaintenance

Terrainmaybeunsuitedforanelevatedtankthatgravityfeedswaterers

Source Estimated CostPrimary Disadvantage(s)Primary Advantage(s)

3,000gallonpolytank$1,500;5,000gallontank$3,500plussitepreparation;maybeabletouserecycledtank

$1+perfootdependingonsizeandavailabilityofequipment

53

Power Sources, Pumps, Pipelines and Storage Tanks

54

55

Solar Power

OverviewSolarpumpingsystemsprovidedependable,low-mainte-nancewateringsystemsinremotelocationswhereotherpowersourcesareunreliableorunavailable.Thecostofasolarpumpingsystemisusuallylessthanpurchasingandinstallingawindmill.Solarpumpingsystemscanbeusedforbothwellsandsurfacewatersources(pondsandstreams).

Advantages •Canefficientlypumpwatertoahigherelevation •Canbeusedtopumpwatertoastoragelocationwhich

cansupplymultipleoutlets •Allowsrelocationofthewatersupplytoreducedirect

streamandpondaccessbylivestock •Livestockoftenprefertodrinkfromatrough •Canreplacewindmills •Long,usefullife •Lowoperationcostsandminimalmaintenance •Producercaninstall •PumpeasilyreplacedandcanberepairedLimitations •Relativelyhighinitialcost •Producerwillneedavoltmeterandknowhowtouseit •Typicallycomponentsareonlyavailablefromspecialty

supplysources •Lightningmaydamagethepump

56

Solar Power

57

Solar Power

Design ConsiderationsSolarwaterpumpingistheprocessofpumpingwaterwiththeuseofpowergeneratedbysunlight.Solarpumpingsys-temsarereliablestand-alonesystemsthatrequirenofuelandverylittleattention.Sunshineworkswellasapowersourceforlivestockwateringbecausethedaysandtimeswiththegreatestsolarenergyarethedaysandtimesthatlivestockhavethegreatestwaterdemands.Thefivebasicpartsofasolarwateringsystemareapanel,asuntracker,acontroller,apump,andastoragecisternortank.Apanelconvertsthesolarenergyintoelectricalenergy.Thesizeofthepanelmustmatchthepowerneededbythepumps.Highlift(deepwells)andhighratesofflowincreasethepowerneeds.Ingeneral,eachinstalledwattofpowerwillcostabout$5.00.Asanexample,asystemtopump3gal/minutewith50feetofhead(pressure)usestwo55-wattpanelsthatcostabout$250each.Panelshavealonglifeandmanyhavea25-yearwar-ranty.Asun trackerallowsthepanelstofollowthesun,increas-ingsolarpanelefficiency.Somesystemsusepassivetracking,whichtakesnopowerfromthepanelelectricalsystem.Thesuntrackerallowsthesystemtopumpanestimated30-40percentmorewaterduringthesummer.Onetrackercomeswitha10-yearwarranty.Acontrollerconvertsthevariableenergyfromthesolarpaneltoaconstantvoltageforthepump.Thecontrollerincludesapumpspeedcontrolcircuit,atanklevelswitchcircuit,alow

watercut-offcircuit(sothepumpdoesnotcontinuetoruninadrywell),anelectroniccircuitbreakerandindicatorlights.Controllersmustbesizedforthevoltageandamperageneedsofthepump.Apumpdoestheactualpumpingofthewaterusingthedirectcurrentproducedbythepanel.Manyarediaphragmpumpsthatworkonapositivedisplacementprocess.Thesehavethecapacitytopumpwatertogreaterheight(higherhead)withmorepowerbutwithoutmuchdecreaseinvolume.Astorage cistern or tankisoptionalbuthasseveraladvan-tages.Theyarelessexpensive,moretrouble-freeandmoreefficientthanstoringpowerinbatteriesforpumpingduringcloudyweather.Sincewaterisalwaysacriticalissue,thetankshouldbeabletostoreaminimumthree-tosix-daysupplyofwater,orwhateveryouthinkyourneedsmaybeduringcloudyweatherorduringasystemfailure.Back-upbatteriesmayseemlikeagoodideaduringperiodsofcloudyweather,buttheyhaveseverallimitations.Batteriesaddcosttothesystem,reducetheefficiencyoftheoverallsys-tem,andcanbecomeanothersourceofproblemsandmain-tenanceneeds.Storingwaterinsteadofpowerprovidesbetterperformanceandreliability.Completecomponentcosts(2004)forasystemthathastheabilitytopump3gal/minat50feetofheadwere$2,161andincludedtwopanels,asuntracker,acontrollerandadirectcurrentpump.

58

59

Pump

OverviewPumpsarethemostcommonandleastexpensivewaytolift,move,andpressurizewater.Theyarecommonlyusedtoliftwaterfromawellorcisterntoastoragetankatahigherele-vationortopressurizethewatersystemtodeliveritthroughapipelinetotheplaceofuse.Pumpsarealsousedtopressurizeormoveotherfluidorsemi-fluidmaterials.Thissectionsheetcoverspumpsusedforwateronly.Itisnotintendedtoprovideinformationaboutpumpuseforanyotherfluid.

Advantages •Modestinitialcostandafairlylonglife •Pumpsusedforcleanwaterrequirelittlemaintenance

exceptpistonorreciprocatingpumps •Simpleandeasyfortheusertounderstand •Usertypicallycanreplaceasmallpumpatthesurface

withavailabletools •Easilypoweredbyanelectricmotorbutcanalsobe engine-powered. •Availableinwidesizerangefromseveralmanufacturers •Electricallypoweredpumpsareeasytoautomateeven

fromaremotesiteLimitations •Shouldbeselectedfortheintendedapplication(flowand

pressure) •Apumpnotmatchedtoitsapplicationmaybeinefficient

ormaynotworkatall •Engine-poweredpumpsmustbecheckeddaily •Controllerspecifictotheapplicationisusedtooperatean

electric-poweredpump •Apumpinawellrequirespullingthepipeandpump

forservice;mayrequirespecialequipment

60

Electric Motor

AirPump

Discharge

Pump Rod

Drop Pipe

Plunger

Cylinder

SealCheck ValveCylinderLeathers

PlungerPlunger Valve

Sucker RodCasing

Drop Pipe

Reciprocating or Piston Pump

61

Pump

Design ConsiderationsPumpsareusedtoliftwaterandaddpressurefortheintendeduse.Thetwobroadclassesofwaterpumpsincludecentrifugal(orturbine)andpositivedisplacement.Eachtypehasspecificpropertieswhichmakeitbestsuitedforaspe-cificsetofconditions.Thefollowingdescriptionssummarizepropertiesofthemostcommonpumpsusedforwater.Centrifugal pump:Thispumphasalargeimpeller,souseinmostwellsisnotpractical.Centrifugalpumpsarecommonlyusedtomoveorpressurizebothcleanwaterandwastewater.Ifthewellisshallow(lessthan24feettowater),acentrifu-galpumpmaybeusedatthesurface.Designsthatproducehighheadsarereadilyavailable.Thispumpissimple,oper-atessmoothly,isveryefficient,andhasalonglife.Whenthepumplocationrequiresasuctionlinetoliftwatertotheintake,acheckvalveisessentialtokeeptheintakelinefullofwaterandavoidprimingitwitheachuse.Diaphragm pump:Thispositivedisplacementpumpisquitesimpleindesign.Anoff-centerknoborcamonthedriveshaftmovesthediaphragmbackandforthandproducesapulsatingdischarge.Acheckvalveontheintakesideallowswatertoenterbutnotflowbackandasecondcheckvalveontheoutletsideallowswatertoexitbutnotreenterthecavity.Thispumpisoftenusedforsolarpoweredwatersystems.Jet and deep well jet pump:Thispumphashistoricallybeenthemostcommonforshallowwellsespeciallysandpointwellswithwaterdepthsuptoabout25feet.Itnormallycon-sistsofacentrifugalpumpandajetassemblytocreatealowpressurezonethatliftswaterfromthewell.Whenthejetis

placeddowninthewell,thepumpcanbeusedforhigherliftsapproaching100feet.Thehigherthelifttothepumpintakethemorewaterisrequiredthroughthejet,whichmeanslesswaterisavailablefordischarge.Thispumpisnotasefficientasothertypes,butusuallythisisnotabigconcernforinter-mittentuseoflivestockwater.Amajoradvantageisthatallmovingpartsofthesystemareatthesurfaceandareeasilyaccessible.However,thisalsomeansthattheywillfreeze,soapumphouseisthepreferredmeansofprotection.Piston or reciprocating pump: Thisisthemostcommonpumpusedforwindmillsandoperatessimilarlytothedia-phragmpump.Apistonorplungermovesupanddownandcheckvalvesareusedontheintakeandplunger.Thistypeofpumphasapulsatingdischarge.Itiseasilyadaptedtohandorpoweredoperation.Adisadvantageofthispumpiswearandmaintenanceofthemovingparts.Thoughcommonlyusedformostfarmsteadspriortoelectricity,ithasnowbeenreplacedbyothertypesthathavecontinuousflowandarebettersuitedtoelectricalpower.Inremotelocations,suchaspastureswhereelectricityisnotavailable,thispumpisstillused,typi-callypoweredbyamechanicalwindmill.Thispumpcanbeusedforveryhighlifts.Submersible turbine pump:Thispumpisthemostcommoninusetodayforsmallwaterwells.Thepumphassmallimpel-lerstoeasilyfitinsidethewellcasingsoeachimpellerhaslimitedpressurecapacity.Thisisovercomebyusingmultiplestages(impellers)inseriesonacommonshafttodeveloptheheadrequired.Thistypeofpumpisefficient,hasalowoper-atingcost,andhasalonglife.Designsareavailableforavery

62

63

widerangeofflowandpressureconditions.Themotorisatthebottom,theimpellersanddischargeatthetop,andtheintakeisbetweenthemotorandtheimpellers.Waterproofwiresdeliverelectricitytopowerthemotor.Maintenance of pumps:Allpumpsarelikeothermechanicaldevicesandeventuallyneedmaintenance,repair,orreplace-ment.Allexceptthejetpumprequirepullingthepumpoutofthewelltoreplaceitortodomaintenance.Thisislaborintensiveandmayrequirewelldriller’sequipment.

Pump

64

65

Wind-Powered Air Pressure System

OverviewThistypeofwindmillconvertswindenergyintoairpressureusinganairpump.Compressedaircanbeconveyedeasilytothepointofusetopoweranair-liftpump,pondaeratororotherdevice.Atraditionalwindmillconvertswindenergytomechani-calpowertooperateatraditionalcylinderpump.Awindmillair-liftpumpconvertswindenergytoairpressure,whichthenpowersaverysimplepump.Windmillair-liftpumpsareaverysimplewaytoconvertwindenergyintoaformthatcanbeusedtopumpwater.

Advantages •Thetechnologyissimpleandeasytounderstand,use,

andmaintain •Canbelocatedatanoptimalsiteforwindconditionsup

toaquarter-milefromtheair-liftpump •Compressedaircaneasilybepipedtothepump •Thewindmillrotorwheelandairpumparerelatively

trouble-freepiecesofequipment •Systemcomponentsaremoderateincost,havealonglife,

andrequirelittlemaintenance •Compressedaircanbeusedtopumpwater,aerateapond,

circulatewaterinapond,andotheruses •Windvelocitiesareusuallystrongerduringthedaytime

hours,closelymatchinglivestockwaterneedsLimitations •Pumpintakemustbeplaceddeepintothewellorwater

source •Inadequatewindatsomesites •Intermittentwindsmaymeanalargestoragetankis

neededforadequatewatersupplyduringstilldaysorwhenwindisinadequatetopowerthepump

•Anair-liftpumprequireshigherairpressuretoachievegreaterlifts

•Fewsourcesofcomponents;mostlyprovidedbysmallcompanieswhichmaychangeownershiporgooutofbusiness

66

TailCompressor

Air hose

Blades

Well

Other Use for Compressed Air(Pond Aeration/Circulation, etc.)

Air Release

3 in.PVCPipe

3 in.PVCPipe

Air Inlet

FloatChamber

Water Outlet3/4 in.

1 1/4 in. pipe

Inlet screen

Swingcheckvalve1 1/4 in.

6 1/4 in.

53 in.

5 3/4”

73 in.

67

Wind-Powered Air Pressure System

Design ConsiderationsWind-poweredairpumpsforpumpingwaterrequirearotor,aircompressor,airline,andair-liftpump.Windmill rotor (turbine):Aturningshaftisthemajorcomponentthatharnessesthewindenergyandimmediatelyconvertsittomechanicalenergy.Ahorizontalaxisdragordrag/liftrotoristhetypicaltypeused.Thepoweroutputoftheturningshaftdependsonthesizeofthewheel,therotordesign,andtherotationspeed.Therotationalspeeddependsnotonlyonthewindvelocitybutalsoonthetypeofrotorandrotordesign.Knowledgeofthewindatthesiteandthepowerneedsisessentialtocorrectlysizetherotor.Air compressor:Thiscomponentispoweredbytherotatingshaftdirectlyconnectedtothewindmillrotor.Theairpumpshouldefficientlyconvertthepoweroftherotatingshafttocompressedair.Apistonpumpistypicallyusedforthisappli-cation,butdiaphragmpumpsarealsoused.Thesizeofthepumpdependsonthevolumeandpressureneededfortheintendeduse.Thecompressorpumpmustbesizedtomeettheneedsoftheair-liftwaterpumporotheruses,aswellastomatchthepowerproducedbythewindmillrotor.Air line:Thiscomponentconnectstheaircompressortotheair-liftpump.Thepipecanbeuptoaquarter-milelong,butshorterisbetter.Toavoidexcessivefrictionloss,thepipesizemayhavetobeincreasedwithlongerseparationdistancesfromthecompressortotheair-liftpump.

Air-lift pump:Therearedifferenttypesofair-poweredpumps.Thesimplesttypeconsistsofanairtubeandthepumptube.Theairtubeistypicallyontheoutsideofthepumptubewithanengineeredairinjectorparthighintheinteriorofthepumptube.Ithasnomovingparts,isverysimple,andcanbeusedtopumpabrasivematerialswithoutdamagingthepump.Therisingairliftsthewaterandcreatesthepumpaction.Thispumpmustbesizedfortheapplica-tion,capacitytodeliverwater,andwelldepth.Thepumptubemustextenddeepintothewater–70percentoftheliftheightforshallowwellsanddownto40percentoftheliftheightforwells300ormorefeetdeep.Neitherthepumpnoranyofthecomponentsisdamagedbyrunningdry.Otherpumptypesuseafewvalvesormovingpartstocausetheairpressuretodisplaceorforcethewateroutofacham-ber.Thevalvethenopenstoreleasetheairandallowwatertoenter.Anothertypeusesplungerstotransferthepressureofthecompressedairtothewaterinalternatingsequences.

68

69

Windmill

Windmillsareanenergy-efficientsourceofpowerforpump-ingwater.WindmillshavebeenapartofwatersupplysystemsinKansasformorethanacentury.Theyarestillincommonuseinthegrasslandareasofthestate.Themostimportantapplicationofwindmillsinremoteareashasbeenformechanicalpowertopumpwater.ThesesystemswereperfectedintheUnitedStatesduringthe19thcentury,beginningwiththeHalladaywindmillin1854andcontinu-ingtotheAermotorandDempsterdesignswhicharestillusedtoday.

Advantages •Usesanabundantfreeenergysource •Wellsuitedtositeswhereelectricityisunavailable •Hasalonglife(morethan20years) •Maintenancerequirementsarelowtech •Verysimplemechanicallyandeasytorepair •GoodchoiceinKansas,wherewindisareliableenergy

sourceLimitations •Dependentonsteadysourceofwind •Mayneedalargewaterstoragetankinlocationswithless

reliablewindsupply •Windmillheadsareafavoritetargetforsmallarmsfire •Maintenancemustbedonewhileatopthewindmilltower •Needspecialequipmentorcontractortoinstall

thewindmillhead •Highinitialcost •Subjecttodamagebystrongwindsassociatedwithsevere

stormsandtornadoes

70

Casing

Pump CylinderScreen

Packer HeadDischarge Pipe

Stock Tank

Water Level

Pump RodSwivel

Tail

Gear Box

Multi-BladeRotor

Tower

Pump Rod

Well Seal

Tower Footing

Drop Pipe

71

Windmill

Design ConsiderationsTheterm“windmill”isfrequentlyusedtocollectivelyrefertothewindmillheadandthetowerthatsupportsthehead.Thesizeofthewindmillheadshouldbeselectedbasedonthedepthofthewellandthesizeofthepump.A6-footheadwillpumpwaterfroma60-footwellatalowrate;an8-footheadwillpumpwaterfroman150-footwellatalowrateorashal-lowerwellwithalargerpumpatahigherrate.Watercanbeextractedfromdepthsupto800feetwithwindmills.Deeperwellsrequirelargerheads(upto20feetindiameter).Thewindmillheadswivelsorrotatestofaceintothewind.Windmillsshouldbesitedatleast75feetawayfromtreesandbuildings,whichcanalterwindcurrents,resultingindamagetowindmillheads.Treesandbuildingsalsocanslowwind,reducingtheforceavailabletoconverttoenergy.Inmostcasesahoistwillbenecessarytoinstallawindmillheadanditcanalsobeusedtoraisethetower.Theheadisawkwardtohandlebecauseofitssizeandweight.Atypicalcostforanew6-footwindmillheadisabout$1,800.Averylargehead(20-foot)cancostasmuchas$20,000.Arebuilt6-footwindmillheadcostsabout$300.Towerscanbecustombuiltorpurchasednew,butinareaswherewindmillsarecommon,mostheadsareinstalledonexistingorrelocatedtowers.

Maintenance ConsiderationsTowerstypicallyhaveladdersattachedtothesideandasmallplatformatthetoptofacilitateroutinemaintenance.How-ever,maintenanceonawindmillheadisdangerous,especiallywhenthewindisblowingwhichmaybemuchofthetimeforsomelocationsandseasons.Beforeyouchooseawindmill,carefullyevaluatethecostofservice.Oillevelsinwindmillheadgearboxesshouldbecheckedtwiceayearandchangedwhenoilbecomesdirty.Insufficientoilwillresultinrapidwearandfailureofgears.Fanbladesandboltsshouldbecheckedatthesametimeastheoilandreplacedasnecessary.Whenlargerrepairsareneeded,windmillscanusuallyberepairedquickly(withinafewhours)byprofessionalser-viceproviderssothatlivestockaren’tstrandedwithoutwater.Considerwheretheserviceproviderislocatedandthecostoftraveltothewindmillsite.Highqualitypumpleathersshouldlastatleast5years.Sandinthewatergreatlyincreasesthewearonthepumpandwillseverelyshortenthelifeoftheleathers.Sources:AmericanWindPowerCenterandMuseum,Lubbock,TX(http://www.windmill.com)DavidEvelWindmillService,Ransom,Kansas

72

73

Animal-Activated Pumping System

OverviewVariousdeviceshavebeeninventedthatdependonlivestocklearningto“pump”waterfromapondorstreamintoadrink-ingbowlortrough.Nosepumpsandfootpumpsarethemostcommonofanimal-poweredpumps.Whilesimpleandinex-pensive,theyarebestadaptedtonon-freezingconditionsandmovingwatershortdistances.

Advantages•Simple,ruggedandportable•Animalpowered;noelectricityorsolarpanelsneeded•Adaptabletoponds,streamsorshallowwells•Inexpensive(usuallylessthan$500)•LivestocklearntousenosepumpsquicklyLimitations:•Aunitcanonlysupplyupto25head•Smallcalvescannotoperatethepump•Pumpcanonlydrawwaterabout20feetvertically

or200feethorizontally•Cannotbeusedinwinteraswaterindrinkingtrough

andpumpmayfreeze

74

75

Animal-Activated Pumping System

Design ConsiderationsNosepumpsarediaphragmpumpsthatoperateasstockpushapaddleoutofthewaytoaccesswaterinaslopedtrough.Astheanimalwithdrawsafterdrinking,thepaddlereturnsandpumpsaboutonepintofwaterintothetroughforthenextdrink.Watercomesthroughasuctionhosewithafootvalvemountedinastream,pondorotherwatersource.Sincetheprocessisrelativelyslow,alimitednumberoflivestockcanbesuppliedinatimelyway.Nosepumpsareportableandcanbepushedaboutbycattleifnotpinnedtoasolidbase,suchasrailroadties.Pumpscanonlycreateabout20-25feetofverticalliftorabout200-250feetofhorizontaldraw(oracombinationofthese).Lessliftanddistancemakesthepaddlepusheasier.Thisrestrictspumpusefordistributingwaterawayfromthesource(pond,etc).Footpumpsoperateonthesameprinciples.Stockgener-allytakelongertolearnuseofthefootpump.Floatsmaybedesignedtokeepthedrinkingtroughfromoverflowing.References:Bartlett,B.1996.WateringSystemsforGrazingLivestock.GreatLakesBasinGrazingNetworkandMichiganStateUniv.Extension,EastLansing.AgricultureandAgri-foodCanada.2006.Livestock-poweredwaterpumps.Agric.andAgri-FoodCanada,Toronto.http://www.agr.gc.ca/pfra/water/facts/nosepump.pdf

76

77

Water-Powered Pump

OverviewThetraditionalwater-poweredpumpisarampump.Itusestheenergyofflowingwatertoliftasmalleramountofwatertoahigherelevationthanthesource.Whenflowingwaterissuddenlystoppeditcreatesahighpressureorshockwave(waterhammer)thatpressurizesaportionofthewater.Becausenoelectricormechanicalpowerisrequired,itisverydifferentfromotherpumpsusedforwater.Aramhasonly2movingpartssothereislittletowearoutorfail.Theflowrequireddependsontheamountofwatertobepumpedandtheratioofthefalltotheliftheights.Formorethan100yearsramsweremajormoversofwaterforhomes,farms,rail-roads,towns,andindustry.Aslingpumpusesaflowingstreamtoturnmanycoilsofpipewithintervalsofwaterandairtodevelopthepressuretoliftwaterashighas80feet.Thispumpisafairlyrecentinven-tion.Likearampump,itrequiresnopower,hasarelativelylowcost,andhasalonglife.

Advantages •Relativelyeconomicaltopurchaseandtoinstall •Provendesignsarecommerciallyavailableinarange

ofsizesforsmallsystems •Rampumpscanbehomebuiltusingplumbingparts

withavailableplans •Willgivemanyyearsofservicewhenproperlyinstalled

andmaintained •Noinputenergyrequired •Relativelytrouble-freeoperation •Wellsuitedtoremotelocationswithnopower •Longdeliverylinesandhighliftscanbeachievedwith

thecorrectconditionsLimitations •Requiresayear-roundsurfaceflowtopowerthepump •Winteroperationisdifficultexceptunderspecial

conditions

78

Storage tank

Water out

Delivery valve

Waste water

Waste valveValve box

Straight rigiddrive pipe

Powered by gravity �owfrom source. Needs aminimum (2 ft.) amountof elevation to work.(3-4 ft. is better)

Deliverhead

Airvessel

Supply head(minimum 2 ft.)

Ram Pump

79

Ram Pump Limitations •Thefallfromthesourcetotherammustbeatleast2feet •Requiresseveraltimesasmuchpass-throughwaterflow

forhighlift-to-fallratios;highliftsrequirehighfalls •Sourcewatershouldbefreeofdebrisandsand •Suitablesitesincludestreamswithasteepgradient,water-

falls,orspringsabovestreams •Winteroperationrequiresaninsulatedstructure

andaheatsource,suchaspassivesolarheatingSling Pump Limitations •Requiresa2.5-footminimumdepthofflowingwater

andavelocityofatleast1.5feetpersecond •Cannotbeusedwhenwaterfreezes •Mustbeanchoredinaflowingstream,leavingitsubject

todamageandevenlossinhighfloworfloodconditions

Water-Powered Pump

80

WaterWater Flow

WaterIntake

Directionon pumprotation

Feeder hoseto stock tank

Sling Pump

81

Water-Powered Pump

Design Considerations for a Ram PumpEssentialcomponentsofarampumpsystemincludeaconsis-tentwatersource,adrivepipe,arampumpandadeliverypipe.Consistent water source:Thesourcemustbeatleast2feet(higherisbetter)aboveasuitableramsitewithgooddis-chargelocation.Thesourcecouldbeastreamwithasteepgradientwhereasmalldamordiversionchannelcanbecon-structed,or–betterstill–aspringabovethestreamchannel.Ahillsidespringthatflowsatareasonablyconstantrate(oraminimumratetodrivethepump)isideal.Ifadamisused,theintakeforthedrivepipemayextendthroughthedam.Mostsmallpondswouldnotstoreadequatewatertodrivethepumpasneededduringdryperiods.However,aspring-fedpondmayworkfine.Drive pipe:Adrivepipeofrigid,preferablystraightpipe(usuallygalvanizedsteel)deliversthewatertopowertheram.Thelengthofthepipeshouldbeintherangeof150timesthediameterofthepipetonomorethan1,000timesthediameterofthepipe.Thedrivepipeusuallyhasaballvalveadjacenttotheconnectionwiththerampump.Astandpipecanbeaddedtoavoidalongdrive-pipelength.Ram pump:Therampumpconsistsofanimpulsevalvesimilartoacheckvalve,aspringloadedcheckvalve,anairchamber,tees,couplings,andapressuregauge.

Delivery pipe: Adeliverypipeconnectsthepumptotheplaceofstorageoruse.Aballvalveadjacenttotheunionthatconnectstotherampumpallowsthelinetobeshutoffsothepumpcanberemovedforserviceorrepairs.Becausethislinehaslesswaterflow,itissmallerindiameterthanthedrivepipe.Itdoesnothavetheshockwavesthatthedrivepipedoessoaplasticpipewillperformwellforthisline.Itisimportanttominimizefrictionlosstomaximizetheamountofwaterdelivered.Avoidasmanyfittingsandbendsaspos-sibleandusealargerdiameterpipetominimizefrictionloss.Design Considerations for a Sling PumpEssentialcomponentsofaslingpumpsystemincludeanchor-ing,apropellortoturnthepump,andadeliveryhose.Anchoring: Thissecurestheslingpumpinanadequatedepthofflowingwater.Thismayrequirestakesandcables.Propeller:Apropellertoturnthepump.Thepumpcontainsacoilofpipeandhasanintakesoalternatingairandwaterentersthecoilsasthepumpturns.Thewaterlubricatedswivelconnection,itsonlymovingpart,deliversthewaterfromthepumptothedeliveryhose.Delivery hose:Thisconnectsthedeliverypipelinetotheplaceofuse.

82

W

H

PH

W

W

W

W

W

W

W

W

W

PH

H

H

– Pump House

– Homes (2)

– Water Tank

S – Storage Tank

– Main Line

– Branch

S

W

W

W

W

WW

W

North

83

Pipeline Network from Offsite Water Source

OverviewWhenseveralwateroutletsareclosetogether,asforafeed-lotorrotationalgrazingsystem,itusuallyislessexpensivetoinstallapipelinenetworkthantoinstallaseparatewatersource,pump,andenergysupplyforeachoutlet.Thepipelineissizedtocarrytheamountofwaterrequiredbythelengthofline,thedifferenceinelevation,andwaterdemandateachoutlet.Pipelinesizesandfeaturesmustbeplannedforeachspecificsystembasedonthesiteandsystemrequirements.

Advantages •Typicallyrequiresonlyoneadequatewatersourceandan

appropriatepumptosupplyseveraloutlets •Forverylargesystems,afewwatersourcescouldbecon-

nectedforimprovedperformanceorincreasedreliability •Asinglelargecapacitysourceisoftenlessexpensiveand

morereliablethanseveralsmallerones •Lessmaintenanceisusuallyrequiredforonesourceand

pumpthanforseveral •Especiallywell-suitedifwaterorpowerisnotreadily

availableforallwatererlocations •Inremoteareaspipelineisoftenlessexpensivethan

developingmultiplewatersourcesandpowersuppliesLimitations •Redundancyorbackupforpumpsandpowermaybeimpor-

tantbecausethereisasinglesourceformultiplewaterers •Themoreoutletssuppliedbythenetwork,thegreater

thesourceyieldrequired •Shallowrockmaysubstantiallyincreasethecostofinstalla-

tionandlimitthedepththatwaterlinescanbeburied •Waterlinesmustbeinstalledbelowfrostleveltoavoid

winterfreezing •Systemdesignandconstructionmayrequirean

experiencedhydraulicsprofessional •Pipenetworkdesignissite-specificforlocalconditions

andneeds,suchastopographyandpasturearrangement

84

Mainline

Branch Lines

Loop networks with strategicallylocated shuto� valves allow a sectionof line to be isolated for maintenanceor repairs and still supply otherwatering points.

Branched Network Loop Network

Source or Storage Tank

Storage Tank

Watering Point

Watering Point

Friction losses small to push water over the ridge

Watering Point

Types of Water Distribution Networks

Source or Storage Tank

Watering Points

85

Design ConsiderationsDesigningalargelivestock-waterdeliverysystemissimi-lartodesigningthewaternetworkforasmalltownorruralwaterdistrict.Theassistanceofaqualifiedengineerisusuallyrequiredtodeterminewaterlinesizeandvalvelocationstoassureadequatecapacityfordeliveringtherequiredamountofwater.Thedesignershouldlocateairreliefvalves,vacuumreliefvalves,shutoffvalves,waterstorage,andthrustblockingaswellaspipelineandfittings.Air relief valve.Thisvalveallowsairthataccumulatesathighpointsofthewaterlinetobereleasedsoitdoesnotrestrictwaterflow.Insomecaseswhenthewaterlinevelocityishighenoughtoforcetheairthroughthelinetheaircanbereleasedatawaterdeliverypoint.Vacuum relief valve.Whentherearelargedifferencesinele-vation,thisvalveisimportanttopreventvacuumintheline,whichcanresultinthecollapseorbreakageofthepipe.Thevalveistypicallyusedwiththeairreliefvalvetominimizethenumberoffittingsandreducecost.Shutoff valve.Thepipelinenetworkdesignshouldcon-sidershutoffvalvelocationsthatallowsectionsofthelinetobeisolatedforrepairsandmaintenance.Thisconsiderationshouldincludeanevaluationofvalvelocationandcostrela-tivetotheadvantageofhavingthewatersystemremainfunc-tionalduringrepairorservice.Aloopedpipenetworkenablesmostofthewatersystemtoremainpressurizedandthususablewhileaportionofitisisolatedanddepressurized.

Online storage.Publicsystemsincludestoragetoholdatemporarywatersupplytomeetinstantaneousdemands.Inlivestockwatersystems,thiscanbedonebyusingelevatedstoragetanks(asinpublicsystems)ormoretypicallybyusinglargediametertankstoprovidestorageandallowseveralani-malstodrinkatonce.Pipeline size and specification.Eachsegmentofthewatersystempipelinemustbedesignedsothattherequiredamountofwaterisdeliveredtotheoutlet.Pressurelossesattribut-abletothediameterandlengthofasegmentmustbeconsid-eredwhenselectingwatersystemcomponents.Selectingthepipelinespecificationrequiresconsiderationoftheoperatingpressure,pressuresurges,andthestrengthofthepipe.Itofteniscost-effectivetochooseaheavier-walledpipethanpres-surerequiresinordertoadddurability,lengthenservice,andreducerepaircost.Fittingsmustbeatleastasstrongasthepipeline.

Pipeline Network from Offsite Water Source

86

87

Water Storage Tank

OverviewWhenelevated,waterstoragetanksprovideareservoirforcircumstanceswhenwatermaynotbeimmediatelyavailablefromthewatersource.Suchcircumstanceswouldincludestilldaysinawindmillsystem,pumpfailure,orpoweroutage.Astoragetankalsoallowsalow-volumebutsteadywatersupplytoaccumulateinquantitiessufficienttomeettheneedsofaherdwithheavywaterusageduringshorttimeintervals.

Advantages •Severalwatererscanbesuppliedfromonestoragetank •Mayneedlesspipelinethanrunningaseparatelinefrom

thewatersourcetoeachwaterer •Canrapidlyrefillwatereratpeakdemandtimes •Providesbackupsourceofwaterforintermittentpower

sourcessuchassolarandwind •Wellsuitedtoasystemthathasasteady,lowflowthatis

adequatetomeetdailydemandbutnotadequatetomeetpeakflowrequirements.

•VeryreliableandrequireslittlemaintenanceLimitations •Terrainmaybeunsuitedforanelevatedtankthatgravity-

feedswaterers •Malfunctioningfloatsincattlewaterercancausequick

drainageofentirewaterstorage •Duringwinter,continuoususeistypicallyrequiredtokeep

tankfromfreezing •Tankmustbeachoredorcontinuouslycontainwateras

weighttopreventwindmovinganddamagingthetank

88

Inlet PipeFrom Source

Shuto� Valve Shuto� Valve

Water Storage Tank

Float Level Control

Livestock Water Tank

To Distribution

Outlet Pipeto Pipe Network

(Protected From Freezing)

89

Water Storage Tank

Design ConsiderationsWaterstoragetanksmustbedesignedfortheelevationdifferenceandpipelinelossestomeetthewaterdeliveryrequirement.Waterstoragetanksenhanceintermittentwatersuppliesfromwindmills,solarpoweredpumpsandsiteswithlowwaterrecharge.Toavoidarestrictioninflow,thetankentranceshouldbethesamesizeasthelinesenteringandexiting.Assistancefromahydraulicsexpertisadvisabletosizethetankandwaterlinesforbestperformance.The size of the water storage tank is a function of two important factors: •theamountofwaterneeded–normallydeterminedbythe

gallonsofwaterperheadperday •theamountofwaterthatcanbedelivered–normally

determinedbytheaveragegroundwaterflowavailablepermonth.

Tankscanbemadeofsteel,galvanizedsteel,fiberglass,orplastic.Nursetanksworkwellandrangeinsizefrom500to1,600gallons.Recycledoilfieldandfueltankscanbecleanedandadaptedforuseaswaterstoragetanks.Steeltankscanbequitelargebutmayhaveashortlife.Coatingscanbeusedtoimprovethedurabilityofsteeltanks.Recycledstainlesssteelmilktankscanalsobeusedbutarelikelytobemoreexpen-sive.

Waterstoragetanksshouldbefittedwithafloatvalvethatshutsoffthewaterwhenthetankisfull.Thetankshouldhaveadrainonthedownhillside.Valvesshouldbeinstalledtoisolatethetankfromthepipelinesothetankcanbedrainedforserviceorrepairandthepipelinecanstillfunc-tion.Checkvalvesshouldbeinstalledtoavoidundesiredflowreversal.Maintenanceisminimal.Ifthewatersourceisturbid,sedimentwillaccumulateinthetankandshouldbeperiodi-callyremovedtoavoidtankdeteriorationandwatertasteandodorproblems.Mostwaterstoragetanksgravity-feedtowaterers.Thewaterservicelineshouldbeburiedatanadequatedepthtopreventfreezingandshouldalsohaveacheckvalveinstalledtopreventsiphoningofwaterfromthewatertank.

90

Item Primary Advantages Primary Disadvantages Estimated CostConcrete waterer Longusefullife;lowoperationcosts Tanksareheavy;notavailableatmost

farmsupplystores;shippingcostsmaybehigh

About$350,notincludingshippingorinstallation

Limited access watering point

Simpleandinexpensive;reducedbankerosion;lesssedimentandfewernutri-entsenteringstreams

Fewoptionsforlocationofwateringpoint

$200ormoredependingonsizeandsiteconditions

Hardened surface access and rock channel crossing

Easilyadaptedtovariousstreamsizesandlocations;quickinstallation;longusefullife;lowmaintenance

Relativelyexpensive;musthavesuitablesiteandstreamcharacteristics

About$2,000-$7,000formaterialsandinstallation

Super insulated waterer Noneedforsupplementalheattopreventfreeze-up

Canbedamagedifallowedtofreezerepeatedly,especiallywhennotinuse

About$500,notincludingfreightandinstallation

Bottomless tank Largecapacityatcomparativelylowcostcomparedwithothertanks;servesaswaterstorageaswellasdrinkingdevice

Permanantlylocated;can’tbemovedascangalvanizedorfiberglasstanks

Concrete(30’x30’x6”pad)$1400;rebar,bolts,overflowpipe$300;rings$1,700

Tire tank Simpleandinexpensive;durableandnon-breaking

Removalofpartorallofonesidewalltomakethetankisdifficult;tiresizemaylimitwaterstorageforlargerherds

Tirecanbeobtainedfreeinsomecases.Cementforbottomabout$25;plumbing(valuesandfittings)$120-$150;waterpipe$0.40/ft.;drainpipe$1.10/ft.;sandandgravelsurround$100

Fiberglass or galvanized tank

Becauseofstoredwaterthelargerthetank,thesmallerthewaterdeliverycapacityneededtosupplytheanimals;canbeeasilymovedasneeded

Galvanizedsteelandfiberglasstanksdon’tlastaslongasconcrete;emptytankswillblowinthewind

10’diametergalvanizedtank$500;300gal.fiberglasstank$180

Animal Drink Delivery Comparison Chart

91

Animal Drink Delivery

92

93

Concrete Waterers

OverviewConcretewaterersprovidereliable,durablewateringsources.Theycanbeinstalledasgravity-flowsystems,eliminatingtheneedforapowersource.Theareaaroundthewaterercanbeeasilyprotectedwithageotextileandgravelsurface.Fence-lineinstallationsallowwateringtwograzingareaswithonewaterer.

Advantages •Allowsrelocationofthewatersourcetoreduce

oreliminatedirectstreamandpondaccessbylivestock •Livestockoftenprefertodrinkfromatrough •Longusefullife •Canbeinstalledtobefreezeresistant •Doesnotrequirehighwaterpressure •Lowoperationcosts •Usedinconjunctionwithfencingofpond,improvespond

waterqualityandlifeofpond •Minimalmaintenancerequirements •Producercaninstall •Multipleconcretewatererscanbeplumbedinto

awaterlineifthegradeissufficientlysteep •Canbeusedwithnon-pressurized(gravityflow)and

pressurizedwatersourceswithequalsuccess •Doesnotrequireapouredconcretepad •ManytankmodelstochoosefromLimitations •Tanksareheavy,weighingbetween2,300and3,000

poundseach •Shippingcostsmaybehigh •Notavailableatmostfarmsupplystores •Ifapondisthewatersource,itmusthavealivestock

waterpipelineunder,throughoraroundtheponddam

94

2” x 8”Treated Planking

Over�ow(optional)

Shut-o�Water Supply

Float Valve

24” Minimum

Drill 5/16” holes

4” x 6” Treated Posts – Set 48” in groundand imbedded in concrete. Set 54” apart.(or all concrete)

Hand-shaped depression fortank drainage and cleaning.

Earth Fill

Gravel FillHardened Mat

Earth Fill Over Waterer

Concrete Waterer

Water

95

Concrete Waterer

Design ConsiderationsThewaterershouldbeplacedonawell-drainedgravelorsandsitethatofferssomeprotectionfromthewindifthewatererwillbeusedduringthewinter.Thesiteshouldincludeanareaofabout15feetsquareinfrontofthewatererforcattletostand.Thispadareacanbecoveredwithgeotextileclothandgravelof1-2inchesindiameter.Thewaterershouldbelocatedatleast4feetbelowthewaterlevelinthepondandbeneaththedamforpositivegravityflow.Thepipelineshouldbeburiedbelowthefrostline.Afterwatererinstallation,dirtwillneedtobepiledaroundthebackandsidestopreventfreezing.Thepipelinecanbeplacedeitherunderthedam(newpondconstruction),orthroughthedamoroutthesideofthepond(existingponds).Usuallythetrenchisconstructedfromthewatererbacktowardsthepond,stoppingabout2feetfromthepondedge.Thepipeislaidinthetrench,startingatthevalveatthewatererend.Itisveryimportanttosealthespacearoundthepipelinewithin20feetoftheedgeofthepondusingananti-seepcollarorbentoniteclay.

Therestofthetrenchcanbeexcavatedintothepond,goingdeeperasnecessary.Thetrenchmustextendfarenoughintothepondtoplacethepipeinletwherethewaterisdeepest.Installationinstructionscanbeobtainedbycontactingyourwatershedspecialistorviewingtandbyviewing“AdoptaDrop:WeCan’tAllBeUpaCreek”(http://www.oznet.k-state.edu/kcare/KELP%20Water/KELPwaterer_files/frame.htm).AdescriptionofinstallationisgivenintheK-StateResearchandExtensionpublicationAlternative Livestock Watering: Covered Concrete Water, MF-2737,July2006.

96

97

Limited Access Watering Points

OverviewPondsandstreamsarecommonsourcesoflivestockwaterinKansas.However,allowingunlimitedaccesscancauseseverebankerosion,poorwaterqualityandotherrelatedproblems.Cattleprefercleanwaterandavoidsteep,muddyapproachestowatersourceswheneverpossible.Developingaccesswater-ingpointswithahardenedsurfaceandfencingisoftenfairlysimpleandsolvesmanyoftheseconcerns.

Advantages •Simpleandinexpensive •Improvedlivestocksafetyandhealth,lessfootrotand

fewerleginjuries •Reducedbankerosion •Lesssedimentandfewernutrientsenteringstreamsand

ponds •Extendedpondlife •Applicabletonewandexistingponds •IncreasedwaterintakemaymeanbetterlivestockgainsLimitations •Notadaptedtolargestreams •Fencemaintenancerequiredwhenstreamfloods •Fewoptionsforlocationofwateringpoint •FewexamplesinKansas

98

99

Design ConsiderationsToencourageanimaluse,anaccessramporwalkwayshouldhaveamaximumslopeof6:1runtorise(17%)ora10degreeslope.Rampsassteepas4:1havebeenused.However,aflatterslope(8:1to20:1)isgenerallybetterwhenspaceallows,especiallywhenconditionsareicy.Therampsurfaceshouldbecompactedandnon-slip(crushedrock,gravelorconcrete).A3:1slope(orflatter)forthesidesoftherampispreferablewhensiteconditionspermit.Widthmayvary(recommendationsrangefrom4to80feet)butagoodguidelineis10feetplusonefootforeach10headofcattle–forexample,55feetfor50head.Fencingisgener-allydesirabletoexcludelivestockfromotherpartsofthepondorstream,especiallyiftheycongregateandloafduringhotdays.AfloatingfencemadeofPVCpipecanbeusedtorestrictacesstothepondreservoiratacostof$200-300.A16-footstreamcrossing/accesspointforsmallstreams,usinggravelwithgeotextileandsandbase,canbeconstructedforlessthan$500.Thispracticemayrequirepermits.Pleasereadthepermitsectionofthishandbook(p.143).

ReferencesPorter,M.D.andJ.S.McNeill.2006.Livestockwateraccesspointinpondfence.TheSamuelRobertsNobleFoundation,Ardmore,OK.http://www.noble.org/Ag/Livestock/Waterpoint/Porter_PondAccess.htmNaturalResourcesConservationService.2003.Conservationpracticestandard:accessroad.Code560.USDA.ftp://ftp-fc.sc.egov.usda.gov/NHQ/practice-standards/standards/560.pdfNaturalResourcesConservationService.2003.Conservationpracticestandard:heavyuseareaprotection.Code561.USDA.ftp://ftp-fc.sc.egov.usda.gov/NHQ/practice-standards/standards/561.pdf

Limited Access Watering Points

100

101

Hardened Surface Access

OverviewProperlydesignedandinstalledhardenedcrossingsprovideasafe,permanentareaforlivestockandequipmenttocrossstreamswithoutbecomingboggedinthemud.

Advantages •Easilyadaptedtovariousstreamsizesandlocations •Quickinstallation •Longusefullife •Lowmaintenance •Doesnotcreatestreamobstruction •Doesnotimpairstreamflow •Whenusedinconjunctionwithfencing,improveswater

qualitybylimitinglivestockaccesstostream. •DoesnotrequirepouredconcreteLimitations •Canbeexpensive

102

103

Hardened Surface Access

Design ConsiderationsCrossingsshouldalwaysbeplacedonriffles—neverinpools—andshouldbeplacedperpendiculartostreamflow.Thecrossingsurfaceshouldbeatanelevationequaltostreambedelevation.Geotextilefabricshouldbeplacedundertherockorgravelfillmaterial.Thispracticemayrequirepermits.Pleasereadthepermitsectionofthishandbook(p.143).

104

105

Super-Insulated Waterer

OverviewIce-freewaterisachallengeforlivestockproducersincolderclimates.Experiencewithmanydifferenttypesofwaterershasledmajorcompaniesandproducerstoconsiderproductswithmuchhigherinsulationvalues(R-factor–resistancetoheatflow).Producershavereportedproblemswithheat-ingelementsorburnersintheirwaterersthataredesignedtopreventingfreezing.Greateracceptanceofmolded-plasticusearoundlivestockhasledtomanufactureofsuper-insulatedplasticwaterers.Inmostcasessuper-insulatedwaterershaveoperatedverywellinthecentralU.S.withoutuseofauxiliaryelectricheatingelementsorgasburners.

Advantages •Noneedforsupplementalheattopreventfreeze-up •Availablefromlocalfarmsupplystores •Availabilityofpartsisgood •Livestocklearntousethemeasily •Doesnotrust •UsesUV-resistantmoldedplasticLimitations •Requiresmorefrequentcheckingthanothertypes

ofwaterers •Canbedamagedifallowedtofreezerepeatedly

(leftwithnolivestock) •Requiresasolidorconcretebase

106

DisplaceableInsulating Seal

Air-gap allows warm air from below soil freeze line to contact the tank.

Insulated Box

Sealed Connectionto Concrete Base

Concrete Footing(3’ deep, 6-8” thick)

Insulation Water

Level Control Valve

Water Supply Pipe

107

Super-Insulated Waterer

Design ConsiderationsCombininguseofavertical“earthtube”intothegroundbelowthewatererwiththewarmthofthewaterasitentersthewaterergenerallyprovidesenoughenergytopreventicefromforminginsidethewaterer.Whenwatercolderthannormalgroundwatertemperatureisused,suchaspondwaterorspringwater,thechanceoffreezingisgreater.Thesewaterersutilizeavarietyofdoorsorcoverstoretaintheintrinsicheatofthewaterandtosealcoldairandwindout.Mostwaterersuseeitheralargeballthatfloatstightagainsttheinsideofthetankoradoorthatthelivestockopeninordertoaccessthewater.Occasionallythesedoorsorballswillfreezeshut;however,abumportapbytheproducerwillopenthedoorordislodgetheball.Livestockeasilylearnhowtoaccessthewater.Thesetanksrelyonasignificantvolumeofwarmerwatertopreventfreezing,sothenumberoflivestockperwaterershouldbeadjustedtoensurethatthewatererwillrefillperi-odicallywithwarmerwater.TheproducerwillnormallyfindthatinthecentralU.S.,aflowthrough(oruse)oftwoorthreevolumesofwaterisrequiredonthecoldestdaystopreventfreezing.Mostcompaniesrecommendatleast10-15headperwaterer.Thesewatererscanbeplacedinafencelinetoallowmorelivestocktouseawaterer.

Producersarecautionedtochecktheseenergyfreewatererstwiceaday;inthemorningtomakesurethatlivestockcanaccessthewater,andagainneareveningtoassurethefloatandvalveareoperatingproperly.Superinsulatedwaterersshouldbeplacedinalocationpro-tectedfromthewindandsnowtominimizeheatlossandreducethechanceoffreezing.Asiteexposedtothesunalsoreducestheprobabilityofthewatererfreezing.Mostsuper-insulatedwaterersrequireasolidbasesuchasaconcretepad.Agoodgravelbasearoundtheconcretepadshouldbeconsidered.Referto“GeotextileandGravelSurrounds”onp.123.

108

109

Bottomless Tank

OverviewBottomlesstanksarelarge,open-toppedtanksusedforstor-ingwaterandwateringlivestock.Theyaremostoftenmadeofcorrugatedmetalsections,suchasgrainbinsections,boltedtogethertoformalargecircularringonsite.Abottomisconstructedinsidethetankafteritisassembledandplacedinposition.Thebottomisusuallymadeofbentoniteclay,con-creteorPVCplasticmembrane.Becausebottomlesstankscomeunassembled,verylarge(20feetorlargerdiameter)tanksarepossible.Tanksthissizewouldbeprohibitivelyexpensivetoshipiftheywerealreadyassembled.Becauseoftheirwaterstoragecapacitythesetankscancompensateforthevariablewateroutputofwindmillandsolarpanelsystems,assuringanadequatesupplyoflivestockwateratalltimes.Livestockdrinkdirectlyfrombottomlesstanks.

Advantages •Simpleconstruction •Easilyadaptabletomostsites •Largecapacityatcomparativelylowcostcompared

withothertanks •Canbeconstructedwithon-farmlabor •ServesasbothwaterstorageanddrinkingdeviceLimitations •Tankwilleventuallyneedtoberebuiltduetosoil-

structureproperties •Canberelocated,butonlywithmuchtime,effort

andexpense

110

16’–20’ in diameter30” deep

Concrete foundationand bottom

111

Bottomless Tank

Design ConsiderationsBottomlesstanksaregenerally25-30inchesdeepand20feetormoreindiameter.Thelowerpartofthewallisembeddedintothetankbottommaterial.Thetankbottomissusceptibletosoilshiftingandtochangesinsoiltemperatureandmoisture.Minormaintenanceisrequiredonaregularbasis.Withsubstantialeffort,tankscanbedisassembled,moved,andreassembledatanotherlocation.

112

113

Tire Tank

OverviewUsedrubbertiresfromheavyearth-movingorconstructionequipmenthavebeenadaptedforuseasreliablelivestockwatertanks.Theyhaveproventobedurable,relativelyinex-pensive,andcapableofbeingusedwithavarietyofwatersources.Innumeroussituationsandsettings,theyarefreeze-resistantinwinter.

Advantages •Simpleandgenerallyinexpensive •Availableinavarietyofsizes •Durableandnon-breakable;nosharpedgestoinjure

livestock •Canbeusedwithwaterlinesfromwells,springs,

andneworexistingponds •Freeze-resistantinwinterifsomeprotectionprovidedLimitations •Heavytohandleduringinstallation •Limitedsizemaylimitwaterstorageforlargerherds •Removalofpartorallofonesidewalltomaketank

isusuallydifficult

114

115

Hole cut through tireto allow livestock access

Hole cut through tireto allow livestock access

Large, heavy-duty tirewith concrete pouredin bottom to hold water

Tire Tank

Design ConsiderationsRubbertiretanksarenormallysuppliedviapipelinefromwells,springsorponds.Choosetanksbasedonthesizeoftheherdtobewateredandthesupplyrateofthewatersource.Sizesrangefrom5to15ormorefeetindiameter.Widthofthetire(tankheight)canbeasmuchasfourfeet.Theside-wallofthetireiscutawayinpartorentirelyonthetopsidetoallowdrinkingaccess.Cuttingfewerholeswillimprovethefreezeresistanceofthetankwhilecuttingawaytheentiresidewallwillallowmorelivestocktodrinkatonetime.Largertirescanbepartiallyburiedforsomeprotectionfromfreez-ingandtoreducetheheightofthetires,allowingaccessforsmalleranimals.Useaheavy-dutysawtocutandremovepartorallofthesidewallontheuppersidetoallowlivestockeasyaccesstowater.Thepipelinerisersupplyingthewater(inlet)shouldbeplacedinthecenterofthetireorotherwiseprotectedfrombreak-agebylivestock.AsupplylineofonetotwoinchPVCpipeisgenerallyinstalled.Apipejointatthebaseoftheriserisrec-ommendedtoalloweasyreplacementincasethetopportionisbroken.Mosttiretanksarefittedwithsometypeoffloatorshut-offvalve.Anoverflowlineisnotinstalledexceptwhenthetankispartofaspringdevelopmentandanoverflowlineisneededtocarryawayexcessinfloworpreventfreezing.

Useconcrete,bentoniteorotherheavyclaytosealthelowersideofthetireatgroundleveltopreventleakage.Tanksmaybepartiallyburiedorsoilmoundedpartofthewayupthesidestoreducefluctuationsinwatertemperature.Placingalayerofcoarsegravelorothersimilarmaterialaroundthetankwillprovideadurable,hardenedsurfaceandeliminatemuddyconditions.Placinga“deck”ofusedrailroadtiesadja-centtothetirewillhelpgivesmallcalvesaccesstothewater.Buildingaprotectiverailingoverthetankisrecommendedtokeepanimalsfrombeingpushedintothetankandawayfrompipingandfloats.Mostrubbertiretankscanbeinstalledforafewhundreddol-lars.Someconstructioncompanieswillgiveawayusedtiresatconstructionsitessimplytohavethemremoved.Tiresarealsoavailablefromseveralsuppliers.Examplesoftiretankscanbeviewedatwww.wenzelconstruction.com/rubbertiretanks.html.

116

117

Fiberglass or Galvanized Tank

OverviewPortabletanksareanimportantpartoflivestockwatering.Galvanizedsteelandfiberglasstanksarethetwotypescom-monlyused.Theyareconsideredportablebecausetheyarereasonablylightweightcomparedwithotheroptions.Emptytanksareeasytomoveforatemporaryneed.Tanksaresuit-ableforwateringalargenumberofanimalsatatimeandaregenerallyeconomical.

Advantages •Waterqualityinatankisusuallybetterthancattle

drinkingdirectlyfromapond •Asingletankcanservemorethanonepaddockorlot •Canbeeasilymovedwhenneeded •Canbelocated/relocatedtoimprovecattledistribution

inapaddock •Alargetankallowsseveralanimalstodrinkatonce •Becauseofstoredwaterthelargerthetankthesmallerthe

waterdeliverycapacityneededtosupplytheanimals •Tanksworkwellforhauledwater •Portabletankscanbemovedregularlytoavoidmudholes

developingaroundthetankLimitations •Soilaroundthewaterercanbecomemuddyfromcattle

drippinganddepressionsthatdevelopandcollectrainfall •Manufacturedtanksmaybemorecostlythanausedtire

tankandaremoresusceptabletodamage •Galvanizedsteelandfiberglasstanksdon’tlastaslong

asconcretetanks;probablynotthebestchoiceforapermanantly-locatedwaterer

•Galvanizedtankswilleventuallyrust •Emptyandunsecuredtankscanbeblownawayorstolen •Largetanksareawkwardtomove

118

119

Fiberglass or Galvanized Tank

Design ConsiderationsTanksshouldbesitedonwell-drainedlevelground.Watershoulddrainawayfromthetanktohelpavoidamudholearoundthetanksite.Besurethesiteispreparedbyremovinganyrocksandmakingthearealevel.Sharprockscanpuncturethebottomoftanks.Galvanizedandfiberglasstanksthataresuppliedbyagravityorpressuredwatersourceneedamethodtopreventoverflow.Optionsincludefloatsthatwillshutoffthewatersupplywhenthetankisfulloranoverflowthatdrainsbygravityintoalowspotordrawthatisatleast50feetfromthetank.Thetankshouldbesizedtomeettheneedsforthenum-berofanimalsitwillsupply.Ifthepastureislarge,thetankshouldbeabletosupplyallanimalswithinabout30minutes(adrinkingevent)withoutloweringthewaterlevelmorethanabout10inches.Thismeansthatthewatercontainedinthe10-inchwater-leveldropplustheinflowduringthedrinktimeareadequatetosupplyonedrinkingevent.Duringthewinter,waterintankswillfreezeonthesurfaceandholesmustbechoppedthroughtheicesocattlecandrink.Whensufficientflowisavailable,tanksfedbyground-watershouldhaveanoverflowtoallowatrickleorlowflowthroughitduringthewintertominimizefreezing.Ground-waterisafairlyconstanttemperatureofabout55degreesinKansas.

Toavoidmudaroundpermanenttanklocations,thespacearoundthetankshouldbeprotectedbyahardsurfaceordraininghardmaterialsuchasgravelorgeotextile-gravelsurfacing.Rockthatisabout2inchesindiameterwillbeuncomfortableenoughthatcattlewon’tlingerbythewateranddestroysurroundingvegetation.Concreteisanexcellentlonglifesurfacingmaterialbutisexpensive.Soilcementorflyashshouldbelessexpensiveoptionsthatprovideadurablehardsurfacing,butwithashorterlifethanconcrete.Portabletankscaneasilybemovedfromtimetotimetoavoiddestroyinggrassandcreatingamudhole.Watersupplylinescanbeflexibleabovegroundpipe.

120

121

Livestock Management Practices

122

123

Hardened Mat

OverviewWateringsitesfrequentlybecomemuddyduetoexcesswater,urine,andmanuredepositednearthewaterer.Geosyntheticmaterialandgravelcoverontheareaaroundthewatererprovideahardenedsurface,reduceanimalstressduetomud,providesolidfooting,andallowexcesswatertodrainwayinsteadofpoolingaroundthewaterer.Thereare2typesofgeosynthetics:geotextiles(afabricmaterial)andgeogrids(across-hatchedorhoneycombedgridthatholdsrock).Thefabricformsacontinuouslayeroverthesurfaceoftheground;theplasticexpandablegridholdsrockinplace.Bothgeotex-tilesandgeogridsarecoveredorfilledwithrock,flyash,orothermaterialthatallowswatertodrainthroughthesuface.

Advantages •Keepsrockfromworkingintotheground

anddisappearing •Providessolidfootingforanimalsandhumans

aroundthewateringsite •Excesswaterpercolatesbackintothesoil •Rockdiscourageslivestockfromloiteringaround

thetank,allowingallanimalsachancetodrinkandreducingmanureandurinedeposits

•Muchlessexpensivethanconcrete •Easilyinstalledbyproducer •Nospecialtoolsneededforinstallation •Minimalpreparationtimeneededforinstallation •ReducesrunoffanderosionDisadvantages •Lesspermanentthanconcrete

124

Stock Tank

Woven Geotextile Fabric(Water Porous)

Woven Geotextile Fabric(Water Porous)

6”

2” of Fine Gravel (½”–1” Diameter)

2” of Fine Gravel(½”–1” Diameter)

6” of Coarse Gravel (1 ½”–2 ½” Diameter)

6” of Coarse Gravel(1 ½”–2 ½” Diameter)

30’

125

Hardened Mat

Design ConsiderationsAgeosyntheticandgravel-hardenedmatworksbeston7-8percentslopessowaterwilldrainawayfromthesite.Thesur-roundshouldextend8-12feetonallsidesofthewaterertowhichlivestockhaveaccess.Geosynthetictextilecanbelaiddirectlyontopofexistinggrass,butwoodyvegetationmustberemovedpriortoinstal-lation.Formoresecureinstallation,a6inchdeeptrenchcanbemadewithasinglechiselpoint.Theedgeofthegeotextileispushedintothetrenchandthentheentiresurfaceiscov-eredwitha4-6inchlayerofcoarserock(2-3inchdiameter).Atopsurfaceoffinesisdesirableforamorestableandcom-fortablesurface.Flyash,smallgravelorfinelycrushedlime-stonemakeagoodsurface.Mixed-diameterriverrockwiththesandremovedwillalsomakeagoodsurface.

Minimalmaintenanceisneededtokeepthesurfaceingoodcondition.Excessmanurecanbehauledawayafterlivestockareremovedfromthepasture.Additionalrockmaybeneededafter5-10years.Geotextileclothcanbeobtainedfromhighwaydepartmentsandconservationdistricts.Ahardenedimpermeablesurfacehasthedisadvantagethatwatercannotpercolatethroughit.However,itmaybemoredurableandhavealongerlifethangravelovergeotextile.Optionsforthistypeofsurfaceincludeconcrete,soilcement,andalayerofflyashthatwillsetupwhenwet.

126

127

Grazing Management Changes for Water Quality

OverviewAllowinglivestocktohavedirectaccesstostreamsandpondscanhavenegativeimpactstobankstability,waterquality,livestockperformanceandaquaticorganisms.Fencingtoexcludelivestockoftenisrecommendedasapracticetopro-tectstreamsandponds.Inmanyinstances,similarprotectioncanbeprovidedbychanginggrazingmanagementsystems.PaineandLyons(1999)reportedthatgoodgrazingmanage-ment,includingrotationalgrazing,canprotectstreambanksandriparianareasnearlyaswellasungrazedbufferstrips.Theseauthorsalsoreportedthatgrassybuffersarebetterthanwoodybuffersalongsmallstreams.FecalcoliformbacteriaandturbiditywereconsistentlyhigheratcontinuouslygrazedsiteswhencomparedwithrotationallygrazedsitesalongsmallMinnesotastreams(Sovelletal.2000).ResearchersinIowabelievethemajorsourceofsedimentandphosphorusfromgrazedpasturescomesfromstreambankerosion.PaineandLyonsfoundthatpasturesmanagedwithshort-durationgrazinghadsignificantlylessbankerosionthancontinuouslygrazedpastureswithbufferstrips.

Advantages •Rotationgrazingimprovesvigoranddensityofriparian

vegetation •Moreacceptabletolivestockproducersthanfencing

offstreams •Lesscosttoimplementandmaintainthanstreamside

fencesLimitations •Notwellsuitedtolargerstreams

128

The area around each water source is grazed more heavily. Placing additional water sources in more lightly grazed areas of a paddock can result in both reduced overgrazing around the original water source and increased grazing in less utilized areas of the paddock.

Many different grazing schemes can be used to maximize livestock grazing while protecting vegetation and water. All rotations involve providing a period of rest for the vegetation to recover after grazing. When designing a rotation, consider the following:

• length of time required for vegetation to recover (will change over the course of the growing season)

• frequency of rotation• ease of moving livestock between paddocks• livestock production goals• environmental and ecological goals

(water quality, wildlife habitat)

Water Tank

Traditional quarter section of grass with no cross-fencing

Area of Under Grazing

Area ofOver Grazing

Water Tanks

Water Storage Tank

Rotational grazed quarter section with 12 paddocks

1 2 3 4 5 6

7 8 9 10 11 12

129

Design ConsiderationsFencingdesignsthatcreateagrazeableunitaroundapondoralongastreamallowshort-termuseattimeswhenthebanksaredryandstable.Fencingagrazingunitoftheflood-plainadjacenttoastreameliminatesflooddamagetofencesandseparatesuplandfromlowlandsoils.Rotationalgrazingsystemstoallowflashgrazingofsensitiveareas,followedbyextendedrest,willimprovethedensityandcoverofgrasses.Provideaccesslaneswithstablefootingtothewatersourcesforlivestockdrinking.Locatesalt,mineralandbackrubsawayfromthewater.Removeanytreesnearthewaterwherelivestockcongregateandprovideshadeawayfromthewaterifneeded.

Grazing Management Changes for Water Quality

References:Paine,L.K.andJ.Lyons.1999.Managedgrazingandstreamecosystems.StreamsideGrazingWorkshop,September8-9,1999,EagleBluffCenter,Lanesboro,Minn.Sovell,L.,A.B.Vondracek,J.A.Frost,andK.G.Mumford.2000.Impactsofrotationalgrazingandriparianbuffersonphysicochemicalandbiologicalcharacteristicsofsouth-easternMinnesota,USA,streams.EnvironmentalManage.26(6):629-641.Haan,M.,J.Russell,D.Morrical,D.Strohbehn,W.Powers,J.Kovar.2006.Effectsofgrazingmanagementonpasturechar-acteristicsaffectingsedimentandphosphoruspollutioninpasturestreams(ProgressReport).A.S.LeafletR2122.IowaStateUniversityAnimalIndustryReport2006,IowaStateUniv.,Ames.http://www.ans.iastate.edu/report/air/2006pdf/R2122.pdf

130

131

Fencing the Pond

OverviewPondsdotthelandscapeovermuchofKansasandareimpor-tantsourcesoflivestockwater.Manyserveotherfunctions,suchasrunoffretentionandhabitatforaquaticlife.Mostpondslosesomeusefulnessovertimeduetoerosionandsedi-mentation.Usefulpondlifeisextendedbyfencingcompletelyaroundthepondtorestrictlivestockaccess.Afencedpondwillrequireinstallationofapipelinethroughthedamtoatank,constructionofanaccessramp,orsomeothermeansofsupplyingwatertolivestock,suchaspumping.

Advantages •Minimizeserosionofpondshorelinesanddamfaces •Reducessedimentdepositioninreservoir •Extendsusefullifeofthepond •Improvesqualityofwaterforlivestockandaquaticlife •Betterwildlifehabitatalongtheshoreline •Preventscattlefromgettingoniceduringwinter

andfallingintopond •Eliminatesanimaltrailsintheemergencyspillway(which

leadtospillwayerosionandpossiblefailure) •Eliminatesorminimizesfecaloraltransmissionofdis-

easesthroughwaterLimitations •Additionalcostforfenceconstruction;numerouscorners

androughterrainaddtothecost

132

Pond

EmergencySpillway

Stock TankOutside Fence

Dam

Corrugated metalpipe with 1-inch holes.Pipe �lled with coarsegravel

Pipe with antiseep collars

Extended pipe above water levelto show location of intake

Riser with1/4-inch holes

6-inch concrete baseAntiseep collar

Core �ll

Controlvalve

Cap connection forpossible future uses

Valve access

Union

Trough

Bell tile around valve andpipe for suitable housing

Ground surface

Earth Dam

133

Fencing the Pond

Design ConsiderationsThedecisiontoconstructafencearoundalivestockwaterpondrequiresplanning.Considerhowwatercanbeprovidedtolivestockfromthepondonceitisfenced.Mostcommonly,apipelineisinstalledunderanewdamduringconstructionoraroundorthroughanexistingdamasaretrofit,allowingwatertoflowbygravitypressuretoatankorwatererbelowthedam.Constructionofanaccesslaneorramptotheedgeofthereservoirisanotheroption.Useofanosepumpisalsoaconsideration.Thefencinglayoutshouldprovideasuitablebufferbetweentheedgeofthereservoirandthegrazedpastureoutsidethefence.Atleast30feetofbufferisneededtofilteroutsedi-mentandothermaterials.Thesebuffersarepotentialareasforground-nestingbirds;ifbuffersaremadetoonarrow,theybecomeeasyhuntingzonesforpredatoryanimals.Testingthelayoutofapondfencewithelectricfencingforayearortwomayrevealflawsinthedesign.Astandardfenceoffourbarbedwiresandpostsat16-20footintervalsisadequateinmostsituations.Minimizingthenum-berofsharpcorners,especiallyonsteeperslopes,willreducepotentialerosionfromcattletrailing.Installinggatesattwolocationswillallowaccessforflashgrazingifneededtomanagethevegetationandprovideemergencyaccesstothereservoirforlivestockandfirecontrolequipment.

134

135

Supplementary Materials

136

Water Volume Requirements for Livestock (gal./day)

*Agoodruleofthumbisthatahorseneedsatleastagallonofwaterper100lbsofbodyweight.Foryouraveragehorse,thisequals10gallonsaday.Waterrequirementsvarygreatlyaccordingtotheweatherandthelevelofworkthatthehorseisdoing.Forinstance,ifyourhorseisexercisinginhot,humidweather,hemayneed2-4timestheminimumamount.

Average lbs. water Air Temperature (gal./day) /lb. dry feed 40˚F 60˚F 80˚F

Cowsdryandbred 6-15winteringpregnant 6.0 7.4nursing 11-18 11.4 14.5 17.9dairy 15-30 30-40

Feeders 4-15calf 4-5 9-10smallcalves 0.6-0.84largecalves 0.42-0.66growingcattle@600lb. 3-8 8-13growingcattle@800lb. 6.3 7.4 10.6finishingcattle@800lb. 7.3 9.1 12.3feedlotcattle@1,000lb. 8-13 14-21beef 8-12 20-25

Bulls 7-19 8.7 10.8 14.5Sheep and Goats 2-3 3-4Llamas 5Horses* 10-15 20-25Swine 6-8 8-12

Sources:CummingsSchoolofVeterinaryMedicine.2006.Dehydrationandelectrolytelossesinthesporthorse.TuftsUniversity.,Medford,Mass. http://www.tufts.edu/vet/sports/dehydration.html#req Guyer,P.1977.Beefcattlenutrition.LincolnNebGuide8.Univ.ofNebraska,Lincoln.Landefeld,M.andJ.Bettinger.2002.Livestockwaterdevelopment.FactSheetANR-12-02.OhioStateUniv.Extension.,Columbus,Ohio.MidwestPlanService.1975.Privatewatersystemshandbook,4thedition,MWPS-14,Ames,Iowa.NationalResearchCouncil.1996.Nutrientrequirementsforbeefcattle,7thedition.NationalAcademyPress,Washington,DC.

Increased temperature, salt, and protein increase water needs

137

Thelocationofthewateringsitedeterminesherdingbehav-ioranddrinkingpatterns.Herearesomesuggestedwateringlocations: •In each pasture:Animalstendtodrinkoneatatimeif

waterisprovidedinpastures10acresorlessinsize.Aflowrateof2-6gallonperminutewillkeepa25-35gallontankfull.Changethetanklocationalongthefencelinetoallowsodtorecoverinformerwateringareas.Atroughineachpasturewillkeepanimalsandmanureonthegrassandoutofthelanes.

•Away from feed, minerals and shade:Distributetheseitemsthroughthepasture.Thiswilldiscourageloiteringinoneareaanddispersegrazing.Providewateroutsideofthebarnorlivestockmaystayinthebarnonhotdaysandnotpastureatall.

Siting Watering Facilities

•More than 100 feet from open water:Animalsconcen-tratemanureandmudatwateringsites.Thiscancre-ate“hotspots”forerosionandpollutedrunoff.Leaveahealthybufferbetweenwateringsitesandwatercourses.

•Less than 500 feet between water sources:Ifwaterisfarawayorlocatedoutsidethepasture,thenanimalswilltravelasaherdtothewateranddrinkasaherd.Inaherdsituation,livestockwillgrazeunevenly,concentrateinthewateringarea,and“boss”animalsmaypreventtimidani-malsfromdrinking.Ifthissituationcan’tbeavoided,besuretohaveenoughspaceatthewatersourcefor10per-centoftheherdtodrinkatanytime.Eachdrinkingani-malshouldhave20inchesofspaceatacirculartankand30inchesatastraighttank.

Reprinted from: OregonAssociationofConservationDistricts.2006.Manag-ingstockwaterinpasturesandstreamsideareas.TualatinSoilandWaterConservationDistrict,Hillsboro.http://www.oacd.org/factsheet_09.html

138

Calculating Tank Capacity

Tocalculatecapacityofatank,usetheformulabelowthatmostcloselyresemblestheshape(top)ofyourtank.

Convertallmeasurementstoinches!

Circle

πxradius2xwaterdepth=gallons 231

Example:π=3.14Radius=42”Waterdepth=24”

3.14x42”x24”= 132,935=575gallons 231 231

Rectangle lengthxwidthxwaterdepth=gallons 231

Example:Length=84”Width=26”Waterdepth=24“

84”x26”x24”=52,416=227gallons 231 231

Available WaterGallonsofwaterperinchcanbeimportantiflivestockcan-notreachthebottomofthetankandyouneedtoknowtheamountofwateravailableforthem.Itisalsoimportantifthetankispartiallyemptyandyouneedtoknowtheamountremaininginthetank.

totaltankcapacity(gallons)=gallons/inch depth.

Example:Tankcapacity=575gallonsTankdepth=24”

575=23.9gallons/inch24

Adapted from:Landefeld,M.andJ.Bettinger.2002.Livestockwaterdevelopment.FactSheetANR-12-02.OhioStateUniv.Ext.,Columbus.

length widt

h

radius

139

140

141

Pipe Size (inches) 1/2 3/4 1 1 1/4 1 1/2 2 2 1/2

OD (inches) 0.840 1.050 1.315 1.660 1.900 2.375 2.875

ID (inches) 0.622 0.824 1.049 1.380 1.610 2.067 2.469

Volume (gal/100’) 1.578 2.770 4.490 7.770 10.576 17.432 24.871

Wall Thickness 0.109 0.133 0.133 0.140 0.145 0.154 0.203

Flow Rate (gpm) friction loss in

psi/ 100 ft

friction loss

in ft/ 100 ft

velocity in the

pipe in ft/sec

friction loss in

psi/ 100 ft

friction loss

in ft/ 100 ft

velocity in the

pipe in ft/sec

friction loss in

psi/ 100 ft

friction loss

in ft/ 100 ft

velocity in the

pipe in ft/sec

friction loss in

psi/ 100 ft

friction loss

in ft/ 100 ft

velocity in the

pipe in ft/sec

friction loss in

psi/ 100 ft

friction loss

in ft/ 100 ft

velocity in the

pipe in ft/sec

friction loss in

psi/ 100 ft

friction loss

in ft/ 100 ft

velocity in the

pipe in ft/sec

friction loss in

psi/ 100 ft

friction loss

in ft/ 100 ft

velocity in the

pipe in ft/sec

2 1.76 4.07 2.11 0.45 1.03 1.20 0.14 0.32 0.74 0.04 0.08 0.43 0.02 0.04 0.32 0.01 0.01 0.19 0.00 0.00 0.13

4 6.35 14.67 4.22 1.62 3.73 2.41 0.50 1.15 1.48 0.13 0.30 0.86 0.06 0.14 0.63 0.02 0.04 0.38 0.01 0.02 0.27

6 13.45 31.05 6.34 3.42 7.89 3.61 1.06 2.44 2.23 0.28 0.64 1.29 0.13 0.30 0.95 0.04 0.09 0.57 0.02 0.04 0.40

8 5.82 13.44 4.81 1.80 4.15 2.97 0.47 1.09 1.72 0.22 0.51 1.26 0.07 0.15 0.76 0.03 0.06 0.54

10 8.80 20.31 6.02 2.72 6.27 3.71 0.71 1.65 2.15 0.34 0.78 1.58 0.10 0.23 0.96 0.04 0.10 0.67

12 12.33 28.46 7.22 3.80 8.78 4.45 1.00 2.31 2.57 0.47 1.09 1.89 0.14 0.32 1.15 0.06 0.14 0.80

14 5.06 11.68 5.20 1.33 3.07 3.00 0.63 1.45 2.21 0.19 0.43 1.34 0.08 0.18 0.94

16 6.48 14.95 5.94 1.70 3.93 3.43 0.80 1.86 2.52 0.24 0.55 1.53 0.10 0.23 1.07

18 8.05 18.59 6.68 2.12 4.89 3.86 1.00 2.31 2.84 0.30 0.68 1.72 0.12 0.29 1.21

20 9.79 22.59 7.42 2.57 5.94 4.29 1.22 2.81 3.15 0.36 0.83 1.91 0.15 0.35 1.34

22 11.68 26.95 8.17 3.07 7.09 4.72 1.45 3.35 3.47 0.43 0.99 2.10 0.18 0.42 1.47

24 3.61 8.33 5.15 1.70 3.93 3.78 0.50 1.16 2.29 0.21 0.49 1.61

26 4.18 9.66 5.58 1.97 4.56 4.10 0.58 1.35 2.49 0.25 0.57 1.74

28 4.80 11.07 6.01 2.26 5.23 4.41 0.67 1.55 2.68 0.28 0.65 1.88

30 5.45 12.58 6.44 2.57 5.94 4.73 0.76 1.76 2.87 0.32 0.74 2.01

32 6.14 14.18 6.86 2.90 6.69 5.04 0.86 1.98 3.06 0.36 0.83 2.14

34 6.87 15.86 7.29 3.24 7.49 5.36 0.96 2.22 3.25 0.40 0.93 2.28

36 7.64 17.63 7.72 3.60 8.32 5.67 1.07 2.46 3.44 0.45 1.04 2.41

38 8.44 19.48 8.15 3.98 9.20 5.99 1.18 2.72 3.63 0.50 1.15 2.55

40 9.28 21.42 5.58 4.38 10.11 6.30 1.30 2.99 3.82 0.55 1.26 2.68

42 10.16 23.45 9.01 4.79 11.07 6.62 1.42 3.28 4.02 0.60 1.38 2.81

44 5.45 12.57 7.09 1.61 3.72 4.30 0.68 1.57 3.02

46 5.67 13.10 7.25 1.68 3.88 4.40 0.71 1.63 3.08

48 6.14 14.17 7.56 1.82 4.20 4.59 0.77 1.77 3.22

50 6.62 15.28 7.88 1.96 4.53 4.78 0.83 1.90 3.35

142

Calculating Wet Well Capacity

Installationof½inchdiametercrushedstonecreatesapproximately35%voidspacethatwouldprovideabout3gallonsofadditionalwaterstorageforeachcubicfootofcrushedstone.

•Assumeswellgraded½crushedlimestonerockgravelbackfill.•Assumes35%voidsincrushedrockgravelbackfill.

Gravel Backfill (ft.2) Volume Per 100 Lin. Ft.(ft.3) Volume of Water (gal.)1(12X12) 35 2622(12X24) 70 5243(12X36) 105 7854(12X48) 140 1,047

Pipe and Screen Diameter (in.) Volume Per 100 Lin. Ft. (ft.3) Volume of Water Storage (gal.)4 9 67.36 20 149.68 35 261.8

12 79 590.924 314 2,348.7

143

Knowingtherequirementsrelatedtobuilding,removing,oralteringfederalandstatewaters(includingwetlands)couldsavetimeandmoney.Producerscanavoiddelaysassociatedwithinvestigations,lengthyprocessingprocedures,orpossiblelitigation.Itmayalsohelpreducethepotentialforaregis-teredpubliccomplaintorcivillawsuit,aswellassavetaxpayerdollars,whileprotectingbeneficialusesofstatewatersforyourselfandcitizensofKansasandborderstates.Permitsshouldbesecuredpriortoconstructiontoavoidcostlyreworkoradditionalpermitfees.Itisrecommendedthatyoustartthepermitapplicationprocesswellinadvanceofyouranticipatedconstructionstartdate.A30-daycom-mentperiodisrequired,ataminimum,fornotificationofinterestedandconcernedagenciesandorganizations.Thetotaltimetoprocessanapplicationcanbeseveralmonths.SeveralagenciespermitwaterdevelopmentinKansas.Youwillneedtoobtainpermitsseperatelyfromeachpermittingagency.Belowisasummaryofthevariouspermittingagencyrequirements.Thisisnotanexhaustivelisting,andregulationsaresubjecttochange.Foreachagency,contactinformationisprovidedtodirectyoutopermitregulations,downloadablepermitformsand/oragencycontactinformation.Kansas Department of Agriculture, Division of Water ResourcesThewaterstructuresprogramregulatesmanmadestructuresaffectingtheflowsandoverflowsofanystreambyensuring,withinlimitsimposedbylawsandcourts,thatsuchstructuresareproperlyplanned,constructed,operatedandmaintainedfortheirauthorizedpurposeswithoutadverselyaffectingthe

Permits in Kansas

environment,publichealthandwelfare,andpublicandprivateproperty.Examplesofactivitiesthatareregulatedbythewaterstruc-turesprograminclude:construction,modification,orrepairofdams,bridges,culverts,weirs,low-watercrossings,low-headdams,intakeandoutfallstructures,boatramps,pipelinesandcablecrossings,grassedwaterways,leveesalongstreams,placementoffillwithinthefloodplain,andgravel/sanddredging.YouwillnotneedadampermitfromKDAifyourdam: •islessthan25feetinheight,andhasatotalcapacityof

lessthan50acrefeetofwateratthetopofthedam,or •islessthan6feetinheight.Yourdammaystillneedapermitasastreamobstruction(aswouldanyotherprojectlocatedinastreamchannel)ifthewatercourseisdefinedasastreambyKDA’schiefengi-neer.Generallyspeaking,ineasternKansasawatercourseisastreamforregulatorypurposesifthedrainageareaupstreamoftheprojectlocationismorethan240acres,whileincentralKansasthelimitis320acresandinwesternKansasthelimitis640acres.ItisrecommendedthatyouaskKDAforadeterminationaboutyourplannedprojecttoconfirmwhetherornotapermitisneeded.(785)296-3710

144

Beforedevelopingasourceoflivestockwater,youmayneedapermittoappropriatewaterforstockwateringpurposesaccord-ingtostatelaw.Ifyouplantowateryourlivestockfromapondandyouplantoimpoundmorethan15acre-feetofwater,approvalofanapplicationwillbenecessarybeforeconstructionbegins.Ifyouplantousegroundwaterinaconfinedfeedlotwithacapacityofmorethan1,000headofcattleorthatusesmorethan15acre-feetofwaterperyearfordairycattleorconfinedlivestockotherthancattle,thenyouneedtoobtainapermittoappropriatewaterbeforeconstructingthefacility.Ifyouplantowaterlivestockinapastureorinaconfinedfeedlotwithacapacityoflessthan1,000headofcattle,awaterappro-priationpermitisnotrequiredbecausetheusesareconsideredtobedomestic.http://www.ksda.govU.S. Army Corps of EngineersTheCorpsofEngineersrequiresthatpermitsbeobtainedtomeetrequirementsofSection10oftheRiversandHarborsActof1899andSection404oftheCleanWaterAct.Sec-tion404regulatesdischargeofdredgedorfillmaterialinallwatersoftheUnitedStates,includingrivers,streams,lakesandwetlands.Thisincludesworksuchassitedevelopmentfills,causewaysorroadfills,damsanddikes,artificialislands,bankstabilization(riprap,seawallsandbreakwaters)levees,landfills,fishattractors,mechanizedclearingofwetlands,pipelineandcablecrossings,grassedwaterways,otherchannelmodifications,andcertainexcavationactivities.Contactthecorpstodetermineifyourprojectrequiresa404permit.

Workin,on,over,andunderanavigablebodyofwateralsorequiresapermitthroughSection10oftheRiversandHar-borsAct.Examplesarebridgeconstruction,channelstraight-ening,andwetlanddraining.Contactthecorpstodetermineifyourprojectimpactsnavigablewater.http://www.nwk.usace.army.mil/regulatory/activities%20requiring%20permits%20fact%20sheet.pdf(816)839-3990 (KansasCityDistrict)Kansas Dept. of Health and Environment

BeforeaCorpsofEngineers404permitisissued,aSection401“WaterQualityCertification”isrequiredfromKDHEtoverifythattheprojectisincompliancewiththestatewaterqualitystandards.ThispermitisautomaticallyfiledwhenaSection404permitisrequested.Thecertificationmustbeissuedbythestatebeforethecorpswillissueitspermit.Thedepartmentmakesadeterminationoftheprojectedimpactonwaterqualityresultingfromtheproposedactionandmayapprovetheaction,approveitwithmodifications,ordenytheactionbasedonprojectedwaterqualityimpacts.KDHEalsorequiresawaterqualityprotectionplantoensurethatwaterqualityisnotimpairedduringconstruction.Thismustbepostedattheconstructionsiteduringconstruction.http://www.oznet.ksu.edu/library/h20ql2/mf2329.pdfhttp://www.kdheks.gov/nps/resources/nwpwqppfrm.pdf(785)296-0075

Permits in Kansas

145

Local code regulation and permitsManymunicipalities,counties,andwatershedprotectionareasrequirepermittingandreportingofwaterdevelopments.Checkwiththelocalcountyhealthdepartment,environmen-talresourcesdepartment,orcodeenforcementofficetodeter-minewhatregulationspertaintoyoursite.Kansas One-Call (1-800-DIG-SAFE)“KansasOne-Call”istheundergroundutilitynotificationcenterforthestateofKansas.Throughthiscenterapersoncannotifyoperatorsofundergroundfacilitiesofaproposedexcavationtorequestthatmembercompaniesmarktheirundergroundfacilities.Ifexcavationactivitiesaccidentallyseveropticfiberlinesorotherutilities,repaircostscanbeexpensive.CallBEFOREyoudig.KansasOne-Callservicepromotespublicsafety,protectsvitalutilityservicesandsafeguardsagainstpropertyandenvironmentaldamage.http://www.kansasonecall.com/(800)344-7233Other PermitsConfinedlivestockrequirepermitsotherthanthoselistedabove.Formoreinformation,review:http://www.kdheks.gov/feedlots

Permits in Kansas

146

Adams,E.1994.Ripariangrazing.EB1775.Wash.StateUniv.Ext.,Pullman.http://cru.cahe.wsu.edu/CEPublications/eb1775/eb1775.htmlAgric.andAgri-FoodCanada.undated.Solar-poweredwaterpumpingsystemsforlivestockwatering.Agric.andAgri-FoodCanada,Toronto.http://www.agr.gc.ca/pfra/water/facts/solar.pdfAlbertaAgric.,Food,andRuralDevelopment.rev.2003.Pas-turewatersystemsforlivestock.Agri-factsAgdex400/716-3.AlbertaAgric.,Food,andRuralDevelopment,Edmonton.http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/agdex644?opendocumentBartlett,B.1996.WateringSystemsforGrazingLivestock.218.GreatLakesBasinGrazingNetworkandMich.StateUniv.Ext.,EastLansing.Bellows,B.2003.Managedgrazinginriparianareas:live-stocksystemsguide.IP223/234.AppropriateTech.TransferforRuralAreas,Fayetteville.http://www.attra.org/attra-pub/PDF/managedgraze.pdfBlanchet,K.,H.MoeshnigandJ.DeJong-Huges.rev.2003.Grazingsystemsplanningguide.BU-07606-S.Univ.ofMinn.Ext.Serv.,St.Paul.http://www.extension.umn.edu/distribution/livestocksystems/components/DI7606.pdfBrown,L.2006.Sourcesforlivestockwater.OrderNo.590303-1.BritishColumbiaMinistryofAgric.andFood,Abbottsford.http://www.agf.gov.bc.ca/resmgmt/publist/500series/590303-1.pdf

Helpful Resources

Buchanan,B.undated.Tipsonhowtoselectapasturewater-ingsystem.AlbertaAgric.,FoodandRuralDevelopment,Leduc.http://www.quantumlynx.com/water/vol9no2/story6.htmBurns,R.,andM.Buschermohle.2000.Selectionofalterna-tivelivestockwateringsystems.PB1641.Univ.Tenn.Agric.Ext.Serv.,Knoxville.http://www.utextension.utk.edu/publications/pbfiles/PB1641.pdfDalrymple,R.1998.Waterpointsinroatationalstocking:Part.1of3.ForageLeaderMagazine,Fall1998,Vol.3(3).http://www.noble.org/Ag/Livestock/Waterpoint/PrintLayout_1_54657_54657.htmlDavis,R.2005.Savemoneyandtime.KansasAllianceforWetlandsandStreams,McPherson.http://www.kaws.org/PDF/Save%20Money%20and%20Time_10.21.05.pdfDept.ofAgricultureandAquaculture.undated.Livestockwateringsystemsforpasture.NewBrunswickAgriculture,FisheriesandAquaculture,Fredericton.http://www.gnb.ca/0173/30/0173300014-e.aspHenning,F.,M.RisseandW.Segars.1998.Hydraulicramsforoff-streamlivestockwatering.Univ.ofGeorgiaCoop.Ext.Serv.,Athens.http://www.engr.uga.edu/service/extension/publications/rampump3.pdf#search=%22rampump3%22Hilliard,C.andS.Reedyk(eds)Prairiewaterresources.SaskatchewanResearchCouncil,Saskatoon,SKhttp://www.quantumlynx.com/water/vol15no1/pwn_hm.htmlHilliard,C.andS.Reedyk.rev.2003.Alternativestodirectaccesslivestockwatering.AgricultureandAgri-FoodCanada,Toronto.http://www.agr.gc.ca/pfra/water/directac_e.htm

147

Landefeld,M.andJ.Bettinger.2002.Livestockwaterdevel-opment.Ext.FactsheetANR-12-02.OhioStateUniv.Ext.,Columbus.http://ohioline.osu.edu/anr-fact/pdf/0012.pdfMarsh,L.2001.Pumpingwaterfromremotelocationsforlivestockwatering.VirginiaCoop.Ext.Pub.No.442-755.VirginiaPolytechnicInstituteandStateUniv.,Petersburg.http://www.ext.vt.edu/pubs/bse/442-755/442-755.htmlMcCormack,K.rev.2001.Watermanagementguide:forlive-stockproduction,waterqualityandwildlifehabitat.OntarioCattlemen’sAssoc.andAgric.AdaptationCouncil,Guelph.McIver,S.2004.Usingoff-streamwatersourcesasaben-eficialmanagementpracticeinriparianareas–aliteraturereview.AgricultureandAgri-FoodCanadaPrairieFarmRehabilitationAdministration,Toronto.http://www.agr.gc.ca/pfra/land/OffStreamWatering_e.pdfMorris,M.andV.Lynne.2002.Solar-poweredlivestockwateringsystems.LivestockTech.Note.IP217.AppropriateTech.TransferforRuralAreas,Fayetteville.http://www.attra.org/attra-pub/PDF/solarlswater.pdfNorthCarolinaDivisionofSoilandWaterConservation.undated.Pasturemanagementcattleexclusionfromcreeks,streamsandrivers.NorthCarolinaDept.ofEnvironmentalandNaturalResources,Raleigh.http://www.enr.state.nc.us/dswc/pages/cattle&livestock.htmlPfost,D.,J.Gerrish,M.DavisandM.Kennedy.2003.Pumpsandwateringsystemsformanagedbeefgrazing.EQ380.Univ.Missouri.Ext.,Columbia.http://muextension.missouri.edu/explorepdf/envqual/eq0380.pdf

Powell,G.M.andH.George.2006.Alternativelivestockwatering:coveredconcretewaterer.MF2737.Kans.StateUniv.Agr.Exp.Sta.andCoop.Ext.,Manhattan.Ruhl,S.,J.Overmoyer,D.Barker,andL.Brown.undated.Usinggeotextilefabricinlivestockoperations.FactsheetAEX-304-97.OhioStateUniv.,Columbus.http://ohioline.osu.edu/aex-fact/0304.htmlSheffield,R.undated.Developingoff-streamwatersources.NorthCarolinaStateUniv.Coop.Ext.,Raleigh.http://www.bae.ncsu.edu/programs/extension/manure/cattle/developosws.pdfStone,R.andS.Clarke.2004.Alternativelivestockwateringsystems.Factsheet04-027.OntarioMinistryofAgric.andFood,Toronto.http://www.omafra.gov.on.ca/english/engineer/facts/04-027.htmSurber,G.,K.WilliamsandM.Manoukian.2005.Drink-ingwaterqualityforbeefcattle:anenvironmentfriendly&productionmanagementenhancementtechnique.AnimalandRangeSciences,ExtensionService,MontanaStateUniv.,Bozeman.http://animalrangeextension.montana.edu/Articles/NatResourc/Drinking%20Water%20Quality%20for%20Beef%20Cattle.pdfTurner,L.1997.Usinggeotextilesforfeedingandtrafficsur-faces.AEN-79.Univ.ofKentuckyCoop.Ext.Serv.,Frankfort.http://www.ca.uky.edu/agc/pubs/aen/aen79/aen79.pdfUndersander,D.andB.Pillsbury.1999.Grazingstreamsidepastures.A3699.Univ.ofWisconsinExt.,Madison.http://s142412519.onlinehome.us/uw/pdfs/A3699.PDFWells,G.1995.Wateringsystemsforgrazinglivestock.PM-1604.IowaStateUniv.,Ames.http://www.extension.iastate.edu/Publications/PM1604.pdf

148

Contributors

hardened surface access

p.101 Balch,Phil TheWatershedInstitute

windmill p.69 Blocksome,Carol

KSUExtension-Agronomy

horizontal well p.21 Haag,Dennis TetraTech,Inc.water harvesting p.37 Haag,Dennis TetraTech,Inc.

solar power p.55 Herschel,George

KSUExtension-KCARE

bottomless tank p.109 Herschel,George

KSUExtension-KCARE

concrete waterer p.93 Herschel,George

KSUExtension-KCARE

super-insulated waterer

p.105 Herschel,George

KSUExtension-KCARE

wet well p.27 Herschel,George

KSUExtension-KCARE

fiberglass or galvanized tank

p.117 Howell,Mary KansasRuralCenter

hardened mat p.123 Howell,Mary KansasRuralCenterhauled water p.49 Howell,Mary KansasRuralCenterwater storage tank p.87 Howell,Mary KansasRuralCenterdeveloped spring p.17 Jost,Jerry KansasRuralCenterstream p.9 Kirkham,Dale KansasRuralCenterpond and pit p.13 Kirkham,Dale KansasRuralCenteranimal activated pumping system

p.73 Kirkham,Dale KansasRuralCenter

limited access watering points

p.97 Kirkham,Dale KansasRuralCenter

fencing the pond p.131 Kirkham,Dale KansasRuralCenter

grazing manage-ment changes for water quality

p.127 Kirkham,Dale KansasRuralCenter

tire tank p.113 Kirkham,Dale KansasRuralCenterdrilled well p.31 Powell,Morgan KSUExtension-

BAEpump p.59 Powell,Morgan KSUExtension-

BAEpipeline network from off-site water source

p.83 Powell,Morgan KSUExtension-BAE

water powered pump

p.77 Powell,Morgan KSUExtension-BAE

wind powered air pressure system

p.65 Powell,Morgan KSUExtension-BAE

rural water district p.45 Powell,Morgan KSUExtension-BAE

KSU–KansasStateUniversity

BAE–DepartmentofBiologicalandAgriculturalEngineering

KCARE–KansasCenterforAgriculturalResourcesandtheEnvironment

149

Photo Credits Design Credits

BrentWoods NRCS-SouthDakota p.72CarolBlocksome KSUExtension-

Agronomyp.FrontCover,8,12,44,48,53,58,76,100,108

DaleKirkham KansasRuralCenter p.86HerschelGeorge KSUExtension-KCARE p.7,26,64,135JerryJost KansasRuralCenter p.2,3,4,5,16,91,112,

116,126,130MaryHowell KansasRuralCenter p.4,5,96MorganPowell KSUExtension-BAE p.36,68StacieMinson KSUExtension-KCARE p.122WaterFick KSUExtension-

Agronomyp.104,121

Snyder&Asso-ciatesConsultingEngineers

p.20

ArtKohl AgriculturalProducer p.30

ChristopherMiceli TetraTech,Inc. p.38,56,98,114MorganPowellandPatHackenberg

KSUExtension-BAEKSUExtension-Communications

p.14,18,19,22,28,32,60,66,70,74,78,80,82,88,94,106,110,115,124,132

Brandnamesappearinginthispublicationareforproductidentificationpurposesonly.Noendorsementisintended,noriscriticismimpliedofsimilarproductsnotmentioned.

PublicationsfromKansasStateUniversityareavailableontheWorldWideWebat:www.oznet.ksu.edu

Contentsofthispublicationmaybefreelyreproducedforeducationalpurposes.Allotherrightsreserved.Ineachcase,creditCarolBlocksomeandMorganPowell,editors,WaterersandWateringSystems:AHandbookforLivestockProducersandLandowners,

KansasStateUniversity,January,2007.

Kansas State University Agricultural Experiment Station and Cooperative Extension Service

S-147 January,2007

K-StateResearchandExtensionisanequalopportunityproviderandemployer.IssuedinfurtheranceofCooperativeExtensionWork,ActsofMay8andJune30,1914,asamended.KansasStateUniversity,CountyExtensionCouncils,ExtensionDistricts,andUnitedStatesDepartmentofAgricultureCooperating,FredA.Cholick,Director.


Recommended