+ All Categories
Home > Documents > Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

Date post: 21-Dec-2015
Category:
View: 214 times
Download: 0 times
Share this document with a friend
Popular Tags:
36
Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan
Transcript
Page 1: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

Wave Modeling, Tomography, Geostatistics and Edge

Detection

Youli Quan

Page 2: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

Modeling Waves in a Borehole

First Topic

Page 3: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

Modeling Waves in a Borehole

• Borehole models

• Mathematical description

• Examples

• Conclusions

Page 4: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

Borehole models

• Mathematical description

• Examples

• Conclusions

Modeling Waves in a Borehole

Page 5: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

BOREHOLE RELATED SEISMIC MEASUREMENTS

o o

Vertical seismic profiling

o

Cross-boreholeprofiling

Singleboreholeprofiling

o

Soniclogging

Fluid-filledborehole

xSource

Fluid-filledborehole

Page 6: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

BOREHOLE MODELS

Radially layered model

z

r

z

r

Complex radially symmetric model

Page 7: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

Formation

Cement

Fluid

Steel

Page 8: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

• Borehole models

Mathematical description

• Examples

• Conclusions

Modeling Waves in a Borehole

Page 9: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

u(r, z, t) (e )

˜ (r, k, ) cp

( j)ei( j)(r( j) r) ˜ H o

(2)(( j)r) cp

( j)ei( j) (r r( j) ) ˜ H o

(1)(( j)r)

˜ (r, k, ) cs

( j)ei

( j)(r( j) r ) ˜ H 1(2)(

( j)r) cs

(j )ei

( j) (r r( j) ) ˜ H o(1)(

(j )r)

(j ) (

( j)

)2 k2 (j ) (

( j)

)2 k 2

In the radially symmetric medium, the displacement

where

The general solutions in the jth layer are

Page 10: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

Modified R/T matrices

J J+1

c( j1) = T+

( j)c( j) + R-+

( j)c( j1)

R-+

(j)c( j1)

c( j1)

T-

( j)c( j1)

T+

( j)c( j)

c( j)

R+-

(j)c( j)

c( j) = R+-

(j)c( j) + T -

( j)c( j1)

J+1J

Page 11: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

Generalized R/T matrices

J+2J+1Jc

( j)

c( j1) = ˆ T +

( j)c( j)

c( j) = ˆ R +-

( j)c( j)

Page 12: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

A recursive relation

with the initial condition

ˆ R (j ) R

( j) T( j) ˆ R

( j1) ˆ T ( j)

ˆ T ( j) [I R

( j) ˆ R ( j1)]T

( j)

ˆ R (N1) 0

j = N, N-1, .., 1

Page 13: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

• Borehole models

• Mathematical description

Examples

• Conclusions

Modeling Waves in a Borehole

Page 14: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4

Qp

Radius (m)

Qs

1000

2000

3000

4000

5000

6000

0 0.1 0.2 0.3 0.4

Vp

Radius (m)

Vs

V e l o c i t i e s ( m / s e c )

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4

Density

Radius (m)

A simple fluid-filled open borehole

Time (ms)

0 1 3 422.44

5.44

Sou

rce-

rece

iver

off

set

(m)

Seismograms in this simple borehole

Page 15: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

1000

2000

3000

4000

5000

6000

0 0.1 0.2 0.3 0.4

Vel

ocit

ies

(m/s

ec)

Radius (m)

Vp

Vs

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4

Density

Radius (m)

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4

Qp

Radius (m)

Qs

Time (ms)0 1 2 3 4

Sou

rce-

rece

iver

off

set

(m)

2.44

5.44

Seismograms in this damaged borehole

A damaged fluid-filled open borehole

Page 16: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

Seismograms in this flushed borehole

Time (ms)0 1 2 3 4

Sou

rce-

rece

iver

off

set

(m)

2.44

5.44

A flushed fluid-filled open borehole

1000

2000

3000

4000

5000

6000

0 0.1 0.2 0.3 0.4

Vel

ocit

ies

(m/s

ec)

Radius (m)

Vp

Vs

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4Radius (m)

Qp

Qs

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4Radius (m)

Density

Page 17: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

o Source

Receivers

100 m

150 m

10 m Formation I Formation II

Borehole

xxxxxxxxxx

REFLECTION DUE TO AN OUTER-CYLINDRICAL FORMATION

Model

Vp=3 km/sVs=1.8 km/s

Vp=1.9 km/sVs=1.4 km/s

Page 18: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

Seismograms (fo = 800 Hz)

SP-SS-P

P-P-P-P

S-SP

Tube wave

P-P

10

150

10 50 100 150Time (ms)

source - receiver offset (m)

Page 19: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

A SYNTHETIC CROSSWELL SURVEY

ooooooooooooooo

30 m

ReceiversSources

Cased borehole

Vp=5 km/sVs=2.9 km/s

Vp=5.8 km/s

Vs=3.3 km/s100 m

Formation

(a) Model. There is a fault in the formation (b) A common receiver gather

Tube Wave

S-wave

P-wave

xxxxxxxxxxxxxxx

30 m

10 20 30 400Time (ms)

0

S-Roffset

(m)

100

Page 20: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

• Borehole models

• Mathematical description

• Examples

Conclusions

Modeling Waves in a Borehole

Page 21: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

• A new wave modeling method based on the generalized R/T coefficients is developed for complex borehole simulations.

• This method is efficient, robust, and accurate. It has been applied to sonic logging, crosswell profiling, and single borehole profiling.

Page 22: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

Attenuation Tomography

Second Topic

Page 23: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

Acoustic Sources

Acoustic Receivers

Lower Absorption

Higher Absorption

Higher frequencyWaveform

Lower frequencyWaveform

Waveform and Attenuation

Page 24: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

Measure Attenuation from Waveform

Medium ResponseH(f)

Incident WaveS(f)

Transmitted WaveR(f)=S(f)H(f)

H ( f ) exp [ f odl ]

Page 25: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

xxxxxxxxxxxx

oooooooooooooo

Sources Receivers

Vf=5 kft/sQf=20

70 ft

100 ftVp=11.8 kft/sVs=6.9 kft/sQp=30

Vp=12 kft/sVs=7 kft/sQp=60

25 65

(a) Original model (b) Reconstruction

SYNTHETIC EXAMPLE ON ATTENUATION TOMOGRAPHYCrosswell geometry, RT method for modeling

Page 26: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

Geostatistics

Third Topic

Page 27: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

Geostatistics

• Introduction

• Variogram

• Kriging

Page 28: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

Introduction

• Variogram

• Kriging

Geostatistics

Page 29: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

• Geostatistics is the study of phenomena that fluctuate in space.

• It offers tools aimed at understanding and modeling spatial variability.

• These tools include histogram, covariance, variogram, kriging, simulation, and etc.

Page 30: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

• Introduction

Variogram

• Kriging

Geostatistics

Page 31: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

hh

ji

ij

vvhN

h 2)()(2

1)(

x

x

x xx

x

x

x

xx

xx

x

x

xx

x

x

xx

xx

x

x

vivjhij

Experimental Models:

Page 32: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

Theoretical Models:

otherwise

if ])(5.0)(5.1[ )(

3

A

a h ahahAh )]

3exp(1[ )(

a

hAh

Exponential Model Spherical Model

Page 33: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

• Introduction

• Variogram

Kriging

Geostatistics

Page 34: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

x

x

x xx

x

x

xx

x x

x

x

x

x

xx

x

x

x

o

Kriging is a linear estimator with following features:

vi

)ˆ( i

iivwv

(a) Weighting factors are solved based on the selected variogram.

(b) It has minimum variance of the estimation errors.

(c) The estimation is unbiased.

(d) Estimated values has the same statistical properties as given

data

Page 35: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.
Page 36: Wave Modeling, Tomography, Geostatistics and Edge Detection Youli Quan.

Recommended