+ All Categories
Home > Documents > Wavelets - NYU Center for Data Science

Wavelets - NYU Center for Data Science

Date post: 27-Mar-2022
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
49
Wavelets DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science Carlos Fernandez-Granda
Transcript

Wavelets

DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science

Carlos Fernandez-Granda

Prerequisites

Linear algebra (basis, projection, orthogonal complement, direct sum)

Fourier series

Discrete Fourier transform

Short-time Fourier transform

Image

Vertical line (column 135)

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0

Multiresolution analysis

Scale / resolution at which information is encoded is not uniform

Goal: Decompose signals into components at different resolutions

Challenge: Design basis of vectors to achieve this

If vectors are orthogonal, then we can just project onto them to separatecontributions of each scale

Father wavelet

We use a low-pass vector, called scaling vector or father wavelet, to extractcoarsest scale

Haar father wavelet

Approximation using Haar father wavelet

Approximation Coefficients

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0DataApproximation

0.04 0.02 0.00 0.02 0.0402468

10121416

Mother wavelets

We use shifts and dilations of mother wavelet to capture information atdifferent scales

We can choose the shifts so that the basis vectors are all orthogonal

Haar mother wavelets

Father wavelet + coarsest mother wavelet

Approximation Coefficients

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0DataApproximation

0.04 0.02 0.00 0.02 0.040.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Father wavelet + 2 coarsest mother wavelets

Approximation Coefficients

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0DataApproximation

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

Father wavelet + 3 coarsest mother wavelets

Approximation Coefficients

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0DataApproximation

0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Father wavelet + 4 coarsest mother wavelets

Approximation Coefficients

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0DataApproximation

0 2 4 6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Father wavelet + 5 coarsest mother wavelets

Approximation Coefficients

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0DataApproximation

0 5 10 150.2

0.0

0.2

0.4

0.6

0.8

Father wavelet + 6 coarsest mother wavelets

Approximation Coefficients

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0DataApproximation

0 10 20 300.1

0.0

0.1

0.2

0.3

0.4

Father wavelet + 7 coarsest mother wavelets

Approximation Coefficients

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0DataApproximation

0 20 40 60

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Father wavelet + 8 coarsest mother wavelets

Approximation Coefficients

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0DataApproximation

0 25 50 75 100 125

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Father wavelet + 9 coarsest mother wavelets

Approximation Coefficients

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0DataApproximation

0 50 100 150 200 2500.2

0.1

0.0

0.1

0.2

Multiresolution decomposition

Let N := 2K for some K , a multiresolution decomposition of RN is asequence of nested subspaces VK ⊂ VK−1 ⊂ . . . ⊂ V0 satisfying:

I V0 = RN

I If x ∈ Vk then x shifted by 2k is also in Vk (invariance to translations)

I Dilating x ∈ Vj yields vector in Vj+1

Example

Subspace Vk contains vectors that are constant on segments of length 2k

Satisfies conditions:

I V0 = RN

I If x ∈ Vk then x shifted by 2k is also in Vk (invariance to translations)

I Dilating x ∈ Vj yields vector in Vj+1

Spanned by shifts/dilations of Haar father wavelets

Problem: Basis vectors are not orthogonal (at all!)

Solution

Decompose the finer subspaces into a direct sum

Vk = Vk+1 ⊕Wk , 0 ≤ k ≤ K − 1,

Wk is the orthogonal complement of Vk+1 in Vk , so it capturesfinest resolution available at level k

We can then decompose RN into different scales

RN = V0 = V1 ⊕W1

= V2 ⊕W2 ⊕W1

= Vk ⊕Wk ⊕ · · · ⊕W2 ⊕W1

Haar multiresolution decomposition

V3

W3

W2

W1

PVk x is an approximation of x at scale 2k

Vertical line (column 135)

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0

Projection onto V9

Projection Coefficients for V9

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0DataApproximation

0.04 0.02 0.00 0.02 0.0402468

10121416

Projection onto V8

Projection Coefficients for W9

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0DataApproximation

0.04 0.02 0.00 0.02 0.040.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Projection onto V7

Projection Coefficients for W8

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0DataApproximation

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

Projection onto V6

Projection Coefficients for W7

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0DataApproximation

0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Projection onto V5

Projection Coefficients for W6

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0DataApproximation

0 2 4 6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Projection onto V4

Projection Coefficients for W5

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0DataApproximation

0 5 10 150.2

0.0

0.2

0.4

0.6

0.8

Projection onto V3

Projection Coefficients for W4

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0DataApproximation

0 10 20 300.1

0.0

0.1

0.2

0.3

0.4

Projection onto V2

Projection Coefficients for W3

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0DataApproximation

0 20 40 60

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Projection onto V1

Projection Coefficients for W2

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0DataApproximation

0 25 50 75 100 125

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Projection onto V0

Projection Coefficients for W1

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0DataApproximation

0 50 100 150 200 2500.2

0.1

0.0

0.1

0.2

Haar mother wavelets in the frequency domain

200 150 100 50 0 50 100 150 200Frequency

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16 Width: 200Width: 100Width: 50

Time-frequency support of basis vectors

STFT Wavelets

2D Wavelets

Extension to 2D by using outer products of 1D basis vectors

To build a 2D basis vector at scale (m1,m2) and shift (s1, s2) we set

v2D[s1,s2,m1,m2]:= v1D[s1,m1]

(v1D[s2,m2]

)T,

where v1D can refer to 1D father or mother wavelets

Nonseparable designs: steerable pyramid, curvelets, bandlets...

2D Haar wavelet basis vectors

Image

2D Haar wavelet decomposition

Approximation Coefficients

300

310

320

330

340

350

2D Haar wavelet decomposition

Approximation Coefficients

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

2D Haar wavelet decomposition

Approximation Coefficients

5051015202530

5051015202530

5051015202530

2D Haar wavelet decomposition

Approximation Coefficients

5

0

5

10

15

5

0

5

10

15

5

0

5

10

15

2D Haar wavelet decomposition

Approximation Coefficients

642

0246

642

0246

642

0246

2D Haar wavelet decomposition

Approximation Coefficients

6

4

2

0

2

4

6

4

2

0

2

4

6

4

2

0

2

4

2D Haar wavelet decomposition

Approximation Coefficients

2

1

0

1

2

3

2

1

0

1

2

3

2

1

0

1

2

3

2D Haar wavelet decomposition

Approximation Coefficients

2.01.51.00.5

0.00.51.01.5

2.01.51.00.5

0.00.51.01.5

2.01.51.00.5

0.00.51.01.5

2D Haar wavelet decomposition

Approximation Coefficients

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

2D Haar wavelet decomposition

Approximation Coefficients

0.60.40.2

0.00.20.40.6

0.60.40.2

0.00.20.40.6

0.60.40.2

0.00.20.40.6

What have we learned

Framework for multiresolution analysis based on wavelets

Implementation based on Haar wavelets

Extension to two dimensions


Recommended