+ All Categories
Home > Documents > Wdm the Transmode Way

Wdm the Transmode Way

Date post: 03-Mar-2016
Category:
Upload: lidia-brigido
View: 273 times
Download: 4 times
Share this document with a friend
Description:
Topologia WDM

of 17

Transcript
  • 13/10/2015 3.CreatingthetopologyWDMtheTransmodewayWDMtheTransmodeway(html)TechnologiesTransmode

    http://www.transmode.com/en/technologies/wdmthetransmodeway/wdmthetransmodewayhtml/3creatingthetopology 1/17

    CookieInformation IAcceptcookies

    FollowingtherecentEUdirectivethiswebsitedoesnotautomaticallyusecookies.Withoutcookies,itisnotperformingaswellasitcan.Ifyouwouldliketoenjoythefullfunctionalityofthiswebsite,youhavetoacceptcookies.

    Home Technologies WDMtheTransmodeway(html) WDMtheTransmodeway 3.Creatingthetopology

    Investors Careers Partners Search...

    CompanyResourcesServicesTechnologiesProductsSolutions

  • 13/10/2015 3.CreatingthetopologyWDMtheTransmodewayWDMtheTransmodeway(html)TechnologiesTransmode

    http://www.transmode.com/en/technologies/wdmthetransmodeway/wdmthetransmodewayhtml/3creatingthetopology 2/17

    TechnologiesTechnologiesOverview

    WDMCWDM

    DWDM

    iWDM

    FlexibleOpticalNetworksROADM

    NativePacketOptical2.0CarrierEthernet2.0

    MPLSTP

    SoftwareDefinedNetworking

    100G

    iAccessiWDMPONAccessNetworks

    iSync

    LowPowerDesign

    HighDensityDesign

    WDMtheTransmodewayIntroductionandContent

    1.Opticsandcommunications

    2.WDMnetworkingtechnologies

    3.Creatingthetopology

    4.Addingtraffic

    5.Operatingthenetwork

    Summary

    Index

    3.Creatingthetopology3.1Executivesummaryofchapter3Usingthetransmissionandmultiplexingtechnologiesdescribedinchapter2,endtoendlightpathspassingmultipleintermediatenodescanbecreated.Thelightpathsactasopticalcircuitsthatareroutedthroughthenetworkpermanentlyorsetupbydemand.Inchapter3thefocusisontheselightpaths:

    UsingWDMwavelengthstocreateacompleteopticaltransportnetwork.Routingofwavelengthsbetweennetworknodesusingadddropmultiplexers(OADMandROADM)andwhytherearemultipletypesofROADMs.WDMintheaccessnetwork.HowWDMlightpathscanbeconfiguredtoprotectthetransportnetworkandmakeitmoreresilient.

    3.2TransportnetworksintelecomTheequipmentandfibershandlingthephysicaltransportofsignalsinthetelecommunicationsnetworkareoftenreferredtoasthetransportnetwork.Howshouldsuchanetworkbedesignedandoperated?Therearedifferentwaystosolvethistask.

    Whetheranationwideormetropolitannetworkisbeingconstructed,thenetworkdesignermustconsidertwodifferentaspectsofnetworklifeitsplannedexpansionovertimeanditsdaytodayoperations.

    PLANNEDEXPANSIONTHELONGERTERMPERSPECTIVEPlanningofthenetworkisalongertermactivitytypicalperformedofflineinanofficeenvironment.Whenplanningthetransportnetwork,factorssuchastheseareimportant:

    Locationofnodesbasedonsiteavailabilityandcost.Availabilityandcostoffiberssinglefiber,fiberpairs,owncables,leaseddarkfiber.Customer/userlocations,typesoftraffic,capacityneedsnowandinthefuture.Futureexpansionofthenetworktopologyandcapacity.Needofredundantlinksandequipmentforprotectionagainstfaults.

    OPERATIONSTHESHORTERTERMPERSPECTIVETheoperationalperspectivecoversthedaytodayoperationsofthenetwork.Thesetasksareperformedindirectcontactwiththeopticalnetwork,typicallyfromanetworkmanagementcenter(NMC).Examplesofoperationaltasksthatinfluencethenetworkdesignandputrequirementsontheflexibilityofthenetworkare:

    Proceduresforconnectinguserstothenetwork.Proceduresforexpandingthenetworkandaddingmorelinks.Manualorautomaticproceduresforprotectionswitching,i.e.thereroutingoftrafficonalternativelinksincaseofanodefailureorlinkoutage.

    Boththelongerandshortertermactivitiesrequireasetofflexibleandmanageablenetworkelementsthatcanformthetransportnetwork:TheseelementsaretheTMSeries.

    3.3WDMasthetransportnetworkTheTMSeriesisafourthgenerationopticalnetworkingsystemthatcombinesthemostadvancedopticaltransmissiontechnologieswiththeswitchingoflightpathsandthepacketizationofinformationintoamultifunctionalpacketopticaltransportnetwork.Itsprincipalelementsarethetranspondersandmuxpondersthatallowtraffictoenterandleavetheopticalnetworkandtheopticalfilters,multiplexers/demultiplexersandreconfigurableopticaladddropmultiplexersthatmultiplexandsendwavelengthsoflightindifferentdirectionsasdirectedbythecontrollingmanagementsystem.(Figure28)

    Figure28.AtypicalWDMopticalnetworkcoveringaccesstolonghaul.

    Anopticalnetworkprovidescircuitswitchedendtoendopticalchannelsorlightpathsbetweennetworknodesandtheirusers,theclients.Alightpathismadeupofawavelengthbetweentwonetworknodesthatcanberoutedthroughmultipleintermediatenodes.Theintermediatenodesdirectthewavelengths.Theopticalnetworkmaythusbethoughtofasawavelengthroutingnetwork.Lightpathsaresetupandtakendownasrequiredbytheusersofthenetwork.

    ItisimportanttorememberthatthelightpathsinaWDMnetworkareendtoendconnections,andshouldbeconsideredastheequivalentsofuninterruptedwires,stretchingfromonepointinthenetworktoanotherwhilepassingoneorseveralnodes.ThisisasignificantdifferencefromtheprinciplesofclassicalTDMopticaltransportnetworks,suchasSDHandSONET,wherethesignalsareregeneratedateachnodetheequivalentuninterruptedwirestretchesonlybetweentwonodes.Hence,aWDMnetworkrequirescarefulwavelengthplanning,todefinewhereeachwavelength(wire)startsandends,whileanSDH/SONETnetworkmakesallsignalsavailableineverynodepassed.Theendtoendaspectalsoaffectshowthepowerbudget(i.e.signalattenuation)iscalculated:InaWDMnetwork,theopticaltransmissioncharacteristicsforawavelengthhastobecalculatedforthecompletedistancethelightpathtraverses;forSDH/SONETanewpowerbudgetiscalculatedforeachhopbetweentwoadjacentnodes.(Figure29)

  • 13/10/2015 3.CreatingthetopologyWDMtheTransmodewayWDMtheTransmodeway(html)TechnologiesTransmode

    http://www.transmode.com/en/technologies/wdmthetransmodeway/wdmthetransmodewayhtml/3creatingthetopology 3/17

    Figure29.ComparisonbetweenanSDH/SONETandaWDMnode.IntheSDH/SONETnode(left)alltrafficsignalsareregeneratedandswitched,makingthemavailableforaddanddrop.IntheWDMnode(right)onlyselectedsignals(wavelengths)areavailableforaddanddrop,therestareglassedthrough.

    Thelightpathsoftheopticalnetworkhaveseveralimportantcharacteristics:

    Theyaretransparent,i.e.theycancarrydataatvariousrates,withdifferentprotocolsetc.Thisenablestheopticallayertosupportavarietyofhigherlayerprotocolsconcurrently.Wavelengthanddatarateusedaresetbytheterminatingnodes.Henceanindividuallightpathmaybeupgradedtohighercapacitybysimplychangingtrafficunitsinthestartandendnodes,withoutaffectinganyequipmentinintermediatenodes.ThisisafundamentaldifferencetoSDH/SONETaswellasnetworksofinterconnectedEthernetswitches.Lightpathscanbesetupandtakendownondemand,equivalenttotheestablishmentofcircuitsinacircuitswitchednetwork.Alternativelightpathscanbeconfiguredandkeptinstandbymodesothatintheeventofafailure,trafficmaybereroutedandtheservicemaintained.Wavelengthscanbereused.Ifalightpathusingaparticularwavelengthendsinonenode,thesamewavelengthcanbereusedinanotherlightpathheadinginanotherdirection.ThewholeconceptofWDMandlightpathsisbasedonanalogopticaltransmissiontechniques,makingparameterssuchasdispersion,signalattenuation,opticalsignaltonoiseratioandinterferenceoverthewholelengthofthepathimportanttocontrol.

    3.4NodesandnetworkelementsThelightpathsoftheopticalnetworkpassnodesofdifferenttypes,eachcomprisingoneormoremanagednetworkelements.Theprincipalnodesoftheopticalnetworkfromatopologyperspectivearetheterminalmultiplexer,theopticaladd/dropmultiplexer(OADM)andthereconfigurableopticaladd/dropmultiplexer(ROADM).Thesenodesallow

    lightpathstoentertheopticalnetworkandtoberoutedtoanydesiredpointofexit.9

    3.4.1TheterminalmultiplexerClientsoftheWDMopticalnetworkareinterfacedtothenetworkviatranspondersandmuxponders.Theprincipaldifferenceisthatatransponderisasignal/wavelengthconverter(onesignalinandonesignalout),whilethemuxponderhascircuitrythatcombinesseveralclientsignalsintoonelinesignalandviceversa.Thetransponder/muxponderandanassociatedmultiplexer/demultiplexerareoftenreferredtoasaterminalmultiplexer

    (terminalmux)orterminalnode.10

    9Theopticalcrossconnect(OXC)issometimesalsoreferredtoasaprincipalnodeofanopticalnetwork.However,inmostcasesthesamefunctionalitycanbeachievedwithcombinationsofROADMunits;hencetheOXCisnotdescribedhere.10Theterminalmultiplexerissometimescalledanopticallineterminal(OLT),especiallyinresidentialbroadband

    accessnetworkapplications.

    Thetransponder/muxponderisanopticalelectricalopticalunitthatadaptstheincomingsignaltoaformatforuseinsidetheopticalnetwork.Theincomingwavelengthmayneedtobeconverted.Overheadfornetworkmanagement,forwarderrorcorrectionandotherpurposesmustbeadded.Biterrorscountedandstatisticsforwardedtothemanagementsystem.Andinthecaseofthemuxponder,severalbitstreamsaretimedivisionmultiplexedintoahigherratebitstream.Thenextchapterdescribesthefunctionsofthetranspondersandmuxpondersinmoredetail.(Figure30and31)

  • 13/10/2015 3.CreatingthetopologyWDMtheTransmodewayWDMtheTransmodeway(html)TechnologiesTransmode

    http://www.transmode.com/en/technologies/wdmthetransmodeway/wdmthetransmodewayhtml/3creatingthetopology 4/17

    Figure30.Blockdiagramofaterminalmultiplexerwithatransponderandamuxponder.

    Figure31.ATMSeriesterminalmultiplexercombining2.5Gbit/sand10Gbit/sdataratesonCWDMandcomprisingtwomuxponders,atransponderandaCWDMmultiplexer/demultiplexer.Allunitsarehousedinonesinglechassis.

    3.4.2Theopticaladd/dropmultiplexer(OADM,ROADM)ThelightpaththathasenteredtheopticalWDMnetworkviaaterminalmultiplexermustberoutedtoitsdestinationviaintermediatenodesthatcandirectthewavelengthtowardsthedesiredpointofexit.Thetaskofroutingthelightpathsisperformedbytheopticaladd/dropmultiplexer(OADM)andthereconfigurableopticaladd/dropmultiplexer(ROADM).(Figure32)

    Figure32.AnationalopticaltransportnetworkcomprisingmultipleOADMandROADMnodesthatroutelightpathsbetweenvariousclientsofthenetwork.

    Consider,forexample,thesituationdepictedinthefollowingdiagram.Afiberringspansametroarea,withtrafficoriginatingandleavingtheringat10locations,wherelocationsHUBAandHUBBareactingascentralhubsforthetraffic.(Figure33)

  • 13/10/2015 3.CreatingthetopologyWDMtheTransmodewayWDMtheTransmodeway(html)TechnologiesTransmode

    http://www.transmode.com/en/technologies/wdmthetransmodeway/wdmthetransmodewayhtml/3creatingthetopology 5/17

    Figure33.Anexampleofametropolitanfiberringwithprotection(trafficissentintwodirections)andadd/dropofDWDMwavelengths.Thisisalsoanexampleofhowthesamewavelengthmaybereusedondifferentsegmentsofthering.

    Sucharingtopologyrequiresanopticalelementthatcanremoveandaddwavelengthsfromtheringatdemandandforwardthemtowardstheclientfacingequipmentitrequiresanadd/dropmultiplexer.Severalapproachescanbeusedwhenimplementinganadd/dropmultiplexer,andtheTMSeriescomprisesopticalfilters,bandsplitterunits,mux/demuxesandcompleteROADMsforthispurpose.

    3.4.2.1TheopticalfilterasOADMAfullypassiveopticalfiltercanbeusedinCWDMandDWDMnetworkstoadd/droponeormorewavelengths.Themainadvantageoftheopticalfilterapproachisitssimplicityanddirectscalabilityonlywhenmorechannelsaretobedropped,morefiltersneedtobeinstalled.Themaindisadvantageistheattenuationthatisintroducedateachfilterpointandtheplanningrequiredinassigningwavelengthstothedesiredlightpaths.(Figure3435)

    Figure34.Principleofapassive,filterbased,opticaladd/dropmultiplexer.Onewavelength(1)ispassedthroughtheOADM,andanotherwavelength(2)isdropped.Newsignalsarethenaddedwhenthewavelengthiscontinued.

    Figure35.TheopticalfilterusedasanOADM

    3.4.2.2Themux/demuxasOADMAnalternativeapproachforaddinganddroppingchannelsatanintermediatesiteistodemultiplexallthelinewavelengthsandextract/addthedesiredchannels,whilelettingtherestofthewavelengthspassthrough.(Figure36)

    Figure36.Add/dropofawavelengthsusingapairofmux/demux.

    Thisapproachismoreefficientthanfiltersifmanychannelsaretobedroppedatonelocation.Sinceallwavelengthsarecateredforfromthebeginningandthemux/demuxhasafixedattenuation,thisapproachalsobecomesmoreflexibleandrequireslessadvanceplanningthanwithopticalfiltersinseries.However,theamountofequipmentneededandthusthecostishigherthanforafiltersolution.Also,theamountofpatchcordsforinterconnectingthewavelengthstobepassedthroughaddstothecomplexityandcancreatehandlingproblems.

    FortheTMSeriesadd/dropwithopticalmux/demuxcanbeusedonbothsinglefiberandfiberconfigurationswithCWDMandonfiberpairconfigurationswithDWDM.

  • 13/10/2015 3.CreatingthetopologyWDMtheTransmodewayWDMtheTransmodeway(html)TechnologiesTransmode

    http://www.transmode.com/en/technologies/wdmthetransmodeway/wdmthetransmodewayhtml/3creatingthetopology 6/17

    CWDMandonfiberpairconfigurationswithDWDM.

    Whenlargernumbersofchannelsaretobedroppedtheaboveprinciplecanbeextendedbyuseofabandsplitterunit,whichextracts/insertsawholebandofwavelengthsfordemultiplexingbyamux/demuxasshowninthefollowingdiagram.(Figure37)

    Figure37.OADMina40channelDWDMsystem.8channelsareadded/droppedasabandbythebandsplitterunitandmadeindividuallyavailableviatwomux/demuxes.Theremaining32channelsarepassedthroughthebandsplitterunittransparently.

    3.4.3TheROADMInasmallandstaticopticalnetwork,OADMnodesoftheabovetypesmaybethebestsolution.However,inlargernetworks,thefrequentestablishmentandreassignmentoflightpathsmakeremotereconfigurabilityaverydesirableattributeinanOADM.Reconfigurabilityreferstotheabilitytoselectthedesiredwavelengthstobedroppedandaddedonthefly,asopposedtohavingtoplanaheadanddeployappropriateequipment.Reconfigurabilityallowslightpathstobesetupandtakendowndynamicallyasneededbetweennetworknodesandisthetaskofthereconfigurableopticaladd/dropmultiplexer,theROADM.(Figure38)

    Figure38.Theaddingofnewlightpathswithredandbluewavelengthsrequireschangesinnodeconfigurations.

    ROADMsareusedinbusandringnetworkstoenableflexibleadd/dropofwavelengthsandhitlessexpansionwherewavelengthscanbeaddedwithoutinterruptionsoftrafficonadjacentchannels.Whenusedinameshedopticalnetwork,ROADMscanprovidetotalflexibilityintheroutingoflightpaths.TheflexibilityofROADMsthusbenefitstheoperatorwantingtoadapttochangingsubscriberrequirements,aswellasincreasingnetworkavailabilitybysimplifyingprotectionswitchingandrestorationoflightpaths.Itcanevenbeusedforsettinguplightpathsdynamicallyondemandinspecialapplications,forexampleifthereisamajormediaeventatasiterequiringbandwidthjustforafewhours.(Figure39)

  • 13/10/2015 3.CreatingthetopologyWDMtheTransmodewayWDMtheTransmodeway(html)TechnologiesTransmode

    http://www.transmode.com/en/technologies/wdmthetransmodeway/wdmthetransmodewayhtml/3creatingthetopology 7/17

    Figure39.Exampleofameshedopticalnetwork.WithmultidegreeROADMnodesinthenodesthelightpathscanbedirectedtoanydestination,providingmaximumflexibilityforthenetworkoperatorandsuperiorresiliencetolinkoutages.

    AROADMbasednetworkdecreasestheoperatorstimetorevenuesinceservicescanbeprovidedrapidlywhenlightpathsaresetupremotelywithouttheneedofdispatchingtechnicianstonetworknodes.CommissioningandoperationoftheentirenetworkbecomessimplifiedandthecentralizedmanagementofROADMnodesenablesmoreautomation,reducingtheriskformanualerrors.

    ROADMnodesalsohavesignificantadvantagesfromanetworkplanningperspective.FreewavelengthallocationwithROADMnodessimplifiesnetworkplanningandreducestheeffectsofinaccuratetrafficforecasting.ROADMnodessimplifytrafficengineeringandoptimizationofnetworkuse.Theyallowforbetterwavelengthutilizationsincewavelengthsaremanagedseparatelyratherthanincompletebands.TheTMSeriesROADMunitsalsoincludeintegratedvariableopticalattenuators(VOAs)foreachwavelength,whichgreatlysimplifiespowerbalancingofthelightpaths.

    3.4.3.1ROADMprinciplesROADMunitscanbedesignedaroundmux/demuxesandopticalswitches,butthemostcommonarchitecturetodaymakesuseofa1xNwavelengthselectiveswitch(WSS)thatindividuallycanswitchthewavelengthsonitsinputstoitsoutput.(Ndenotesthenumberofinputstotheswitch.)TheTMSeriesROADMunitshaveaWSSontheaddside,i.ewhereaddedsignalsarecombinedwiththelinesignal.Thisarrangementgivesfullcontrolofallsignallevelsonaddedandpassedchannels,aprerequisiteforsecurenetworkoperationswithoutanytransmissionlevelproblems.

    RecenttechnologydevelopmentshavemadeWSSbasedROADMunitsaffordable,notonlyinlonghaulnetworks,butalsointhemetronetworks.HavingthecapabilitytodeployROADMnodesinmetroapplicationsisofsignificantvaluesinceconfigurationchangesarenormallyquitefrequentinmetroandmetroaccess.HencetheTMSeriesROADMnodesareanoptimalchoicewhenimplementingaregional,metroormetroaccessopticalnetwork.(Figure40)

    Figure40.ThemainelementsoftheTMSeries1x2ROADMpluginunit.

    Asshowninthefigureabove,theincomingwavelengthsfromwestareallsplitviaanopticalcouplerandmadeindividuallyavailablelocallyviaademuxwhenusingtheTMSeries1x2ROADMpluginunit.Localwavelengthstobeaddedaremultiplexedandaddedtotheincomingsignalfromeastinthe2x1WSS.EachoftheincomingWSSportsissettoacceptoneorseveralwavelengths,theonlylimitationbeingthatnotwowavelengthsoverlap,i.e.arethesame.Thus,theWSScanforeachwavelengthdecideifitshouldbetakenfromlineeastorbelocallyadded.

    TheROADMunitinthediagramabovehasfiberlinksintwodirections,asforexampleinaringtopology.Thenumberoffiberlinkdirectionsto/fromaROADM(oranyotheropticalnetworknode)isoftenreferredtoasthedegreeoftheROADM.Inmeshnetworksandinterconnectedringtopologiestherearenodesthathaveahigherdegree,forexample3or4,referredtoasmultidegreeROADMnodes.

    Ifwewanttocreateacomplete2degreeROADMnodewhereanywavelengthcanbeaddedordroppedinboththewestandeastdirections,twoofthejustdescribed1x2ROADMpluginunitsarecombinedbacktoback.(Figure

  • 13/10/2015 3.CreatingthetopologyWDMtheTransmodewayWDMtheTransmodeway(html)TechnologiesTransmode

    http://www.transmode.com/en/technologies/wdmthetransmodeway/wdmthetransmodewayhtml/3creatingthetopology 8/17

    westandeastdirections,twoofthejustdescribed1x2ROADMpluginunitsarecombinedbacktoback.(Figure41)

    Figure41.Acomplete2degreeROADMnode.

    3.4.3.2ColorlessROADMFurtherflexibilitycanbeaddedtotheROADMbymakingthemux/demuxunitswavelengthindependent,i.e.makingitpossibletoaddordropanyatanyoftheirports,creatingacolorlessROADMnode.(Figure42)

    Figure42.Acolorless2degreeROADMnode.

    Whencombinedwithtunabletransceiversintheattachedtransponders/muxponders,theoperatorcannowchangethewavelengthforaservicewithoutmovingthetransponder/muxpondertoanewportonthemux/demux.FortheTMSeriesROADMnodes,suchwavelengthreconfigurationscanbemadecompletelyremotelyfromtheTransmodeNetworkManager(TNM)systemwithouttheneedtovisitthesite.(Figure43)

  • 13/10/2015 3.CreatingthetopologyWDMtheTransmodewayWDMtheTransmodeway(html)TechnologiesTransmode

    http://www.transmode.com/en/technologies/wdmthetransmodeway/wdmthetransmodewayhtml/3creatingthetopology 9/17

    Figure43.ManagementofwavelengthswiththeTransmodeNetworkManager(TNM).

    AfurtheradvantageoftheTMseriesROADMunitsisthattheyareallimplementedaspluginunitswhichmaybelocatedinanyoftheavailablechassis.Thismeansthatanynode,largeorsmall,easilycanbeupgradedwithROADMfunctionalitywhenthenetworkgrows.

    3.4.3.3DirectionlessROADMIntheROADMnodeconfigurationsinthepreviouschapters,aparticularaddedisphysicallydeterminedtogoeitherintheeastorwestdirection,dependingonwhichofthetwomuxesthetransponder/muxponderisconnectedto.Thiscanbeadisadvantage,forexampleinprotectiveswitchingandmaymeanawasteofavailablewavelengths.Byaddingonemore1x2ROADM,itispossibletocreateadirectionlessROADMnodewheretrafficfromanyaddedportcanbesentineithereastorwestdirections.(Figure44)

    Figure44.Adirectionless2degreeROADMnode.

    3.4.3.4HigherdegreeROADMnodesUsing4x1and8x1WSSunitsitispossibletodesignROADMnodesformeshednetworks,withnodesofhigherdegreethantwoandwithmorethantwoincomingandoutgoingfiberdirections.TheTMSeriescomprisesone1x4ROADMunitfor40channelDWDMsystemsandtwo1x8ROADMunitsfor40or80channelDWDMsystems,allsuitablefortheseapplications.

    The4or8addportsuseawavelengthselectiveswitch(WSS)todynamicallyselectwhichoftheDWDMchannelsontheITUTCbandgridtobeaddedtothelinesignalforeachaddport.AnOpticalCouplerisusedtodistributetheincominglinesignaltothedropports.ADWDMadddropfilterorMux/Demuxunitisalwaysusedforthelocallyterminatingtraffic.

    Similarlytothe1x2ROADMpluginunit,theTMSeries1x4and1x8ROADMsalsoincludevariableopticalattenuator(VOA)functionalityonallwavelengthsaddedtothelinesignalbytheWSS.Thisfacilitateschannelpowerbalancinginamplifiednetworks.

    Groupingofportsondifferentunitscanbemadeinthenodemanagementsoftwaretoenablethesettingofidenticalchannelselection.Alsorestrictionsonchannelsselectioncanbemadeonindividualorgroupedportstosimplifycommissioningandminimizeriskforfaultyhandling.

    Boththe1x4andthe1x8ROADMunitsconsumeslessthan6W.Lowpowerconsumptionincombinationwithasmallfootprintreducessitecostsandenablesmorecapacitytobehandledatsiteswithrestrictionsonpowerconsumption,coolingandspace.

    3.4.3.5ContentionlessROADMUsingacombinationof1x4and1x2ROADMsafullycontentionlessROADMnodefor2degreesmaybedesigned.Asshowninthefollowingdiagram,wavelengthscannotbeassignedarbitrarilyinthedirectionlessROADMdescribedearlier:Ifonewavelength1issentine.g.thewestdirection,thesamewavelength1cannotbereusedintheeastdirection.Byaddinganextrasetof1x2ROADMunitsfullfreedomofwavelengthallocationispossible;theROADMnodebecomesbothdirectionlessandcontentionless.However,especiallyforhigherdegreenodes,theamountofequipmentneededforacontentionlessROADMmaymakeitscostprohibitive,althoughexpectedtodecreaseasnewcomponentsbecomeavailable.(Figure45)

    Figure45.Adirectionlessandcontentionless2degreeROADMnode.Themux/demuxunitscanbemadecolorlessandcombinedwithtrafficunitshavingtunabletransceiversforadditionalflexibility.

    Thefourindividualadddropportsofthe1x4ROADMenablehitlessredirectionoftrafficinmultidegreenodes.Bygroupingfourunitsandinterconnectingtheadddropports,a4degreenodeiscreated,wheretrafficfromanylinecanbedirectedtoanyotherlineorbelocallydropped.(Figure46)

  • 13/10/2015 3.CreatingthetopologyWDMtheTransmodewayWDMtheTransmodeway(html)TechnologiesTransmode

    http://www.transmode.com/en/technologies/wdmthetransmodeway/wdmthetransmodewayhtml/3creatingthetopology 10/17

    Figure46.Afourdegreenodeimplementedbyfour1x4ROADMs.

    The8individualadddropportsofthe1x8ROADMenablehitlessredirectionoftrafficinevenhigherdegreenodes.Bygroupingupto8unitsandinterconnectingtheadddropports,upto8degreenodescanbecreated,wheretrafficfromanylinecanbedirectedtoanyotherlineorbelocallydropped.A50GHzcompatibleMux/Demuxisusedtoseparatetheterminatedchannels.(Figure47)

    Figure47.An8degreenode.Allconnectionsarejustshownforline1.

    Itispossibletocreatedirectionlesshigherdegreenodesbyusinganextra1x8ROADMunittodirectthelocaltraffictothepreferredlinefiber.Eachwavelengthcanbedirectedasrequiredonanindividualbasis.Itispossibletohavebothfixedanddirectionlessadd/dropsinthesamenode.(Figure48)

    Figure48.Afourdegreenodewithbothfixedanddirectionlesstraffic.

    3.5WavelengthmanagementTrafficunitswithpluginandtunabletransceivers,multidegreeROADMsandcolorlessmux/demuxunitsenableatremendousflexibilityinopticalnetworkdesignandoperations,butalsoputstringentrequirementsonwavelengthmanagement.TheTransmodeEnlighten11softwaresuiteforplanning,design,commissioningandmanagementofanintegratedpacketopticalnetworkincludesthenecessarytoolsforthistask.CentralizedwavelengthmanagementisperformedfromtheTransmodeNetworkManager(TNM),acomprehensive,carrierclassElement,NetworkandServiceManagerforTransmodesintegratedlayer1andlayer2networkingsolutions.

    TNMincludesseveralfeaturesofhighvalueforefficientwavelengthmanagement,forexample:

    Theextensiveinventorymodule.TheROADMprovisioningapplication.TheOpticalControlPlanewithitsapplications.Integratedhandlingofalienwavelengths.

  • 13/10/2015 3.CreatingthetopologyWDMtheTransmodewayWDMtheTransmodeway(html)TechnologiesTransmode

    http://www.transmode.com/en/technologies/wdmthetransmodeway/wdmthetransmodewayhtml/3creatingthetopology 11/17

    NotonlydoestheinventorymoduleofTNMkeeptrackofallactiveequipmentinaTMSeriesopticalnetwork.Theinventorymayalsobeusedtoregistereveryfilter,mux/demuxandotherpassiveunitinthenetworkandthenkeeptrackofhowthevariouswavelengthsareallocated.Havingalsothepassiveelementsavailableintheinventorygreatlysimplifiesplanningandallocationofwavelengthsthroughouttheopticalnetwork.

    TheROADMprovisioningapplicationinTNMautomaticallyreadsROADMparametersettingsfromthenodesandenablestheoperatortoremotelyaddchannelstoanadd/dropport.IftheROADMprovisioningapplicationisactivated,theTNMautomaticallyidentifiespotentialchannelsthroughtheunconfiguredROADMsofthenetwork.TNMchecksthatnowavelengthconflictsoccurthroughouttheopticalpathandthenautomaticallyconfigurestheROADMstocreatetheopticalpath,includingstartingnecessarycontrolloops.Thishighlyautomatedprocessgreatlyreducestheriskformisconfigurationswhilereducingtheconfigurationtimebyupto90%.

    3.5.1TheOpticalControlPlaneinTNMTheOpticalControlPlane(OCP)inTNMprovidesadvancedfunctionalitytosimplifycentralizedcommissioning,tuningandplanningoftheopticalnetwork.Currently,theTNMOpticalControlPlanecomprisestwomodules:TransmissionControlandChannelControl.

    3.5.1.1TransmissionControlTransmissionControlisaTNMapplicationthatsupportscommissioningandtuningofamplifiedopticalnetworks,therebyreducingtheoperationalcostsassociatedwithsettingupandmaintainingsuchnetworks.TransmissionControlworksinconcertwiththeOpticalChannelMonitoring(OCM)units,theVariableOpticalAttenuators(VOAs)andthetransceiversinthenetworktomeasureandpresentpowerlevelsatvariouspointsofanopticallightpath.TransmissionControlallowstheoperatortoselectoneormorelightpathsinthenetwork,showthepowerlevelineachpointthathasmeasurementcapabilityandthenmaketheoptimalpowersettingsinattenuatorsandamplifiers.

    3.5.1.2ChannelControlChannelControlisaTNMapplicationthatallowstheoperatortoselectanumberofopticallinksandshowtheroutingofusedandavailablechannels()andsubchannels(sub)throughouttheselectedlightpath.

    ChannelControlprovidesroutinginformationforchannelsandsubchannelsandidentifieschannelsas:

    ActiveChannelschannelsthatarecarryingtraffic.Activechannelhavetranspondersconnectedandcliententriesdefined.PossibleChannelspreprovisionedchannelsthatareavailabletobetakeninservice.Possiblechannelsmayormaynothavetranspondersconnectedbutnocliententriesaredefined.ReservedChannelspreprovisionedchannelsthathavebeendedicatedforparticularfuturepurpose.Reservedchannelsmayormaynothavetranspondersconnectedbutnocliententriesdefined.

    3.5.1.3HandlingofalienwavelengthsAnalienwavelengthisastandardCWDMorDWDMwavelengththattransportstrafficthatdoesnotoriginateandterminateinTransmodeequipment,e.g.IPpacketssentbetweentworoutershavingopticalinterfacesconnecteddirectlytotheportsoftwomux/demuxunits.SuchtrafficdoesnotpassanyTMSeriestrafficunitsandisonlytransportedthroughtheopticalnetworkbetweentwopassiveports.AlthoughnotbeingofTMSeriesorigin,thefollowingTNMmanagementfeaturesarestillavailableforalienwavelengths:

    TransmissionControl,i.e.thealienwavelengthispowerbalancedinthesamewayandtogetherwiththeTMSeriesnativewavelengths.Opticalprovisioning.Aseparatepassiveadministrativestate.Servicetopology.Servicealarmsifthewavelengthpassesanopticalchannelmonitoring(OCM)unit.

    (Figure49)

    Figure49.Analarmcanbetriggeredalsoforanalienwavelengthifitpassesanodewithanopticalchannelmonitoring(OCM)unit.

    3.6WDMintheaccessnetworkModernizationoftheaccessnetworkisapressingissueformanyoperators,duetotherapidlyincreasingtrafficvolumesgeneratedbynewapplicationsdemandedbytheirsubscribersandusers.Mobileoperatorsaredeployingfourthgeneration(HSDPA,LTE)mobilenetworkstosupportsmartphones,tabletsandmobilecomputing,thusrequiringlinkswithGbit/sdataratestothecellsites.Enterprisesareincreasinglydependentoncentralizedcloudcomputing,whiletheresourceswithinthecloudneedtobeinterconnectedbyhighcapacitylinks;bothtrendsdrivinguptheneedformoredatatransportcapacityintheaccessnetwork.Inparallel,consumerssubscribetovideoondemandandotherInternetbasedmediaservices,making100Mbit/saccessandmorearequirementforeachhousehold.

    WDMasatechnologyanswersmanyoftheoperatorsdemandsandhasanimportantroleinthemodernizationoftheaccessnetwork.

    3.6.1WDMaggregationringsAnimportantapplicationofWDMandtheTMSeriesisforefficientcapacityupgradesoftheaggregationnetworks,carryingtrafficfrommultipleremoteaccesssitesto/fromacentralhubsite.Forexamples,theremotesitesmaybeamobilecellsite,aDSLAMservingresidentialInternetusersoranEthernetdemarcationunitinanindustrycampus.WithWDM,eachsuchremotenodecanbeallocatedadedicatedwavelengthoverthering,carryingitstrafficto/fromthecentralhub.(Figure50)

  • 13/10/2015 3.CreatingthetopologyWDMtheTransmodewayWDMtheTransmodeway(html)TechnologiesTransmode

    http://www.transmode.com/en/technologies/wdmthetransmodeway/wdmthetransmodewayhtml/3creatingthetopology 12/17

    thecentralhub.(Figure50)

    Figure50.ComparisonofanaggregationnetworkbuiltwithEthernetswitchesandaWDMaggregationnetwork.

    InaWDMring,alltheremotenodeshavetheirownpredeterminedcapacityonthelinktowardsthehub,resultinginadeterministictrafficpatternandeasybandwidthmanagement.Ethernetrings,ontheotherhand,sharetheavailablelinkcapacitybetweenalltheremotenodes.Anincreaseincapacityononenodestealscapacityfromtherest.

    Ethernetringsalsorequirethesameuplinkinterfaceonallswitches/nodeswhichleadstoexpensiveforkliftupgrades,shouldcapacityonanyofthenodesneedtoberaised.InaWDMnetworkeachnodeuplinkisindependentfromalltheothersandeachnodecanbeupgradedindividuallywhenneeded.

    InaWDMringeachnodeequipmentisindependentoftheothers(nosharedhardware)andtheprotectioncanbehandleddirectlyonlayer1withlessthan50msdelay.Ethernetringsaresensitivetosingleunitfailureandneedcomplexlayer2orlayer3redundancyschemestoovercomethis.

    WithWDMaggregationitiseasytocombineEthernetandTDMtrafficbackhaulingonthesamefiber,whileEthernetringsneedmorecomplexremappingsolutions(pseudowireetc.)orseparatefiberpairstocopewithlegacyTDMtraffic.ThisisofspecificvaluetomobileoperatorswhichoftenrequiretransportofbothlegacyTDMtrafficandnewEthernettrafficfromthecellsites.

    TheTMSeriesisideallysuitedforbuildingWDMaggregationrings.LowcostCWDMringsolutionsusingonlypassiveopticalfiltersandcoloredinterfacesonalreadyexistingroutersandswitchesareeasilyimplemented.Byincludingactivetranspondersandmuxponders,thetrafficaggregation,protectionandmonitoringcanbemademoreefficient.Andforlongerdistancesandmorechannels,completeDWDMsystems,ifnecessarywithamplifiers,canbedeployed.Inaddition,thepacketopticalfunctionalityoftheTMSeriestranspondersandmuxpondersenablesintegrationoflayer2functionspreviouslyresidingintheEthernetswitchesdirectlyintotheopticalaggregationring.

    3.6.2PointtopointandPassiveOpticalNetworks(PON)inaccessExpandingthetelecommunicationsnetworktoeachandeveryhouseholdandeachandeveryenterpriseistherealchallengeofanynetworkdesigner.Thenumberofendpointsterminatingthenetworkbecomesmassive,andsodoestheassociatedcostofcivilworksandequipmentneeded.Whilemostlargerandmediumsizedenterpriseshavehaddedicatedconnections(leasedlines)fordatatraffictotheirpremisessincethe1980s,residentialInternetusershaveprimarilybeenrestrictedtouseaccessnetworksthattakeafreerideonthealreadyinstalledinfrastructureof

    telephonylinesorCATVHFC12networks.

    12CableTV(CATV)usinghybridfiberandcoax(HFC)distributionnetworks.

    Thecostofdeployingnewfiberisobviouslyaprohibitingfactorforamorerapidexpansionofhighspeedaccess,andvariousschemesareusedtoreducethenumberoffibermilesintheaccessnetworks.Thetwomaincompetingcategoriesarepointtopointfiberaccessnetworksandpassiveopticalnetwork(PON)accessnetworks.Aswewillsee,WDMhasanimportantroleinextendingthecapacity,securityandflexibilityofthesenetworks.

    Apointtopointfiberaccessnetworkisafairlystraightforwardstructurethatmimicstheclassicaltelephonyaccessnetworkinthatithasacentralnodewithindividualfibercablesreachingouttoeachsubscriber.Thenetworkisstarshaped;sometimesendinginthebasementofamultidwellingbuilding,whereanopticalelectricalconversionisdoneandatraditionalstarshaped,electricalEthernetLANisinstalledreachingouttoeachandeveryapartment.(Figure51)

  • 13/10/2015 3.CreatingthetopologyWDMtheTransmodewayWDMtheTransmodeway(html)TechnologiesTransmode

    http://www.transmode.com/en/technologies/wdmthetransmodeway/wdmthetransmodewayhtml/3creatingthetopology 13/17

    Figure51.Topologyofapointtopointbroadbandaccessnetwork.

    Themainadvantagesofapointtopointaccessarchitectureareitstopologicalsimplicityandthestrictseparationoftrafficto/fromeachsubscriber.Significantdisadvantagesarethedeploymentcostofalltheindividualfibers,themassiveamountoffibersthatmustbeterminatedatthecentralnodeandthatpointtopointaccessnormallyrequiresactiveequipment(typicallyanEthernetswitch)ateverysubscriberlocation.AlthoughpopularinsomeNordiccitynetworksforresidentialaccessandoftenusedforenterpriseaccess,pureEthernetbasedpointtopointbroadbandaccessisnotlikelytodominatethefuturebroadbandaccessnetworks.

    Apassiveopticalnetwork(PON)isapointtomultipoint,accessarchitectureinwhichpassiveopticalsplittersareusedtoenableasingleopticalfibertoservemultiplepremises,typically16128.APONconsistsofanopticallineterminal(OLT)attheserviceproviderscentralofficeandanumberofopticalnetworkterminals(ONTs)nearendusers.PONreducestheamountoffiberandcentralofficeequipmentrequiredcomparedwithpointtopointarchitectures.(Figure52)

    Figure52.Topologyofapassiveopticalbroadbandaccessnetwork(PON).

    TwomaintypesofPONsystemshavebeenstandardized:TDMPONandWDMPON.TDMPONs(i.e.BPON,EPON,GPON)useseparatewavelengthsforthedownstreamandupstreamdirectionsonthesinglefiberandtimedivisionmultiplexingbetweentheindividualsubscribersconnectedtothefiber.DownstreamsignalsarebroadcasttoallpremisessharingmultiplefibersandonlyreceivedbytheappropriateONT.Upstreamsignalsarecombinedusingamultipleaccessprotocol,usuallytimedivisionmultipleaccess(TDMA).TheOLTsallowsatimeslotassignmentsforupstreamcommunicationfromeachoftheOLTsinturn.BecauseaTDMPONreliesupontimesharing,ithasaninherentcapacitylimitation,aswellasasecurityproblem,sinceallinformationistheoreticallyavailableateveryendpoint.

    AWDMPONcombinesthededicatedbandwidthofapointtopointnetworkwiththefibersharingarchitectureinherentinthePONtopology.AWDMPONusesafiltertoseparatethewavelengthsofaWDMstreamfordeliverytoeachindividualsubscriberONT.Thus,onlyonefiberisrequiredatthecentralsitewhilethewavelength(channel)topologyispointtopoint.

    AkeyadvantageofWDMPONistheuseofacompletelyseparatedownstreamwavelengthforeachofthesubscribers.Thisseparatewavelengthprovidesmorebandwidthtoeachsubscriber,bettersecurity,andenhancedoperationalcontrolsincethereisnopotentialinterferencebetweenwavelengths.Similarly,adedicatedupstreamwavelengthprovidesalmostunlimitedcapacitytoeachsubscriber,coveringallpotentialfuturegrowth.(Figure53)

    Figure53.PrincipleofaWDMPONaccessnetwork.

    3.6.3TheTransmodeiWDMPONsolutionWhileWDMPONsatisfiesallfuturecapacityandsecurityrequirementsinbroadbandaccess,itisstillatechnologyinitsinfancy,withvariousimplementationalternativesunderstandardization.Severalofthesuggestedstandardsrelyuponspecialcomponentshavinghighcostsduetosmallseriesandlimiteddeployment,e.g.whenWDMPONisimplementedwithCandLbandtransmissionandnonITUstandardizedwavelengths.

    TransmodehasthereforeselectedanalternativeapproachtoWDMPON:UsingthesamebasicelementsasformetroandlonghaulWDM,TransmodesiWDMPONsolutionoperatesintheCband.Byusingthesamewavelengthsfor

  • 13/10/2015 3.CreatingthetopologyWDMtheTransmodewayWDMtheTransmodeway(html)TechnologiesTransmode

    http://www.transmode.com/en/technologies/wdmthetransmodeway/wdmthetransmodewayhtml/3creatingthetopology 14/17

    andlonghaulWDM,TransmodesiWDMPONsolutionoperatesintheCband.Byusingthesamewavelengthsforaccessasthoseusedinthemetroandlonghaulnetworks,itispossibletodevelopacommonWDMaccessstructurethatcombineslegacyenterprisetraffic,mobilebackhaul,residentialInternetaccessandhighcapacityWDMPONusersinthesameopticalnetwork.(Figure54)

    Figure54.ATransmodeiWDMPONaccessnetwork.Usingonewavelengthfromaccesstocoreprovidesopticaltransparencyandeliminatesopticalelectricconversions.

    TheadvantagesofusingITUstandardWDMintheaccessnetworkarevaried:

    EasytocombineFTTB,mobilebackhaul,Enterpriseleasedlinesandmoreinthesameinfrastructure.Providesonesolutionforalltypesofdataratesandapplications.Eachservice(SDH/SONET,GbE,FC,FICON)canbeallocateditsownwavelength.OpenandstandardizedDWDMgridanduseofthestandardITUCbandmakesitpossibletocapitalizeonstandardcomponentdevelopmentcurveandpricereductions.Opticaltransparencyfromaccesstocoreeliminatestheneedforopticalelectricconversions.

    TransmodesiWDMPONsolutionleveragesthepassiveandactivecomponentsalreadydescribed,butalsoincludesspecialelementstofacilitatewavelengthallocationtosubscribers,accordingtonormalWDMPONprinciples.Akeyelementistheuseofpluggable,colorlessDWDMSFPswithinjectionlockedFPlasersintheONTatthecustomersite.ThecolorlessSFPisautomaticallytunedtotheincomingseedingwavelength,thuseliminatingmanualtuningateachsubscriber.(Figure55)

    Figure55.WavelengthallocationiniWDMPON:TheseedingboardinstalledintheTMSeriescentralofficeOLTbroadcastsabroadbandlightsource.AfilterforwardsasinglewavelengthtotheSFP,whichlocksonthecorrectfrequency.

    3.7NetworktopologiesOpticalnetworkscanbeclassifiedaccordingtotheirtopologies:Lineorpointtopoint,star,ringandmeshshaped.Thelineandstartopologieshavesinglepointsoffailure,andshouldbeavoidedwhenresilienceagainstoutagesisimportant.Therearemanyargumentsaboutwhicharethebest:Ringormesh.Veryoften,thedebatemixesupthetopologyofthephysicalfibersinstalledandthelogicalconnectivitythatcanbeachievedbyswitchingandroutingoverthefibersathigherlayers.Thephysicalconnectivitymattersmostwhenresilience,distanceanddelayarebeingconsidered.

    Manymetropolitannetworksstartasringsandevolvesgraduallytomeshthecrossoverdependsonfibercosts,equipmentcosts,trafficloading,degreeofmeshrequiredforresilienceetc.Ascanbeseenfromthediagrambelow,thecostofameshednetworkishighatlowertrafficvolumes,butbecomesincreasinglyattractiveastrafficgrows.Thediagramisbasedonsimulations.

    WiththeadventoftodayscostefficientROADMnodes,itisnowpossibletoimplementresilientandflexiblemeshednetworksalsointhemetroareaandmetroaccessareas.(Figure56)

  • 13/10/2015 3.CreatingthetopologyWDMtheTransmodewayWDMtheTransmodeway(html)TechnologiesTransmode

    http://www.transmode.com/en/technologies/wdmthetransmodeway/wdmthetransmodewayhtml/3creatingthetopology 15/17

    Figure56.Simulationofnetworkcostasafunctionoftrafficfordifferenttopologies.

    3.8Resilienceandprotection

    3.8.1CalculatingtheavailabilityBeingafundamentalpartofthetelecommunicationsinfrastructure,theopticalnetworkmustalwaysbeoperational.Threevariablesdefinethequalityofanetworkfromaresilienceperspective:

    Availabilityisthefractionoftotaltimethatafunction,forexampleanetworkconnection,isavailablei.e.whattheusersexperienceasaworkingsystem.Availabilityismeasuredin%oftimeandtypicallyliesintherangeof99.999%(fivenines)ormore.

    Thereliabilityofanetworkelementisthefractionoftotaltimethatanobjectisworking.Reliabilityisoftenmeasuredasmeantimebetweenfailures(MTBF)atimethatshouldbeaslongaspossible.Therepairtimedefineshowquicklyanobjectcanberepairedandputbackinservice.Repairtimeismeasuredasmeantimetorepair(MTTR)andshouldpreferablybeasshortaspossible.

    LetuslookataconcreteexampleonhowprotectionswitchingandringtopologiescanhelpimprovetheavailabilityonanopticallightpathfromGlasgowtoLondon.ThecalculationisbasedonSDHtechnologyandpurelyforillustrativepurposes,i.e.thevaluesusedforactivecomponentsarenotdirectlyapplicablefortheTMSeries.

    Lookingfirstatanunprotectedlightpath,thephysicalnetworkcanbedrawninamoreeasilyunderstoodform.Thetotalavailabilityoftheunprotectedpathissimplyfoundbymultiplyingtheavailabilitiesofeachoftheelementsinthechain.(Figure57)

    Figure57.Availabilityforanexamplenetwork.

    Usingprotectionswitchinginthenodes,thelightpathmayfindalternativeroutesbetweenitsendpoints,forexample,shouldafiberbreakoccur.(Figure58)

  • 13/10/2015 3.CreatingthetopologyWDMtheTransmodewayWDMtheTransmodeway(html)TechnologiesTransmode

    http://www.transmode.com/en/technologies/wdmthetransmodeway/wdmthetransmodewayhtml/3creatingthetopology 16/17

    Figure58.Availabilityforaprotectedandarestoredexamplenetwork.

    Calculationoftheavailabilityinaprotectednetworkisabitmorecomplicatedthaninanunprotectednetwork:

    1. Firstmultiplytheavailabilitiesoftheunprotectedpartstogether(inthiscasethetributarycardateitherendofthepath).

    2. Calculatetheavailabilitiesofthetwodiversepathsbymultiplyingtheavailabilitiesofeachoftheelementsinbothchains.

    3. Combinethetwochainsbymultiplyingtheirunavailabilitystogether(unavailability=1availability).4. Finallymultiplytheavailabilityfromstep1withtheavailabilityfromstep3.

    Therestoredexamplebreaksthesingle,long,diverserouteintoseveral,shorter,diversesections.Theresultofthisisthatitcansurvivemultiplesimultaneousfailureswhilsttheprotecteddesigncanonlysurviveasinglefailure.

    3.8.2TMSeriesresiliencefeaturesTheTMSeriesincludesnumerousfeaturesthatcanbeusedtominimizetheimpactofbothfiberbreaksandfailuresinindividualcomponentsontheoverallnetworkavailability.

    Oneliveandoneredundantclientsystemmay,forexample,beconnectedtotwoseparateandindependenttranspondersormuxponderssharingthesameopticalfiberviaapassiveopticalcouplerunit.Incaseoffailureoftheliveclientsystemorthecorrespondingtransponder/muxpondertraffic,theredundantpathisautomaticallymadeactiveinlessthan50ms.Thetransponders/muxpondersmayevenbelocatedinseparateTMSerieschassistofurtherminimizetheriskofsinglepointoffailure.(Figure59)

    Figure59.ClientandequipmentprotectionwiththeTMSeries.

    Transponderscanbeequippedwithmultipleoutputsforalternativefiberroutesandsignalsfromincomingfiberscanbesplitintotwoormorepaths.Switchingbetweentheworkingpathandthealternativepathisfullyautomaticandtakeslessthan50ms.Therefore,multipathlineprotectioncaneasilybeachievedinTMSeriesopticalnetworks

    withouttheneedforGMPLS/ASON13software.(Figure60)

    Figure60.Threeexamplesoflineprotectionwithtransponders.

    13GeneralizedMultiProtocolLabelSwitching(GMPLS)isaprotocolsuiteextendingMPLS(seechapter4)tomanage

    furtherclassesofinterfacesandswitchingsuchastimedivisionmultiplexers,layer2switchesandwavelength

  • 13/10/2015 3.CreatingthetopologyWDMtheTransmodewayWDMtheTransmodeway(html)TechnologiesTransmode

    http://www.transmode.com/en/technologies/wdmthetransmodeway/wdmthetransmodewayhtml/3creatingthetopology 17/17

    2015Transmode.Allrightsreserved.

    CompanyCompanyOverviewQuality&EnvironmentSustainabilityCareersContactus

    News&MediaPressReleasesEventsImage&VideoBankSubscribe

    GeneralTrademarksPrivacyPolicyCookiesSitemap

    LoginTACOnlineLoginPartnerLogin

    furtherclassesofinterfacesandswitchingsuchastimedivisionmultiplexers,layer2switchesandwavelengthswitches.ASON(AutomaticallySwitchedOpticalNetwork)isaconceptfortheevolutionoftransportnetworkswhichallowsfordynamicpolicydrivencontrolofanopticalorSDHnetworkbasedonsignalingbetweenauserandcomponentsofthenetwork.

    Ifseveralfibersareavailableonagivenlink,theTMSeriesalsoallowsforfiberprotection,byusingamechanicalfiberprotectionunit.(Figure61)

    Figure61.Fiberprotection.


Recommended