+ All Categories
Home > Documents > Web for Power Systems II B.tech 6th Sem

Web for Power Systems II B.tech 6th Sem

Date post: 18-Jul-2016
Category:
Upload: skyline1122
View: 230 times
Download: 2 times
Share this document with a friend
Description:
Nature of Faults in Electrical System
16
Web Answers for Power Systems - II Chapter 2: Nature of Faults in Electrical System Question 5 Answer: By percentage reactance we mean the percentage of the total phase voltage dropped in the circuit when full load current is flowing i.e. % 100 IX X V ….(1) where I = full load current, V = phase voltage and X = reactance in ohms per phase. It can also be expressed in terms of KVA or KV as under: From equation (1) ……….(2) where X is the reactance in ohms. If X is the only reactance element in the circuit then short circuit current is given by SC V I X . By putting the value of X from equation (1), 100 % SC I I X i.e. short circuit current is obtained by multiplying the full load current by 100/% X. In view of what have been stated above it is worthwhile to mention here the advantage of using percentage reactance instead of ohmic reactance in short circuit calculations. Percentage reactance values remain unchanged as they are referred through transformers, unlike ohmic reactances which become multiplied or divided by the square of transformation ratio. Further, as the various equipments used in the power system have different KVA ratings, it is necessary to find the percentage reactance of all the elements on a common KVA rating which is known as base KVA and the conversion is effected by using the relation as %age reactance of base KVA = Base KVA Rated KVA %age reactance at rated KVA. These all led to conclude that it is preferable to express the reactances of various elements in percentage values for short circuit calculations.
Transcript
Page 1: Web for Power Systems II B.tech 6th Sem

Web Answers for Power Systems - II

Chapter 2: Nature of Faults in Electrical System

Question 5

Answer:

By percentage reactance we mean the percentage of the total phase voltage dropped in the circuit

when full load current is flowing i.e.

% 100IX

XV

….(1)

where I = full load current, V = phase voltage and X = reactance in ohms per phase.

It can also be expressed in terms of KVA or KV as under:

From equation (1)

……….(2) where X is the reactance in ohms.

If X is the only reactance element in the circuit then short circuit current is given by SC

VI

X.

By putting the value of X from equation (1), 100

%SCI I

X

i.e. short circuit current is obtained by multiplying the full load current by 100/% X.

In view of what have been stated above it is worthwhile to mention here the advantage of using

percentage reactance instead of ohmic reactance in short circuit calculations. Percentage reactance

values remain unchanged as they are referred through transformers, unlike ohmic reactances which

become multiplied or divided by the square of transformation ratio.

Further, as the various equipments used in the power system have different KVA ratings, it is

necessary to find the percentage reactance of all the elements on a common KVA rating which is

known as base KVA and the conversion is effected by using the relation as %age reactance of base

KVA = Base KVA

Rated KVA%age reactance at rated KVA.

These all led to conclude that it is preferable to express the reactances of various elements in

percentage values for short circuit calculations.

Page 2: Web for Power Systems II B.tech 6th Sem

Question 6

Answer:

Whatever may be the value of base KVA, short circuit current is the same i.e., the value of short

circuit current does not change if different base KVAs are taken.

In order to explain the answer, a single line diagram of the system is shown below in which a 3 phase

transmission line operating at 66 KV and connected through a 1000 KVA transformer with 5%

reactance to a generating station bus bar is considered.

The generator is of 2500 KVA with 10% reactance.

i) If 2500 KVA is chosen as the common base KVA, the reactance of the various elements in the

system on this base value will be:

Reactance of transformer at 2500 KVA base

2500

5 12.5%1000

Reactance of generator at 2500 KVA base =2500

10 10%2500

Total percentage reactance on the common base KVA

% 12.5 10 22.5%X

The full load current corresponding to 2500 KVA base at 66 KV is given by:

2500 1000

21.873 66 1000

I A

Short circuit current 100 100

21.87 97.2% 22.5

SCI I AX

ii) Now if 5000 KVA is chosen as the common base KVA, then:

Reactance of transformer at 5000 KVA base

5000

10 25%1000

Reactance of generator at 5000KVA base

5000

10 20%1000

Total percentage reactance on the common base KVA

%X = 25 + 20 = 45%

~ 2500 KVA 10%

1000 KVA 5%

11/66 KV

66 KV Line

Single line diagram of the system

Page 3: Web for Power Systems II B.tech 6th Sem

Full load current corresponding to 5000 KVA base at 66 KV is

5000 1000

43.743 66 1000

I A

Short circuit current, 100 100

43.74 97.2% 45

SCI I AX

If the two cases as shown above are examined, it may be observed that for two different base KVA,

short circuit current is the same.

Example 8

Solution:

Let base KVA be 35,000 KVA

% Reactance of alternator A at base KVA

35,000% 30 70%

15,000AX

% of reactance of alternator B at base KVA

35,000% 50 87.5%

20,000BX

Line current corresponding to 35,000 KVA at 12 KV

A,

I 168410123

10000353

3

Fig. (ii) shows the reactance diagram of the network at the selected base KVA.

Total % reactance from the generator neutral upto fault point,

% A BX X X70 87.5

38.89%70 87.5

A B

A B

X X

X X

Short circuit current 100 100

1684 4330% 38.89

SCI I AX

.

Example 9

Solution:

Assuming base MVA as 1200, the percentage reactance of one generating station is 100% and that of

the other is

%150100

800

1200

The % reactance of the cable is 0.5 1200

100 496%11 11

Page 4: Web for Power Systems II B.tech 6th Sem

When a 3- fault takes place at 1200 MVA capacity plant the equivalent circuit will be as follows.

When the fault is F, fault impedance between F and the neutral bus will be 86.59%

The short circuit MVA of this bus will be as follows 1200

100 138686.59

MVA

For fault at the other station, the equivalent circuit will be as follows:

The equivalent fault impedance between F and neutral bus will be 119.84%

The short circuit MVA will be 1200

100 1001119.84

MVA .

Example 10

Solution:

Let 10,000 KVA be the base KVA

% Reactance of alternator A at base KVA

3

10,000% 10 10%

10 10AX

% Reactance of transformer or base KVA

3

10,000% 5 10%

5 10TX

Since the line impedance is given in ohms, conversion into % impedance is made by using the

following relation.

% impedance =

~ ~

10MVA

10%

Load

5MVA

5% F1 1Ω 4Ω F2

Fig: 1

ZPB

150% 100%

496%

F

150%

496%

100%

F

Page 5: Web for Power Systems II B.tech 6th Sem

% reactance of transmission line using the above relation comes to

% resistance of transmission line,

i) The reactance diagram of the network on the selected base KVA is shown in

fig.2

Total % reactance

2% % %

10 10 40

60%

A TX X X

% Resistance = 10%

% impedance from generator neutral upto fault point 2F

short-circuit KVA=100

10,000 16,44060.83

KVA .

ii) For a fault at the high voltage terminals of the transformer (point 1F ), total % reactance from

generation neutral upto fault point

1 % % 10 10 20%A TF X X

Short – circuit KVA =100

10,000 50,00020

KVA .

Neutral

XA = 10%

XT = 10%

F1

RL = 10%

XL = 40%

F2

Fig: 2

Page 6: Web for Power Systems II B.tech 6th Sem

Chapter 3: Power System Dynamics

Example 2

Solution:

As the system is operating initially under steady state condition, a small perturbation in power will

make the rotor to oscillate. The natural frequency of Oscillation is given by:-

1 2

0 /Cn

Pf M

For 60% loading:

cos21

X

VVPe

0

1.1 1 1.1cos .8 1.76

.5 .5 [Since sin 0

0.60.6

1]

50

31

f

GHM

1.76

50 9.6 rad / sec. 1.533

nf Hz.

Example 8

Solution:

a) The equivalent circuit is shown in figure (b), from which the equivalent reactance between the

machine internal voltage and infinite bus is

per unit

~

~

G

B11

B12

1 2

1 2

3

3

+

B21

B22 F

B13

+

0.30dX

0.10TRX 12 0.20X

1.0busV

13 0.10X 23 0.20X

E

djX

0.30j

ep TRjX

0.10j

12jX

0.20j 13jX

0.10j

23jX

0.20j 1.0 0

Fig: (a) Single-line diagram

for example 8

Fig: (b) Equivalent circuit

Page 7: Web for Power Systems II B.tech 6th Sem

The current into the infinite bus is

1.05263 18.195 per unit

and the machine internal voltage is

bus eqE E V jX I

1.0 0 0.54737 71.805

1.1709 0.5200 1.2812 23.946j per unit

b) From per unit.

Example 9

Solution:

Plots of ep and mp versus are shown in figure (i). From example 8 the initial operating point is

per unit and radian. At 0t , when

the short circuit occurs, ep instantaneously drops to zero and remains at zero during the fault since

power cannot be transferred past faulted bus 1.

with ,

Integrating twice with initial conditions and 0

0d

dt,

At 3t cycles = 0.05 second,

The accelerating area A1 shaded in figure (i), is

Page 8: Web for Power Systems II B.tech 6th Sem

At 0.05t s the fault extinguishes and ep instantaneously increases from zero to the sinusoidal

curve in Fig. (i). continuous to increase until the decelerating area A2 equals A1. That is,

Integrating,

The above nonlinear algebraic equation can be solved iteratively to obtain

2 0.7003 radian 40.12

Since the maximum angle 2 does not exceed , stability is maintained. In

steady-state, the generator returns to its initial operating point 1.0ess mp p per unit and

0 23.95ss .

Note that as the fault duration increases, the risk of instability also increases, The critical clearing

time, denoted crt , is the longest fault duration allowable for stability.

Example 10

Solution:

The p plot is shown in figure 1. At the critical clearing angle, denoted cr , the fault is

extinguished. The power angle then increases to a maximum value

3 0180 156.05 2.7236 radians, which gives the maximum decelerating area. Equating

the accelerating and decelerating

p (per unit)

Pmax = 2.4638

pm = 1.0

A2

A1

pe = 2.4638 sin

(radians) π 3 2 1 0

2

Fig: (i) p– plot

Page 9: Web for Power Systems II B.tech 6th Sem

areas,

Solving for cr ,

2.4638cos 0.05402cr

1.5489 radians 88.74cr

From the solution to the swing equation given in Example 9,

Solving

Using radian,

cycles.

If the fault is cleared before 11.38crt t cycles, stability is maintained. Otherwise, the generator

goes out of synchronism with the infinite bus; that is, stability is lost.

p (per unit)

Pmax = 2.4638

pm = 1.0

A1

pe = 2.4638 sin

(radians) π 3 0

Fig: 1 p– plot

A2

cr

Page 10: Web for Power Systems II B.tech 6th Sem

Chapter 4: Load Flow Studies

Example 6

Solution:

30-bus IEEE sample system

G

G

C

C

C

C

Three Winding Transformer

Equivalents

13 9 10

4 12

4

1

2

4

3

13

14

12

15

16

18

23

10

20

21 19

17

6 5 7

9

11 22

24

30

25

27

29

28

26

8 G: Generators

G: Synchronous condensers

Page 11: Web for Power Systems II B.tech 6th Sem

Bus data for IEEE-30 BUS

Clear % clears all variables from workspace.

Basemva = 100; accuracy = 0.001; accel = 1.8; maxiter = 100;

% IEEE 30-BUS TEST SYSTEM (American Electric Power)

% Bus Bus Voltage Angle --Load-- ---Generator---Injected

% N

o.

C

O

D E

Mag. Deg-

ree

MW Mvar MW Mvar Qmin Qmax M

v

a r

Bus-

data=

[1 1 1.06 0 0.0 0.0 0.0 0.0 0 0 0

2 2 1.043 0 21.70 12.7 40.0 0.0 -40 50 0

3 0 1.0 0 2.4 1.2 0.0 0.0 0 0 0

4 0 1.06 0 7.6 1.6 0.0 0.0 0 0 0

5 2 1.01 0 94.2 19.0 0.0 0.0 -40 40 0

5 0 1.0 0 0.0 0.0 0.0 0.0 0 0 0

7 0 1.0 0 22.8 10.9 0.0 0.0 0 0 0

8 2 1.01 0 30.0 30.0 0.0 0.0 -10 40 0

9 0 1.0 0 0.0 0.0 0.0 0.0 0 0 0

10 0 1.0 0 5.8 2.0 0.0 0.0 0 0 19

11 2 1.082 0 0.0 0.0 0.0 0.0 -6 24 0

12 0 1.0 0 11.2 7.5 0 0 0 0 0

13 2 1.071 0 0.0 0.0 0 0 -6 24 0

14 0 1.0 0 6.2 1.6 0 0 0 0 0

15 0 1.0 0 8.2 2.5 0 0 0 0 0

16 0 1.0 0 3.5 1.8 0 0 0 0 0

17 0 1.0 0 9.0 5.8 0 0 0 0 0

18 0 1.0 0 3.2 0.9 0 0 0 0 0

19 0 1.0 0 9.5 3.4 0 0 0 0 0

20 0 1.0 0 2.2 0.7 0 0 0 0 0

21 0 1.0 0 17.5 11.2 0 0 0 0 0

22 0 1.0 0 0..0 0.0 0 0 0 0 0

23 0 1.0 0 3.2 1.6 0 0 0 0 0

24 0 1.0 0 8.7 6.7 0 0 0 0 4.3

25 0 1.0 0 0.0 0.0 0 0 0 0 0

26 0 1.0 0 3.5 2.3 0 0 0 0 0

27 0 1.0 0 0.0 0.0 0 0 0 0 0

28 0 1.0 0 0.0 0.0 0 0 0 0 0

29 0 1.0 0 2.4 0.9 0 0 0 0 0

30 0 1.0 0 10.6 1.9 0 0 0 0 0];

Page 12: Web for Power Systems II B.tech 6th Sem

% Line Data

%

% Bus bus R X ½ B 1 for Line code or

% nl nr pu pu pu tap setting value

Line data=

[1 2 0.0192 0.0192 0.02640 1

1 3 0.0452 0.1852 0.02040 1

2 4 0.4570 0.1737 0.01840 1

3 4 0.0132 0.0379 0.00420 1

2 5 0.0472 0.1983 0.02090 1

2 6 0.0581 0.1763 0.01870 1

4 6 0.0119 0.0414 0.00450 1

5 7 0.0460 0.1160 0.01020 1

6 7 0.0267 0.0820 0.00850 1

6 8 0.0120 0.0420 0.00450 1

6 9 0.0 0.2080 0.0 0.978

6 10 0.0 0.5560 0.0 0.969

9 11 0.0 0.2080 0.0 1

9 10 0.0 0.1100 0.0 1

4 12 0.0 0.2560 0.0 0.932

12 13 0.0 0.1400 0.0 1

12 14 0.1231 0.2559 0.0 1

12 15 0.0662 0.1304 0.0 1

12 16 0.945 0.1987 0.0 1

14 15 0.2210 0.1997 0.0 1

16 17 0.0824 0.1923 0.0 1

15 18 0.1073 0.2185 0.0 1

18 19 0.0639 0.1292 0.0 1

19 20 0.0340 0.0680 0.0 1

10 20 0.0936 0.2090 0.0 1

10 17 0.0324 0.0845 0.0 1

10 21 0.0348 0.0749 0.0 1

10 22 0.0727 0.1499 0.0 1

21 22 0.0116 0.0236 0.0 1

15 23 0.1000 0.2020 0.0 1

22 24 0.1150 0.1790 0.0 1

23 24 0.1320 0.2700 0.0 1

24 25 0.1885 0.3292 0.0 1

25 26 0.2544 0.3800 0.0 1

25 27 0.1093 0.2087 0.0 1

28 27 0.0000 0.3960 0.0 0.968

27 29 0.2198 0.4153 0.0 1

27 30 0.3200 0.6027 0.0 1

29 30 0.2399 0.4533 0.0 1

8 28 0.0636 0.2000 0.0214 1

6 28 0.0160 0.0599 0.065 1]

Page 13: Web for Power Systems II B.tech 6th Sem

Power Flow solution by Gauss-Seidel Method

Maximum power mismatch=0.000951884

Bus Voltage Angle ------Load-------- ---Generation----- Injected

No. Mag. Degree MW Mvar MW Mvar Mvar

1 1.060 0.000 0.000 0.000 -17.010 0.00

2 1.043 -5.496 21.700 12.700 40.000 48.826 0.00

3 1.022 -8.002 2.400 1.200 0.000 0.000 0.00

4 1.013 -9.659 7.600 1.600 0.000 0.000 0.00

5 1.010 -14.380 94.200 19.000 0.000 35.995 0.00

6 1.012 -11.396 0.000 0.000 0.000 0.000 0.00

7 1.003 -13.149 22.800 10.900 0.000 0.000 0.00

8 1.010 -12.114 30.000 30.000 0.000 30.759 0.00

9 1.151 -14.432 0.000 0.000 0.000 0.000 0.00

10 1.044 -16.024 5.800 2.000 0.000 0.000 19.00

11 1.082 -14.432 0.000 0.000 0.000 16.113 0.00

12 1.057 -15.301 11.200 7.500 0.000 0.000 0.00

13 1.071 -15.300 0.000 0.000 0.000 10.406 0.00

14 1.043 -16.190 6.200 1.600 0.000 0.000 0.00

15 1.038 -16.276 8.200 2.500 0.000 0.000 0.00

16 1.045 -15.879 3.500 1.800 0.000 0.000 0.00

17 1.039 -16.187 9.000 5.800 0.000 0.000 0.00

18 1.028 -16.881 3.200 0.900 0.000 0.000 0.00

19 1.025 -17.049 9.500 3.400 0.000 0.000 0.00

20 1.029 -16.851 2.200 0.700 0.000 0.000 0.00

21 1.032 -16.468 17.500 11.200 0.000 0.000 0.00

22 1.033 -16.455 0.000 0.000 0.000 0.000 0.00

23 1.027 -16.660 3.200 1.600 0.000 0.000 0.00

24 1.022 -16.829 8.700 6.700 0.000 0.000 4.30

25 1.019 -16.423 0.000 0.000 0.000 0.000 0.00

26 1.001 -16.835 3.500 2.300 0.000 0.000 0.00

27 1.026 -15.913 0.000 0.000 0.000 0.000 0.00

28 1.011 -12.056- 0.000 0.000 0.000 0.000 0.00

29 1.006 -17.133 2.400 0.900 0.000 0.000 0.00

30 0.994 -18.016 10.600 1.900 0.000 0.000 0.00

Total 283.400 126.200 300.950 125.089 23.30

Page 14: Web for Power Systems II B.tech 6th Sem

Line Flow and Losses

--Line-- Power at bus & line flow --Line loss-- Transformer

From To MW Mvar MVA MW Mvar tap

1 260.950 -17.010 261.504

2 177.743 -22140 179.117 5.461 10.517

3 83.197 5.125 83.354 2.807 7.079

2 18.300 36.126 40.497

1 -172.282 32.657 175.350 5.461 10.517

4 45.702 2.720 45.783 1.106 -0.519

5 82.990 1.704 83.008 2.995 8.178

6 61.905 -0.966 61.913 2.047 2.263

3 -2.400 -1.200 2.683

1 -80.390 1.954 80.414 2.807 7.079

4 78.034 -3.087 78.095 0.771 1.345

4 -7.600 -1.600 7.767

2 -44.596 -3.239 44.713 1.106 -0.519

3 -77.263 4.432 77.390 0.771 1.345

6 70.132 -17.624 72.313 0.605 1.181

12 44.131 14.627 46.492 0.000 4.686 0.932

5 -94.200 16.995 95.721

2 -79.995 6.474 80.256 2.995 8.178

7 -14.210 10.467 17.649 0.151 -1.687

6 0.000 0.000 0.000

2 -59.585 3.229 59.945 2.047 2.263

4 -69.527 18.805 72.026 0.605 1.181

7 37.537 -1.915 37.586 0.368 -0.598

8 29.534 -3.712 29.766 0.103 -0558

9 27.687 -7.318 28.638 0.000 1.593 0.978

10 15.828 0.656 15.842 0.000 1.279 0.969

28 18.840 -9.575 21.134 0.060 -13.085

7 -22.800 -10.900 25.272

5 14.361 -12.154 18.814 0.151 -1.687

6 -37.170 1.317 37.193 0.368 -0.598

8 -30.000 0.759 30.010

6 -29.431 3.154 29.599 0.103 -0.558

28 -0.570 -2.366 2.433 0.000 -4.368

9 0.000 0.000 0.000

6 -27.687 8.911 29.086 0.00 1.593

11 0.003 -15.653 15.653 -0.000 0.461

10 27.731 6.747 28.540 0.000 0.811

10 -5.800 17.00 17.962

6 -15.828 0.623 15.640 0.000 1.279

9 -27.731 -5.936 28.359 0.000 0.811

20 9.018 3.569 9.698 0.081 0.180

17 5.347 4.393 6.920 0.014 0.037

21 15.723 9.846 18.551 0.110 0.236

22 7.582 4.487 8.811 0.052 0.107

11 0.000 16.113 16.113

9 -0.003 16.114 16.114 -0.000 0.461

12 -11.200 -7500 13.479

4 -44.131 -9.941 45.237 0.000 4.686

13 -0.021 -10.274 10.274 0.000 0.132

14 7.852 2.428 8.219 0.074 0.155

15 17.852 6.968 19.164 0.217 0.428

16 7.206 3.370 7.955 0.053 0.112

13 0.000 10.406 10.406

12 0.021 10.406 10.406 0.000 0.132

Page 15: Web for Power Systems II B.tech 6th Sem

14

-6.200 -1.600 6.403

12 -7.778 -2.273 8.103 0.074 0.155

15 1.592 0.708 1.742 0.006 0.006

15 -8.200 -2.500 8.573

12 -17.634 -6.540 18.808 0.217 0.428

14 -1.586 -0.702 1.734 0.006 0.006

18 6.009 1.741 6.256 0.039 0.079

23 5.004 2.963 5.815 0.031 0.063

16 -3.500 -1.800 3.936

12 -7.152 -3.257 7.859 0.053 0.112

17 3.658 1.440 3.931 0.012 0.027

17 -9.000 -5.800 10.707

16 -3.646 -1.413 3.910 0.012 0.027

10 -5.332 -4.355 6.885 0.014 0.037

18 -3.200 -0.900 3.324

15 -5.774 -1.661 6.197 0.039 0.079

19 -6.703 0.787 2.888 0.005 0.010

19 -9.500 -3.400 10.090

18 -2.774 -0.777 2.881 0.005 0.010

20 -6.703 -2.675 7.217 0.017 0.034

20 -2.200 -0.700 2.309

19 6.720 2.709 7.245 0.017 0.034

10 -8.937 -2.389 9.558 0.081 0.180

21 -17.500 -11.200 20.777

10 -15.613 -9.609 18.333 0.110 0.034

22 -1.849 -1.627 2.463 0.001 0.180

22 0.000 0.00 0.000

10 -7.531 -4.380 8.712 0.052 0.107

21 1.850 1.628 2.464 0.001 0.001

24 5.643 2.795 6.297 0.043 0.067

23 -3.200 -1.600 3.578

15 -4.972 -2.728 5/756 0.031 0.067

24 1,771 -1.270 2.186 0.006 0.012

24 -8.700 -2.400 9.025

22 -5.601 -2.728 6.230 0.043 0.067

23 -1.765 -1.270 2.174 0.006 0.012

25 -1.322 1.604 2.079 0.026 0.014

25 0.000 0.000 0.000

24 1.330 -1.590 2.073 0.008 0.014

26 3.520 2.372 4.244 0.444 0.066

27 -4.866 -0.786 4.929 0.026 0.049

26 -3.500 -2.300 4.188

25 -3.476 -2.306 4.171 0.044 0.066

27 0.000 0.000 0.000

25 4.892 0.835 4.963 0.026 0.049

28 -18.192 -4.152 18.660 -0.000 1.310

29 6.178 1.675 5.401 0.086 0.162

30 7.093 1.663 7.286 0.162 0.304

28 0.000 0.000 0.000

27 18.192 5.463 18.994 -0.000 1.310 0.968

8 0.570 -2.003 2.082 0.000 -4.368

6 -18.780 -3.510 19.106 0.060 -13.085

Page 16: Web for Power Systems II B.tech 6th Sem

29 -2.400 -9.00 2.563

27 -6.093 -1.513 6.278 0.086 0.162

30 3.716 0.601 3.764 0.034 0.063

30 -10.600 -1.900 10.769

27 -6.932 -1.359 7.064 0.162 0.304

29 -3.683 -0.537 3.722 0.034 0.063

Total loss 17.594 22.233


Recommended