+ All Categories
Home > Documents > Week6 Wing Load Distribution W2014

Week6 Wing Load Distribution W2014

Date post: 20-Jan-2016
Category:
Upload: oukast23
View: 128 times
Download: 10 times
Share this document with a friend
Description:
wing
Popular Tags:
29
2/12/2014 Aircraft Structural Design 2
Transcript
Page 1: Week6 Wing Load Distribution W2014

2/12/2014 Aircraft Structural Design 2

Page 2: Week6 Wing Load Distribution W2014

Schrenk’s approximation

β€’ Classical wing theory: for an elliptical wing, spanwise air load (lift) distribution is of elliptical shape.

β€’ Schrenk’s approximation for a non-elliptical wing: assumes that the load distribution on untwisted wing or tail has a shape that is the average of the actual planform shape and an elliptical shape of the same span and area.

β€’ The total area under the lift load curve must equate to the required total lift.

2/12/2014 Aircraft Structural Design 3

Page 3: Week6 Wing Load Distribution W2014

Schrenk’s approximation

β€’ Schrenk’s method essentially states that the resultant load distribution is an arithmetic mean of:

A load distribution representing the actual planform shape An elliptical distribution of the same span and area

2/12/2014 Aircraft Structural Design 4

Page 4: Week6 Wing Load Distribution W2014

Schrenk’s approximation

Here the semi-span wing area = area of an elliptical quadrant = S/2.

2/12/2014 Aircraft Structural Design 5

Page 5: Week6 Wing Load Distribution W2014

Schrenk’s approximation

2/12/2014 Aircraft Structural Design 6

β€’ Semi Elliptical Area: 𝑆

2=1

4

πœ‹

42π‘Žπ‘ ⟹ π‘Ž =

4𝑆

πœ‹π‘

β€’ But for an ellipse:

𝑦2

𝑏2

2 +𝑐𝑦

2

π‘Ž2= 1 ⟹ 𝑐𝑦=

4𝑆

πœ‹π‘1 βˆ’

2𝑦

𝑏

2

Page 6: Week6 Wing Load Distribution W2014

Schrenk’s approximation

2/12/2014 Aircraft Structural Design 7

β€’ Schrenks’s approximation is then to put wy (N/m) in place of cy and put L (N) in place of S, yielding the following expression for load distribution over the wing as a function of spanwise distance y (m):

𝑀𝑦=4𝐿

πœ‹π‘1 βˆ’

2𝑦

𝑏

2

Page 7: Week6 Wing Load Distribution W2014

Schrenk’s approximation

2/12/2014 Aircraft Structural Design 8

β€’ For a tapered wing with taper ratio πœ† =𝑐𝑑

π‘π‘Ÿ:

π΄π‘Ÿπ‘’π‘Ž =𝑆

2=

𝑐𝑑 + π‘π‘Ÿ2

𝑏

2

=π‘π‘Ÿπ‘π‘Ÿ

+π‘π‘‘π‘π‘Ÿ

π‘π‘π‘Ÿ4

= 1 + πœ† π‘π‘π‘Ÿ4 π‘œπ‘Ÿ π‘π‘Ÿ =

2𝑆

1 + πœ† 𝑏

Page 8: Week6 Wing Load Distribution W2014

Schrenk’s approximation

2/12/2014 Aircraft Structural Design 9

Now: 𝑐𝑦 = π‘π‘Ÿ βˆ’π‘¦π‘

2

π‘π‘Ÿ βˆ’ 𝑐𝑑 =

π‘π‘Ÿ 1 +2𝑦

π‘πœ† βˆ’ 1 π‘œπ‘Ÿ

𝑐𝑦=2𝑆

1 + πœ† 𝑏1 +

2𝑦

π‘πœ† βˆ’ 1

Then: replacing 𝑐𝑦 with 𝑀𝑦and S with L, we obtain the

expression for the load distribution over the span:

𝑀𝑦=2𝐿

1 + πœ† 𝑏1 +

2𝑦

π‘πœ† βˆ’ 1

Page 9: Week6 Wing Load Distribution W2014

Schrenk’s approximation

2/12/2014 Aircraft Structural Design 10

β€’ Schrenks’s approximation for load distribution over a tapered wing is therefore the average of the following two distributions:

𝑀𝑦=4𝐿

πœ‹π‘1 βˆ’

2𝑦

𝑏

2

β€’ And:

𝑀𝑦=2𝐿

1 + πœ† 𝑏1 +

2𝑦

π‘πœ† βˆ’ 1

Page 10: Week6 Wing Load Distribution W2014

Anderson’s approximation

2/12/2014 Aircraft Structural Design 11

β€’ Based on results obtained for base (Lb) and additional (La) lift on a tapered/twisted wing.

β€’ Base lift: lift generated by the twist of a wing.

β€’ We will focus here on untwisted wings whereby only the additional lift distribution is of interest.

β€’ For detailed discussions see reference below:

Theory of Wing Sections by Ira H. Abbott And Albert E. Von Doenhoff, Dover Publications, Inc. NY, 1959.

Page 11: Week6 Wing Load Distribution W2014

Anderson’s approximation

2/12/2014 Aircraft Structural Design 12

β€’ Consider an arbitrary wing with a specified surface area S, total span b, a taper ratio Ξ» = ct/cr and an aspect ratio A = b2/S.

β€’ Station (i) = Station (yi/(b/2)) = Station (0, 0.2, 0.4, etc.)

cr

yi

yi+1

ct

b/2

Station i Station i+1 y

c(y)

Page 12: Week6 Wing Load Distribution W2014

Anderson’s approximation

2/12/2014 Aircraft Structural Design 13

β€’ As seen before:

𝑐𝑦 = π‘π‘Ÿ 1 +2𝑦

π‘πœ† βˆ’ 1

β€’ And:

𝑆 = 1 + πœ† π‘π‘π‘Ÿ2

Page 13: Week6 Wing Load Distribution W2014

Anderson’s approximation

2/12/2014 Aircraft Structural Design 14

β€’ According to this method, the local lift coefficient cL at a given Station (i) can be determined using:

𝑐𝐿 = 𝐢𝐿(𝑆/𝑏𝑐𝑖)πΏπ‘Ž

where ci is the chord length at Station (i) and La is a coefficient determined from Tables.

β€’ Once cL is determined, calculate local lift force Li using:

𝐿𝑖 = Β½(πœŒπ‘‰2𝑐𝐿 𝑆𝑖)

β€’ Where: 𝑆𝑖 = (𝑦𝑖+1 – 𝑦𝑖)(𝑐𝑖+1 + 𝑐𝑖)/2

Page 14: Week6 Wing Load Distribution W2014

2/12/2014 Aircraft Structural Design 15

Page 15: Week6 Wing Load Distribution W2014

Anderson’s approximation

2/12/2014 Aircraft Structural Design 16

β€’ Li acts midspan between station i and i+1 .

β€’ Shear forces and bending/twisting moments at each station can then be determined from a balance of forces and moments.

yi+1 yi Li

Station i+1

i+1

Station i

Vi+1 Vi

Inboard (wing root) Outboard (wing tip)

Mi+1 Mi

Page 16: Week6 Wing Load Distribution W2014

Anderson’s approximation

2/12/2014 Aircraft Structural Design 17

𝑉𝑖 = 𝑉𝑖+1 + 𝐿𝑖

𝑀𝑖 = 𝑀𝑖+1

+ 𝐿𝑖(𝑦𝑖+1– 𝑦𝑖)/2 + 𝑉𝑖+1(𝑦𝑖+1– 𝑦𝑖)

Page 17: Week6 Wing Load Distribution W2014

Anderson’s approximation

2/12/2014 Aircraft Structural Design 18

β€’ General case of a wing at an Angle of Attack Ξ±

𝑁 = πΏπ‘π‘œπ‘ (𝛼) + 𝐷𝑠𝑖𝑛(𝛼) 𝑃 = βˆ’ 𝐿𝑠𝑖𝑛(𝛼) + π·π‘π‘œπ‘ (𝛼)

Ξ±

L

D

N

P x

z

Page 18: Week6 Wing Load Distribution W2014

Anderson’s approximation

𝑐𝐷 = 𝐢𝐷(𝑆/𝑏𝑐𝑖)πΏπ‘Ž π‘«π’Š = Β½(π†π‘½πŸπ’„π‘« π‘Ίπ’Š) 𝑐𝐿 = 𝐢𝐿(𝑆/𝑏𝑐𝑖)πΏπ‘Ž π‘³π’Š = Β½(π†π‘½πŸπ’„π‘³π‘Ίπ’Š)

𝑁𝑖 = πΏπ‘–π‘π‘œπ‘ (𝛼) + 𝐷𝑖𝑠𝑖𝑛(𝛼) 𝑃𝑖 = βˆ’ 𝐿𝑖𝑠𝑖𝑛(𝛼) + π·π‘–π‘π‘œπ‘ (𝛼)

𝑉𝑧𝑖 = 𝑉𝑧𝑖+1 + 𝑁𝑖

𝑀π‘₯𝑖 = 𝑀π‘₯𝑖+1 + 𝑁𝑖(𝑦𝑖+1– 𝑦𝑖)/2 + 𝑉𝑧𝑖+1(𝑦𝑖+1– 𝑦𝑖) 𝑉π‘₯𝑖 = 𝑉π‘₯𝑖+1 + 𝑃𝑖

𝑀𝑧𝑖 = 𝑀𝑧𝑖+1 + 𝑃𝑖(𝑦𝑖+1– 𝑦𝑖)/2 + 𝑉π‘₯𝑖+1(𝑦𝑖+1– 𝑦𝑖)

2/12/2014 Aircraft Structural Design 19

Page 19: Week6 Wing Load Distribution W2014

Anderson’s approximation Wing torque:

β€’ The value of the wing torque (torsion moment) 𝑀𝑦 is related to the magnitude and direction of the pitching moment of the wing π‘€π‘œ plus the moment caused by the normal lift (N) acting about the shear centre of the wing box (neglecting the contribution of P).

2/12/2014 Aircraft Structural Design 20

Page 20: Week6 Wing Load Distribution W2014

Anderson’s approximation

𝑀𝑦𝑖 = 𝑀𝑦𝑖+1 +π‘€π‘œ + 𝑁𝑖𝑙𝑖

π‘€π‘œ = Β½(πœŒπ‘‰2π‘π‘šπ‘œ 𝑐𝑖𝑆𝑖) π‘π‘šπ‘œ = πΆπ‘šπ‘œ (𝑆/𝑏𝑐𝑖)πΏπ‘Ž

2/12/2014 Aircraft Structural Design 21

AC

SC

Ni

l

Mo

Myi+1 Myi Station i+1 Station i

Page 21: Week6 Wing Load Distribution W2014

Anderson’s approximation β€’ Example 1:

A tapered wing has a half span of 6 m, a root chord of 2.6 m and a tip chord of 1.6 m. Assuming the a/c is at an AOA α = 20o calculate all applicable loads using the Anderson Tables for air load approximations. Assume CL = 1.9, CD = 0.2, Cmo = -0.05 and that the a/c is in flight at an airspeed V = 100 m/s and ρ = 1.225 kg/m3.

2/12/2014 Aircraft Structural Design 22

Page 22: Week6 Wing Load Distribution W2014

Anderson’s approximation Solution:

β€’ Ξ» = ct/cr = 1.6/2.6 = 0.62 β‰ˆ 0.6 (for Anderson’s tables)

β€’ S = (b/2)(1+ Ξ») cr = 6(1+0.62)(2.6) = 25.2 m2

β€’ A = b2/S = (12)2/25.27 = 5.7 β‰ˆ 6 (for Anderson’s tables)

β€’ We now use the Anderson tables to obtain La at the various stations for ct/cr = 0.6 and A = 6. For example at Station 0, La = 1.267 while at Station 0.975, La = 0.340. From those values of La we proceed to determine all applicable loads.

2/12/2014 Aircraft Structural Design 23

Page 23: Week6 Wing Load Distribution W2014

Anderson’s approximation

2/12/2014 Aircraft Structural Design 24

STATION y i (m) C i (m) S i (m2) L a c L c D L i (N) D i (N) c mo Mo

0.0000 0.0000 2.6000 3.0000 1.2670 1.9444 0.2047 35728 3761 -0.0512 -2445

0.2000 1.2000 2.4000 2.7600 1.2180 2.0249 0.2132 34231 3603 -0.0533 -2162

0.4000 2.4000 2.2000 2.5200 1.1320 2.0530 0.2161 31689 3336 -0.0540 -1835

0.6000 3.6000 2.0000 2.2800 1.0020 1.9990 0.2104 27916 2939 -0.0526 -1469

0.8000 4.8000 1.8000 1.0500 0.8000 1.7733 0.1867 11405 1201 -0.0467 -540

0.9000 5.4000 1.7000 0.5025 0.6150 1.4434 0.1519 4443 468 -0.0380 -199

0.9500 5.7000 1.6500 0.2456 0.4660 1.1269 0.1186 1695 178 -0.0297 -74

0.9750 5.8500 1.6250 0.2419 0.3400 0.8348 0.0879 1237 130 -0.0220 -53

1.0000 6.0000 1.6000 0.0000 0.0000 0.0000 0 0 0.0000 0

N P V z (N) V x (N) M x (N.m) M z (N.m) M y (N.m)

34859 -8686 144737 -36063 385697 -96101 72568

33399 -8322 109878 -27377 232928 -58037 52354

30918 -7704 76479 -19056 121113 -30177 34477

27237 -6787 45560 -11352 47890 -11932 19306

11128 -2773 18323 -4565 9560 -2382 7157

4335 -1080 7196 -1793 1904 -474 2690

1654 -412 2861 -713 396 -99 1046

1207 -301 1207 -301 91 -23 437

0 0 0 0 0 0 0

Page 24: Week6 Wing Load Distribution W2014

Boeing 707 Example 2:

β€’ Consider the wing loading of a Boeing 707 in flight at a point where the total lift on the wing L = 750 KN. Determine wing load distribution using an airload elliptical approximation (assume level flight at 0 AOA)

2/12/2014 Aircraft Structural Design 25

Page 25: Week6 Wing Load Distribution W2014

Boeing 707

2/12/2014 Aircraft Structural Design 26

Page 26: Week6 Wing Load Distribution W2014

Boeing 707 β€’ Airload elliptical approximation:

2/12/2014 Aircraft Structural Design 27

Page 27: Week6 Wing Load Distribution W2014

Boeing 707 β€’ The wing final load distribution is established

once the net effect of all relevant loads is accounted for. The plot below illustrates the net resultant of all distributed loads, i.e., before accounting for engine weights.

2/12/2014 Aircraft Structural Design 28

-10

-5

0

5

10

15

20

25

30

0 10 20 30

wy (KN/m)

Structures load(KN/m)

Fuel load (KN/m)

Net load (KN/m)

Page 28: Week6 Wing Load Distribution W2014

Boeing 707

2/12/2014 Aircraft Structural Design 29

y(m) wy (KN/m) Air load delta Structures load/m Structures load delta Fuel load/m Fuel load delta Engine load delta

20 0 0 -1.5 0 0 0 0

19 7.458198246 3.729099123 -1.625 -1.5625 0 0 0

18 10.41138283 8.934790537 -1.75 -1.6875 -3 0 0

17 12.58238904 11.49688593 -1.875 -1.8125 -3.277777778 -3.138888889 0

16 14.33121019 13.45679961 -2 -1.9375 -3.555555556 -3.416666667 0

15 15.79867423 15.06494221 -2.125 -2.0625 -3.833333333 -3.694444444 0

14.5 16.451 8.062418558 -2.1875 -1.078125 -3.972222222 -1.951388889 0

14.5 16.45100794 -2.1875 -18

14 17.05755198 8.377137995 -2.25 -1.109375 -4.111111111 -2.020833333 0

13 18.15129477 17.60442337 -2.375 -2.3125 -4.388888889 -4.25 0

12 19.10828025 18.62978751 -2.5 -2.4375 -4.666666667 -4.527777778 0

11 19.94820034 19.5282403 -2.625 -2.5625 -4.944444444 -4.805555556 0

10 20.68532015 20.31676025 -2.75 -2.6875 -5.222222222 -5.083333333 0

9.5 21.018 10.42583004 -2.8125 -1.390625 -5.361111111 -2.645833333 0

9.5 21.018769 -18

9 21.33029988 10.58707497 -2.875 -1.421875 -5.5 -2.715277778 0

8 21.89128517 21.61079252 -3 -2.9375 -5.777777778 -5.638888889 0

6 22.78517201 44.67645718 -3.25 -6.25 -6.333333333 -12.11111111 0

4 23.40276824 46.18794025 -3.5 -6.75 -6.888888889 -13.22222222 0

2 23.7656235 47.16839174 -3.75 -7.25 -7.444444444 -14.33333333 0

0 23.88535032 47.65097382 -4 -7.75 -8 -15.44444444 0

Page 29: Week6 Wing Load Distribution W2014

Boeing 707

2/12/2014 Aircraft Structural Design 30

Spanwise distance (m) Net load/m Net load Shear Force Bending Moment

20 -1.5 0 0 0

19 5.833198246 2.166599123 2.166599123 3.249898685

18 5.661382827 5.747290537 7.91388966 14.03743361

17 7.429611258 6.545497043 14.4593867 31.76956884

16 8.775654636 8.102632947 22.56201965 58.38290496

15 9.840340897 9.307997766 31.87001742 94.90692126

14.5 10.29127778 5.032904669 36.90292208 114.6166085

14.5 10.291 -18 18.90292208 114.6166085

14 10.69644087 5.246929661 24.14985175 128.0032668

13 11.38740588 11.04192337 35.19177512 168.7160036

12 11.94161359 11.66450973 46.85628485 221.4045433

11 12.3787559 12.16018474 59.0164696 286.5011053

10 12.71309793 12.54592692 71.56239651 364.3364652

9.5 12.84438889 6.389371705 77.95176822 404.9096923

9.5 12.844 -18 59.95176822 404.9096923

9 12.95529988 6.449922192 66.40169041 439.723018

8 13.11350739 13.03440363 79.43609405 525.6763139

6 13.20183868 26.31534606 105.7514401 763.4945402

4 13.01387935 26.21571803 131.9671581 1053.644574

2 12.57117905 25.58505841 157.5522165 1394.334066

0 11.88535032 24.45652937 182.0087459 1782.808087


Recommended