+ All Categories
Home > Documents > What can we learn/predict from global MHD models?

What can we learn/predict from global MHD models?

Date post: 04-Feb-2022
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
24
What can we learn/predict from global MHD models? Seth G. Claudepierre, The Aerospace Corporation Contributors: Mary Hudson, Bill Lotko, Scot Elkington, Mike Wiltberger, Richard Denton, John Lyon, Frank Toffoletto, Asher Pembroke, Kazue Takahashi
Transcript

What can we learn/predict from global MHD models?

Seth G. Claudepierre, The Aerospace Corporation

Contributors: Mary Hudson, Bill Lotko, Scot Elkington, Mike Wiltberger, Richard Denton, John Lyon, Frank Toffoletto, Asher Pembroke, Kazue Takahashi

What can we learn from global MHD models?

“The source of the oscillations driving field line resonances(FLRs) in the magnetosphere remains controversial.” – Stephenson and Walker, AG, [2010].

Individual solar wind parameters can be isolated in global MHD simulations to asses their role in the generation of magnetospheric ULF waves (externally driven, Pc4-5 waves).

Kelvin-Helmholtz Instability Driven Dynamic Pressure Driven

SW SW

→ Numerical experiments with a global MHD simulation

(Claudepierre et al., JGR, 2008) (Claudepierre et al., JGR, 2010)

ULF Pulsations and the Solar Wind

Kelvin-Helmholtz Instability Driven Dynamic Pressure Driven

SW SW

(Claudepierre et al., JGR, 2008) (Claudepierre et al., JGR, 2010)

ULF Pulsations and the Solar Wind

Dynamic Pressure Simulations

SW

• Four LFM simulations: (3) monochromatic ULF frequencies (10, 15, 25 mHz): (1) continuum of ULF frequencies (0-30 mHz): • All other input parameters the same: n0 = 5 particles/cm3 B = (0, 0, +5) nT Vx = 600 km/s Vy = Vz = 0 km/s Cs out of phase (→ Pth ~ nCs

2 = const )

)sin()( 0 tCntn ω+=

∑ ++=j

jjtDntn )sin()( 0 ξω

Solar Wind Driving

)~( 2vnpdyn

Monochromatic and Continuum Simulation

∑ ++=j

jjtDntn )sin()( 0 ξω

Solar Wind Driving

)sin()( 0 tCntn ω+=

)~( 2vnpdyn

10 mHz Simulation EL Wave Power, Equatorial Plane

2/1

),()(

)],([FFT),(

=

=

∫b

a

f

f

L

dffxPxRIP

txEfxP

[fa, fb] = [9.5,10.5] mHz

*Claudepierre et al., JGR, 2010

Xgsm

Ygsm RIP EL [mV/m]

10 mHz Simulation EL Wave Power, 15 MLT Meridional Plane

*Claudepierre et al., JGR, 2010 Rgsm

Zgsm

15 MLT

2/1

),()(

)],([FFT),(

=

=

∫b

a

f

f

L

dffxPxRIP

txEfxP

[fa, fb] = [9.5,10.5] mHz RIP EL [mV/m]

10 mHz Simulation Bφ Wave Power, 15 MLT Meridional Plane

*Claudepierre et al., JGR, 2010

2/1

),()(

)],([FFT),(

=

=

∫b

a

f

fdffxPxRIP

txBfxP

ϕ

[fa, fb] = [9.5,10.5] mHz

Rgsm

Zgsm

15 MLT

RIP Bφ [nT]

10 mHz Simulation Bφ Wave Power, 15 MLT Meridional Plane

*Claudepierre et al., JGR, 2010 Rgsm

Zgsm

15 MLT

RIP Bφ [nT]

Q: What is the natural oscillation frequency of the white field line?

10 mHz Simulation Bφ Wave Power, 15 MLT Meridional Plane

*Claudepierre et al., JGR, 2010 Rgsm

Zgsm

15 MLT

RIP Bφ [nT]

Q: What is the natural oscillation frequency of the white field line? A: 1

)(2

= ∫

N

SA

n sVdsnf (WKB)

10 mHz Simulation Bφ Wave Power, 15 MLT Meridional Plane

*Claudepierre et al., JGR, 2010 Rgsm

Zgsm

15 MLT

RIP Bφ [nT]

Q: What is the natural oscillation frequency of the white field line? A:

mHz 10)(

2

1

1

=

∫f

sVdsnf

N

SA

n (WKB)

10 mHz Simulation EL, Spectral Density, 15 MLT Meridian

*Claudepierre et al., JGR, 2010

1

)(2

= ∫

N

S An sV

dsnf (WKB)

RIP EL [mV/m]

RIP EL [mV/m]

XY-plane

15 MLT-plane

10 mHz Simulation EL, Bφ Field-Aligned Mode Structure

*Claudepierre et al., JGR, 2010

RIP EL [mV/m]

RIP Bφ [nT]

15 MLT-plane

15 MLT-plane

Continuum Simulation Results

*Claudepierre et al., JGR, 2010 w

ave

pow

er, P

dyn

1

)(2

= ∫

N

SA

n sVdsnf (WKB)

LFM (no plasmasphere) MP

Claudepierre et al., JGR, 2010 Er wave power 15 MLT

LFM (no plasmasphere) Er (FLR) Eφ (WG)

MP MP

Er wave power 15 MLT

EΦ wave power 15 MLT

LFM (no plasmasphere) Er (FLR) Eφ (WG) Bz (WG)

MP MP MP

LFM

(no

plas

mas

pher

e)

LFM

-RCM

(w/ p

lasm

asph

ere)

Er (FLR) Eφ (WG) Bz (WG)

MP MP MP

MP PP

LFM

(no

plas

mas

pher

e)

LFM

-RCM

(w/ p

lasm

asph

ere)

Er (FLR) Eφ (WG) Bz (WG)

MP MP MP

MP MP PP PP

LFM

(no

plas

mas

pher

e)

LFM

-RCM

(w/ p

lasm

asph

ere)

Er (FLR) Eφ (WG) Bz (WG)

MP MP MP

MP MP MP PP PP PP

LFM-RCM (w/ plasmasphere)

Eφ (WG)

Bz (WG)

MP

MP PP

PP THEMIS Observations (statistical – all data from 2008)

Courtesy of Kazue Takahashi

Figures courtesy of S. Ukhorskiy and D. Sibeck

4-8-12 hrs separation along 24 hour orbit

8-8-8

8-8-8

FS inner sphere Burst: PP, plume, EMIC

FS inner sphere Burst: Plume, EMIC, shock

FS inner sphere

FS plumes Burst: shocks FS, inner sphere waves

FS apogee, inbound Burst: dipolarization

FS inbound Burst: MS, chorus, EMIC

FS pp, outbound, apogee Burst dipol., pp, EMIC

THEMIS/RBSP Conjunction Campaigns

Conclusions

• Solar wind dynamic pressure fluctuations can drive ULF waves on the dayside.

• Solar wind dynamic pressure fluctuations can excite toroidal mode FLRs and

compressional waveguide modes.

• First study of FLRs and waveguide modes using a global MHD model of the

solar wind/magnetosphere interaction.

• Recent work with the LFM-RCM, which includes a static plasmasphere, shows

promise for more detailed simulation/observation comparisons.

• The plasmasphere plays an important role in ULF wave generation in the inner

magnetosphere.


Recommended