+ All Categories
Home > Documents > What Do Agent-Based and Equation-Based …jasss.soc.surrey.ac.uk/13/1/6/6.pdf3.4 Figure 2. We show...

What Do Agent-Based and Equation-Based …jasss.soc.surrey.ac.uk/13/1/6/6.pdf3.4 Figure 2. We show...

Date post: 19-Jun-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
11
©Copyright JASSS Federico Cecconi, Marco Campenni, Giulia Andrighetto and Rosaria Conte (2010) What Do Agent-Based and Equation-Based Modelling Tell Us About Social Conventions: The Clash Between ABM and EBM in a Congestion Game Framework Journal of Artificial Societies and Social Simulation 13 (1) 6 <http://jasss.soc.surrey.ac.uk/13/1/6.html> Received: 13-Mar-2009 Accepted: 24-Dec-2009 Published: 31-Jan-2010 Keywords: 1.1 1.2 1.3 1.4 1.5 1.6 1.7 2.1 Abstract In this work simulation-based and analytical results on the emergence steady states in traffic-like interactions are presented and discussed. The objective of the paper is twofold: i) investigating the role of social conventions in coordination problem situations, and more specifically in congestion games; ii) comparing simulation-based and analytical results to figure out what these methodologies can tell us on the subject matter. Our main issue is that Agent-Based Modelling (ABM) and the Equation-Based Modelling (EBM) are not alternative, but in some circumstances complementary, and suggest some features distinguishing these two ways of modeling that go beyond the practical considerations provided by Parunak H.V.D., Robert Savit and Rick L. Riolo. Our model is based on the interaction of strategies of heterogeneous agents who have to cross a junction. In each junction there are only four inputs, each of which is passable only in the direction of the intersection and can be occupied only by an agent one at a time. The results generated by ABM simulations provide structured data for developing the analytical model through which generalizing the simulation results and make predictions. ABM simulations are artifacts that generate empirical data on the basis of the variables, properties, local rules and critical factors the modeler decides to implement into the model; in this way simulations allow generating controlled data, useful to test the theory and reduce the complexity, while EBM allows to close them, making thus possible to falsify them. Agent-Based Modelling, Equation-Based Modelling, Congestion Game, Model of Social Phenomena Introduction Ten years ago, during the first Multi-Agent Systems and Agent-Based Simulation Workshop (MABS '98), Parunak H.V.D., Robert Savit and Rick L. Riolo discussed the similarities and differences between the Agent-Based Modelling (ABM) and the Equation-Based Modelling (EBM), developing some criteria for selecting one or the other approach (Parunak et al. 1998). They claimed that despite sharing some common concerns, ABM and EBM differ in two ways: the fundamental relationships among the entities they model, and the level at which they operate. The authors observed that these two distinctions are tendencies, rather than hard and fast rules, and indicate that the two approaches can be usefully combined. During the last ten years, a lively debate on the subject matter has been developed (see Epstein 2007). An overall review is beyond the scope of this work. In this contribution, we will address a theoretical issue concerning the emergence of social conventions and we will explore how and to what extent an integrated approach of ABM and EBM methodologies can help us handle it. The aim of this work is to explore the emergence of steady states in congestion games (Rosenthal 1973; Milchtaich 1996; Chmura and Pitz 2007 ), and more specifically, to investigate the emergence of a precedence rule in traffic-like interactions (see also Sen and Airiau 2007). A congestion game is a game where each player's payoff is non-increasing over the number of other players choosing the same strategy. We use a Wikipedia example to show this concept: for instance, a driver could take U.S. Route 101 or Interstate 280 from San Francisco to San Jose. While 101 is shorter, 280 is considered more scenic, so drivers might have different preferences between the two independent of the traffic flow. But each additional car on either route will slightly increase the drive time on that route, so additional traffic creates negative network externalities A celebrated congestion game is the Minority Game, where the only objective for all players is to be part of the smaller of two groups ( Challet and Zhang1997, 1998; Chmura and Pitz 2006 ). A well-known example of the minority game is the El Farol Bar problem proposed by W. Brian Arthur ( 1994), in which a population of agents have to decide whether to go to the bar each week, using a predictor of the next attendance. All agents like to go to the bar unless it is too crowded (i.e. when more that 60% of the agents go). But since there is no single predictor that can work for everybody at the same time, there is no deductively rational solution. How can agents achieve this goal to go to the bar, avoiding crowd? It has been suggested that in coordination problem situations (like congestion games), a convention is a pareto-optimal rational choice (see Gilbert 1981; Lewis 1969; Sugden 2004; Young 1993), i.e. a choice in which any change to make any person better off is impossible without making someone else worse off, thereby in these kind of circumstances it should be the conventional solution to emerge. In this paper, we suggest a different solution to the subject matter, arguing that in specific coordination problem situations, more specifically in 4-strategy game structures, a conventional equilibrium is not granted to emerge. Thus, the objective of the paper is twofold: a) showing that in coordination problem situations, rational agents may also converge on non-conventional equilibriums; b) comparing and integrating simulation-based and analytical results in order to draw some conclusions about what these methodologies can tell us on the subject matter. The paper is divided into seven sections: sections 2 and 3 describe a general technique to write an analytic model for a population game (like a congestion game), i.e. the replicator-projector dynamic. In section 4 we describe our model and an algorithm to implement the replicator dynamic onto it. Our model is based on the interaction of strategies of heterogeneous agents who have to cross a junction trying to avoid collisions. In each junction there are only four inputs, each of which is passable only in the direction of the intersection and can be occupied only by an agent one at a time. The agents can perceive the presence of other agents only if they come from orthogonal directions. There are four types of agents, each characterized by a different strategy: two of these strategies consider binding on its decision the presence of other agents from a particular direction (e.g. by observing their right) to cross the junction. We call these strategies (and these agents) conditioned. In sections 5 and 6 we describe the results of simulation and analytic procedures. Finally, in section 7 we argument about the relationship between simulation and analytic results and we point out some possible outcomes. The replicator dynamics Congestion games involve large numbers of simple agents, each of them playing one out of a finite number of rules. In general, a congestion game deals with a society P of p different population of agents; nevertheless, our model will use only a single population (case p=1). We call these games population games. During the game, each agent chooses a strategy from the set S = {1,...,n} where n is the total number of strategies (behaviors). Now we will describe the replicator dynamics for population games. http://jasss.soc.surrey.ac.uk/13/1/6.html 1 07/10/2015
Transcript
Page 1: What Do Agent-Based and Equation-Based …jasss.soc.surrey.ac.uk/13/1/6/6.pdf3.4 Figure 2. We show the projector dynamic of a population game with 3 strategies (The image comes courteously

©CopyrightJASSS

FedericoCecconi,MarcoCampenni,GiuliaAndrighettoandRosariaConte(2010)

WhatDoAgent-BasedandEquation-BasedModellingTellUsAboutSocialConventions:TheClashBetweenABMandEBMinaCongestionGameFramework

JournalofArtificialSocietiesandSocialSimulation13(1)6<http://jasss.soc.surrey.ac.uk/13/1/6.html>

Received:13-Mar-2009Accepted:24-Dec-2009Published:31-Jan-2010

Keywords:

1.1

1.2

1.3

1.4

1.5

1.6

1.7

2.1

Abstract

Inthisworksimulation-basedandanalyticalresultsontheemergencesteadystatesintraffic-likeinteractionsarepresentedanddiscussed.Theobjectiveofthepaperistwofold:i)investigatingtheroleofsocialconventionsincoordinationproblemsituations,andmorespecificallyincongestiongames;ii)comparingsimulation-basedandanalyticalresultstofigureoutwhatthesemethodologiescantellusonthesubjectmatter.OurmainissueisthatAgent-BasedModelling(ABM)andtheEquation-BasedModelling(EBM)arenotalternative,butinsomecircumstancescomplementary,andsuggestsomefeaturesdistinguishingthesetwowaysofmodelingthatgobeyondthepracticalconsiderationsprovidedbyParunakH.V.D.,RobertSavitandRickL.Riolo.Ourmodelisbasedontheinteractionofstrategiesofheterogeneousagentswhohavetocrossajunction.Ineachjunctionthereareonlyfourinputs,eachofwhichispassableonlyinthedirectionoftheintersectionandcanbeoccupiedonlybyanagentoneatatime.TheresultsgeneratedbyABMsimulationsprovidestructureddatafordevelopingtheanalyticalmodelthroughwhichgeneralizingthesimulationresultsandmakepredictions.ABMsimulationsareartifactsthatgenerateempiricaldataonthebasisofthevariables,properties,localrulesandcriticalfactorsthemodelerdecidestoimplementintothemodel;inthiswaysimulationsallowgeneratingcontrolleddata,usefultotestthetheoryandreducethecomplexity,whileEBMallowstoclosethem,makingthuspossibletofalsifythem.

Agent-BasedModelling,Equation-BasedModelling,CongestionGame,ModelofSocialPhenomena

Introduction

Tenyearsago,duringthefirstMulti-AgentSystemsandAgent-BasedSimulationWorkshop(MABS'98),ParunakH.V.D.,RobertSavitandRickL.RiolodiscussedthesimilaritiesanddifferencesbetweentheAgent-BasedModelling(ABM)andtheEquation-BasedModelling(EBM),developingsomecriteriaforselectingoneortheotherapproach(Parunaketal.1998).Theyclaimedthatdespitesharingsomecommonconcerns,ABMandEBMdifferintwoways:thefundamentalrelationshipsamongtheentitiestheymodel,andthelevelatwhichtheyoperate.Theauthorsobservedthatthesetwodistinctionsaretendencies,ratherthanhardandfastrules,andindicatethatthetwoapproachescanbeusefullycombined.

Duringthelasttenyears,alivelydebateonthesubjectmatterhasbeendeveloped(see Epstein2007).Anoverallreviewisbeyondthescopeofthiswork.Inthiscontribution,wewilladdressatheoreticalissueconcerningtheemergenceofsocialconventionsandwewillexplorehowandtowhatextentanintegratedapproachofABMandEBMmethodologiescanhelpushandleit.Theaimofthisworkistoexploretheemergenceofsteadystatesincongestiongames(Rosenthal1973;Milchtaich1996;ChmuraandPitz2007 ),andmorespecifically,toinvestigatetheemergenceofaprecedenceruleintraffic-likeinteractions(seealso SenandAiriau2007).

Acongestiongameisagamewhereeachplayer'spayoffisnon-increasingoverthenumberofotherplayerschoosingthesamestrategy.WeuseaWikipediaexampletoshowthisconcept:

forinstance,adrivercouldtakeU.S.Route101orInterstate280fromSanFranciscotoSanJose.While101isshorter,280isconsideredmorescenic,sodriversmighthavedifferentpreferencesbetweenthetwoindependentofthetrafficflow.Buteachadditionalcaroneitherroutewillslightlyincreasethedrivetimeonthatroute,soadditionaltrafficcreatesnegativenetworkexternalities

Acelebratedcongestiongameisthe MinorityGame,wheretheonlyobjectiveforallplayersistobepartofthesmalleroftwogroups( ChalletandZhang1997,1998;ChmuraandPitz2006 ).Awell-knownexampleoftheminoritygameisthe ElFarolBar problemproposedbyW.BrianArthur( 1994),inwhichapopulationofagentshavetodecidewhethertogotothebareachweek,usingapredictorofthenextattendance.Allagentsliketogotothebarunlessitistoocrowded(i.e.whenmorethat60%oftheagentsgo).Butsincethereisnosinglepredictorthatcanworkforeverybodyatthesametime,thereisnodeductivelyrationalsolution.Howcanagentsachievethisgoaltogotothebar,avoidingcrowd?

Ithasbeensuggestedthatincoordinationproblemsituations(likecongestiongames),aconventionisapareto-optimalrationalchoice(see Gilbert1981;Lewis1969;Sugden2004;Young1993),i.e.achoiceinwhichanychangetomakeanypersonbetteroffisimpossiblewithoutmakingsomeoneelseworseoff,therebyinthesekindofcircumstancesitshouldbetheconventionalsolutiontoemerge.

Inthispaper,wesuggestadifferentsolutiontothesubjectmatter,arguingthatinspecificcoordinationproblemsituations,morespecificallyin4-strategygamestructures,aconventionalequilibriumisnotgrantedtoemerge.Thus,theobjectiveofthepaperistwofold:a)showingthatincoordinationproblemsituations,rationalagentsmayalsoconvergeonnon-conventionalequilibriums;b)comparingandintegratingsimulation-basedandanalyticalresultsinordertodrawsomeconclusionsaboutwhatthesemethodologiescantellusonthesubjectmatter.

Thepaperisdividedintosevensections:sections2and3describeageneraltechniquetowriteananalyticmodelforapopulationgame(likeacongestiongame),i.e.thereplicator-projectordynamic.Insection4wedescribeourmodelandanalgorithmtoimplementthereplicatordynamicontoit.Ourmodelisbasedontheinteractionofstrategiesofheterogeneousagentswhohavetocrossajunctiontryingtoavoidcollisions.Ineachjunctionthereareonlyfourinputs,eachofwhichispassableonlyinthedirectionoftheintersectionandcanbeoccupiedonlybyanagentoneatatime.Theagentscanperceivethepresenceofotheragentsonlyiftheycomefromorthogonaldirections.Therearefourtypesofagents,eachcharacterizedbyadifferentstrategy:twoofthesestrategiesconsiderbindingonitsdecisionthepresenceofotheragentsfromaparticulardirection(e.g.byobservingtheirright)tocrossthejunction.Wecallthesestrategies(andtheseagents)conditioned.Insections5and6wedescribetheresultsofsimulationandanalyticprocedures.Finally,insection7weargumentabouttherelationshipbetweensimulationandanalyticresultsandwepointoutsomepossibleoutcomes.

Thereplicatordynamics

Congestiongamesinvolvelargenumbersofsimpleagents,eachofthemplayingoneoutofafinitenumberofrules.Ingeneral,acongestiongamedealswithasocietyPofpdifferentpopulationofagents;nevertheless,ourmodelwilluseonlyasinglepopulation(casep=1).Wecallthesegamespopulationgames.Duringthegame,eachagentchoosesastrategyfromthesetS={1,...,n}wherenisthetotalnumberofstrategies(behaviors).Nowwewilldescribethereplicatordynamicsforpopulationgames.

http://jasss.soc.surrey.ac.uk/13/1/6.html 1 07/10/2015

Page 2: What Do Agent-Based and Equation-Based …jasss.soc.surrey.ac.uk/13/1/6/6.pdf3.4 Figure 2. We show the projector dynamic of a population game with 3 strategies (The image comes courteously

2.2

2.3

2.4

2.5

2.6

LetΣbethespacecontainingallthevectoroffrequencydistributionsoftheagentsplaying,

(1)

forexamplewecouldhaveapopulationwithtwodifferentstrategies,n=2;thestrategy(behavior)1istokeeptheright,thestrategy2istokeeptheleft.x1isthefrequencyofagentsthatarekeepingtheright,x2isthefrequencyofagentskeeping-the-left.Oncewefix PandS,thesetsofpopulationsandstrategies,wecanidentifyagamewithitsownpayofffunction,P:Σ_Rn,i.e.amapassigningavectorofpayofftoeachfrequencydistribution,oneforeachstrategyineachpopulation.Wedefineπithepayoffoftheagentswithstrategy(behavior) i.

Wecancomputesuchapayoffmapintwodifferentways.

a. (a)Coordinationgame.Thepayofffunctionisaconstantmatrix nbyncontainingthepayoffresultsderivingfromtheinteractionsbetweentwostrategies:wecallthiskindofgameRPSsGame(RPSsstandsforRock-Paper-Scissor,tocelebratethewellknown3-strategiesgameswhererockbreaksscissor,scissorcutspaperandpaperwrapsuprock).

b. (b)Congestiongame.Thepayofffunctionisafunctionofbothfrequencydistributionsandsomekindofcombinatoryamongagents.Insuchagametheagentsinteractinacomplexway(interactionswithmorethantwoagentsareallowed).Forinstance,letusconsideracollectionoftownsconnectedbyanetworkoflinks(say,highways).Agentsneedtocommutefromacitytoanother,choosingapath.Anagent'spayofffromchoosingapathisthenegationofthedelayonthispath.Thedelayonapathisthesumofthedelaysonitslinks,andthedelayonalinkisafunctionofthenumberofagentsusingthatlink.

Areplicatordynamicinapopulationgameisaprocessofchangeovertimeinthefrequencydistributionsofstrategies:strategieswithhigherpayoffsreproducefaster(Cecconietal2007;CecconiandZappacosta2008 ).Inmathematicalterms,thedynamicisatrajectoryonthespaceoffrequencies.Weusetwofigures(figure1andfigure2)fromSandholmetal.(2008)toshowthatthereplicatordynamiccouldbedescribedingeometricterms,likeatrajectorywithsomeconstraints.Thispointisthebaseofprojectordynamicmodeling.

Figure1.Weshowthedynamicofapopulationgame.Theredarrowsindicatethedirectionthatthefrequenciesofthestrategiesfollow.Thepurplearrowsindicatetheprojectionoftheredarrowsontoasubspaceofthestrategies:inthiscase,thesubspaceisaline,

correspondingtothepointswherethesumoffrequenciesis1.TheHawkDoveGameisontheright.WeshowthatintheHawkDoveGame(butnoninasimpleCoordinationGame)thereisastablepoint(TheimagecomescourteouslyofSandholm,Dokumaci&

Lahkar,fromSANDHOLM,W.H.,Dokumaci,E.,Lahkar,R.(2008)"Theprojectiondynamicandthereplicatordynamic",GamesandEconomicBehavior,64-2:666-683).

Wedefineπtheaveragepayoffforthewholepopulation

(2)

Thereplicatordynamicis

(3)

i.e.underreplicatordynamic,thefrequencyofabehaviorincreaseswhenitspayoffsexceedtheaverage.Foreachtimestept,thesystemofdifferentialequations(3)definesavectorfield(seefigure1).WecallvectorfieldafieldthatachievesthereplicatordynamicF.WeimplementFbyaglobalimitationalgorithm.Duringthegame,eachagenttestswhetheranotherindividualinthepopulationhasagreaterpayoffthanitsown.Themainruleinthismodelisthatanagentwithalowerpayoffimitatesthebehaviorofanotheragentwithagreaterpayoff.Inourmodel,wedon'thavemutationintheimitationprocess.ThistheoreticalframeworkdirectlyderivesfromtheformalizationdonebyEkman(2001).

http://jasss.soc.surrey.ac.uk/13/1/6.html 2 07/10/2015

Page 3: What Do Agent-Based and Equation-Based …jasss.soc.surrey.ac.uk/13/1/6/6.pdf3.4 Figure 2. We show the projector dynamic of a population game with 3 strategies (The image comes courteously

3.1

3.2

3.3

3.4

Figure2.Weshowtheprojectordynamicofapopulationgamewith3strategies(TheimagecomescourteouslyofSandholm,Dokumaci&Lahkar,fromSANDHOLM,W.H.,Dokumaci,E.,Lahkar,R.(2008)"Theprojectiondynamicandthereplicatordynamic",

GamesandEconomicBehavior,64-2:666-683).

Thegeometryofpopulationgames

Projectordynamic.

Thedynamicdescribedby(3)issubjecttoaconstraintsincethenumberofagentsremainsconstant,i.e.thesumofthe ximustbe1.Wecould,thus,describethedynamicofthegamewithadifferentapproach,thesocalledProjectorDynamic(Sandholmetal.2008).Thekeypointofthisapproachisthatthevectorfield Fdescribingthepopulationgameisprojectedontoanewvectorfield

(4)

where

(5)

Informally,weprojectthevectorfrom Fontoaline(ifn=2),ontoabidimensionalsimplex(if n=3,seefigure2)andsoon.Theprojectionofavectorialfieldisastandardprocedure.YoucanfindanalgorithminSandholmetal.(2008).

ProjectordynamicwithtwostrategiesintoRPSsgame.

Wecanexplaintheprojectordynamicframeworkwithtwostrategiesusinga2-strategies RPSsgame,theHawkDovegame.InHawkDovegamewefillthepayoffmatrixPHD(payoffmatrixforaRPSsgames)usingtherules:

1. whenHawkmeetsDoveHawkwina;2. whenHawkmeetsHawkbothlosebwithb<a;3. whenDovemeetDovebothwinb;4. whenDovemeetsHawk,Dovegets0.

wecancomputethecomponentsoftheprojectionofPHDfortheHawkDovegame.Aswesaidbefore,P HDdenotesthepayoffmatrixfortheHawkDovegame

(6)

Ifxisthevectoroffrequencies,wehave

(7)

hencefrom(7)wecancomputethecomponentsoftheprojectionofPHDfortheHawkDovegame

(8)

http://jasss.soc.surrey.ac.uk/13/1/6.html 3 07/10/2015

Page 4: What Do Agent-Based and Equation-Based …jasss.soc.surrey.ac.uk/13/1/6/6.pdf3.4 Figure 2. We show the projector dynamic of a population game with 3 strategies (The image comes courteously

3.5

3.6

3.7

4.1

4.2

4.3

4.4

Therelationobtainedfortheprojectionletusstatethatthegamehasastablestationarypoint(seefigure1,ontheright)

Projectordynamicintocongestiongame.

InthepreviousSubsection,wedescribedtheprojectordynamicin RPSsGame,withconstant2-agentsinteractionspayoffmatrix.Inourmodel(congestiongame),weadapttheprojectordynamicframeworktocomputeapayoffmatrixthatstartsfromapayofffunctionwithtwoparameters,i.e.thedistributionofthestrategiesattimetandthecombinationofstrategiesatthesametime.

Forexample,wesetagamewhere

1. 2hawksvis-à-vis1dovegetadifferentpayofffromtheoppositesituation(2dovesand1hawk)2. agentsplayingthesamestrategiesinteract(asinRPSsgameHawk-HawkandDove-Dove).

WefillthepayoffmatrixPCG(payoffmatrixforcongestiongame)usingthefollowingrules

i. wefillthediagonalusingthesamestrategyinteractions,thatistheinteractionsbetweenthesamestrategies,forexampleHawk-HawkandDove-Dove.ii. wefillothercellsusingthedifferentstrategyinteractions,thatistheinteractionbetweenthecorrespondingstrategyinaconstantpayoffmatrix(inthesimple

caseHawk-DoveweconsidertheinteractionbetweenHawk-Dove).

Themainfeatureofcongestiongameis:whenwefillthepayoffmatrixwecomputetheprobabilityfortheinteractions,forexampletheprobabilitytohave2hawksvs.1doves.

Themodel

Thegeneralframework:ajunction

LetPbeasocietyconsistingofasinglepopulationwith Nindividuals.Weconsideragamewhereeachindividualfollowsoneoutoffourbehaviors, WatchRight,WatchLeft,DoveandHawk.Wedenotethebehaviorwiththeindex I.Thefrequencyofindividualswithinthesocietywithbehavior iisxi.

Wedefinethebehaviorsandcomputethepayoffsbecauseofthepresenceof3differentalgorithms:the conditioned,thecompliantandtheaggressivealgorithm.TheconditionedalgorithmleadstoWatchRightandWatchLeftbehaviors.ThecompliantalgorithmdescribestheDove'sbehavior;theaggressivealgorithmdescribestheHawk'sbehavior.Weuseadiscretetimemodel,followingtheschedulinginalgorithm1,whereindividualsarepositionedrandomlyoveradiscretebi-dimensionallatticeL.Weusearegularlattice,withCcell.WeconsidereachcellofLacrossroadwithfourinputs(seefigure3).

WedescribethecrossroadsusingcounterclockwisedirectionandstartingfromWest,ifweareusingabird's-eyeview.Ifweareusinganindividualview(i.e.thecrossroadasitappearstotheindividual)weusetheright,leftandforwardconventions(firstweindicatewhatIfindonmyright,thenonmyleft,finallyinfrontofme).Hence,inFigure3(a)weshow(1)anindividualrunningEast(withWatchLeftbehavior);(2)thedirectionNorth-Southisempty;(3)anindividualwithHawkbehaviorisrunningtoWest;(4)anindividualwithDovebehaviorisrunningtoNorth.WecallparallelthedirectionsNorth-SouthandSouth-North,andthedirectionsWest-EastandEast-West.Wedefineorthogonaltheothercombinations.

Figure3.TwosnapshotsofL.In(a)wehave3individuals,in(b)only2;weputagentsontheinputofthejunction,thentheytrytocross.Thereisnomovementfromajunctiontoanother.

Themodelhassomeconstraints:

theindividualsthatarealoneinacelldonotgetpayoff;amaximumoffourindividualscanoccupyonesinglecell;onlyoneindividualperdirectionisadmitted(itisnotpossiblethat,forexample,twoHawksarerunningintheNorth-to-Southdirection);onlyorthogonalindividuals(wemeanindividualscomingfromorthogonaldirections)matter.

Nowwesketchtheconditionedalgorithm(seealgorithm2),theaggressivealgorithm(seealgorithm3)andthecompliantalgorithm(seealgorithm4).

Algorithm1.Theschedulingofsimulation.Wedefineas Crossroadsthecellswithmorethan1individual.

for t = 1 to T do

http://jasss.soc.surrey.ac.uk/13/1/6.html 4 07/10/2015

Page 5: What Do Agent-Based and Equation-Based …jasss.soc.surrey.ac.uk/13/1/6/6.pdf3.4 Figure 2. We show the projector dynamic of a population game with 3 strategies (The image comes courteously

4.5

4.6

4.7

4.8

4.9

4.10

for a = 1 to N do a := P to set a over L end for for c = 1 to Crossroads do Compute payoffs end forfor a = 1 to N do Imitation dynamic end forend for

Algorithm2.Conditioned.Aistheindividual.Xindicatesthedirectiontomonitor. CRASHindicatesthatAgoesintothecrossroadatthesametimeofanotherorthogonalindividual.STOPindicatesthatAdoesnotgointocrossroad.GOAHEADindicatesthattheindividualcrossesthecrossroad. Hisahawkindividual.DisaDoveindividual.Cisaconditionedindividual.WedefinenotblockedCaconditionedindividualwiththefreemonitoreddirection.

If X is occupied then STOP else if there is (orthogonal H) or (orthogonal not blocked C) then CRASH else GOAHEAD end if end if

Algorithm3.Aggressive.

if there is (orthogonal H) or (orthogonal not blocked C) then CRASH else GOAHEAD end if

Algorithm4.Compliant.

if there is an orthogonal individual then STOP else GOAHEAD end if

Payoffcomputations

Torealizeananalyticmodelforourcongestiongame,wewritedownanexpressionfor πi,thepayofffor i'sstrategy.Morespecifically,wehavetowritedownamatrixPCG,4×4.Theelementsofthismatrixarefunctionsoffrequencyofthestrategiesandtheprobabilityofthecombinationsofthestrategiesoverthetime.The

computationofπileadsdirectlytofillthePCGmatrix,usingruleslikeinsection3.3,i.e.… wefillthediagonalusingthesamestrategyinteractions(forexampleWatchRightVsWatchRight),…wefilltheothercellsusingthedifferentstrategies'interactions (forexampleHawkVsDoveVsWatchRight).

Wecallthebehaviorsi,r=1,l=2,d=3,h=4 .Thegeneralrulesare:ifagentSTOPS,thepayoffissetto 0.IfagentsCRASHtheirpayoffsaresetto -1.IfanagentGOESAHEAD,itspayoffis1.

Weletxi(t)denotetheamountofindividualswithbehaviors iinperiodt.Clearly,wehave x1+x2+x3+x4=N,whereNisthetotalnumberofplayers.Wealsolet Cdenotethetotalnumberofcells.WestudythemodelwithdensityC=N.Theprobabilitythatonecellcontains kindividualsis

(9)

Wecallakthenumberofcellswith kindividuals.Wecancomputethepayoffforeachbehaviorasthesumoftheproductsbetween akandthesumofthepayoffsforeachcombination,withkfixed.Forexamplefork=2 wehave10combinations,h={rr,ll,dd,hh,rl,rd,rh,ld,lh,dh} .Only8combinationsgivesomepayoffsthataredifferentfromzero,rr,ll,dd,rd,rh,ld,lh,dh.hhdoesnotgivepayoff,becausewehaveparallel(=) hhwithpayoffs2andorthogonal(||)hhwithpayoffs-2. rldoesnotgivepayoffbecauseforparallelcombinationsweobtain2,andforthe2orthogonalcombinations(probabilities1/2and1/2)weobtain0and-2.

WecallKhithematrixofpayoffsdifferentfromzeroforbehavior iandcombinationh.Theprobabilityofcombinationhwithh1+h2+h3+h4=k conditionedtofrequenciesisamultinomialdistribution

(10)

Finally,wecandefinethepayoffforstrategy iforstrategyi

http://jasss.soc.surrey.ac.uk/13/1/6.html 5 07/10/2015

Page 6: What Do Agent-Based and Equation-Based …jasss.soc.surrey.ac.uk/13/1/6/6.pdf3.4 Figure 2. We show the projector dynamic of a population game with 3 strategies (The image comes courteously

4.11

4.12

5.1

5.2

(11)

Figure4.Asnapshotofthesimulatorinterface

Figure4isasnapshotofthesimulatorinterfaceimplementedinNetLogo.Inthisinterfaceeachdifferentstrategyisrepresentedbyadifferentcolor:

1. blueagentsareright-watchers;2. grayagentsareleft-watchers;3. redagentsarehawks;4. greenagentsaredoves.

Thecentralitemrepresentsthetoroidalworldinwhichagents(randomly)move.Theslidersontheleftareusedtoset,atthebeginningofthesimulation,thenumberofagentsforeachstrategy.Thetwoitemsconcerningtheplots(ontherightandontheleft,respectively)areusedtomonitortheaverageutilityobtainedbyeachstrategyandthenumberofsurvivingagentsforeachstrategy(seehttp://jasss.soc.surrey.ac.uk/13/1/6/AwkDoveModel.htmlforanappletofthemodel).

Table1showstheparametersofthesimulations.

Table1:Thesetofparametersofsimulations

Parameter Valueright-watchers from50to200left-watchers from50to200doves from50to200hawks from50to200#ofTicks 1000Typeofimitation global

Simulationresults

Werun256simulationsvaryingthesizeofeachsub-populationofagentsbetween50and200,thusthepopulation'srangevariesfrom200to800agents.Eachsimulationincludes1000ticks(seetable1fortheparameters).Infigure5,6,and7weshowsomeindividualrunsofthesimulations.

Inaccordancewiththedescriptionabovemadeofallofthepossiblesteadystates,wefoundthefollowingresults:

1. onesub-populationsurvives:a. Right-watchers:3times(1.18%);b. Left-watchers:5times(1.95%);

http://jasss.soc.surrey.ac.uk/13/1/6.html 6 07/10/2015

Page 7: What Do Agent-Based and Equation-Based …jasss.soc.surrey.ac.uk/13/1/6/6.pdf3.4 Figure 2. We show the projector dynamic of a population game with 3 strategies (The image comes courteously

Figure5.Anindividualrunofthesimulations.Inthiscase,thesimulationstartswith100right-watchers,100left-watchers,100dovesand50hawksandonlyleft-watcherssurvive)

2. twosub-populationssurvive:a. hawksanddoves:48times(18.75%);b. right-watchersanddoves:15times(5.86%);c. left-watchersanddoves:19times(7.42%);

Figure6.Anotherindividualrun.Inthiscase,thesimulationstartswith100right-watchers,100left-watchers,100dovesand100hawksandbothdovesandhawkssurvive)

3. threesub-populationssurvive:a. right-watchersandhawksanddoves:85times(33.20%);b. left-watchersandhawksanddoves:81times(31.64%);

Figure7.Inthiscase,thesimulationstartswith100right-watchers,100left-watchers,100dovesand100hawksandonlyright-watchersdie

http://jasss.soc.surrey.ac.uk/13/1/6.html 7 07/10/2015

Page 8: What Do Agent-Based and Equation-Based …jasss.soc.surrey.ac.uk/13/1/6/6.pdf3.4 Figure 2. We show the projector dynamic of a population game with 3 strategies (The image comes courteously

5.3

5.4

6.1

Simulationsmayendupwithmultiplesteadystates(seefigure8;thetreeshowsthedistributionofsteadystates.Therearenooutcomesthatdonotinvolveanysub-population:thenumberofagentsremainsconstant):

Onesub-populationsurvives:inthissituationthesub-populationcanonlybeeitherrightwatchingorleftwatchingsuggestingthat,toputitinLewis'sterms,theseareself-sufficientalternativesolutionstoproblemsofcoordination.Beingthetwosolutionsequivalent,thechoicebetweenthemispurelyarbitrary.Thereby,onceonesolutionhasbeenselected,theotheronecannotcoexist.Twosub-populationssurvive.Inthiscase,

asithappenswiththeEvolutionarilystablestrategy(ESS)(see Smith1974;Gilbert1981),ifonesub-populationishawks,theotheronewillnecessarilybedoves;hawksdonotsurvivewitheitherrightorleftwatchingsub-populations;if,onthecontrary,oneofthesub-populationsisdoves,theotheronemaybeanyofthethreeremainingsubpopulations,i.e.rightwatchers,leftwatchersorhawks.Indeed,unconditionedstrategiesarenotsymmetrical:theformercansurviveonlybyexploitingthemostaltruisticstrategy.

Threesub-populationssurvivebyincludingeitherrightwatchersorleftwatcherssub-populations,butneverbothatonce.Foursub-populationscannotsurvive(thisisaconsequenceofthepreviousitem).

Figure8.Thetreeshowsthedistributionofsteadystates.Thewidthofthearrowsindicatethefrequencyofthesteadystate(fatarrowmeanshighfrequency)

Summingallofthepercentages,wecancalculateallofthecasesinwhicheachsub-population(aloneorwithothers)survives.Wecoulddefinetheadaptabilityofasub-populationthepossibilityofasub-populationtosurvivewithanotherintoasteadystate.Wecanproposeahierarchyofadaptability:

1. doves:96.87%;2. hawks:83.59%;3. right-watchers:40.24%;4. left-watchers:41.01%.

Analyticresults

Wecanextractinformationfromtheanalyticmodelinthreedifferentways.(1)wecannumericallysolvethedifferentialequationssystem;(2)wecandrawthevectorialfielddescribedbytheODEsystem;(3)finally,wecancomputethesteadystatesandthegradientsaroundthem,tovaluateifthesteadystatesarestableornot.Figure9,10,11showsomeexamples.

Figure9.Anumericalsolutionoftheanalyticmodel.TheredcurveshowsthefrequencyofHawks,theblueshowsthefrequencyofDoves.Thegrayandtheblackcurvesshowthefrequenciesofconventionalstrategies.

http://jasss.soc.surrey.ac.uk/13/1/6.html 8 07/10/2015

Page 9: What Do Agent-Based and Equation-Based …jasss.soc.surrey.ac.uk/13/1/6/6.pdf3.4 Figure 2. We show the projector dynamic of a population game with 3 strategies (The image comes courteously

6.2

Figure10.Weshowthedirectionofthevectorfieldforthex1=right-watchersandx2=left-watchers.Inthefigureattheleft,wesetthenumberofhawkstozero.Inthefigureattheright,wesetthenumberofdovestozero.Weseethatwithnohawks,thesteadystatewith

twosub-populationsisfeasible

Figure11.Wehaveamapfromtheinitialstateswithdifferentnumerousnesstothesteadystates.Inthefigureweshowthat,startingwithanaveragenumberofdovesandamediumN,wehavefourpathsonfivetotwo-subpopulationsteadystates.(x1,x3,x4means:

right-watchers,dovesandhawks.Wesetleft-watcherstozero)

Usingthesemethods,weobtainedsomeanalyticresults,fittingwiththesimulationoutcomes:

1. TheConditionedstrategyWatchRightandWatchLeftareincompatible.Therelationobtainedfortheprojectiondynamicletsusstatethatthegameswithonlyonestrategyhaveanunstablestationarypoint(thederivativeofthefrequencieshasoppositesign,seefigure9).Theinitialstateisalmostuniform.Weshowthat,

http://jasss.soc.surrey.ac.uk/13/1/6.html 9 07/10/2015

Page 10: What Do Agent-Based and Equation-Based …jasss.soc.surrey.ac.uk/13/1/6/6.pdf3.4 Figure 2. We show the projector dynamic of a population game with 3 strategies (The image comes courteously

6.3

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

7.17

afteradelay,aconventionalstrategywins(inthiscasethesteadystateisone-subpopulation):thedynamicshowthattheconventionalstrategiesareincompatible.

2. TheConditionedstrategiesononehandandtheAggressivestrategyontheotherareincompatible.Viceversa,wefindastablesteadystatewithConditionedstrategiescombinedwiththeCompliantstrategy(seefigure10).

Theanalyticmodelsuggestssomeotherhints:

Figure9showsthatwehaveadelaybeforeseparationbetweentheConditionedstrategies.(thedelayisobservedduringthesimulationalso).Thus,wecouldarguethatthedelayisnotastochasticeffectcomingfromthefluctuations,duringtheagent-basedsimulation.Thedelayistheeffectofthenon-linearityoftheinteractions.BytheEBM,wehaveageneralmap(thefigure11isjustanexample)ofthepathsfromtheinitialstates,withdifferentfrequencies,tothefinalsteadystates.Themapshowsacorrespondencewiththesteadystatesdistributionfromthesimulations(0.05onesub-population,0.3twosub-populations,0.65threesub-populations).

Discussion

Wetrytosummarizewhatmightbetheaddedvalueofthiswork(a)fromthestandpointofunderstandingtheroleofconventionsincongestiongames(b)inthecomparisonbetweenABMandEBMapproachinthestudyofsocialphenomena.

Regardingsection(a),inourABMmodelweinvestigatetheroleofconditionedstrategies-whichcanbeseenassocialconventionsinLewis'ssense-inthesolutionofacongestiongame,incomparisonandincombinationwithunconditionedstrategies.

Whatdotheseresultstellusaboutsocialconventions?Inlinewithevolutionarygametheory,thisstudyhelpstopredictwhichstrategiesachieveastablestate.Besides,itallowsnewpropertiesofstrategiestobedetected.Inparticular,weareabletodiscriminatenotonlybetweenunconditionedandconditionedstrategies,butalsobetweenincompatibleequivalentstrategies,i.e.strategiesthathavethesamepayoffsforalloftheplayers,andcomplementarynon-equivalentones,i.e.strategiesthatbenefitagentstoadifferentdegree(seethesectiononSimulationresults).Theformerareself-sufficient,thelatterarenot.Hence,althoughwecannotpredictwhichspecificequilibriumwillbeachieved,wecantellthefinalcompositionofthepopulationgivenanth-strategyequilibrium.

Butisittruethatwecannotpredictwhichspecificequilibriumwillbeachieved?Notcompletely.Infact,usingEBMwecanpredictifasteadystateshouldcontainsomecombinationofstrategies,withwhichprobabilityasteadystatefollowsfromsomeinitialdistribution,andthestabilityofsteadystates(seetheresultsinthesectiononAnalyticresults).

Thepoint(b)ismorecontroversial.Therealquestionis:woulditbepossibletodoABMwithoutEBM?And,ontheotherhand,woulditbepossibletorealizetheabove-mentionedanalyticalmodelwithoutthesimulationdata?Probablynot.Weclaimthat,forwhatconcernsthesocialphenomenonweareinterestedin,i.e.thesolutiontoacoordinationprobleminalarge-scalepopulationofheterogeneousagentsininteraction,simulationdataaredecisive.Theformeralreadyincludefeaturesthatarenecessaryforrealizingthemathematicalmodel.Nevertheless,weclaimthatthesetwoclassesofmodelsarenotalternative,butinsomecircumstancescomplementary.Letustrytodefendthisargument.

ThemaindifferencebetweenABMandEBMisinthecapacitytograspdifferentstochasticaspectsofthephenomena.ABMdescribesstochasticfluctuations.EBMdescribesthestatisticsofthefluctuations,forexamplethemean,andtheshapeofthedistribution.

Theresultsgeneratedbythesimulationsmayfittheanalyticalmodel:theyprovide insilicodatafordevelopingtheanalyticalmodeltogeneralizethesimulationresultsandtomakepredictions(Conte2002;Bonabeau2002).

Wealsoclaimthatneitherthesimulationsnortheanalyticalmodelalonehelpedusexplainwhythesedatahavebeenproduced:inotherwords,noneofthetwomethodologieshelpsusunderstandthedatawehavegenerated.Goingbacktoourmodel,resultsshowthatplayingwithfourqualitativelydifferentpopulations,notonlyconventionsemerge-i.e.equivalentarbitrarysolutionstoproblemsofcoordinationrealizedbytherightwatchingorleftwatchingpopulations-butalsoexploitationsolutions,representedbythecoexistenceof"hawks"and"doves".Inotherwords,droppingthe2-strategygamelogics,hegemonicinGameTheory,itisbynomeansguaranteedthataconventionalequilibriumwillemerge.

Wecantrysomeexplanation,usingtheanalyticpayoffmatrix.Forexample,thecomputationofpayoffshowsthatthereisagradualdeteriorationofconditionedstrategiesproceedingfromnon-crowdedtocrowdedworld.Inotherwords,ifagentsliveinanenvironmentwherethelikelihoodof4-agentsjunctionishigh,theadvantagetomaintainpositivepayoffsusingconventionalstrategiesdisappears.

Now,letusconsidersomefactsemergingfromtheABMframework.Supposeonesub-populationsurvives:inthissituationthesub-populationcanonlybeeither"rightwatching"or"leftwatching",suggestingthat,toputitinLewis'sterms,theseareself-sufficientalternativesolutionstoproblemsofcoordination.Weshowthatthesesteadystatesoccurrarely.Why?Onepossibleanswer(suggestedbytheEBMframework)couldbethatthenumberofpathsfrominitialstatestoonesub-populationsteadystateislow.

Considernowthecaseinwhichtwosub-populationssurvive:inthiscase,asithappenswithEvolutionarilyStableStrategies(ESS),ifonesub-populationis"hawks",theotheronewillnecessarilybe"doves";"hawks"willnotsurvivewith"rightwatching"or"leftwatching"sub-populations.Thesetwolatterresultsseemtosuggestthatunconditionedstrategiesarenotsymmetrical:althoughhawksanddovesarenotself-sufficient,theformercansurviveonlybyexploitingthemostaltruisticstrategy.Onthecontrary,thelatterismoreadaptive,sinceitmaysurviveininteractionwithanyothersubpopulation.

Hence,foracongestiongameliketheonediscussedinthispaper,wecouldtrytodefineahierarchyofadaptability.Wefinddovesonthetop:dovescouldlivewithhawksandconditionedagents;hawkscouldlivewithdovesand,atthebottom,wefindtheconditionedagents.Infact,aconditionedstrategychasesawaytheotherconditionedones.Hawksanddovesarenon-equivalentstrategies:theyhavedifferentpayoffs,whosecombinationcanbestablebecauseofthecomplementarinessofthetwostrategies.

Threesub-populationssurvivebyincludingeither"rightwatchers"or"leftwatchers",butnotbothofthematonce.

Atthispoint,onemaycomeupwitharatherobviousquestion:isitpossibletopredict,ingeneral,thefinalstatesfromthepopulationsize?Thereaderisremindedthatwehaveanalyticallymodeledallofthepossibleinteractionsinourscenario,andwehavethencalculatedthepointofequilibriumasafunctionofN,thedimensionofthepopulation(atleastintheory).Theanalyticmodelallowstherelationshipsbetweenthestrategiesandtheirpayoffstobedescribedthroughclosedformequationsandthesimulationresultstobegeneralized,allowingaccuratepredictions.However,thisisanopenpointfordiscussion.

Finally,acrucialfeatureconcernsABM:simulationresultsareorganizedinsomehierarchicalstructuresincetheyaregeneratedbyouralgorithms.Forexample,inourmodel,theresultsincorporatepeculiarsymmetries:i.e.equivalentstrategiescannotcoexist,whilenon-equivalentonescan.WeareattemptingtoexplicatetheseresultsbyEBM.

TheresultsgeneratedbyABMsimulationsprovidestructureddatafordevelopingtheanalyticalmodelthroughwhichgeneralizingthesimulationresultsandmakepredictions.ABMsimulationsareartifactsthatgenerateempiricaldataonthebasisofthevariables,properties,localrulesandcriticalfactorsthemodelerdecidestoimplementintothemodel;inthiswaysimulationsallowgeneratingcontrolleddata,usefultotestthetheoryandreducethecomplexity,whileEBMallowstoclosethem,makingthuspossibletofalsifythem.

Inbrief,Parunak,SavitandRioloclaimedthatABMandEBMdifferin:i)relationshipsamongtheentitiestheymodel,ii)thelevelatwhichtheyoperate.AlookbackwardtothestepswefollowedtorealizetheanalyticalmodelprovidesususefultipsonthecomparisonbetweenABMandEBM.Thesetwoclassesofmodelsarenotalternative,butinsomecircumstancescomplementary,andsuggestsomefeaturesdistinguishingthesetwowaysofmodelingthatgobeyondthepracticalconsiderationsprovidedbyParunak,SavitandRiolo.

http://jasss.soc.surrey.ac.uk/13/1/6.html 10 07/10/2015

Page 11: What Do Agent-Based and Equation-Based …jasss.soc.surrey.ac.uk/13/1/6/6.pdf3.4 Figure 2. We show the projector dynamic of a population game with 3 strategies (The image comes courteously

Acknowledgements

ThisworkwassupportedbytheEMILproject(IST-033841),fundedbytheFutureandEmergingTechnologiesprogramoftheEuropeanCommission,intheframeworkoftheinitiative"SimulatingEmergentPropertiesinComplexSystems".

References

ARTHUR,W.B.(1994)"InductiveReasoningandBoundedRationality",AmericanEconomicReview,84,406-411.

BONABEAU,E.(2002)"Agent-basedmodeling:Methodsandtechniquesforsimulatinghumansystems", PNAS,vol.99,pp.7280-7287[doi:10.1073/pnas.082080899]

CECCONI,F.,Zappacosta,S.(2008)"Lowcorrelationsbetweendividendsandreturns:thealitalia'scase", ProceedingsoftheIASTEDInternationalConferenceonModellingandSimulation(MS2008),February,13-16,Quebec,Canada

CECCONI,F.,ZappacostaS.,Marocco,D.,Acerbi,A.(2007)"Socialandindividuallearninginamicroeconomicframework",ProceedingsoftheEconophysicsColloquiumAndBeyond,September27-29,Ancona,Italia:

CHALLET,D.,Zhang,Y.-C.,(1997)"Emergenceofcooperationandorganizationinanevolutionarygame". PhysicaA246,407-418.[doi:10.1016/S0378-4371(97)00419-6]

CHALLET,D.,Zhang,Y.-C.,(1998)"Ontheminoritygame:Analyticalandnumericalstudies". PhysicaA256,514-532.[doi:10.1016/S0378-4371(98)00260-X]

CHMURA,T.,Pitz,T.,(2006)"SuccessfulStrategiesinRepeatedMinorityGames". PhysicaA363,477-480.[doi:10.1016/j.physa.2005.12.053]

CHMURA,T.,Pitz,T.(2007)."AnExtendedReinforcementAlgorithmforEstimationofHumanBehaviourinExperimentalCongestionGames", JournalofArtificialSocietiesandSocialSimulation10(2)1http://jasss.soc.surrey.ac.uk/10/2/1.html

CONTE,R.(2002)"Agent-basedmodelingforunderstandingsocialintelligence", PNAS,vol.99,pp.7189-7190[doi:10.1073/pnas.072078999]

EKMAN,J.(2001)"Gametheoryevolving.aproblem-centeredintroductiontomodellingstrategicinteraction", EcologicalEconomics,39(3):479-480[doi:10.1016/S0921-8009(01)00247-6]

EPSTEIN,J.(2007)GenerativeSocialScience:_StudiesinAgent-BasedComputationalModeling ,PrincetonUniversityPress

GILBERT,M.(1981)"Gametheoryandconvention", Synthese,46:41-93[doi:10.1007/BF01064466]

LEWIS,D.K.(1969)Convention:APhilosophicalStudy,HarvardUniversityPress,Cambridge,MA

MILCHTAICH,I.(1996)"CongestionGameswithPlayer-SpecificPayoffFunction", GamesandEconomicBehavior ,13,111-124[doi:10.1006/game.1996.0027]

ROSENTHAL,R.W.(1973)."AClassofGamesPossessingPure-StrategyNashEquilibria ",Int.J.GameTheory2,65-67.[doi:10.1007/BF01737559]

SANDHOLM,W.H.,Dokumaci,E.,Lahkar,R.(2008)"Theprojectiondynamicandthereplicatordynamic", GamesandEconomicBehavior ,64-2:666-683

SEN,S.,Airiau,S.(2007)"Emergenceofnormsthroughsociallearning"in ProceedingsoftheTwentiethInternationalJointConferenceonArtificialIntelligence(IJCAI'07),Hyderabad,India.

SMITH,J.M.(1974)"Thetheoryofgamesandtheevolutionofanimalconflicts", JournalofTheoreticalBiology ,47:209-21[doi:10.1016/0022-5193(74)90110-6]

SUGDEN,R.(2004) TheEconomicsofRights,Co-operation,andWelfare ,PalgraveMacmillan,NewYork,NJ

PARUNAK,H.V.D.,Savit,R.,Riolo,R.(1998)"Agent-BasedModelingvsEquation-BasedModeling:ACaseStudyandUsers'Guide",inSichman,J.,S.,Conte,R.,Gilbert,N.(eds.)Multi-AgentSystemsandAgent-BasedSimulation ,LectureNotesinArtificialIntelligence,pp.10-25.[doi:10.1007/10692956_2]

YOUNG,H.P.(1993)"Theevolutionofconventions", Econometrica,61:5784

http://jasss.soc.surrey.ac.uk/13/1/6.html 11 07/10/2015


Recommended