+ All Categories
Home > Documents > WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,!...

WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,!...

Date post: 27-Jun-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
25
CHRIS BUSCH, DIRECTOR PRODUCT MANAGEMENT, ASSURANCE SOLUTIONS VISHAL DHRUV , DIRECTOR PRODUCT MANAGEMENT , ASSURANCE SOLUTIONS HYBRID CONTROLLER SOLUTIONS THE FUTURE OF WIFI SERVICE MANAGEMENT
Transcript
Page 1: WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,! assurance!solutions! vishal!dhruv,!director!product!management,! assurance!solutions! hybrid!controller!solutions!!

     

CHRIS  BUSCH,  DIRECTOR  PRODUCT  MANAGEMENT,  ASSURANCE  SOLUTIONS  

VISHAL  DHRUV,  DIRECTOR  PRODUCT  MANAGEMENT,  ASSURANCE  SOLUTIONS  

HYBRID  CONTROLLER  SOLUTIONS    

THE  FUTURE  OF    WI-­‐FI  SERVICE  MANAGEMENT  

Page 2: WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,! assurance!solutions! vishal!dhruv,!director!product!management,! assurance!solutions! hybrid!controller!solutions!!

Copyright  2014  –  ARRIS  Enterprises,  Inc.  All  rights  Reserved.                  

 

 

2  

TABLE  OF  CONTENTS  OVERVIEW  ......................................................................................................  3  WI-­‐FI  INTRODUCTION  .....................................................................................  4  WI-­‐FI  DEPLOYMENT  MODELS  -­‐  GATEWAY  DEPLOYMENT  MODEL  (SINGLE  AP)  .......................................................................................................................  6  WI-­‐FI  DEPLOYMENT  MODELS  -­‐  GATEWAY  +  SECONDARY  DEVICE  (DUAL  AP)  .  9  WI-­‐FI  AND  CLIENT  PERFORMANCE  ...............................................................  10  WI-­‐FI  PROVISIONING  ....................................................................................  12  POWER  MANAGEMENT  ................................................................................  13  A  BALANCING  ACT  ........................................................................................  14  EMPLOYING  CONTROLLER  CONCEPTS  ..........................................................  15  THE  HYBRID  CONTROLLER  ............................................................................  17  SUMMARY  ....................................................................................................  24  RELATED  READINGS  ......................................................................................  24  REFERENCES  .................................................................................................  25  

 

       

Page 3: WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,! assurance!solutions! vishal!dhruv,!director!product!management,! assurance!solutions! hybrid!controller!solutions!!

Copyright  2014  –  ARRIS  Enterprises,  Inc.  All  rights  Reserved.                  

 

 

3  

OVERVIEW  A  number  of  factors  have  been  influencing  the  Wi-­‐Fi  conversation  for  operators  worldwide.  Pressure  in  the  service  provider  market  has  increased  use  of  Wi-­‐Fi  as  a  service  delivery  network  throughout  the  home,  including  a  number  of  IP  TV  initiatives  such  as  ‘TV  Anywhere”.  The  ability  to  connect  an  IP  set  top  box  over  Wi-­‐Fi  virtually  anywhere  in  the  home  has  driven  multi-­‐screen  companion  applications  including  streaming  linear  video  content.    If  the  motivations  to  reduce  support  calls  and  operations  costs  from  basic  Wi-­‐Fi  configuration  and  troubleshooting  were  not  enough,  the  marriage  of  these  primary  video  service  offerings  highlight  the  need  to  assure  all  services  over  Wi-­‐Fi  as  a  core  foundation  to  business  success.      Beyond  video  applications  in  the  customer  network,  OECD  predicts  in  2017  a  household  with  two  teenagers  will  have  25  Internet  connected  devices.  In  2022,  this  will  rise  to  50  devices.      For  some  operators,  the  Wi-­‐Fi  conversation  is  not  limited  to  the  indoor  customer  premise.  Investments  in  outdoor  strand  or  tap  based  Wi-­‐Fi  technology  of  recent  years  is  now  leaning  the  conversation  of  Wi-­‐Fi  service  into  a  roaming  enabled  experience.  It  is  estimated  in  the  United  States  alone;  ¼  million  public  cable  access  points  (APs)  have  been  deployed.  A  number  that  could  grow  by  over  32x  if  any  one  of  the  big  three  operators  in  the  US  were  to  fully  roll  out  secondary  Wi-­‐Fi  service  networks  from  existing  customer  cable  modems.    When  deploying  such  public  Wi-­‐Fi  services,  operators  have  needed  to  invest  in  Wi-­‐Fi  or  ‘WLAN’  (Wireless  LAN)  controllers  to  manage  subscriber  roaming,  network  control,  authentication,  radio  management  and  reporting.      To  support  the  new  demands  placed  on  Wi-­‐Fi  in  the  customer  premise  network,  the  Wi-­‐Fi  controller  itself  is  on  the  move.  The  next  wave  of  Wi-­‐Fi  technology  focus  will  include  control  of  radio  resources  and  client  relationship  inside  the  customer  premise.  The  scale  necessary  to  control  the  CPE  Wi-­‐Fi  resources  is  likely  to  split  real-­‐time  and  non-­‐real-­‐time  logic  process  functionality.      This  new  Hybrid  Wi-­‐Fi  Controller  will  have  both  a  local  entity  for  events  within  the  customer  premise  and  a  remote  logic  element  to  balance  surrounding  customers.  

Page 4: WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,! assurance!solutions! vishal!dhruv,!director!product!management,! assurance!solutions! hybrid!controller!solutions!!

Copyright  2014  –  ARRIS  Enterprises,  Inc.  All  rights  Reserved.                  

 

 

4  

WI-­‐FI  INTRODUCTION  The  most  commonly  discussed  issue  in  Wi-­‐Fi  as  it  pertains  to  crowding  is  the  2.4GHz  ISM  (Industrial  Scientific  and  Medical)  band.  The  approved  use  of  2.4GHz  ISM  frequencies  dates  back  to  the  mid  1980’s  and  early  pre-­‐802.11  uses  of  these  channels  were  introduced  in  the  early  1990’s.  Frequency  Hoping  Spread  Spectrum  (FHSS)  with  lofty  1MB/s  to  2MB/s  data  rates  were  possible.  FHSS  is  only  using  a  small  portion  of  the  spectrum  at  a  time  by  varying  the  carrier  as  a  method  to  mitigate  noise.  The  enterprise  network  market  quickly  adopted  the  use  of  this  technology  and  by  the  late  1990’s  was  pushing  for  much  higher  bandwidth.      802.11  working  group  introduced  higher  coding  rates  in  1999  as  part  of  802.11b  to  the  2.4GHz  ISM  (Industrial  Scientific  and  Medical)  band  using  Direct  Sequence  Spread  Spectrum  (DSSS).  Channel  overlap  now  became  a  more  significant  topic.  While  DSSS  was  sampling  more  of  the  22MHz  channel  offering  11Mb/s,  it  was  also  spreading  its  energy  across  the  entire  channel  width.      The  802.11  working  group  introduced  802.11a  at  the  same  time  as  802.11b,  which  was  the  first  consumer  Wi-­‐Fi  radio  standard  to  use  the  5GHz  U-­‐NII  (Unlicensed  National  Information  Infrastructure)  channel  space.      

 Figure  1  North  American  Wi-­‐Fi  Channels  2.4Ghz  5Ghz  

802.11a  brought  with  it  the  use  of  Orthogonal  Frequency  Division  Multiplexing  (OFDM)  which  offers  a  much  higher  bit/Hz  coding  efficiency  as  well  as  increased  immunity  from  Inter-­‐Symbol-­‐Interferers  (ISI),  enhancing  immunity  from  reflection  effects.  802.11a  offered  BPSK,  QPSK,  16-­‐QAM  and  64-­‐QAM  modulations,  which  were  achieved  relative  to  client  association.  As  attractive  as  802.11a’s  54Mb/s  was  at  the  time,  its  use  was  mainly  found  in  the  enterprise  network  space  given  cost  associated  with  silicon  at  the  time.      In  2003  the  average  consumer  was  finally  introduced  to  the  advantages  of  OFDM  in  the  2.4GHz  ISM  band  from  802.11g.  This  newest  member  of  the  802.11  physical  layer  standards  offered  backward  compatibility  with  802.11b,  and  the  opportunity  to  achieve  

Ch1 Ch6 Ch11

36 40 44 48 52 56 60 64 149 153 157 161 165

100 104 108 112 116 120 124 128 132 136 140

2.4Ghz 3 non-overlapping channels

5Ghz 24 non-overlapping channels

Page 5: WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,! assurance!solutions! vishal!dhruv,!director!product!management,! assurance!solutions! hybrid!controller!solutions!!

Copyright  2014  –  ARRIS  Enterprises,  Inc.  All  rights  Reserved.                  

 

 

5  

54Mb/s  in  20MHz  channels.  Supporting  backward  compatibility  at  the  time  was  key  to  achieving  mass-­‐market  adoption  of  this  silicon.  Today  however  we  would  prefer  there  be  no  use  of  802.11b.  This  backward  compatibility,  11  years  later,  is  a  topic  for  improving  customer  Wi-­‐Fi  experience.  One  common  misconfiguration  is  for  DOCSIS  gateway  APs  to  be  configured  in  802.11b/g  compatible  mode.  This  can  cause  the  AP  to  down-­‐select  DSSS  operation,  which  lowers  efficiency  and  adds  noise  to  side  channels  when  mixed  with  other  802.11g  clients.    In  5GHz  Wi-­‐Fi  there  are  actually  4  distinct  bands  of  allocation  for  Wi-­‐Fi  use.  The  U-­‐NII-­‐1  operating  from  5150MHz  to  5250MHz  for  channels  36,  40,  44,  48  is  an  indoor  only  section  of  5GHz  with  a  23dBm  allowed  transmit  power.  The  next  group  of  channels  from  5250MHz  to  5350MHz  for  channels  52,  56,  60,  64  is  known  as  the  U-­‐NII-­‐2  bands  with  a  maximum  of  30dBm  allowed  transmit  power.  U-­‐NII-­‐2  extended  band  channels  occupy  the  next  11  non-­‐overlapping  carriers  from  5470MHz  to  5725MHz.  The  U-­‐NII-­‐3  upper  band  has  5  channels  from  5725MHz  to  5825MHz  with  a  maximum  transmit  power  of  36dBm.      It  was  in  2009  that  bonding  in  Wi-­‐Fi  became  a  reality.  802.11n  introduced  the  use  of  20MHz  channels  with  option  to  bond  an  addition  channel,  using  OFDM  across  40MHz  of  continuous  channel  space.  802.11n  introduced  Multiple  Input  Multiple  Output  (MIMO)  spatial  streaming.  Multiple  simultaneous  transmit  and  receive  combinations  became  possible  as  did  alternate  modulation  schemes  across  streams.  The  Modulation  Coding  Scheme  (MCS)  defined  modulation  type,  coding  rate  and  allowable  mix-­‐modulation  schemes.  Additional  sub-­‐carriers  and  control  of  Guard  Interval  allowed  for  additional  peak  throughput  performance  per  channel.  Data  rates  could  now  range  from  54Mb/s  to  upwards  of  600Mb/s  and  use  either  2.4GHz  or  5GHz.      

 802.11n  was  a  stunning  advancement  in  Wi-­‐Fi  technology  creating  the  framework  for  advanced  IP  service  delivery  throughout  the  customer  premise.  Subsequent  standards  from  802.11  such  as  the  802.11ac  standard  are  reaching  even  further  up  to  80MHz  and  160MHz  channel  use  modulated  up  to  256-­‐QAM  using  anywhere  from  1  to  a  maximum  of  8  antennas.  802.11ac  promises  speeds  from  860Mb/s  to  1.69Gb/s.  While  802.11ac-­‐2013  supports  speeds  of  7Gb/s.    In  this  brief  background  of  802.11b/g/n/ac  physical  layer  it  is  important  to  understand  there  are  many  additional  802.11  working  group  efforts.  802.11  family  of  standards  encompass  QoS  (802.11e),  Inter-­‐Access  Point  messaging  (802.11f),  security  (802.11i),  Radio  Resource  Management  (802.11k  RRM),  Fast  Transition  (802.11r),  Mesh  interfaces  

Page 6: WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,! assurance!solutions! vishal!dhruv,!director!product!management,! assurance!solutions! hybrid!controller!solutions!!

Copyright  2014  –  ARRIS  Enterprises,  Inc.  All  rights  Reserved.                  

 

 

6  

(802.11s),  and  HotSpot  services  (802.11u).  All  of  these  standards  are  brought  together  in  our  future  Hybrid  Controller  Wi-­‐Fi  customer  experience  architecture.    Example  Wi-­‐Fi  Home    The  average  North  American  home  will  have  almost  a  dozen  Wi-­‐Fi  devices  active  today.  As  discussed  earlier,  this  number  is  set  to  double  in  just  three  years.      There  are  also  many  different  and  often  simultaneous  use  cases  for  Wi-­‐Fi  service  occurring  in  the  typical  home.  Teleworker  VPN  and  VoIP  traffic,  Over-­‐The-­‐Top  (OTT)  IP  Video,  gaming,  home  automation  and  security,  and  general  web  surfing  may  all  be  actively  competing  for  radio  airtime.      

 Figure  2  Example  Wi-­‐Fi  Home  

The  placement  of  these  clients  varies,  and  is  usually  not  fixed  with  perhaps  the  exception  of  home  automation  and  security  and  perhaps  gaming  consoles.  This  poses  a  real  challenge  as  we  consider  today’s  Wi-­‐Fi  deployment  models  beginning  with  Wi-­‐Fi  enabled  DOCSIS  Gateways.    

WI-­‐FI  DEPLOYMENT  MODELS  -­‐  GATEWAY  DEPLOYMENT  MODEL  (SINGLE  AP)  A  common  scenario  in  many  deployments  is  the  use  of  a  DOCSIS  3.0  cable  modem  gateway  with  an  embedded  802.11  AP.  The  install  technician  likely  locates  the  gateway  near  the  utility  panel,  or  closest  to  drop  entry  point  to  avoid  in  home  coax  runs  and  splitters.  There  are  several  disadvantages  to  this  approach  depending  on  the  device  and  the  circumstances  of  the  customer  premise.    

Page 7: WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,! assurance!solutions! vishal!dhruv,!director!product!management,! assurance!solutions! hybrid!controller!solutions!!

Copyright  2014  –  ARRIS  Enterprises,  Inc.  All  rights  Reserved.                  

 

 

7  

 Figure  3  Single  AP  Model  

Beyond  the  DOCSIS  side  functions  of  the  gateway  itself,  there  are  often  several  variations  between  vendors  in  the  offered  features  and  functions  for  the  Wi-­‐Fi  AP.  The  radio  itself  may  implement  802.11b/g/n  or  ac  functionality.  These  may  be  in  the  form  of  single  band  2.4GHz  or  dual-­‐band  2.4GHz  and  5GHz  or  dual-­‐band  concurrent  2.4GHz  -­‐  5GHz  simultaneous  radio  operation.      The  number  of  simultaneous  transmit  and  receive  functions  commonly  vary  from  2x2  to  3x3  in  802.11n  mode  with  MIMO  processing  on  each  spatial  stream.  Depending  on  manufacturer,  the  transmit  power  of  the  gateway  AP  may  range  for  example  from  20dBm  to  26dBm.    

 Figure  4  3x3  MIMO  

Customers  often  expect  to  have  more  than  one  logical  Wi-­‐Fi  network  or  service  set  identifier  (SSID)  to  use.  Often  customers  are  seeking  a  secondary  SSID  for  guests  or  to  apply  different  security  for  the  kid’s  devices  from  that  of  the  parent’s  devices.  Operators  often  have  an  SSID  for  use  by  the  local  technician  or  possibly  as  part  of  an  overall  HotSpot  service  model.    

 Figure  5  Single  Radio  -­‐  Multiple  SSID  

When  the  DOCSIS  cable  modem  gateway  is  a  Dual  Band  Concurrent  (DBC)  device,  the  logical  Wi-­‐Fi  SSID  configuration  follows  to  both  the  2.4GHz  and  5GHz  radios.  

Drop%

GW%

T1

T2

T3 R3

R2

R1

Operator(SSID(

Customer(SSID(

Customer(SSID(

Page 8: WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,! assurance!solutions! vishal!dhruv,!director!product!management,! assurance!solutions! hybrid!controller!solutions!!

Copyright  2014  –  ARRIS  Enterprises,  Inc.  All  rights  Reserved.                  

 

 

8  

 Figure  6  Dual  Band  Concurrent  -­‐  Multiple  SSID  

Dual  band  concurrency  (DBC)  has  become  popular  as  the  overcrowding  in  the  2.4GHz  RF  band  is  at  an  all-­‐time  high  and  need  to  avoid  spurious  noise  in  that  region  such  as  microwave  ovens,  early  cordless  phones  and  baby  monitors;  and  Bluetooth  1.1/1.0  devices.      For  all  dual-­‐band  concurrent  capable  client  devices  such  as  tablet  or  mobile  phones,  the  answer  to  performance  and  overcrowding  seems  simple;  prefer  5GHz  use  from  the  DOCSIS  gateway.  It  should  be  noted  5GHz  has  a  lower  propagation  compared  to  2.4GHz.  The  5GHz  signal  is  a  higher  frequency  and  as  such  higher  frequencies  attenuate  more  than  lower  frequencies.      There  are  many  conditions  present  within  indoor  structures  that  impede  the  2.4GHz  and  5GHz  RF  signals.  The  ITU  model  for  Indoor  Attenuation  is  a  high  level  attempt  to  characterize  the  impacts  of  transmission  through  common  building  materials  based  on  frequency.    

L= 20 log 𝑓 + 𝑁 log𝑑 + 𝑃𝑓 𝑛 − 28    The  ITU  Indoor  Attenuation  path  loss  model  defines  L  as  the  total  path  loss,  f  is  frequency  in  MHz,  d  is  distance  in  meters.  N  is  the  distance  power  loss  co-­‐efficient,  n  is  the  number  of  floors  between  transmitter  and  receiver  and  Pf(n)  is  the  floor  loss  penetration  factor.  The  ITU  has  a  table  of  values  for  power  loss  coefficient  N,  Pf(n)  accounts  for  floor  loss  values,  which  differ  by  frequency  band  and  type  of  construction,  illustrated  in  ITU  Recommendation  P.1238-­‐7-­‐201202.      

2.4GHz  Channel  6  Indoor  Attenuation  at  35’  L= 20 log(2437)+ 28 log(10.6)+ 5 1 − 28  =  73.44dB  

 5GHz  Channel  56  Indoor  Attenuation  at  35’  

L= 20 log(5280)+ 28 log(10.6)+ 7 2 − 28  =  124.16dB  

GW

Operator SSID

Operator SSID

Customer SSID

Customer SSID

Customer SSID

Customer SSID

WiFi 5Ghz

WiFi 5Ghz

WiFi 2.4Ghz

Page 9: WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,! assurance!solutions! vishal!dhruv,!director!product!management,! assurance!solutions! hybrid!controller!solutions!!

Copyright  2014  –  ARRIS  Enterprises,  Inc.  All  rights  Reserved.                  

 

 

9  

This  ITU  formula  differs  from  free  space  loss  formulas  as  it  attempts  to  account  for  propagation  through  building  materials  such  as  walls  and  floors.  In  the  above  we  assumed  attenuation  of  the  vertical  signal  as  it  propagates  through  one  floor  in  a  typical  wooden  construction  house.  The  ITU  in  this  formula  provide  guidance  on  the  values  used  for  these  attenuations  by  floor  and  by  type  of  material  such  as  wood  or  concrete.  The  50.72dB  of  propagation  difference  between  these  two  frequencies  is  one  factor  in  our  conversation  of  the  overall  radio  resource  management  (RRM)  for  a  customer  premise.  There  may  be  greater  distance  covered  in  2.4GHz,  however  smaller  2.4GHz  coverage  areas  using  more  APs  such  that  MCS  rates  remain  higher  per  client,  combined  with  5GHz  support  in  DBC  mode  is  more  effective  in  the  long  run.    

WI-­‐FI  DEPLOYMENT  MODELS  -­‐  GATEWAY  +  SECONDARY  DEVICE  (DUAL  AP)  To  address  coverage  issues  commonly  found  in  single-­‐family  homes  or  encountered  in  high  noise  environments,  a  secondary  AP  can  be  deployed  within  the  customer  premise.  The  secondary  AP  is  usually  back  hauled  from  the  DOCSIS  Gateway  over  MoCA,  PowerLine,  or  other  in  premise  physical  layer  options.      

 Figure  7  Dual  AP  Model  

The  main  drawback  to  the  dual  AP  model  when  deployed  by  the  cable  operator  is  the  need  to  manage  multiple  Wi-­‐Fi  platforms  in  the  customer  premise,  however  the  most  significant  requirement  driving  customer  experience  is  managing  radio  resources  effectively.  The  DOCSIS  Gateway  AP  may  have  a  -­‐26dBm  transmit  power.  The  secondary  AP  may  also  be  equally  as  powerful.  It  is  expected  that  the  APs  themselves  should  use  their  own  auto-­‐channel  selection  algorithm  to  tune  to  the  best  channel  possible.  However  there  is  no  relationship  between  the  Gateway  AP,  and  the  secondary  AP  from  an  RRM  perspective  or  relation  to  client  devices  in  the  subscriber  premise.      If  the  DOCSIS  Gateway  was  to  select  2.4  GHz  Ch1  operation,  and  the  secondary  AP  selects  2.4GHz  Ch6,  there  will  be  significant  side  channel  energy  between  Ch1  and  Ch6.  This  side  channel  or  roll  off  energy  becomes  additive  noise  from  each  access  point’s  perspective.  While  these  are  non-­‐overlapping  channels  in  terms  of  center  frequency,  there  is  energy  present  from  Ch1  into  Ch2  and  Ch3  in  decrements  of  ½  of  transmit  

Drop

AP GW

MoCA

Wi-Fi Wi-Fi

GigE RDK

Page 10: WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,! assurance!solutions! vishal!dhruv,!director!product!management,! assurance!solutions! hybrid!controller!solutions!!

Copyright  2014  –  ARRIS  Enterprises,  Inc.  All  rights  Reserved.                  

 

 

10  

power  per  side  channel.  The  second  AP  in  Ch6  center  frequency  may  hear  noise  from  the  portions  of  Ch2  and  Ch3  its  receiver  might  sense.  This  is  in  addition  to  added  noise  potentially  in  the  same  channels  from  competing  wireless  technologies  such  as  ZigBee  possibly  in  use  for  home  security  or  automation  applications.  This  further  complicates  the  challenge  of  achieving  high  bandwidth  per  client.      

 Figure  8  Unbalanced  Tx  in  Dual  AP  Model  

Effective  throughput  is  the  ability  to  modulate  the  amount  of  signal  in  the  channel  available  to  a  client.  The  amount  of  signal  decreases  as  noise  floor  increases.  The  result  of  adding  a  high  power  secondary  AP  is  actually  decreasing  our  average  client  throughput.  Additional  use  of  high  power  2.4GHz  AP  will  also  further  crowd  ZigBee  operation  if  present.  For  each  2.4GHz  Wi-­‐Fi  22MHz  wide  channel  there  are  four  2MHz  wide  ZigBee  low  power  channels.  Operating  in  the  2.4GHz  ISM  band,  ZigBee  is  using  a  clear  channel  algorithm  (CCA)  to  determine  best  channel  use  while  estimating  per  channel  energy  using  carrier  sense  multiple  access  (CSMA),  similar  to  Wi-­‐Fi.  The  Wi-­‐Fi  signal  will  tend  to  overpower  ZigBee,  often  being  shown  to  increase  ZigBee  packet  error  rate  the  closer  a  ZigBee  channel  operates  to  the  center  frequency  of  the  Wi-­‐Fi  channel.    

WI-­‐FI  AND  CLIENT  PERFORMANCE  Similar  to  how  we  use  modulation  profiles  in  DOCSIS,  the  802.11n  specification  introduced  multiple  modulation  profiles  with  the  potential  to  support  simultaneous  encoded  streams  which  means  multiple  transmit  and  receive  capabilities  with  per-­‐stream  unique  modulations  possible.    802.11n  also  introduced  for  the  first  time,  Wi-­‐Fi  channel  operation  over  20Mhz  and  40Mhz  of  radio  frequency.    These  modulation  profiles  are  known  as  Modulation  Coding  Scheme  (MCS).    

Ch1 Ch2 Ch3 Ch4 Ch5 Ch6

Gateway Secondary AP

Page 11: WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,! assurance!solutions! vishal!dhruv,!director!product!management,! assurance!solutions! hybrid!controller!solutions!!

Copyright  2014  –  ARRIS  Enterprises,  Inc.  All  rights  Reserved.                  

 

 

11  

The  MCS  is  determined  by  radio  capabilities  in  terms  of  simultaneous  radio  stream  processing  capability  and  the  potential  to  independently  modulate  these  streams.    For  example,  MCS  0  supports  1  spatial  stream,  modulated  using  BPSK  at  ½  coding  rate  and  offers  7.2Mb/s  in  20Mhz  or  15Mb/s  in  40Mhz  on  a  400ns  Guard  Interval.    The  mobile  phone  located  somewhere  near  or  on  you  is  usually  a  single  spatial  stream  or  1x1  capable  device  and  typically  supports  802.11n  in  20Mhz  channels.      At  the  high  end,  MCS  76  employs  4  simultaneous  spatial  streams,  3  at  64-­‐QAM  and  a  fourth  at  16-­‐QAM,  ¾  coding  rate  offering  238.3Mb/s  in  20Mhz  and  495Mb/s  in  40Mhz  on  a  400ns  Guard  Interval.  A  full  list  of  MCS  values  may  be  viewed  at  mcsindex.com.    The  802.11ac  standard  further  enhanced  MCS  operations.  One  area  of  specific  benefit  is  in  multi-­‐user  MIMO  or  MU-­‐MIMO  enabling  use  of  nulls  in  air  time  to  establish  4  streams  to  a  1x1  style  device.    

 Figure  9  MCS  Rates  0  –  23  

The  negotiated  throughput  from  client  to  AP  can  be  related  to  the  Receive  Signal  Strength  Indication  (RSSI)  value,  which  in  part  drives  MCS  selection.      The  highest  mutually  supported  MCS  value  is  generally  speaking  the  best  throughput  the  AP  and  a  client  can  achieve.  From  the  perspective  of  understanding  conditions  related  to  per  client  Wi-­‐Fi  performance,  the  current  RSSI  and  negotiated  MCS  are  key  performance  indicators.  

DATA$RATE$Mb/s RECEIVE$SENSITIVITYMCS$RATE STREAMS MODULATION $$$$$$$$$$800NS$GI $$$$$$$$400NS$GI $$$$$$$$$$$$$$$$$DBM

20Mhz 40Mhz 20Mhz 40Mhz 20Mhz 40Mhz0 1 BPSK$1/2 6.5 13.5 7.2 15.0 D82 D791 1 QPSK$1/2 13.0 27.0 14.4 30.0 D79 D762 1 QPSK$3/4 19.5 40.5 21.7 45.0 D77 D743 1 16DQAM$1/2 26.0 54.0 28.9 60.0 D74 D714 1 16DQAM$3/4 39.0 81.0 43.3 90.0 D70 D675 1 64DQAM$2/3 52.0 108.0 57.8 120.0 D66 D636 1 64DQAM$3/4 58.5 121.5 65.0 135.0 D65 D627 1 64DQAM$5/6 65.0 135.0 72.2 150.0 D64 D628 2 BPSK$1/2 13.0 27.0 14.4 30.0 D82 D799 2 QPSK$1/2 26.0 54.0 28.9 60.0 D79 D7610 2 QPSKD3/4 39.0 81.0 43.3 90.0 D77 D7411 2 16DQAM$1/2 52.0 108.0 57.8 120.0 D74 D7112 2 16DQAM$3/4 78.0 162.0 86.7 180.0 D70 D6713 2 64DQAM$2/3 104.0 216.0 115.6 240.0 D66 D6314 2 64DQAM$3/4 117.0 243.0 130.0 270.0 D65 D6215 2 64DQAM$5/6 130.0 270.0 144.4 300.0 D64 D6116 3 BPSK$1/2 19.5 40.5 21.7 45.0 D82.0 D79.017 3 QPSK$1/2 39.0 81.0 43.3 90.0 D79.0 D76.018 3 QPSK$3/4 58.5 121.5 65.0 135.0 D77.0 D74.019 3 16DQAM$1/2 78.0 162.0 86.7 180.0 D74.0 D71.020 3 16DQAM$3/4 117.0 243.0 130.7 270.0 D70.0 D67.021 3 64DQAM$2/3 156.0 324.0 173.3 360.0 D66.0 D63.022 3 64DQAM$3/4 175.5 364.5 195.0 405.0 D65.0 D62.023 3 64DQAM$5/6 195.0 405.0 216.7 450.0 D64.0 D61.0

Page 12: WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,! assurance!solutions! vishal!dhruv,!director!product!management,! assurance!solutions! hybrid!controller!solutions!!

Copyright  2014  –  ARRIS  Enterprises,  Inc.  All  rights  Reserved.                  

 

 

12  

WI-­‐FI  PROVISIONING  In  recent  years  the  introduction  of  Broadband  Forum  TR-­‐069  standards  for  the  purposes  of  an  over-­‐arching  multi-­‐vendor  device  management  solution  has  won  acceptance  across  the  industry.    TR-­‐069,  and  its  numerous  data  models  enable  operators  to  manage  all  vendor  Wi-­‐Fi  configuration  parameters  without  the  need  to  uniquely  implement  vendor  proprietary  approaches.      TR-­‐069  also  offers  the  ability  to  provision  and  learn  the  configuration  of  devices  behind  the  DOCSIS  Gateway.  

 Figure  10  TR-­‐069  Provisioning  

These  include  the  second  Wi-­‐Fi  AP  in  the  Dual  AP  model,  and  also  included  RDK  based  IP  STBs.  However  interesting  the  use  of  TR-­‐069  may  be  for  device  discovery,  we  do  not  have  a  control  plane  or  control  of  any  radio  resources  related  to  Wi-­‐Fi  AP  and  Wi-­‐Fi  client  experiences  as  they  relate  to  the  overall  customer  premise.  There  are  current  initiatives  underway  that  will  extend  the  TR-­‐181  data  model  for  TR-­‐069  based  Gateways;  in  many  cases  with  several  advanced  Wi-­‐Fi  service  parameters.  The  use  of  TR-­‐069  remains  on  its  own  an  incomplete  solution  for  Wi-­‐Fi  whole  home  experience  management.    TR-­‐069  devices  are  expected  to  inform  of  configuration  object  and  operating  object  values  in  time  intervals  as  directed  from  the  auto  configuration  server  (ACS)  platform  when  it  sets  the  Periodic.Inform  value.  An  aggressive  time  interval  would  be  5  minutes.  Aggressive  in  this  case  should  be  understood  in  the  Dual  AP  model,  as  the  DOCSIS  Gateway  AP,  and  the  secondary  AP  will  inform  the  ACS  every  300  seconds  of  anywhere  from  30-­‐200  parameter  object  values.    Outside  of  the  load  that  would  introduce  to  an  ACS,  a  lot  can  happen  in  5  minutes  inside  the  Wi-­‐Fi  network  of  a  customer  home.  If  there  was  a  problem,  it  may  have  long  since  passed  by  the  time  the  ACS  system  knows  about  it  or  can  act  on  it.      

Page 13: WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,! assurance!solutions! vishal!dhruv,!director!product!management,! assurance!solutions! hybrid!controller!solutions!!

Copyright  2014  –  ARRIS  Enterprises,  Inc.  All  rights  Reserved.                  

 

 

13  

Likely  the  customer  simply  disconnects  and  re-­‐connects  effectively  masking  the  underlying  issue,  possibly  connecting  instead  to  the  closer  AP  as  perhaps  their  device  simply  would  not  disassociate  from  the  other  AP.      The  Wi-­‐Fi  experience  will  continue  to  change  as  more  and  more  devices  and  related  Wi-­‐Fi  appliances  such  as  home  automation  clients  are  added  over  time  to  this  customer  network.  There  is  nothing  TR-­‐069  can  do  to  re-­‐balance  the  Wi-­‐Fi  experience.  So  while  an  ACS  and  TR-­‐069  enabled  devices  can  certainly  be  used  to  raise  and  lower  radio  power  in  either  the  Gateway  AP  or  the  Second  AP,  there  really  is  still  no  relationship  between  them.  

POWER  MANAGEMENT  When  considering  the  current  DOCSIS  Gateway  and  second  AP  need  to  manage  client  association  preference,  and  the  future  challenge  when  multiple  home  devices  are  offering  Wi-­‐Fi  connectivity,  basic  coordinated  power  management  becomes  a  key  building  block  to  managing  Wi-­‐Fi  experience.      The  further  a  client  is  from  its  AP,  the  lower  its  overall  bandwidth  will  be.    As  the  distance  increases,  there  is  less  signal  energy  to  overcome  the  surrounding  noise  in  the  channel.      

 Figure  11  MCS  Achieved  Rates  

The  result  as  we  have  shown  earlier  is  a  more  aggressive  coding  scheme  being  applied  to  improve  the  reliability  to  the  Wi-­‐Fi  link,  with  the  tradeoff  being  available  bandwidth.    Looking  once  again  at  the  use  of  TR-­‐069  and  its  current  objects  related  to  Wi-­‐Fi  Radio  and  SSID  operations  there  are  some  useful  elements.  In  TR-­‐069  Device.WiFi.Radio.{i}  offers  visibility  to  OperatingFrequencyBand,  Channel,  OperatingChannelBandwidth  and  may  offer  WiFi.Associated.Device  information  including  Downlink  and  Uplink  data  rate,  Signal  Strength  and  Retransmission.      This  information  is  valuable  as  part  of  the  assurance  back  office  in  terms  of  knowledge  historical  knowledge  and  possibly  snapshot  reports  that  may  assist  in  troubleshooting  certain  issues.  There  remains  a  gap  in  that  the  use  of  TR-­‐069  does  not  account  for  

0"1"2"3"4"5"6"7"8"9"

Distance"to"Achieved"Coding"Rate"16"17"18"19"20"21"22"23"24"25"

33"39"44"51"53"56"60"68"73"76"

Page 14: WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,! assurance!solutions! vishal!dhruv,!director!product!management,! assurance!solutions! hybrid!controller!solutions!!

Copyright  2014  –  ARRIS  Enterprises,  Inc.  All  rights  Reserved.                  

 

 

14  

reporting  of  client  Wi-­‐Fi  performance,  sense  neighbor  topology  and  interferers,  or  take  action  based  on  these  real-­‐time  data  sources.  Essentially  we  can  learn  how  much  bandwidth  at  a  given  moment  in  time  was  available  at  the  radio,  a  general  sense  if  there  were  some  quality  concerns  from  retransmission  values  however  we  are  unable  to  build  a  Wi-­‐Fi  topology  view,  or  understand  why  the  radio  is  operating  at  the  bandwidth  advertised.    

A  BALANCING  ACT  Another  impact  to  the  customer  experience  is  the  imbalances  in  radio  transmit  power  given  the  lack  of  relationship  between  the  DOCSIS  Gateway  AP  and  the  second  AP.  This  creates  stubborn  client  associations,  and  bandwidth  degradation.  A  stubborn  client  is  a  client  that  refuses  to  disassociate  from  one  AP  in  favor  of  another,  often  closer  AP  which  then  in  turn  impacts  MCS  calculation.  The  lower  the  MCS,  the  less  bits/hz,  which  means  more  airtime  used.    Looking  closer,  when  the  second  AP  was  added  to  our  customer  premise,  it  flooded  the  surrounding  area  with  a  signal  as  strong  as  the  DOCSIS  Gateway  was  providing.  This  will  have  resolved  any  Wi-­‐Fi  coverage  issues,  however  new  challenges  now  present  themselves.  

 Figure  12  Dual  AP  Model  -­‐  RF  Saturation  

Page 15: WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,! assurance!solutions! vishal!dhruv,!director!product!management,! assurance!solutions! hybrid!controller!solutions!!

Copyright  2014  –  ARRIS  Enterprises,  Inc.  All  rights  Reserved.                  

 

 

15  

If  we  consider  a  mobile  device  in  the  scenario  of  the  Dual  AP  customer  premise,  where  APs  transmit  at  -­‐26dBm  and  the  client  transmits  back  at  -­‐20dBm  we  suddenly  have  an  imbalanced  relationship.      

 Figure  13  Client  -­‐  AP  Imbalance  

The  6db  difference  between  the  two  devices  is  equivalent  to  the  difference  of  MCS  4  to  MCS  7.  That’s  a  difference  of  26Mb/s  applied  to  the  entire  Wi-­‐Fi  link  air  interface  that  we  have  now  lost.    This  is  an  area  where  beam  forming  can  help  smooth  the  difference.  Depending  on  the  client  capability  to  support  beam  forming,  and  assuming  the  DOCSIS  Gateway  AP  offers  beam  forming.  If  there  is  beam  forming,  it  may  be  possible  to  overcome  a  2-­‐5dB  difference  in  link  energy,  and  pick  up  some  of  that  missing  26Mb/s  within  a  single  Wi-­‐Fi  stream.  However  most  mobile  phone  style  clients  are  1x1  non-­‐beam  forming  capable  Wi-­‐Fi  devices  for  cost,  form  factor  and  battery  reasons.      The  result  in  many  cases  will  be  the  overall  air  interface  coding  shifts  to  a  lower  modulation  scheme  as  the  DOCSIS  Gateway  is  having  a  hard  time  hearing  the  mobile  phone  as  it  moves  around  the  house.  The  more  aggressive  MCS  coding  rate  lowers  bandwidth  for  all  clients  attached.    The  stubborn  client  issue  also  presents  itself.  As  discussed  previously,  the  mobile  device  Wi-­‐Fi  stack  believes  it  has  a  sufficiently  strong  RF  signal  and  therefore  does  not  disassociate  from  the  Gateway  AP  when  it  may  in  fact  be  beside  the  second  AP.      Without  a  controller  for  these  radio  and  client  resource  conversations,  it  is  impossible  to  tame  the  relationships  between  clients  and  APs  in  the  customer  home,  or  even  provide  the  next  level  of  recommendation  for  technicians  to  understand  if  or  when  a  child  AP  should  be  installed.  

EMPLOYING  CONTROLLER  CONCEPTS  The  concept  of  a  WI-­‐Fi  or  a  Wireless  LAN  (WLAN)  controller  is  certainly  not  a  new  one.  Enterprise  networks  have  long  relied  on  WLAN  controllers  to  control,  secure  and  policy  the  massive  spike  in  Bring  Your  Own  Device  (BYOD)  user  needs.    

-20dBm

-26dBm

Page 16: WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,! assurance!solutions! vishal!dhruv,!director!product!management,! assurance!solutions! hybrid!controller!solutions!!

Copyright  2014  –  ARRIS  Enterprises,  Inc.  All  rights  Reserved.                  

 

 

16  

 What  makes  a  good  WLAN  controller  for  an  Enterprise  is  not  necessarily  directly  applicable  to  large-­‐scale  cable  service  providers.  In  the  Enterprise  LAN,  segmenting  and  encapsulating  traffic  is  a  fairly  trivial  task.  APs  are  fed  with  a  Gigabit  Ethernet  port  capable  of  multiple  802.1q  VLANs.  The  WLAN  controller  is  often  centralized  and  aggregating  the  APs.  The  controller  is  serving  a  few  thousand  simultaneous  device  association,  authentication,  and  forwarding  requests.    A  popular  approach  to  controlling  the  Enterprise  Wi-­‐Fi  network  was  the  use  of  CAPWAP.  CAPWAP  is  Control  and  Provisioning  of  Wireless  APs  as  defined  by  IETF  5415.  This  standard  came  at  a  time  ahead  of  Broadband  Forum  and  TR-­‐069.  It  is  possible  CAPWAP  may  have  been  differently  structured  had  the  ability  to  provision  and  report  configuration  of  APs  on  a  large  scale  enabled  by  TR-­‐069  been  possible.      CAPWAP  provided  a  discovery  mechanism  and  enabled  de-­‐coupling  of  the  radio  processing  to  the  Control  node  above  the  AP.  CAPWAP  was  reasonably  secured  with  data  transport  layer  security  (DTLS)  negotiation  during  discovery.    

 Figure  14  CAPWAP  Discovery  

Exposing  the  radio  operations  to  the  controller  created  effectively  a  remote  MAC  concept  in  Wi-­‐Fi.  All  layer  2  wireless  payload  data  and  management  frames  are  encapsulated  and  sent  to  the  CAPWAP  controller  for  processing.  

CAPWAP Access Controller

CAPWAP Client

Discovery Request

DTLS(UDP Response)

DTLS(UDP Capabilities)

DTLS(UDP Capabilities Response)

RUN Phase

Discovery Response Client ‘Hello’

Page 17: WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,! assurance!solutions! vishal!dhruv,!director!product!management,! assurance!solutions! hybrid!controller!solutions!!

Copyright  2014  –  ARRIS  Enterprises,  Inc.  All  rights  Reserved.                  

 

 

17  

 Figure  15  CAPWAP  Remote  MAC  

This  Remote  MAC  meant  the  CAPWAP  controller  knows  of  all  Beacon,  Probe,  and  802.1x  authentication  messages.  The  CAPWAP  controller  is  in  fact  processing  all  these  real-­‐time  radio  network  processes  while  also  handling  QoS  queuing  in  the  controller  and  coordinating  forwarding  in  the  AP  client.      Wi-­‐Fi  HotSpots  are  also  WLAN  controller  based  networks.  In  HotSpots  the  controller  may  be  embedded  within  the  AP.  This  has  its  own  challenges  in  terms  of  management  and  is  fairly  inflexible  to  customer  roaming.  Alternatively  the  HotSpot  AP  may  be  encapsulating  each  SSID  of  traffic  back  to  a  centralized  controller.  In  this  approach,  the  network  is  often  a  generic  routing  encapsulation  (GRE)  or  similar  tunnel  mechanism  aggregated  to  a  main  service  node  facing  the  WLAN  Controller.  When  deployed  in  this  fashion  the  controller  is  often  serving  up  to  1,000  APs  with  20-­‐30  users  each.        It  is  clear  that  neither  of  these  technologies  are  ideally  suited  to  large  scale  Wi-­‐Fi  management  for  both  the  local  subscriber  network  and  all  its  surrounding  networks.    

THE  HYBRID  CONTROLLER  To  build  the  necessary  Wi-­‐Fi  radio  and  client  relationships  referred  to  throughout  this  paper  is  to  create  heterogeneous  Wi-­‐Fi  networks  for  each  and  every  subscriber.    Customer  data  known  to  assurance  back  office  systems,  specifically  ACS,  and  inventory  systems  interface  to  the  Hybrid  WLAN  Cloud  Controller  by  supplying  data  related  to  each  customer.      The  Controller  builds  the  logic  of  surrounding  managed  customers.  This  is  a  simple  process  of  integration  to  share  data  within  the  current  assurance  back  office.    

CAPWAP Access Controller

CAPWAP Client

802.11 Frames 802.11 Frames 802.11 Frames

Remote MAC

Page 18: WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,! assurance!solutions! vishal!dhruv,!director!product!management,! assurance!solutions! hybrid!controller!solutions!!

Copyright  2014  –  ARRIS  Enterprises,  Inc.  All  rights  Reserved.                  

 

 

18  

The  Hybrid  Controller  concept  in  the  RF  layer  splits  the  functionality  of  real  and  non-­‐real  time  resource  management  such  that  the  DOCSIS  Gateway  in  the  premise  is  able  to  act  autonomously  on  conditions  it  is  closest  to  understand.      Specifically,  the  DOCSIS  gateway  is  provided  knowledge  of  other  managed  APs  in  a  set  of  policies  from  the  cloud  controller  to  allow  for  semi-­‐autonomous  decision  making  by  the  Gateway  as  Wi-­‐Fi  RF  conditions  continually  change.  This  now  changes  the  relationship  in  our  Dual  AP  model  to  a  Gateway-­‐Child  managed  Wi-­‐Fi  network  model.    

 Figure  16  Hybrid  Controller  

Through  ongoing  Beacon  information  and  client  statistics  observed  both  on  the  DOCSIS  Gateway  and  on  associated  child  APs,  the  μController  is  able  to  determine  the  best  client  association  to  the  AP  and  whether  RF  power  may  need  to  be  adjusted  or  RF  channels  need  to  be  changed.  Some  of  this  information  is  derived  through  the  use  of  802.11k.  This  component  of  the  802.11  working  group  of  standards  enables  Wi-­‐Fi  station  information  reporting  and  communication  of  radio  topology.    With  the  μController  extending  the  DOCSIS  Gateway  now  into  a  RRM  capable  platform,  the  DOCSIS  Gateway  embeds  802.11k  Information  Elements  (IE)  into  beacons.  This  signifies  to  clients  the  DOCSIS  Gateway  AP  is  an  RRM  network  element.  Clients  may  now  request  neighbor  information  from  the  DOCSIS  Gateway,  and  the  DOCSIS  Gateway  may  obtain  the  same  information  from  802.11k  Wi-­‐Fi  clients.    

Assurance Back Office

DOCSIS GW

μController •  Policy •  Topology •  Control

Cloud WLAN Controller

Page 19: WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,! assurance!solutions! vishal!dhruv,!director!product!management,! assurance!solutions! hybrid!controller!solutions!!

Copyright  2014  –  ARRIS  Enterprises,  Inc.  All  rights  Reserved.                  

 

 

19  

 Figure  17  Apartment  -­‐  MDU  Topology  Mapping  

As  the  μController  builds  a  local  topology  using  802.11k,  it  has  learned  of  neighbors  and  clients  that  it  can  directly  see.  The  μController  has  also  learned  of  neighbors  through  clients.  This  indirect,  hidden  neighbor  knowledge  is  critical  to  decision  making  where  balancing  transmit  power  and  operating  channel  decisions  are  concerned.      The  μController  is  providing  standard  Wi-­‐Fi  measurement  information  to  the  Cloud  Controller  as  there  are  applications  that  require  quantifiable  radio  environment  measurements  in  order  to  attain  the  necessary  customer  experience  levels.  These  applications  include  VoIP,  video  over  IP,  location  based  applications,  as  well  as  applications  requiring  mitigation  of  harsh  radio  environments  (multifamily  dwellings,  airplanes,  factories,  municipalities,  etc.).      Radio  measurements  address  most  of  the  existing  issues  in  using  unlicensed  radio  spectrum  to  meet  the  requirements  of  these  emerging  technologies.  To  address  the  mobility  requirements  of  technologies,  such  as  VoIP  and  video  streaming,  Radio  measurements,  such  as  channel  load  request/report  and  the  neighbor  request/report,  may  be  used  to  collect  pre-­‐handoff  information,  which  can  drastically  speed  up  handoffs  between  cells  within  the  same  extended  service  set  (ESS).  By  accessing  and  using  this  information,  the  Wi-­‐Fi  clients  (either  in  the  Gateway  AP  or  child  AP  in  the  Dual  AP  model)  can  make  intelligent  decisions  about  the  most  effective  way  to  utilize  the  available  spectrum,  power,  and  bandwidth  for  its  desired  communications.  

Page 20: WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,! assurance!solutions! vishal!dhruv,!director!product!management,! assurance!solutions! hybrid!controller!solutions!!

Copyright  2014  –  ARRIS  Enterprises,  Inc.  All  rights  Reserved.                  

 

 

20  

The  request/report  measurements  are  as  follows:  • Beacon  • Frame  • Channel  Load  • Noise  Histogram  • STA  Statistics  • Location  Configuration  Information  (LCI)  • Neighbor  Report  • Link  Measurement  • Transmit  Stream/Category  Measurement  

 These  measurement  mechanisms  provide  the  capability  for  a  Wi-­‐Fi  client  to  manage  and  query  its  radio  environment,  and  to  make  appropriate  assessments  about  its  health  and  efficiency.  It  is  the  first  step  in  creating  an  intelligent  Wi-­‐Fi  customer  experience  capable  of  making  appropriate  decisions  for  fast  transition,  for  mesh  connectivity,  and  for  managing  the  radio  environment  for  all  wireless  devices.    

 Figure  18  uController  Learning  

Example  information  collected  by  the  μController  as  it  handles  real-­‐time  events  in  the  immediate  managed  Wi-­‐Fi  customer  premise.      

Passive Scan

Beacon Information

Learned Local Frames

DOCSIS GW

μController

Page 21: WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,! assurance!solutions! vishal!dhruv,!director!product!management,! assurance!solutions! hybrid!controller!solutions!!

Copyright  2014  –  ARRIS  Enterprises,  Inc.  All  rights  Reserved.                  

 

 

21  

 Figure  19  uController  Network  State  

For  the  first  time,  client  performance  is  now  exposed.  The  previous  lack  of  knowledge  in  the  back  office  as  to  why  bandwidth  was  performing  at  a  given  level  is  known  to  the  μController,  and  supplied  northbound  to  the  Cloud  Controller.      

 Figure  20  uController  Station  Statistics  

This  provides  the  client  device  the  information  on  where  to  go,  the  client  device  may  now  be  ‘told’  to  move  using  an  802.11r  fast  BSS  transition  (FT)  message.      Between  these  two  steps,  the  μController  has  exchanged  any  802.11i  temporal  key  information  such  that  when  the  client  associates  to  the  new  AP,  no  re-­‐authentication  delay  is  encountered.      Having  built  a  local  Wi-­‐Fi  topology,  the  μController  in  the  Gateway  is  able  to  communicate  the  neighbor  list  of  APs,  current  RF  channel  state  and  client  states  learned  as  part  of  802.11k  to  the  Cloud  Controller.    

Link Measurements

Channel Loading DOCSIS GW

μController

Station Statistics

DOCSIS GW μController

Page 22: WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,! assurance!solutions! vishal!dhruv,!director!product!management,! assurance!solutions! hybrid!controller!solutions!!

Copyright  2014  –  ARRIS  Enterprises,  Inc.  All  rights  Reserved.                  

 

 

22  

 Figure  21  uController  -­‐  Cloud  Controller  Relationship  

As  these  direct  and  indirect  topology  objects  are  learned,  they  are  sent  to  the  WLAN  Cloud  Controller  for  analysis.  The  Cloud  Controller  has  the  role  of  defining  policy  and  controls  for  the  μControllers,  and  to  correlate  received  topology  data  to  manage  Wi-­‐Fi  quality  across  multiple  customer  premise  networks.      

μController(

Cloud(Controller(

Assurance(

Page 23: WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,! assurance!solutions! vishal!dhruv,!director!product!management,! assurance!solutions! hybrid!controller!solutions!!

Copyright  2014  –  ARRIS  Enterprises,  Inc.  All  rights  Reserved.                  

 

 

23  

 Figure  22  Cloud  Control  across  Networks  

 Figure  23  Taming  the  Wi-­‐Fi  Experience  

Cloud&Controller&

Assurance&

μController(

Cloud(Controller(

Assurance(

Page 24: WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,! assurance!solutions! vishal!dhruv,!director!product!management,! assurance!solutions! hybrid!controller!solutions!!

Copyright  2014  –  ARRIS  Enterprises,  Inc.  All  rights  Reserved.                  

 

 

24  

The  customer  home  Wi-­‐Fi  network  has  finally  been  tamed.  The  μController  is  able  to  react  to  evolving  network  conditions  and  any  end  user  device  behavior.  The  network  assurance  back  office  is  now  able  to  visualize  all  the  devices  in  the  customer  home  in  real-­‐time  and  with  knowledge  of  Wi-­‐Fi  client  to  network  conditions.    

SUMMARY  The  role  of  Wi-­‐Fi  networks  has  expanded  into  much  more  than  an  extension  of  the  operator  network.  Wi-­‐Fi  in  the  customer  home  is  as  much  a  critical  part  of  the  service  delivery  infrastructure  as  any  other  component  of  the  access  network.      WLAN  controllers  designed  for  Enterprise  networks  do  not  meet  the  operational  challenges  of  density  necessary  for  scale  on  a  cable  operator  basis.  Separating  critical  functions  of  legacy  WLAN  controllers  into  a  Hybrid  Controller  contains  the  demands  of  real-­‐time  events  while  achieving  scale  at  the  Cloud  level.      With  both  IP  STB  and  tablet  platforms  requiring  Wi-­‐Fi  for  IP  video  delivery,  the  time  has  come  to  implement  the  next  stage  of  Wi-­‐Fi  management,  moving  from  provisioning  Wi-­‐Fi  to  Wi-­‐Fi  as  an  assured  service.    

RELATED  READINGS  • WEBINAR:  Successful  Strategies  for  Wi-­‐Fi  Deployments  • PAPER:  Navigating  the  Home  Wi-­‐Fi  Experience  Part  2:  The  Importance  of  Air  Time  

Allocation  in  Wi-­‐Fi  Quality  of  Service  • PAPER:  Navigating  the  Home  Wi-­‐Fi  Experience  Part  1:  Real-­‐World  Data  on  the  

Growing  Congestion  of  Home  Wi-­‐Fi  and  Potential  Responses  

MEET  ONE  OF  OUR  EXPERTS:  Chris  Busch    Chris  Busch  serves  as  Director  Product  Management  and  Architecture,  in  the  Assurance  business  at  ARRIS.  In  this  role  he  is  responsible  for  working  with  customers  and  partners  to  research  analyze  and  develop  customer  solutions,  product  strategies  and  new  product  technologies  for  the  Assurance  business  portfolio.    Chris  has  presented  to  the  SCTE  and  numerous  industry  publications  on  topics  including  Advanced  Provisioning  for  Commercial  services,  IPTV  and  TR-­‐069,  leveraging  Broadband  Forum  standards  for  Wi-­‐Fi  management,  IPv6  implementation  strategies,  OSS  Convergence  and  Evolution  to  all  IP  Services.  

Page 25: WI FI SERVICE MANAGEMENT - CommScope€¦ · chris!busch,!director!product!management,! assurance!solutions! vishal!dhruv,!director!product!management,! assurance!solutions! hybrid!controller!solutions!!

Copyright  2014  –  ARRIS  Enterprises,  Inc.  All  rights  Reserved.                  

 

 

25  

REFERENCES  (1) Bell  Canada  ‘Fibe  TV”  http://tvanywhere.bell.ca/en/  

(2)  Shaw  GO  http://www.shaw.ca/television/shaw-­‐go/gateway-­‐app/  

(3)  TWC  TV®  http://www.timewarnercable.com/en/tv/features/twc-­‐tv.html  

(4)  OECD  Insights  http://oecdinsights.org/2013/01/21/smart-­‐networks-­‐coming-­‐soon-­‐to-­‐a-­‐home-­‐near-­‐you/  

(5)  UPC  Wi-­‐Free  http://www.upc-­‐cablecom.ch/de/support/tools/wi-­‐free/  

(6)  Cable  WiFi®  http://www.cablewifi.com/  

(7)  ITU  Indoor  Propagation  Model  http://www.itu.int/rec/R-­‐REC-­‐P.1238/en  

     

ABBREVIATIONS  &  ACRONYMS    ACS   Auto  Configuration  Server  –  Broadband  Forum  GRE   Generic  Routing  Encapsulation  RRM   Radio  Resource  Management  IE   Information  Element  MCS   Modulation  Coding  Scheme  WLAN   Wireless  LAN  CAPWAP   Configuration  and  Provisioning  Wireless  Access  Points  SSID   Service  Set  Identifier                      ©ARRIS  Enterprises,  Inc.  2014  All  rights  reserved.  No  part  of  this  publication  may  be  reproduced  in  any  form  or  by  any  means  or  used  to  make  any  derivative  work  (such  as  translation,  transformation,  or  adaptation)  without  written  permission  from  ARRIS  Enterprises,  Inc.  (“ARRIS”).  ARRIS  reserves  the  right  to  revise  this  publication  and  to  make  changes  in  content  from  time  to  time  without  obligation  on  the  part  of  ARRIS  to  provide  notification  of  such  revision  or  change.  


Recommended