+ All Categories
Home > Documents > Wir schaffen Wissen – heute für morgen 10 th RD51 Collaboration Meeting, Stony Brook University,...

Wir schaffen Wissen – heute für morgen 10 th RD51 Collaboration Meeting, Stony Brook University,...

Date post: 13-Dec-2015
Category:
Upload: heather-george
View: 214 times
Download: 1 times
Share this document with a friend
Popular Tags:
20
Wir schaffen Wissen – heute für morgen 10 th RD51 Collaboration Meeting, Stony Brook University, USA Progress in Fast-Neutron THGEM Detector for Fan-Beam Tomography Applications M. Cortesi 1,2 , R. Zboray 1 , R. Adams 1,2 , V. Dangendorf 3 , A. Breskin 4 and H-M Prasser 1,2 1. Paul Scherrer Institute (PSI), Villigen PSI, CH-5232 Switzerland 2. Eidgenössische Technische Hochschule Zürich (ETHZ), CH-8092 Switzerland 3. Physikalisch-Technische Bundesanstalt (PTB), D-38116 Braunschweig, Germany 4. Weizmann Institute of Science (WIS), Rehovot 76100, Israel
Transcript
Page 1: Wir schaffen Wissen – heute für morgen 10 th RD51 Collaboration Meeting, Stony Brook University, USA Progress in Fast-Neutron THGEM Detector for Fan-Beam.

Wir schaffen Wissen – heute für morgen

10th RD51 Collaboration Meeting, Stony Brook University, USA

Progress in Fast-Neutron THGEM Detector for Fan-Beam Tomography

ApplicationsM. Cortesi1,2, R. Zboray1, R. Adams1,2, V. Dangendorf3, A. Breskin4 and H-M Prasser1,2

1. Paul Scherrer Institute (PSI), Villigen PSI, CH-5232 Switzerland2. Eidgenössische Technische Hochschule Zürich (ETHZ), CH-8092 Switzerland3. Physikalisch-Technische Bundesanstalt (PTB), D-38116 Braunschweig,

Germany 4. Weizmann Institute of Science (WIS), Rehovot 76100, Israel

Page 2: Wir schaffen Wissen – heute für morgen 10 th RD51 Collaboration Meeting, Stony Brook University, USA Progress in Fast-Neutron THGEM Detector for Fan-Beam.

10th RD51 Collaboration Meeting, Stony Brook University, USA

Fluid dynamic studies in BWR Fuel Rod Bundles

Motivation

Page 3: Wir schaffen Wissen – heute für morgen 10 th RD51 Collaboration Meeting, Stony Brook University, USA Progress in Fast-Neutron THGEM Detector for Fan-Beam.

10th RD51 Collaboration Meeting, Stony Brook University, USA

ICON beam line, SINQ at PSI, Switzerland:

Example: Imaging using cold neutrons

Double subchannel + spacer inside:

neutron guide tube

multiphase outlet

scintillator screen

air-water inlets, turn table

FOV 6.5*6.5cm

double subchannel

(Zboray et al. Nucl. Eng. Des. 241 pp.3201)

More penetration depth Fast Neutron

Page 4: Wir schaffen Wissen – heute für morgen 10 th RD51 Collaboration Meeting, Stony Brook University, USA Progress in Fast-Neutron THGEM Detector for Fan-Beam.

10th RD51 Collaboration Meeting, Stony Brook University, USA

Goal: Fast-Neutron TomographyDetector Requirements:

• Good time resolution (ns range)• High Counting rate (MHz/cm2

range)• Good spatial resolution (mm

scale)• High Detection Efficiency (few

%)• Large area (m2)

1D High-Efficiency Fast-Neutron Imaging Detector

TwoFast Project:• Multiple fast-n point sources (e.g. D-D fusion, 2.5 MeV)• Ring-shaped Fast-Neutron

detector

detector ring

phantom

(G)APD matrices

Plastic converter +(THGEM) as 2D fast neutron detector

Plastic scintillator +(G)APD matrix

In this presentation

D-D pulsed neutron generator

RF-driven Plasma ion source

Multiple point source sequentially pulse

Page 5: Wir schaffen Wissen – heute für morgen 10 th RD51 Collaboration Meeting, Stony Brook University, USA Progress in Fast-Neutron THGEM Detector for Fan-Beam.

10th RD51 Collaboration Meeting, Stony Brook University, USA

2D Imaging with neutrons

Fast/Cold Neutron 2D radiography

2 mm pitch, 1.35ns/mm

• 2x 10x10cm2 THGEM• 2-sided pad-string anode • Delay-line readout (SMD)

Ionization electrons are multiplied & localized in cascaded-THGEMs imaging detector.

-) Detection efficiency: < 0.1%(fast-n) ~ 5% (cold-n) -) Spatial Resolution ~ 1 mm -) Counting Rate ~ 1 kcps/cm2

7Li/4He

Page 6: Wir schaffen Wissen – heute für morgen 10 th RD51 Collaboration Meeting, Stony Brook University, USA Progress in Fast-Neutron THGEM Detector for Fan-Beam.

10th RD51 Collaboration Meeting, Stony Brook University, USA

High Efficiency Detector

…….+ + +Neutron Neutron Neutron

resistive layer on insulatorRead-out

2D radiography: for efficiency need to cascade many detectors!

100 detector elements for efficiency ≈ 6%

1D radiography 2D cross-sectional tomography

1 detector for efficiency ≈ 10%

Neutron source

Projectional image 1D distribution of neutron attenuation inside the object,

integrated over projection chords

5-1

0 m

m

Page 7: Wir schaffen Wissen – heute für morgen 10 th RD51 Collaboration Meeting, Stony Brook University, USA Progress in Fast-Neutron THGEM Detector for Fan-Beam.

10th RD51 Collaboration Meeting, Stony Brook University, USA

Multi-layer converter + THGEM detector

n’

np

2D Readout Board

Antistatic HDPE layer (no charging up)

THGEM1

THGEM2

ΔV

E

Detector Concept:• n scatter on H in HDPE-radiator foils, p escape the foil. • p induce e- in gaseous conversion gap.• e- are multiplied and localized in THGEM-detector.• Combine several 1D radiographs 2D cross sectional tomography.

Detector design:-) Foils thickness (2.5 MeV neutron)-) Gas gap thickness (Deposited Energy)-) Converter height (Axial resolution)-) Number of converter foils (Detector Length)

Detector Performances:-) Spatial Resolution -) Efficiency of transport e- in small gap-) Detector Efficiency

Cortesi et al. 20012 JINST 7 C02056

Page 8: Wir schaffen Wissen – heute für morgen 10 th RD51 Collaboration Meeting, Stony Brook University, USA Progress in Fast-Neutron THGEM Detector for Fan-Beam.

10th RD51 Collaboration Meeting, Stony Brook University, USA

Simulation Converter Thickness

Impinging neutron

(En)

θ

Scattered neutron

Target

Recoiled nucleus

(ER) θcos

A)(1

4A

E

E 22

n

R

Escaped protons (GEANT4)

For 2.45 MeV Neutron impinging on HDPE layer:

-) Max. Efficiency ≈ 0.06%-) Effective Conversion length = 100 μm-) Broad Spectrum (0 2.5 MeV)

Target Max. Ener. Tran. σ(2.45 MeV)

1H 100% 2.5 MeV ~2.55 b12C 28.4% 0.7 MeV ~1.6 b

HDPE (C2H4 – Mass Density = 0.93 g/cm3)

0 40 80 120 160 2000.000

0.025

0.050

0.075

0.100

Recoil Protons Efficiency

Det

ectio

n ef

ficie

ncy

(%)

HDPE thickness (m)

Neutron 2.5 MeV

HDPE density = 0.93 g/cm3

MCNPX calculation

Effi

cien

cy (

%)

MCNP calculated energy spectrum of escape protons

HDPE

Range of 2.5 MeV protons

Escape protons

Fraction of interaction neutrons

Energy (MeV)

Page 9: Wir schaffen Wissen – heute für morgen 10 th RD51 Collaboration Meeting, Stony Brook University, USA Progress in Fast-Neutron THGEM Detector for Fan-Beam.

10th RD51 Collaboration Meeting, Stony Brook University, USA

Simulation Deposited Energy in the Gas

Geant4 Simulation snapshot

n n’

p

δe-

t d

HDPENe/5%CH4 (1 atm)

1 mm

MPV~ 2.7 keV (~ 75 e-)

Gas Gap = 0.6 mm

0 500 1000 1500 2000 250010-1

101

103

105

107

X-Rays Limit

Ar/CH4(5%)

X-Rays Limit Ne/CH4(23%)

Ne/CH4(5%)

Effec

tive-

Gain

VTHGEM

(Volt)

Ne

1 atm gas Flow modeCsI + UV Light

X-Rays Limit

X-Rays Limit

single THGEM (t = 0.8, d = 0.5, a=1mm, rim = 0.1 mm)

Gain

Cortesi et al. 2009 JINST 4 P08001

Broad Spectrum of Energy deposited by

recoil proton

Larger dynamic range in Ne-Mixtures

Page 10: Wir schaffen Wissen – heute für morgen 10 th RD51 Collaboration Meeting, Stony Brook University, USA Progress in Fast-Neutron THGEM Detector for Fan-Beam.

10th RD51 Collaboration Meeting, Stony Brook University, USA

-50 -25 0 25 50

10-4

10-3

10-2

10-1

100

101

Position (mm)N

orm

aliz

ed

PS

F

Simulations Efficiency & Resolution

10-1

100

101

102

103

0

400

800

Energy (keV)

Co

un

ts

100 Conv.

200 Conv.

300 Conv.

Deposited Energy Spectrum Distribution of the deposited charge

Signal

Scattering

Cost effective solution: 300 HDPE layer

Conversion Efficiency ~8%

HD

PE f

oils

Neutrons (2.45 MeV)

Dete

ctor

Vess

el

SSR = Signal-to-Scattering ratio

LayersLayers

Layers LayersLayers

Layers

Parameters-) HDPE Thickness = 0.4 mm-) Gas Gap = 0.6 mm

0 100 200 300 400 500 6000

5

10

15

20

# of Converters

De

t. E

ffici

en

cy (

%)

0 100 200 300 400 500 6000

2

4

6

8

10

SN

RS

SR

Cortesi et al. 20012 JINST 7 C02056

Page 11: Wir schaffen Wissen – heute für morgen 10 th RD51 Collaboration Meeting, Stony Brook University, USA Progress in Fast-Neutron THGEM Detector for Fan-Beam.

10th RD51 Collaboration Meeting, Stony Brook University, USA

Converter Prototypes

Produced using 3D printing technologiesFoils thickness = Gas gap = 0.6 mm

Height = 6 mm, 10 mmMaterial Antistatic ABS

• 2x 10x10cm2 THGEM• 2-sided pad-string anode • Delay-line readout (SMD)

Cortesi et al. 2007 JINST 2 P09002 6 mm height converter

10 mm height converter

Page 12: Wir schaffen Wissen – heute für morgen 10 th RD51 Collaboration Meeting, Stony Brook University, USA Progress in Fast-Neutron THGEM Detector for Fan-Beam.

10th RD51 Collaboration Meeting, Stony Brook University, USA

e- Collection Efficiency Vs Electric Field

Full Collection efficiency above 0.4 kV/cm in the Converter Gas

Gap

Gas Ne/CF4 (1 atm)Detector Gain ~ 103

X-Rays

Side-Irradiation with soft (5.9 keV)

X-Rays

MCNP Snapshot

Page 13: Wir schaffen Wissen – heute für morgen 10 th RD51 Collaboration Meeting, Stony Brook University, USA Progress in Fast-Neutron THGEM Detector for Fan-Beam.

10th RD51 Collaboration Meeting, Stony Brook University, USA

Electric Fields (Converter-Drift) Tuning

Field Ratio = Drift / Converter

Focusing of the ionization electron transferred from the converter Gas Gap to the Drift Gap (THGEM hole pitch ≠ Converter Foils

pitch Drift Gap)

Full transfer efficiency for field ratio > 2:1Ideal values: (1kV/cm Drift Field, 0.5 kV/cm Converter Field)

1.2 mm

1 mm

THGEM

Converter

New THGEM Configuration hole pitch

= Foils pitch(No drift Gap)

NEXT

Page 14: Wir schaffen Wissen – heute für morgen 10 th RD51 Collaboration Meeting, Stony Brook University, USA Progress in Fast-Neutron THGEM Detector for Fan-Beam.

10th RD51 Collaboration Meeting, Stony Brook University, USA

Electron Transport through the (0.6 mm) gas gap

6-10 mm

3.2 mm

2-cascade THGEM Detector:-) Effective area 10x10 cmConverter Prototypes geometry:-) Foils Thickness = 0.6 mm-) Gas Gap = 0.6 mm-) Converter Height = 6mm / 10 mm-) number of foils = 83

Transport efficiency - Methodology: -) “Top” irradiation with soft (5.9 keV X-rays)-) Comparison between the spectra of Deposited Energy (MCNP) and measured Pulse-Height Spectra using the THGEM detector

MCNP calculated spectra of deposited energy

6 mm height Converter

Measured Spectra

Page 15: Wir schaffen Wissen – heute für morgen 10 th RD51 Collaboration Meeting, Stony Brook University, USA Progress in Fast-Neutron THGEM Detector for Fan-Beam.

10th RD51 Collaboration Meeting, Stony Brook University, USA

Electron Transport through the (0.6 mm) gas gap

6-10 mm

3.2 mm

2-cascade THGEM Detector:-) Effective area 10x10 cmConverter Prototypes geometry:-) Foils Thickness = 0.6 mm-) Gas Gap = 0.6 mm-) Converter Height = 6mm / 10 mm-) number of foils = 83

Transport efficiency - Methodology: -) “Top” irradiation with soft (5.9 keV X-rays)-) Comparison between the spectra of Deposited Energy (MCNP) and measured Pulse-Height Spectra using the THGEM detector

6 mm height Converter

Measured Spectra

Electron Transport Efficiency Converter-to-Drift Counts Rate ratios = MCNP/Measured (full efficiency

= 1)MCNP calculated spectra of deposited energy

Page 16: Wir schaffen Wissen – heute für morgen 10 th RD51 Collaboration Meeting, Stony Brook University, USA Progress in Fast-Neutron THGEM Detector for Fan-Beam.

10th RD51 Collaboration Meeting, Stony Brook University, USA

Efficiency ≈ 92%

Deposited Energy (MCNP) Measured Spectra

Efficiency ≈ 30%

6 mm height Converter

10 mm height Converter

Significant loss of Efficiency due to

charging up of the foils &/or secondary

effects(Distorted converter field)

Electron Transport through the (0.6 mm) gas gap

Small Efficiency loss due to electron

diffusion

Page 17: Wir schaffen Wissen – heute für morgen 10 th RD51 Collaboration Meeting, Stony Brook University, USA Progress in Fast-Neutron THGEM Detector for Fan-Beam.

10th RD51 Collaboration Meeting, Stony Brook University, USA

Transport Efficiency (Garfield simulation)

2D Readout Board

100 electron per event simulated in the gas gap

at various height (2-8 mm)

THGEM1

THGEM2

E

Converter

Detected Event at least one electron focused in the THGEM hole

for 6 mm height Aver. Transport efficiency = 95% (≈ measured efficiency soft X-rays)------------------------------------------

for 10 mm height Aver. Transport efficiency = 70% (> measured efficiency soft X-rays) Charging up!

Charge lost due to electron diffusion!

Page 18: Wir schaffen Wissen – heute für morgen 10 th RD51 Collaboration Meeting, Stony Brook University, USA Progress in Fast-Neutron THGEM Detector for Fan-Beam.

10th RD51 Collaboration Meeting, Stony Brook University, USA

Detection Efficiency (fast neutron)

2.5 MeV neutron induced recoil proton in 0.6 mm Gas Gap MVP = 2.7 KeV

Detected Event at least one electron focused in the THGEM hole

6 mm height converter: Aver. Transport efficiency = 97%

-) Conversions efficiency ≈ 8% for ~300 foils-) Transport Efficiency ≈ 97% for 6 mm height, 0.6 mm gas gap-) Discrimination threshold (front-end electronics) ≈ 90%

Estimated Fast-n Detection Efficiency ≈ 7%

Page 19: Wir schaffen Wissen – heute für morgen 10 th RD51 Collaboration Meeting, Stony Brook University, USA Progress in Fast-Neutron THGEM Detector for Fan-Beam.

10th RD51 Collaboration Meeting, Stony Brook University, USA

Summary & Future Plan

Goal TWO-FAST: Fast neutron tomographic 2D cross-sectional images

Main Application: non-destructive testing for the nuclear energy industry: multi-phase flow, spent nuclear fuel bundles inspection, safeguards …

Others: detection of SNM, explosive (border control), material science …

Two Detector technologies Feasibility study Gaseous Detector (THGEM)

New Idea many n-to-p converters, single 2D Detector readout

* Expected detection efficiency ~7% (300 foils) * 1D Radiography, spatial resolution ~ 1 mm * Low sensitivity to gamma background

* 10x10 cm2 imaging detector prototype ready for neutron with antistatic HDPE multi-layers converter produced using 3D printing Converter thickness = Gas gap ≈ 0.6 mm (83 layers) * Improvement of charge-readout electronics * Implementation with TWO-FAST compact D-D generator

Page 20: Wir schaffen Wissen – heute für morgen 10 th RD51 Collaboration Meeting, Stony Brook University, USA Progress in Fast-Neutron THGEM Detector for Fan-Beam.

10th RD51 Collaboration Meeting, Stony Brook University, USA

1. Emitting spot size: Ø2mm

Burning plasma in the RF-driven ion source with external antenna

Compact, pulsed neutron generator

2.45 MeV

TWOFAST: Fast imaging with fast neutrons, feasibility study

Cooperation: Prof. Ka-Ngo Leung, Berkeley

3. Nominal yield: 108 neutrons/s

2. Pulsed operation: 1kHz; D.F.:1-10%

High fraction (>90%) mono-atomic plasma


Recommended