+ All Categories
Home > Documents > Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon...

Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon...

Date post: 20-Aug-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
92
Wissahickon Watershed Stream Monitoring and Assessment Program A summary of data collected by the Wissahickon Valley Watershed Association from 2004-2016 May 2017
Transcript
Page 1: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

WissahickonWatershedStreamMonitoringandAssessment

Program

AsummaryofdatacollectedbytheWissahickonValleyWatershedAssociationfrom2004-2016

May2017

Page 2: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

Thispagewasintentionallyleftblank.

Page 3: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

3

LISTOFFIGURESFigure2-1.Impactsoftheurbanstreamsyndrome 12Figure2-2.AmapofwastewatertreatmentplantsintheWissahickonWatershed 14Figure3-1.Amapofsamplinglocationsfrom2004to2016 18Figure4-1.Themedianmacroinvertebrateindexofbioticintgrityofallsitesfrom2011to

2015 23Figure4-2.Macroinvertebratefunctionalfeedinggroups2011to2013 25Figure4-3.TheWissahickonWatershedandmacroinvertebratesurveysitesfrom2011-

2015 27Figure5-1.Medianhabitatassessmentssitescoresforallsitesfrom2011to2016 30Figure5-2.Annualsitehabitatscoresforallsites 31Figure5-3.AmapoftheWissahickonWatershedandhabitatassessmentsitesfrom2011-

2016 36Figure6-1.Averageseasonalspecificconductivityfrom2015to2016 41Figure6-2.Medianorthophosphateconcentrationsfrom2004to2010 44Figure6-3.Medianorthophosphateconcentrationfrom2011to2016 45Figure6-4.Seasonalaverageorthophosphateconcentrationsfrom2014to2016 46Figure6-5.Annualaverageorthophosphateconcentrationsatallsitesfrom2008to2016

47Figure6-6.Mediantotalphosphorusconcentrationsfrom2004to2010 48Figure6-7.Mediantotalphosphorusconcentrationsfrom2011to2016 49Figure6-8.Seasonalaveragetotalphosphorusconcentrationsfrom2014to2016 50Figure6-9.Annualaveragetotalphosphorusconcentrationsatallsitesfrom2008to2016

51Figure6-10.Mediannitrateconcentrationsfrom2004to2010 53Figure6-11.Mediannitrateconcentrationsfrom2011to2016 54Figure6-12.Seasonalaveragenitrateconcentrationsfrom2014to2016 55Figure6-13.Annualaveragenitrateconcentrationsatallsitesfrom2008to2016 56Figure6-14.Mediantotalsuspendedsolidconcentrationsfrom2004to2006 58Figure6-15.Mediantotalsuspendedsolidconcentrationsfrom2015to2016 59Figure6-16.Mediantotaldissolvedsolidconcentrationsfrom2004to2010 61Figure6-17.Mediantotaldissolvedsolidconcentrationsfrom2011to2016 62Figure6-18.Seasonalaveragetotaldissolvedsolidconcentrationsfrom2014to2016 63Figure6-19.Annualaveragetotaldissolvedsolidsconcentrationsatallsitesfrom2011to

2016 64Figure6-20.Medianchlorideconcentrationsfrom2004to2010 65Figure6-21.Medianchlorideconcentrationsfrom2011to2016 66Figure6-22.Seasonalaveragechlorideconcentrationsfrom2014to2016 67Figure6-23.Annualaveragechlorideconcentrationsatallsitesfrom2011to2016 68Figure6-24.Mediansulfateconcentrationsfrom2004to2010 69Figure6-25.Mediansulfateconcentrationsfrom2011to2016 70

Page 4: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

4

Figure6-26.Seasonalaveragesulfateconcentrationsfrom2014to2016 71Figure6-27.Annualaveragesulfateconcentrationsatallsitesfrom2008to2016 72Figure6-28.Medianalkalinityconcentrationsfrom2004to2006 73Figure6-29.Medianalkalinityconcentrationsfrom2011to2016 74Figure6-30.Medianhardnessconcentrationsfrom2011to2016 75Figure6-31.MedianE.colifrom2004to2006 76Figure6-32.Medianfecalcoliformfrom2004to2011 77Figure6-33.Medianfecalcoliformfrom2013to2016 78Figure6-34.Medianaluminumconcentrationsfrom2004to2006 79Figure6-35.Medianironconcentrationsfrom2004to2006 80Figure6-36.Mediantotalorganixcarbonconcentrations 81Figure6-37.AmapoftheWissahickonWatershedsitesandmediantotalphosphorus

concentrationsfrom2011to2016 84Figure6-38.AmapoftheWissahickonWatershedsitesandmediannitrateconcentrations

from2011to2016 85Figure6-39.AmapoftheWissahickonWatershedsitesandmedianchloride

concentrationsfrom2011to2016 86Figure6-40.AmapoftheWissahickonWatershedsitesandmediantotaldissolvedsolide

concentrationsfrom2011to2016 87Figure7-1.SiteWISS550withlettershighlightingsignsoftheurbanstreamsyndrome 88

Page 5: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

5

LISTOFTABLESTable3-1.Stationnames,descriptions,coordinates,samplingyears,distancedownstream

fromthestartoftheWissahickonCreek,anddrainagearea 17Table4-1.Thedietofeachmacroinvertebratefunctionalfeedinggroup,expectedlocation

inawatershed,andwhatwasfoundintheWissahickonWatershed 24Table5-1.Theparametersusedinhabitatassessmentsandadescriptionofeach

parameter 29Table5-2.Thesites,yearssampled,averagescores,andlowestandhighestscored

parameterscoreacrosstheyearsanalyzed 34Table6-1.TheyearsandseasonsthatsitesweresampledintheWissahickonWatershed

from2004to2016 37Table6-2.Thewaterqualityparameterscollectedfrom2004to2016 38

Page 6: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

6

TableofContents

LISTOFFIGURES....................................................................................................................................3LISTOFTABLES......................................................................................................................................5SECTIONONE:EXECUTIVESUMMARY............................................................................................8SECTIONTWO:CHARACTERISTICSOFTHEWISSAHICKONWATERSHED.......................10Backgroundinformation..............................................................................................................10Environmentalstressors..............................................................................................................11Imperviouscoverandtheimpacts.......................................................................................................11UrbanstreamsyndromeandtheWissahickonWatershed.......................................................12Wastewatertreatmentplants.................................................................................................................13

WissahickonCreekstatus............................................................................................................14SECTIONTHREE:STREAMMONITORINGANDASSESSMENTPROGRAM..........................16StreamMAPsetup.........................................................................................................................16Sitedescriptions.............................................................................................................................16Wissahickonmainstemsites...................................................................................................................19SandyRunandtributarysites................................................................................................................20

SECTIONFIVE:MACROINVERTEBRATESURVEYS....................................................................21Methods.............................................................................................................................................21Pennsylvaniaindexofbioticintegrity.................................................................................................21

Results................................................................................................................................................22Watershedwidetrends.............................................................................................................................22IBIcomponentsofinterest.......................................................................................................................23Functionalfeedinggroups........................................................................................................................24Tributaries(Fall2013)..............................................................................................................................25WVWAresultscomparedwithotherstudies...................................................................................25

Conclusion.........................................................................................................................................26Take-awaypointsandsummarymap......................................................................................26

SECTIONFIVE:HABITATASSESSMENTS......................................................................................28Methods.............................................................................................................................................28Results................................................................................................................................................29Watershedwidetrends.............................................................................................................................29Resultsbysite................................................................................................................................................31WVWAresultscomparedwithotherstudies...................................................................................34

Conclusions.......................................................................................................................................34Take-awaypointsandsummarymap......................................................................................35

SECTIONSIX:WATERQUALITY......................................................................................................37Methods.............................................................................................................................................37Samplingmethods.......................................................................................................................................37Qualityassuranceandqualitycontrol................................................................................................38Studylimitations..........................................................................................................................................39

Results................................................................................................................................................39Streamsideparameters.............................................................................................................................39Phosphorus.....................................................................................................................................................42Nitrogen............................................................................................................................................................51Totalsuspendedsolids..............................................................................................................................57Totaldissolvedsolids.................................................................................................................................59

Page 7: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

7

Chloride............................................................................................................................................................64Sulfate................................................................................................................................................................68Alkalinity..........................................................................................................................................................72Hardness..........................................................................................................................................................74Bacteria.............................................................................................................................................................75Aluminum........................................................................................................................................................78Iron.....................................................................................................................................................................79Totalorganiccarbon...................................................................................................................................80Bromide............................................................................................................................................................81

Conclusions.......................................................................................................................................81Take-awaypointsandsummarymaps....................................................................................82

SECTIONSEVEN:CONCLUSIONS......................................................................................................88LITERATURECITED............................................................................................................................91

Page 8: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

8

SECTIONONE:EXECUTIVESUMMARYTheWissahickonWatershedisinSoutheasternPennsylvaniaandishometonearlyaquartermillionpeople.TheStreamMonitoringandAssessmentProgram(StreamMAP)wasstartedbytheWissahickonValleyWatershedAssociationin2004tobetterunderstandtheWissahickonWatershedthroughmonitoring.Theprogramsoughttoidentifyspatialtrends,changesovertime,andareaswithwaterqualityorhabitatimpairments.Thisreportcompilesthefindingsfromdatacollectedbetween2004and2016forStreamMAP.Collecteddataincludesmacroinvertebratesurveys(SectionFour),habitatassessments(SectionFive),andwaterqualitysampling(SectionSix).Overall,StreamMAPresultsindicatedthattheWissahickonWatershedhasimpairmentsthatarecommonlyassociatedwithdevelopedlandscapesandimperviouscoverover10%.TheWVWAconductedmacroinvertebratesurveysforStreamMAPfrom2011to2015.TheWissahickonWatershedmacroinvertebratecommunitywasimpairedwithlittlediversitywithinorbetweensites,andlittlechangeoverthestudyperiod.Asinglespeciesfrequentlydominatedthemacroinvertebratecommunity.TheaveragePennsylvaniaindexofbioticintegrityfortheWissahickonWatershedwaslessthan20%.ThePennsylvaniaindexofbioticintegrityisonascalefrom0-100%whereanythingbelow50%isconsideredimpaired.TheWVWAconductedhabitatassessmentsfrom2011to2016.ThestreamandriparianhabitatthroughouttheWissahickonWatershedwasclassifiedasmarginalorsuboptimal.Habitatassessmentsindicatedadegreeofimpairment,typicallyassociatedwithlong-termerosionpatterns,ateachsite.Severalhabitatparametersusedforhabitatassessmentsweresuboptimaloroptimal.Theseincludedvegetativeprotection,riparianbufferareas,andchannelalteration.Thisvalidatestheimportanceofpreservedopenspace,includingtheGreenRibbonPreservealongtheWissahickonCreek.Thehabitatassessmentscoreswouldlikelybelowerwithoutthispreservedland.WaterqualitysamplingwasconductedforStreamMAPsincethebeginningoftheprogramin2004.Waterqualitydataindicatedthatwhilephosphorusconcentrationsremainedhighacrossthewatershed,concentrationshavedecreasedsince2008atfourWissahickonCreeksites,butincreasedatoneSandyRunsite.Thelowestnutrientconcentrationsinthewatershedwerefoundabovewastewatertreatmentplantsandonsmalldrainageareas.Conversely,chlorideandtotaldissolvedsolidconcentrationshaveincreasedsince2011atseveralsites,possiblyfromrunoffandroadsaltapplications.FlowwasnotmeasuredduringStreamMAPandadditionalstudyisneededtodetermineifthenutrient,chloride,andtotaldissolvedsolidsloadingalsochangedatthesesites.OveralltheWissahickonWatershedhasimpairedwaterquality,lowdiversityandimpairedmacroinvertebratecommunities,andreducedhabitatqualityduetodevelopmentinthewatershed.StreamMAPalsofounddecreasingphosphorusconcentrationsatseveralsites,butoverallconcentrationsarestillhigh,likelydrivenbydevelopmentanddischargefromwastewatertreatmentplants.Additionally,theStreamMAPhabitatassessmentresultshighlightedtheimportanceofhistoricalopenspacepreservationonmitigatingtheeffectofdevelopment.WissahickonWatershedwouldbenefitfromadditionalactionsthatmitigatetheimpactsofdevelopment,includingwidespreadgreeninfrastructureimplementation,

Page 9: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

9

wastewatertreatmentplantupgrades,lowimpactdevelopment,stormwaterbestmanagementpractices,preservingopenspace,andrestoringthetreecanopyandriparianbufferswhereneeded.

Page 10: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

10

SECTIONTWO:CHARACTERISTICSOFTHEWISSAHICKONWATERSHEDTheWissahickonCreekisaniconicwaterbodynorthofPhiladelphia,Pennsylvaniawitharichhistoryintheindustrialrevolution.ThroughouttherevolutionnumerousmillswerebuiltalongthebanksoftheWissahickon,leavingbehindalegacyofdevelopmentthatstillseentoday.TheWissahickonCreekalsohasahistoryofopenspacepreservation.Inthe1860sthecityofPhiladelphiadevelopedtheWissahickonValleyParkcoveringthelast7.3km2(1800acres)oftheWissahickonValley.Today,theWissahickonCreekflowsintotheSchuylkillRiverneartheSchuylkillRiveruptakefortheQueenLaneWaterTreatmentPlant.TheQueenLaneWaterTreatmentPlantprovidesdrinkingwaterto350,000Philadelphiaresidents(PDW,2002).Itisestimatedthat11-28%ofthewatertreatedattheQueenLaneWaterTreatmentPlantisfromtheWissahickonCreek(PDW,2002).

BackgroundinformationTheWissahickonWatershedislocatedinSoutheasternPennsylvania,beginningneartheMontgomeryvilleMallinMontgomeryville,PAandendingatitsconfluencewiththeSchuylkillRiverinPhiladelphia,PA.TheWissahickonWatershedcovers165km2(63.7mi2)andhas296.8km(114.6mi)ofstreams,with70km(27mi)onthemainstemoftheWissahickonCreek(PWD,2007).ItisasubwatershedtotheDelawareRiverWatershed,whichextendsfromNewYork,NewJersey,Pennsylvania,toDelaware.TheWissahickonWatershedhasastartingelevationof148m(488feet)andafinalelevationof3.7m(12feet).Thewatershedcanbebrokenupintotwodistinctareasthatarecommonlyreferredtoasthe‘UpperWatershed’andthe‘LowerWatershed’withFortWashington,PAasthetransitionbetweenthetwosections.The‘UpperWatershed’ischaracterizedasgradualslopesandlowrollinghills,sedimentarybedrock,andsoilswithpoorinfiltrationrates,knownasGroupCsoils(PWD,2007).TheLowerWatershedhasdramaticlandfeaturesincludingtheWissahickonValleyParkinPhiladelphia.Thisareaisdominatedbysoilswithmoderateinfiltrationrates(GroupBsoils),andbedrockthatincludessedimentary,metamorphic,andigneouscomponents(PWD,2007).TheUpperWissahickonisaclassifiedasa‘losingstream,’becauseundercertainflowconditionsthesurfacewaterinfiltratesintothegroundwater,insteadofgroundwateraddingtothesurfaceflow(USEPA,2003a).UnliketheUpperWissahickon,theLowerWissahickonhasmoregroundwaterinputsthatcontributetothesurfaceflowandisclassifiedasa‘gainingstream.’OnesizeableinputisthePlymouthMeetingQuarry,formallyCorson’sQuarry,thatpumpsgroundwaterfromthequarryintotheLorraineRuninFortWashingtonStatePark(USEPA,2003b).TheWissahickonWatershedisdominatedbyanurbanandsuburbanlandscapethroughoutMontgomeryCounty(84%ofthewatershed,15municipalities)andPhiladelphiaCounty(16%ofthewatershed)(TempleUniversity,2014).Approximately221,000peopleresideintheWissahickonWatershedasofthe2010UnitedStatesCensusdata,andthelandscapehasbeenalteredtosupportthesecommunities.Landuseincludes51%residential,7%

Page 11: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

11

commercial,industrial,andparking,17%aswoodlands,7%asagriculture,8%asrecreationalspaces,and10%astransportationandutilities(TempleUniversity,2014).Naturalspaces,includingwoodlandsandsomerecreationalspaces,adjacenttostreamsarevitalforprotectingaquaticecosystemsasthenearbylandactsasanaturalspongethatbuffersthefreshwatersystemfromman-madeimpacts.TheWVWAhasprioritizedthepreservationofnaturalspacesalongtheWissahickonCreek,includingtheGreenRibbonPreserveandTrailthatextendsfromUpperGwyneddtotheWissahickonValleyParkinPhiladelphia.

EnvironmentalstressorsUrbanandsuburbanlandscapesneedinfrastructuretosupportthesurroundingcommunitiesincludingroads,parkinglots,utilities,andwastewatertreatmentplants.Thisman-madeenvironmentcanaltertheflow,waterquality,habitat,andbiologicalcommunitiesoffreshwatersystems.

ImperviouscoverandtheimpactsHighamountsofimperviouscoverarecommoninanurbanandsuburbanenvironment.Imperviouscoverisanythingthatpreventstheinfiltrationofrainwaterintotheground,includingparkinglots,roads,buildingsandotherstructures.Imperviouscoverisawell-documentedenvironmentalstressoronaquaticsystemsthatcausesnegativeimpacts,knownasthe‘urbanstreamsyndrome(Meyeretal.,2005).’Someimpactsoftheurbanstreamsyndromeincludeincreasednutrientloading,changesinthemorphologyofthestream,andchangesinchemicalprocessing(Figure2-1)(Welshetal.,2005).Theurbanstreamsyndromeoccursbecauseimperviouscoverincreasestheamountofrainwaterrunningoffofthelandscapeandintoanearbystream.Inanaturalenvironmentmostoftherainfalliseitherinterceptedbyplantsorinfiltratedintotheground,whileonlyasmallamountrunsoffofthelandscapeandintoanearbystream.Inadevelopedsystemrainisunabletoinfiltrateintothegroundandcancauselocalreductionsingroundwater.Withfewerplantsandtreesindevelopedsystems,lessrainwaterisinterceptedbyvegetationandalargerportionofprecipitationbecomesrunoff,knowasstormwater.Commonly,theresultingstormwaterisdirectedintoastormdrainandpipedtotheneareststreamorriverwithouttreatment(Walshetal.,2005).Stormwaterincreasesthevolumeandspeedofstreamflowduringaraineventandcancauseflashfloods,streambankerosion,unstableenvironmentsforbiologicalcommunities,andincreasednutrientsinthestream(Welshetal.,2005).Overtime,continuederosionwidensthestreambedandthestreamhabitatbecomesmorehomogenouswithreducedbends,shallowerpools,andfewerriffleareas.Asthestreambankerodesthereleasedsedimentsettlesontothestreambedandfillsinvitalmicrohabitatsforsmallfishandmacroinvertebrates,furtherreducinghabitatsuitability.Increasedstreambedwidthhasnegativeimpactsonbiologicalcommunities.Awiderstreambedallowsthestreamflowstospreadoutacrossalargersurfaceareaandreducesthewaterdepthinthestream.Moresunlightisabletoreachthestreambedbecauseshadetreesaresetfurtherawayfromthestream.Thisincreasedsunlightcoupledwithincreasednutrientsfromstormwaterinputsenablesprolificalgaegrowththatcanreducehabitatsuitabilityforfishandmacroinvertebrates.Theshallowerwaterisalsoabletowarmupfaster,whichcanhavedeleteriousimpactsonaquaticbiologicalcommunitiesthatrelyon

Page 12: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

12

cooloxygen-richwater.Warmwaterscanholdlessdissolvedoxygenandcanbefurtherreducedinsystemswithabundantalgaegrowthbyalgaerespirationatnight.

Figure2-1.Impactsoftheurbanstreamsyndrome.ThispictureofStreamMAPsiteWISS550capturesmanyofthephysicalimpactsoftheurbanstreamsyndrome,eveninaprotectedareaofthewatershed.(A)Theroadinthispictureisanexampleofanimpervioussurfaceinthewatershed.Inanaturalsystem,rainwateriscapturedbyplants,infiltratesintotheground,andtheremainingrunoffdrainsintoacreek.Inanurban/suburbansystem,rainfallbecomesstormwaterasittravelsacrossimpervioussurfaceswhereitpicksupfertilizers,nutrients,litter,oilandgritfromroads,andiscommonlypipedintoanearbywaterbodywithoutanyfilteringortreatment.Thispulseofstormwaterreachesthecreeksoonerandwithmorevolumethaninanaturalsystemwheremostoftherainwaterwouldbeinterceptedbeforemakingitintothewaterbody.(B)Thelargevolumeofstormwatercauseserosiontooccur.Themarkederosioninthepictureisaround10feetinheight.(C)Thereleasedsedimentfromtheonsiteandupstreamerosionwilleventuallysettletothebottomofthestreambed,fillinginthespacesbetweentherocksonthestreambed.Thisreducesavailablehabitatfortheaquaticorganismsthatrelyonthesespaces.(D)Aserosioncontinuesovertime,thestreambedwillwiden,streamdepthwilldecrease,andthediversityofflowpatternswilldecrease.(E)Asthestreambedwidens,treesthatprovidedshadetothestreambedaresetfurtherawayandsunlightcannowreachthestreambed.Thesunlightandshallownessofthestreamresultsinawarmersstreamtemperaturesasshallowwaterwarmsupfasterthandeeperwaters.(F)Increasedsunlightandnutrients,fromstormwaterrunoffandbankerosion,enableincreasedalgaegrowth.Prolificalgaegrowthreducesavailablehabitatforpollutionsensitivemacroinvertebratesandcauseslargeswingsinthedissolvedoxygenconcentrationsbetweenthedaytime,whenalgaearephotosynthesizing,andnighttime,whenalgaearerespiringandusinguptheavailableoxygen.

UrbanstreamsyndromeandtheWissahickonWatershedTheimpactofimperviouscoverandurbanstreamsyndromeisconsistentlydocumentedinwatershedswithhighpercentimperviouscover.Theimperviouscovermodeliscommonlycitedaspredictingthatwatershedswith>10%imperviouscoverarepotentiallyimpactedandwatershedswith>25%arepotentiallynon-supportingformanyaquaticspecies(CenterforWatershedProtection,2003).

Page 13: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

13

TheWissahickonWatershedhas29%imperviouscover(PDW,2007),indicatingthatthiswatershedissusceptibletourbanstreamsyndromeconditions.Additionally,muchofthewatershedwasdevelopedbeforebuildingcodesincludedstormwatermanagement,somoststormwaterisdirectedintothemunicipalseparatestormsewersystemstormdrainsandpipedintotheWissahickonCreekwithouttreatment.

WastewatertreatmentplantsLikeimperviouscover,wastewatertreatmentplantsarenecessarytosupportcommunitiesinurbanandsuburbansettings.Wastewatertreatmentplantspipetreatedeffluentintostreamsandmayalterthewaterqualityofthestreams.Theimpactofeachwastewatertreatmentplantdependsontheleveloftechnologyusedtotreatthewastewaterandthevolumeofeffluentthatisreleasedintothestream.Duringperiodsoflowflow,particularlyinwarmsummermonths,theUpperWatershedisdominatedbyflowfrompointsources,primarilythewastewatertreatmentplants(USEPA,2003b).Currently,fourwastewatertreatmentplantsdischargeintotheWissahickonWatershedinUpperGwynedd,Ambler,Abington,andUpperDublin(Figure2-2).InJuly2013,afifthtreatmentplantinNorthWaleswasclosedandthedischargewasdivertedtotheUpperGwyneddWastewaterTreatmentPlant.ThecombinationofimperviouscoverandwastewatertreatmentplantsaltersthenaturalflowintheWissahickonWatershed.ThePWDestimatesthatrunoffaccountsfor68%oftheannualflowattheFortWashington(USGSgage:01474000)and61%oftheflowatthemouthoftheWissahickon(USGSgage:01473900)(PWD,2007).Groundwateraccountsfortheremainderoftheflowatthesestations.Inanaturalsystemtheratioistypicallyflippedwithathirdoftheflowfromrunoffandtwo-thirdsfromgroundwater.

Page 14: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

14

Figure2-2.AmapofthewastewatertreatmentplantsintheWissahickonWatershedwithcurrentlyoperatingwastewatertreatmentplantsinpurpleandaclosedwastewatertreatmentplantinred.TheNorthWalesWastewaterTreatmentPlantwasclosedinJuly2013.

WissahickonCreekstatusTheWissahickonWatershedischallengedasanurbanandsuburbansystemduetoimperviouscoverandwastewatertreatmentplants.In1996theWissahickonWatershed

Page 15: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

15

waslistedasimpairedontheCommonwealthofPennsylvania’simpairedwaterbodylistbecause83%ofstreammilesinthewatersheddidnotmeetwaterqualitystandardsforaTroutStockingFishery(TempleUniversity,2014),thestreamclassificationoftheWissahickonCreek.TheWissahickonWatershedislistedasimpairedduetosedimentandnutrients.In2003theEPAcreatedTotalMaximumDailyLoads(TMDL)fortheWissahickonWatershedforsedimentandnutrients(USEPA,2003b).TMDLsdeterminethemaximumamountofpollutant(e.g.nitrate)thatcanbereleasedintothatwaterbodyandhavethewaterbodymeetwaterqualitystandards.TMDLsarecreatedtoimprovethewaterqualitysothewaterbodycanberemovedfromtheimpairedwaterbodylist.In2015,theEPAreleasedadrafttotalphosphorusTMDLasthe2003TMDLstandardsimprovedthedissolvedoxygenconcentrationsinthewatershed,butwasnotenoughtoremovetheWissahickonCreekfromtheimpairedstreamslist(USEPA,2015a).

Page 16: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

16

SECTIONTHREE:STREAMMONITORINGANDASSESSMENTPROGRAMTheWissahickonValleyWatershedAssociationlaunchedtheStreamMonitoringandAssessmentProgram(StreamMAP)in2004tobetterunderstandtheWissahickonWatershed.ObjectivesofStreamMAPincludethefollowing(WVWA,2012):

• Monitorwaterquality,habitat,andbiologicalcommunitiesthroughoutthewatershed

• Compileandanalyzethemonitoringdataincludingseasonalchanges(e.g.summercomparedtowinter),overtime(e.g.yeartoyear),andspatially(acrosssamplingsites)

• UsethesemonitoringresultstodetermineareasofconcernintheWissahickonWatershedorareasofimprovementfromrestorationactivities

• SharetheresultswithregionalpartnersandusethefindingstoeducatemembersofthepubliconthestateoftheWissahickonWatershed

ThepurposeofthisreportistosummarizealloftheStreamMAPdatacollectedsince2004forallinterestedstakeholdersincluding,membersofthepublic,partnerorganizations,governmentpartners,municipalleaders,andothers.ThissectionofthereportbrieflydescribesStreamMAPandthesitesusedfrom2004to2016.SectionsFourthroughSixprovidedetailsonsamplingmethods,dates,andsitesusedformacroinvertebratesurveys(2011-2015),habitatassessments(2011-2016),andwaterqualitymonitoring(2004-2016).

StreamMAPsetupStreamMAPstartedinthesummerof2004withquarterlywaterchemistrysamplescollectedinthesummer,fall,andspringatsixsitesontheWissahickonCreekuntil2006.Nosampleswerecollectedin2007.In2008theprogramwasrevampedandsiteswereaddedintheSandyRun,theWissahickonCreek’slargesttributary.In2011theprogramexpandedtotwonewsitesontheWissahickonCreekandwintersamplingwasadded.Additionallyin2011,macroinvertebratesurveysandhabitatassessmentswereaddedtotheprogramtoprovideamoreholisticlong-termassessmentonthestateofthewatershedcomparedtowaterqualitysamplesthatprovideasnapshotview.Inthefallof2013,samplingontwotributaries,TrewellynandProphecy,wereaddedtobetterunderstandthewatershedasawhole.In2014theWVWAjoinedtheDelawareRiverWatershedInitiative(DRWI),aregionalefforttoimprovethewaterqualityoftheentireDelawareRiverWatershed,fundedbytheWilliamPennFoundation.ThisexpandedStreamMAPbyimprovingqualityassuranceandqualitycontrolmeasures,andstreamlinedcollectionmethodswithregionalpartners.Lastly,in2015twonewsiteswereaddedontheWissahickonCreekmainstem.

SitedescriptionsThissectionofthereportwilldescribeeachofthemonitoringsitelocations,thereasontheywereselectedasasamplinglocation,andyearssampled(Table3-1,Figure3-1).Thedetailsofwhatwasmonitoredateachsitewillbedescribedinlatersections.ThedistancedownstreamfromthestartoftheWissahickonCreekwasmeasuredusingArcMapandthedrainageareawascalculatedusingUSGSStreamStats(USGS,2016).SitesarelistedinincreasingdistancesfromthestartoftheWissahickonCreekinMontgomeryville,PA.

Page 17: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

17

Table3-1.StreamMAPstationnames,descriptions,coordinates,samplingyears,distancedownstreamfromthestartoftheWissahickonCreek,anddrainagearea.Nosampleswerecollectedin2007.

Station Description Latitude Longitude Years sampled Distance Drainage

WISS850 West Point Pike, pedestrian bridge 40.2093 -75.2932 2015-16 6.3 (km)/ 3.9 (mi) 10.3 (km2)/ 3.9 (mi2)WISS800 West Point Pike - Moyer Blvd 40.2064 -75.2949 2011-16 6.8 (km)/ 4.2 (mi) 10.4 (km2)/ 4.0 (mi2)WISS750 Evans - Mumbower Mill 40.1867 -75.2790 2004-16 9.8 (km)/ 6.1 (mi) 20.1 (km2)/ 7.8 (mi2)WISS700 Mather's Rd, WVWA property 40.1599 -75.2404 2015-16 16.6 (km)/ 10.3 (mi) 46.1 (km2)/ 17.8 (mi2)WISS600 Rotary Bridge, Butler Pike 40.1501 -75.2285 2004-16 18.5 (km)/ 11.5 (mi) 56.0 (km2)/ 21.6 (mi2)WISS550 Lafayette Ave, stepping stones 40.1322 -75.2226 2004-16 21.4 (km)/ 13.3 (mi) 71.2 (km2)/ 27.5 (mi2)WISS500 Mather Mill 40.1240 -75.2197 2004-16 22.4 (km)/ 13.9 (mi) 105.2 (km2)/ 40.6 (mi2)WISS400 Morris Arboretum 40.0910 -75.2308 2004-16 27.7 (km)/ 17.2 (mi) 129.0 (km2)/ 49.8 (mi2)WISS250 Valley Green Inn 40.0550 -75.2178 2011-16 33.5 (km)/ 20.8 (mi) 145.8 (km2)/ 56.3 (mi2)WISS150 Lincoln Drive 40.0225 -75.1992 2004-16 38.9 (km)/ 24.2 (mi) 164.2 (km2)/ 63.4 (mi2)

SR300 Sandy Run, Roslyn Park 40.1287 -75.1275 2008-13 1.8 (km2)/ 1.1 (mi2)SR200 Sandy Run Middle School 40.1264 -75.1706 2008-16 11.1 (km2)/ 6.9 (mi2)SR100 Sandy Run, Bethlehem Pike 40.1334 -75.2141 2008-16 32.1 (km2)/ 20.0 (mi2)PR100 Pine Run 40.1135 -75.1847 2014 8.4 (km2)/ 5.2 (mi2)T100 Trewellyn Creek 40.1919 -75.2402 2013 7.0 (km2)/ 4.3 (mi2)T400 Prophecy Creek 40.1507 -75.2291 2013-16 6.3 (km2)/ 3.9 (mi2)

Sandy Run and Tributary Sites

Wissahickon Creek Sites

Page 18: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

18

Figure3-1.AmapoftheStreamMAPsamplinglocationsfrom2004to2016.Thecirclesrepresentsitesthatarecurrentlysampledandtrianglesrepresentsitesthatarenolongersampled.Darkgreencirclesweresampledall12years,greencirclesweresampledbetween5and10years,andlightgreencirclesweresampledforlessthanfiveyears.Lightredtrianglesweresampledbetween5to10yearsanddarkredtrianglesweresampledforlessthanfiveyears.

Page 19: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

19

WissahickonmainstemsitesWISS850:WISS850istheuppermostsiteatjust6.3km(3.9mi)downstreamfromthestartoftheWissahickonCreekinMontgomeryville,PAandwasaddedin2015.WISS850hasadrainageareaof10.3km2(3.9mi2),orinotherwordstherunofffromraineventsfrom10.3km2(3.9mi2)oflanddrainstothissamplingpoint.ThissiteisatafootbridgethatconnectsWestPointPiketotheGreenRibbonTrail.TheGreenRibbonTrailismanagedbytheWVWAandextendsfromUpperGwyneddtoFortWashington,PA.WISS850wasselectedbecauseitisupstreamofasectionoftheWissahickonCreekthatisproposedforstreammorphologyrestorationduetoextensiveerosionalongthestreambanks.WISS800:WISS800is6.8km(4.2mi)fromthestartoftheWissahickonCreek,andhasadrainageareaof10.4km2(4.0mi2).ThissitewasaddedtoStreamMAPin2011,isthefirstsitewithcontinuousflow,andisdownstreamofanin-streamrestorationsitethatwouldreconnecttheerodedstreambedwiththefloodplain.ThesiteisprotectedinthePECOrightofwayandisneartheGreenRibbonTrail.WISS750:Thissiteis9.8km(6.1mi)fromthestartoftheWissahickon,isdownstreamoftheHainesRunconfluence,andhasadrainageareaof20.1km2(7.8mi2).MonitoringatWISS750startedin2004,butdidnotbecomeaconstantsiteuntil2008.WISS750isattheEvans-MumbowerMill,alongtheGreenRibbonTrail,andisdownstreamfromtheUpperGwyneddWastewaterTreatmentPlantthatdischargesintotheWissahickonCreek.WISS700:Thissiteis16.6km(10.3mi)downstreamfromthestartoftheWissahickonCreek,hasadrainageareaof46.1km2(17.8mi2).WISS700wasaddedin2015toreducean8.7km(5.4mi)gapbetweenWISS750andWISS600.WISS700isdownstreamofCedarbrookCountryClubandWissahickonconfluenceswithWillowRunEast,WillowRunWest,andTrewellynCreek.WISS600:WISS600is18.5km(11.5mi)downstreamfromthestartoftheWissahickonCreek,hasadrainageareaof56.0km2(21.6mi2),andisoneoftheoriginalsitesfrom2004.ThissiteisattheRotaryBridgeontheGreenRibbonTrailoftheFourMillsReserveneartheWVWAHeadquarters.ThissiteisdownstreamoftheRoseValleyCreekconfluencewiththeWissahickonCreek,theasbestosSuperfundsitesinAmbler,PA,andjustupstreamoftheProphecyCreekconfluence.WISS550:WISS550is21.4km(13.3mi)downstreamfromthestartoftheWissahickonCreek,hasadrainageareaof71.2km2(27.5mi2)andisoneoftheoriginalsitesfrom2004.ThissiteisjustupstreamoftheconfluencewiththeSandyRunanddownstreamoftheAmblerWastewaterTreatmentPlantthatdischargesintotheWissahickonCreek.ThissiteisalongtheGreenRibbonTrailandhassteppingstonesatthesitetoallowtrailuserstocrossthecreek.WISS500:WISS500is22.4km(13.9mi)downstreamfromthestartoftheWissahickonCreek,hasadrainageareaof105.2km2(40.6mi2)andisoneoftheoriginalsitesfrom2004.ThissiteisjustdownstreamoftheconfluencewiththeSandyRun,whichhastwowastewatertreatmentplantsthatdischargeintoit.WISS500isatMather’sMill,alongtheGreenRibbonTrail,andhastheUnitedStatesGeologicalSurvey(USGS)FortWashingtongage(#01473900)justdownstreamofit.

Page 20: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

20

WISS400:WISS400is27.7km(17.2mi)downstreamfromthestartoftheWissahickonCreek,hasadrainageareaof129.0km2(49.8mi2),andisoneoftheoriginalsitesfrom2004.WISS400isatMorrisArboretumnearahistoricalmillandapronouncedrockoutcropthatcreatesturbulentflowsatthesite.ThissiteisjustdownstreamoftheWhitemarshValleyCountryClub.WISS250:WISS250is33.5km(20.8mi)downstreamfromthestartoftheWissahickonCreek,hasadrainageareaof145.8km2(56.3mi2),andisoneoftheoriginalsitesfrom2004.ThesiteisintheWissahickonValleyParkofPhiladelphiaandisneartheValleyGreenInn.WISS150:WISS150is38.9km(24.2mi)downstreamfromthestartoftheWissahickonCreek,hasadrainageareaof164.2km2(63.4mi2),andisoneoftheoriginalsitesfrom2004.ThissiteisintheWissahickonValleyParkofPhiladelphiaandboardersLincolnDrivewithanarmoredbank.AUSGSstationfortheWissahickonCreekmouthisatthissite(#01474000),isupstreamofthedamnearRidgeAvenue,andthelastsiteontheWissahickonCreekmainstem.

SandyRunandtributarysitesSR300:SR300hasasmalldrainageareaof1.8km2(1.1mi2)andmonitoringonthissitebegan2008.SR300isinRoselynPark,justafterthesectionoftheSandyRunthatischannelizedinAbington,PA.SR300wasthemostupstreamsamplingsiteintheSandyRununtilmonitoringofthissiteendedin2013duetolimitedaccess.SR200:SR200hasadrainageareaof11.1km2(6.9mi2)andmonitoringbeganonthissitein2008andhascontinuedinto2016.ThissiteisattheSandyRunMiddleSchool,downstreamoftheAbingtonWastewaterTreatmentPlant,andisbetweenLuLuCountryClubandManufacturer’sGolfandCountryClub.AftertheSandyRunexitsManufacturer’sGolfandCountryClubitentersPiszekPreserve,whichismanagedbytheWVWA.SR100:SR100is1.2km(0.7mi)upstreamoftheconfluencebetweentheWissahickonCreekandtheSandyRunandhasadrainageareaof32.1km2(20.0mi2).MonitoringatSR100beganin2008andhascontinuedinto2016.ThissiteisdownstreamofwherePineandRappRunentertheSandyRun.TheBucksCountyWaterandSewerAuthoritywastewatertreatmentplantinUpperDublin,PAdischargesintothePineRun.PR100:PR100hasadrainageareaof8.4km2(5.2mi2)andwasmonitoredin2014only.PR100isonthePineRun,atributarytotheSandyRun,ThissiteisupstreamoftheBucksCountyWaterandSewerAuthoritywastewatertreatmentplantinUpperDublin,PA.T100:T100hasadrainageareaof7.0km2(4.3mi2)andwassampledfromthefallof2013tothefallof2014.T100isontheTrewellynCreekaftertheTrewellynCreekleavestheTrewerynFarmTrailParkinLowerGwynedd,PA.T400:T400isonProphecyCreeknearButlerPikeinAmbler,PAandhasadrainageareaof6.3km2(3.9mi2).Monitoringatthissitebeganininthefallof2013.TheProphecyCreekwatershedistheleastdevelopedsubwatershedintheWissahickonWatershedandisconsideredtobetheleastimpactedsubwatershed.ThissiteisjustbeforetheProphecyCreekenterstheWissahickonCreekneartheGreenRibbonTrail.

Page 21: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

21

SECTIONFIVE:MACROINVERTEBRATESURVEYSMacroinvertebratesurveysindicatelong-termecologicalconditionscomparedtowaterqualitysamplingthatcapturesasnapshotintimeandmaymissperiodsofhighstress(e.g.lowdissolvedoxygenconcentrationsatnight).Macroinvertebratecommunitiesareidealforindicatingtheecologicalconditionofasitebecausethey(1)arepresentinallsystems,evendegradedsystems,(2)havevaryingtolerancestostressorsandcanbeassignedapollutiontolerancevalue,(3)arerelativelysedentary,and(4)arelonglived.

MethodsMacroinvertebrateswerecollectedfrom2011-2013intheSpringandFall.SurveyswereconductedateightsitesontheWissahickonCreekandthreesitesontheSandyRun.Inthefallof2013SR300wasnotsurveyedandtwotributarysites,TrewellynandProphecy,wereaddedtoinvestigatedifferencesbetweentheWissahickonmainstemandthetributaries.URSconductedtargetedrifflemacroinvertebratesurveyson30–50mreachatthesamelocationastheStreamMAPwaterqualitysites.Onesite,WISS600,lackedariffleareaandsampleswerecollectedinaglideinstead.AllsampleswerecollectedwithaSurbersamplingnet(500μm)bydisturbinga0.25m2quadrateinfrontofthesamplingnet.Ateachsitethreesampleswerecollected,totaling0.75m2ofcollectedsubstrate(URS,2011).Sampleswerepreservedinthefieldusingethanol.Sampleswerereturnedtothelaboratoryandthefirst200organismswerecountedusingrandomsubsamplingwithagriddedtray.Entiresubsampleswerecountedtoreducebias.Macroinvertebrateswereidentifiedtogenus,whenpossible.Pennsylvaniaindexofbioticintegritywascalculatedforeachsiteusingthecommunitycompositionandabundancevalues(PADEP,2012).In2014theWVWAdiscontinuedthefallsamplingsurveyandadjustedthemacroinvertebratessamplingmethodstocomplywiththeQualityAssuranceProjectPlanoftheDelawareRiverWatershedInitiative(ANS,2014).ThenewmethodsincludedcollectingeightrandomsamplesfromriffleareasinthestreamreachusingaSurbersamplingnet(0.09m2,250μm).Thecollectedsampleswerecompositedintofoursamplingjars(twosamples/jar),preservedwithethanolinthefield,andreturnedtothelaboratory.In2014onesite,WISS800wascountedbyStroudWaterResearchCenterandin2015ColeEcological,Inc.countedWISS850,WISS800,andWISS250.Thefirst200organismswerecountedusingsubsamplingandwereidentifiedtofamily(2014)orgenus(2015).

PennsylvaniaindexofbioticintegrityThePennsylvania’sindexofbioticintegrity(IBI)isthecombinationofsixmetricsincluding(1)TotalTaxaRichness,(2)EPTTaxaRichness,(3)ModifiedBeck’sIndex,(4)HilsenhoffBioticIndex,(5)ShannonDiversityIndex,and(6)PercentSensitiveIndividuals(PADEP,2012).TheIBIisasinglescoreforasitethatcanbecomparedacrossPennsylvaniaandisonascalefrom0-100%withhighervaluesindicatingamacroinvertebratecommunitythatismoresimilartoanon-disturbedsite.Anyvaluesbelow50%areconsideredimpaired(PADEP,2012).DescriptionsofthesixmetricsareusedtocalculatetheIBI:

• TotalTaxa:Thenumberofdifferenttaxaatasite.Ahighernumberindicatesmoremacroinvertebratespeciesdiversity

Page 22: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

22

• EPTTaxaRichness:ThenumberoftaxathatareintheinsectordersEphemeroptera(mayflies),Plecoptera(stoneflies),orTrichoptera(caddisflies)thathavepollutiontolerancevalues(PTV)between0–4.Ingeneral,mostmayflies,stoneflies,andcaddisflieshavelowerpollutiontolerancesthanotherinsectorders

• Beck’sIndex(version3):Calculatesascorefortheamountofpollutiontolerancetaxa,fromanyinsectorder(Beck’sIndex=3(nPTV0taxa)+2(nPTV1taxa)+1(nPTV2taxa))

• HilsenhoffBioticIndex:CalculatedusingboththenumberoforganismsandtheirPTV(0-10,10=mosttolerant)inthecommunity

• ShannonDiversityIndex:Measuresthecommunityrichnessandevenness.Forexample,amacroinvertebratecommunitythatisprimarilyonespecieswouldhavealowvalue

• PercentSensitiveIndividuals:MeasuretheportionofthemacroinvertebratecommunitywithaPTVof0-3

ResultsThemacroinvertebratesurveyresultswereinvestigatedfor(1)trendsovertime(2)patternsinindividualcomponentsoftheIBI,and(3)patternsinfunctionalfeedinggroups.

WatershedwidetrendsTheIBIwasusedtounderstandtheoveralltrendsofthesurveyedmacroinvertebratecommunitythroughouttheWissahickonWatershed.TheWissahickonCreekandSandyRunsitesallhadanIBIbelow26%forallsamplingevents,indicatingallsiteswereimpaired.Overalltherewaslittlevariabilitythroughoutthewatershedoroverthestudyyears(Figure4-1).WISS400consistentlyhadahigherIBI,possibilityfromthelargerockoutcropatthesitethatcreatesturbulentflowandincreasesoxygenconcentrationinthewateratthesite.WISS600hadthemostconsistentandlowestIBIscore,likelyareflectionofsamplingonaglideinsteadofariffle.Lastly,the2014and2015resultsindicatedsimilarIBIvaluesastheprevioussurveys.

Page 23: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

23

Figure4-1.Macroinvertebratesurveyswereconductedfrom2011to2015.ThecirclesrepresentthemedianIBIatsitesthatweresurveyedfrom2011-2013.ThetrianglesrepresentthemedianIBIforthesitethatwassurveyedfrom2011–2013and2015.Thesquareisasitethatwassurveyedfrom2011–2015.Thestarsaresitesthatweresurveyedin2013only.Thexisasitethatwassurveyedin2015only.Theerrorbarsindicatethe25thand75thpercentilesofallassessmentsateachsite.Thesolidlineisthecutofbetweenimpairedandnon-impairedmacroinvertebratecommunities.Anythingbelow50%IBIisconsideredimpaired.

IBIcomponentsofinterestAfewindividualcomponentsoftheIBIareworthhighlighting,includingpercentsensitiveindividualsandShannonDiversityIndex.ThepercentsensitiveindividualsindicatedthattherewerenopollutionsensitiveindividualsupstreamofWISS550,21.4km(13.3mi)downstreamfromthestartoftheWissahickon,foranyofthesamplingevents.TheSandyRunsiteSR100,closesttotheWissahickon,typicallyhadmoresensitivespeciesthanthetwoupstreamSandyRunsites,butattimestherewerenosensitiveindividualsatanyoftheSandyRunsites.TheShannonDiversityIndexwaslowforallsitesandsamplingevents.TheShannonDiversityIndexwaslowbecausethemacroinvertebratecommunitiesintheWissahickonaretypicallydominatedbyonetaxon,Chironomidae.Chironomidae,commonlyknownasmidges,hadamedianabundanceof68.3%acrossallsamplingeventsandwasmorethan90%ofthetotalabundancesatmanysites.

Page 24: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

24

FunctionalfeedinggroupsMacroinvertebratefunctionalfeedinggroups(FFG)areexpectedtooccupydifferentareasinawatershedbasedonthefoodthatisavailable.Thoughitisnotuniformforallstreams,theRiverContinuumConceptiscommonlyusedasareferencefortheproportionofFFGsthatshouldbefoundintheupstream,midstream,anddownstreamsectionofawatershed.TheWissahickonWatershedisnotlargeenoughtohaveatruedownstreamsectionasreferredtointheconceptbuttheRiverContinuumConceptstillprovidesagoodframework.ThemajorFFGsarepredators,grazers,shredders,andcollectors.EachFFGhasanexpectedareaandproportionofthemacroinvertebratecommunitythattheyarelikelytobefoundin(Table4-1).InvestigatingtheFFGsthroughouttheWissahickonandSandyRunsitesindicatedseveralmissingfeedinggroupsandanoverallhomogenouscommunity.Collectorsdominatedthesystems,leavinglowerthanexpectedlevelsofgrazersandpredatorswithnearlyabsentsheddersinthesystem(Figure4-2).Shreddersandpiercers,atypeofgrazer,maybeabsentintheWissahickonCreekduetolimitedfoodavailabilityfromfrequentflashfloodsthatpushdecomposingplantmatterdownstreamandabsentaquaticvegetationatthesamplinglocations.Atmostsites,collectorsweremorethan90%ofthemacroinvertebratecommunityandattimeswere100%ofthemacroinvertebratecommunity.Thispatternwasconsistentin2014and2015samplingevents.Table4-1.Thedietofeachfunctionalfeedinggroup,theirexpectedlocationinawatershed,andwhatwasfoundintheWissahickonandSandyRunsites.

FFG Diet Expectedprevalence IntheWissahickon

Predators Animaltissue10-20%ofanormalmacroinvertebrate

communityfoundthroughoutallareas

<5%abundancethroughoutthe

system

Grazers

Livingplant

tissue,

including

aquaticplants

andalgae

(periphyton)

Lowernumbersintheheadwaters,

highernumbersinthemidsection,and

absentinthedownstream

Nearlyuniformthroughoutthe

systematlowerthanexpected

abundances.Piercers,asubsetof

grazersthatconsumeaquatic

plants,wereabsentfromthe

system.

Shredders

Livingand

decomposing

planttissue

(e.g.tree

leavesthat

washintoa

stream)

Highabundancesintheheadwaters

(whereleaflitterwashesintothe

streamfromtheforest),lower

abundancesinthemidsection,and

absentfromthedownstreamsection.

Nearlyabsentfromthesystem

Collectors

Decomposing

fine

particulate

organic

matter

Throughoutthestream,but

predominantlyinthedownstream

sections.Asawhole,collectorstendto

bethemostpollutiontolerantfeeding

group.

Nearlytheentire

macroinvertebratecommunityis

collectors,indicatingthatfine

particulateorganicmatteristhe

primaryfoodsourceinthesystem.

Page 25: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

25

Figure4-2.Macroinvertebratesurveysfrom2011to2013wereusedtodeterminetheproportionofthecommunitythatwasrepresentedbyfourfunctionalfeedinggroups.Redindicatesthepercentageofthemacroinvertebratesateachsitethatwerecollectors,greenindicatesgrazers,blueindicatespredators,andpurpleindicatesshedders.

Tributaries(Fall2013)TheTrewellynandProphecyCreektributariesweresampledonceinthefallof2013.TheIBIforTrewellynwas24.0%andProphecywas24.6%,bothslightlyabovetheWissahickonWatershed’saverageIBIforthefallof2013of21.5%,butstillimpaired.TheFFGsweremorebalancedinthetributariesthanintheWissahickonCreekandSandyRunsiteswithcollectorsas55.8%atTrewellynand67.6%atProphecy,grazersas8.3%and16.2%,predatorsas35.9%and16.2%,andnoshreddersateithersite.

WVWAresultscomparedwithotherstudiesOtherorganizationshaveconductedmacroinvertebratesurveysintheWissahickonWatershed,includingthePhiladelphiaWaterDepartment(PWD)in2005throughoutthewatershed,StroudWaterResearchCenteratonesitefrom1996-2007,andothers.ThePWDCreekCharacterizationReport(CCR)includedmacroinvertebratessurveysfrom2005,predominatelyinPhiladelphiaCounty,usingakick-net(PWD,2007).ThisisadifferentmethodthantheWVWAuses,butbothmethodsarewidelyaccepted.TheCCRindicatedthattheWissahickonWatershedmacroinvertebratecommunitywasimpairedandhadlowspeciesdiversity.TheCCRalsoreportedthatthemacroinvertebratecommunitywaspredominatelycollectors,particularlyChironomidea.TheHilsenhoffBioticIndex(HBI),acomponentofthePAIBI,rangedfrom5.79to6.07attheWissahickonsitesintheCCR,whiletheWVWAsurveyhadanaverageHBIattheWissahickonsitesfrom2011to2013of

Page 26: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

26

6.46.Overall,theresultsintheCCRwereverysimilartotheWVWAresultsandbothsurveysfoundimpairedmacroinvertebratecommunitiesintheWissahickonWatershed.

ConclusionStreamMAPmacroinvertebratesurveysfoundthatthemacroinvertebratecommunitiesthroughouttheWissahickonWatershedareimpairedwithanaverageIBIscoreof18.8%acrossallsitesandsamplingevents,wellbelowtheindicatorofimpairmentat50%.InvestigatingtheFFGsindicatedthatthemacroinvertebratecommunitieswerehomogenous,dominatedbycollectors,andattimesmissingentireFFGs,typicallyshredders.Lastly,twotributariesweresampledintheFall2013andweredeterminedtoalsobeimpaired,butwithslightlyhigherIBIs(~24%)andmorecomplexFFGs.Thesefindingsareexpectedinastreamwithurbanstreamsyndrome.Urbanstreamsyndromeiscommonwithwatershedswith>10%ofimperviouscover(CenterforWatershedProtection,2003)andtheWissahickonWatershedhas29%imperviouscover.

Take-awaypointsandsummarymapAfewtakeawaypointsfrommacroinvertebratesurveysintheWissahickonWatershedfrom2011to2015:

• ThemacroinvertebratecommunityintheWissahickonWatershedwasimpairedatallsitesandallsamplingevents.TrewellynandProphecyCreektributarieswereslightlybetter,butstillimpaired(Figure4-3).

• TheWissahickonWatershedhaslowmacroinvertebratetaxadiversity.• Thecollectorfunctionalfeedinggroupdominatesthemacroinvertebratecommunity

intheWissahickonWatershed,typicallywiththefamilyChironomidae.TheshredderfunctionalfeedinggroupwasnearlyabsentintheWissahickonWatershed,possiblyduetofrequentdisturbances(e.g.flashfloods).

Page 27: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

27

Figure4-3.AmapoftheWissahickonWatershedandthemacroinvertebratesurveysitesfrom2011-2015.Allsiteswereimpaired.SitesinlightredhadamedianPAIBIof15–20%anddarkredhadamedianPAIBIof20-25%.Allsiteswerenotsurveyedfrom2011to2015.

.

Macroinvertebrate Surveys

Page 28: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

28

SECTIONFIVE:HABITATASSESSMENTSHabitatassessmentsareamethodforquantifyingthehabitatdiversity,extentofhumanimpact,andthelikelihoodofdisturbanceatthesite.TheWVWA’sStreamMonitoringandAssessmentProgram(StreamMAP)includeshabitatassessmentsbecausethequalityofavailablehabitatisknowntoinfluencetheaquaticbiologicalcommunityspeciesdiversity(GormanandKarr,1978;Maddock,1999).

MethodsSitehabitatscoresaredeterminedbyevaluatingtheconditionoftenhabitatparameters(Table5-1)inasectionofastream,knownasareach.TheWVWAusedtheRapidBioassessmentProtocolsdevelopedbytheUSEPAforhabitatassessments(Barbouretal.,1999)whereeachsiteisscoredfrom0-200withahigherscoreindicatingabetterhabitatcondition.Parametersareindependentlyscoredbetween0–20(poor=0-5,marginal=6-10,suboptimal=11-15,optimal=16-20)andthenareaddedtogetherforasinglesitescore,rangingbetween0-200(poor<60,marginal60-109,suboptimal110-159,optimal160-200).StreamMAPhasincludedhabitatassessmentsfrom2011to2016at16sites.Aconsultant,URS,conductedthreeyearsofhabitatassessmentsinJune2011,Nov2012,andNov2013.TheWVWAstartedpreformingtheassessmentsafter2014andperformedthenextthreeassessmentsinAug2014,Sept2015,andAug2016.BothURSandWVWAusedthehighgradientstreamassessmentmethod(Barbouretal.,1999)forconsistency.Variabilityinthesitehabitatscoresbetweenyearsisexpectedduetovariationinthedatesoftheassessmentandassessors.Habitatassessmentswereconductedonthesamesitesasmacroinvertebratesurveysandwaterqualitymonitoring.Habitatassessmentsincludedthesame30-50msectionthestream,knownasareach,thatwasincludedinmacroinvertebratesampling.Riffleareasweretargetedwhenselectingastreamreachformacroinvertebratesurveys.

Page 29: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

29

Table5-1.Theparametersusedinhabitatassessmentsandadescriptionofeachparameter.

ResultsThehabitatassessmentresultsfrom2011to2016areorganizedinto(1)trendsthroughoutthewatershedincludingupstream/downstreamtrendsandchangesovertime,(2)descriptionsoffindingsatindividualsites,and(3)theWVWAresultscomparedtootherstudies.

WatershedwidetrendsHabitatassessmentswereconductedon16sitesthroughouttheWissahickonWatershedfrom2011-2016.Ninesites,includingsevenontheWissahickonCreekandtwoontheSandyRun,wereassessedallsixyears.Themediansitehabitatscorefrom2011to2016andsitedrainageareas(km2)wereplottedforWissahickonandSandyRunsites(Figure5-1).ResultsindicatedthatWISS850,anintermittentsite,hadalowermediansitehabitatscorethanWISS800whereflowbecomescontinuous.WISS800andWISS750weresuboptimalandhadhighersitehabitatscores.ThemiddleWissahickonCreek(WISS700,WISS600,WISS550)wasmarginalwithlowersitehabitatscores.ThesitehabitatscoresincreasedslightlywithWISS500andWISS400,bothweresuboptimalandhavemorevariableflowpatternsthanothersites.ThelowerWissahickonCreek(WISS250andWISS150)hadmarginalscores.WISS600hadthelowestsitehabitatscorethroughouttheWissahickonCreek.Inthetributaries,theSandyRunandTrewellynsitehabitatscoresweremarginal.ProphecyCreek,themostprotectedsubwatershed,hadsuboptimalsitehabitatscore.From2011to2016,thelowestratedparameterwasembeddednesswhilethehighestratedparameterwaschannelalterationandchannelflowstatus.Thesitehabitatscoresimprovedslightlybetween2011and2016,particularlyfromthe2011–2013periodand2014–2016period(Figure5-2).Howeverthetimeoftheyearthesitewassampledalsovariedbetweenthesetwoperiods;the2011-2013assessmentswerecompletedinJuneorNovember,potentiallyeitherbeforefullleaf-outoraftersomeleaf

Parameter DescriptionEpifaunal Substrate/ Available Cover

Amount and diversity of in stream structures that provide habitat for aquatic organisms needs (e.g. hiding and spawning)

Embeddedness Amount of sand or silt covering or filling in spaces between rocks, cobble, or snags. This reduces the area and habitat available for aquatic organisms

Velocity/Depth Combinations Diversity of velocity (slow or fast) and depths (swallow and deep)

Sediment Deposition Amount of sediment that has been relocated and created point bars and islands, or filled in pools and areas behind boulders

Channel Flow Status The extent that the channel is full of water with ideally all available habitat submerged for aquatic organism use

Channel Alteration Structural changes to a stream either through artificial structures, damming, or channel straightening

Frequency of Riffles (or bends)

Frequency of riffles throughout the stream reach, which provide more diverse habitat for organisms

Bank Stability State of current erosion or erosion potential on each bank, scored individuallyBank Vegetative Protection

Amount and quality of vegetation covering the stream banks, including if all vegetative types are accounted for (trees, shrubs, herbaceous cover)

Riparian Vegetative Zone Width

The width of the riparian vegetation along the stream and the amount of human impact within the vegetative zone

Page 30: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

30

dropandherbaceousdieback,whilethe2014-2016assessmentswereconductedinAugustorSeptemberduringfullvegetationandleafout.Thisisreflectedinincreasingvegetativeprotectionandvegetativebufferzonesbetween2011-2013and2014-2016.Between2011and2016,73habitatassessmentswereconductedacross16sitesintheWissahickonWatershed.Oftheseassessments,1(1.4%)waspoor,37(50.1%)weremarginal,and35(48.0%)weresuboptimal.Nositeswereconsideredoptimalindicatingimpairmentthroughoutthewatershed.

Figure5-1.Habitatassessmentswereconductedfrom2011to2016.Thefilledincirclesrepresentthemedianhabitatassessmentscoreforsitesthatwereassessedfrom2011-2016.Thehollowcirclesarethehabitatassessmentscoresforsitesthatwerenotassessedallsixyears.Theerrorbarsindicatethe25thand75thpercentilesofallassessmentsateachsite.Thesolidlinesarethedistinctionsbetweenpoor(>60),marginal(60and109),suboptimal(110and159),andoptimal(>160).

Page 31: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

31

Figure5-2.ThesitehabitatscoresforallcurrentStreamMAPsitesandpastsites,SR300andT100.Sitehabitatscoresrangefrom0-200.PR100wasonlyassessedoneyearandwasnotincludedinthefigure.Thesolidlinesarethedistinctionsbetweenpoor(>60),marginal(60and109),suboptimal(110and159),andoptimal(>160).Thelastfigure,‘Average,’istheaveragesitescoreoftheninesitesthatwereassessedallsixyears(WISS750,600,550,500,400,250,150,andSR100,200).

ResultsbysiteWISS850:WISS850wasanalyzedin2015-2016andwasscoredasmarginal(Table5-2).Thesiteisaboveaproposedrestorationareaandisintermittent.Thelowestrankedparameteratthesitewasvelocity/depthregime,reflectingtheintermittentnatureofthesite.Thehighestrankedparameterwaschannelalteration,reflectingthatthesiteisinaprotectedconservationarea.

Page 32: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

32

WISS800:WISS800wasanalyzedfrom2011-2015wassuboptimal.WISS800isintheerodedheadwatersoftheWissahickonCreekalongtheprotectedPECOright-of-way.Thereislittlehumantrafficintheareaandminimalman-madestructuralimpact,howeverthesitehasdeeperosionandisdisconnectedfromtheadjacentfloodplain.Thelowestrankedhabitatscorewasembeddedness,closelyfollowedbyvelocity/depthregime,andsedimentdeposition,indicatingthesiteishomogenouswithexcesssediment.Thehighestscorewaschannelalteration,asexpectedintheprotectedconservationarea.WISS750:WISS750wasassessedfrom2011–2016.WISS750wassuboptimalandthehighestscoringsitethroughouttheWissahickonWatershed.Thelowestrankedparameteratthesitewasepifaunalsubstrateandthehighestrankedparameterwaschannelalteration.ThissiteisalongtheGreenRibbonTrailandupstreamfromtheEvansMumbowerMill,addingtothehighchannelalterationscores.WISS700:WISS700wasassessedin2015-2016andwasscoredasmarginal.Thelowestrankedparameterswerefrequencyofriffles.Thehighestratedparameterwaschannelflowstatus.ThesiteisdownstreamoftheCedarbrookCountryClubandhashomogenousflowpatterns.WISS600:WISS600wasassessedfrom2011–2016andwasconsideredmarginal.WISS600isintheWVWAprotectedGreenRibbonCorridornearthe‘RotaryBridge’andtheasbestospilesinAmbler,PA.Thesiteissignificantlyalteredwithastraightenedchannelandonearmoredstreambankforasbestosremediation.Theseconditionswerereflectedinthepoorestscoredparameter,frequencyinbendsorriffles,closelyfollowedbyvelocitydepthregime.Thehighestratedparameterwaschannelflowstatusfromthelackofvariabilityinatthesitethatwouldhighlightchannelflowvariability.Thenexthighestscoredparameterwasbankstability,fromripraparoundtheRotaryBridgeandstabilizationattheremediatedasbestossite.WISS550:WISS550,alongtheGreenRibbonCorridor,wasassessedfrom2011–2016andwasconsideredmarginal.Thelowestscoredparameterwasembeddedness.Atthesite,onestreambankhasalargeerosionscaralongthelengthofthereachcausingthelowbankstabilityscore.Thehighestscoredparameterswerechannelalterationandriparianvegetativezone,asexpectedintheprotectednaturalarea.WISS500:WISS500wasanalyzedfrom2011-2016andwasconsideredsuboptimal.WISS500isatMather’sMillandisprotectedbytheGreenRibbonTrailononeside.Thelowestrankedparameterwasbankstabilityandthehighestwasfrequencyofriffles.Thissitehasabreachedstonedaminthereachthatincreasesthediversityofflowpatternsandrifflesatthesite.However,thesitewasalsomissingmostofitsriparianbufferononesideandhasalargeerosionscarononebank.WISS400:WISS400wasbetweenmarginalandsuboptimalthroughout2011-2016.WISS400isatMorrisArboretumneartheoldmillsiteandhasalargerockoutcrop.Thehighestparameterscorewaschannelalteration.Thelowestparameterscorewasriparianvegetativezonewidthduetoagolfcourseinthestreamreach.Thesitehasalargeerosionalscarononebankanddepositedsedimentinandbelowtherockoutcrop.WISS250:WISS250wasanalyzedfrom2011-2016andwasconsideredmarginal.WISS250isattheValleyGreenInnintheWissahickonValleyPark.Thehighestparameterscorewas

Page 33: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

33

bankstabilityandthelowestratedparameterswereembeddednessandsedimentdeposition.Thelowparametersindicatethepatternoferosionupstreamofthissite,whilethehighbankstabilityscorereflectsthebankstabilizationprojectsatthesite.WISS150:WISS150,alongLincolnDriveinPhiladelphia,wasscoredasmarginalbetween2011and2016.ThissitehastheWissahickonValleyParkononesiteandLincolnDriveontheother.Thehighestratingatthissitewasbankstability,howeverthiswasfromthearmoredwallsupportingLincolnDrive.Thelowestscoresareriparianvegetativezoneandfollowedbyvegetativeprotection,indicatingthelackofriparianprotectionorqualityofprotectiondueLincolnDriveandamultiusepathontheotherstreambank.SR300:SR300wasanalyzedfrom2011-2013andwasconsideredmarginal.Thelowestratedparameterwastheriparianbufferzoneandthehighestwastheembeddedness.SR200:SR200wasanalyzedfrom2011-2016andwasconsideredmarginal.SR200isneartheSandyRunMiddleSchoolisjustupstreamfromManufacturesGolfandCountryClub.Thelowestparameterwasthefrequencyofrifflesandthehighestwaschannelflowstatus.In2016therewasrecentconstructionattheManufacturesGolfandCountryClubcausinglowersitescorecomparedtothepreviousfiveyears.SR100:SR100wasanalyzedfrom2011-2016andwasconsideredmarginal.SR100is1.2kmupstreamfromwheretheSandyRunenterstheWissahickonCreek.Thelowestratedparameterwasembeddednessandthehighestwaschannelalteration.PR100:PR100wasanalyzedin2014andwasscoredasmarginal.Thelowestrankedparameterwastheriparianbufferzoneandthehighestrankedparameterwasthechannelflowstatus.T400(Prophecy):T400wasanalyzedfrom2013-2016andwasscoredassuboptimal.Thelowestratedparameterwasthefrequencyofbendsandrifflesandthehighestratedparameterwasthechannelflowstatus.ThissiteisneartheGreenRibbonTrailandisinaprotectedarea.T400hadthesecondhighestaveragesitescorethroughouttheWissahickonWatershed.ThisisconsistentwiththeProphecyCreeksubwatershedbeingthemostprotectedandconsideredthehighestqualitytributarytotheWissahickonCreek.T100(Trewellyn):T100wasanalyzedfrom2013-2014andwasconsideredmarginal.Thelowestrankedparameterwassedimentdepositionandthehighestwasthevelocityanddepthregime.

Page 34: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

34

Table5-2.Thesites,yearssampled,averagescores,andlowestandhighestscoredparameterscoreacrosstheyearsanalyzed.Thescoresarelistedinparentheseswiththeparameterscoredbetween0-20(poor=0-5,marginal=6-10,suboptimal=11-15,optimal=16-20)andthesitescorebetween0–200(poor<60,marginal60-109,suboptimal110-159,optimal160-200).

WVWAresultscomparedwithotherstudiesTheWVWAresultswerecomparedtothePhiladelphiaWaterDepartmentCreekCharacterizationReport(CCR)oftheWissahickonWatershed,completedin2007(PWD,2007).ThereportedvaluesintheCCRcannotbedirectlycomparedtotheWVWAbecausetheCCRusedaslightlydifferentmethod,whichhasahighermaximumsitescore(260,insteadof200),buttherawCCRhabitatscorescouldbecomparedtotheWVWAhabitatscores.TheoverallthehabitatvalueswereslightlyhigherintheCCRcomparedtotheWVWAvalues,whichresultedinmoresitesconsidered‘supporting,’insteadof‘marginal.’TheCCRhabitatassessmentswerecompletedin2005,6yearsbeforetheWVWAassessmentsbegan,sothismayindicatethatconditionsdegradedslightlybetween2005and2011.TheCCRindicatedlowin-streamvariationbetweenupstreamanddownstreamsites.TheWVWAfoundsimilarresultswithmostsitesbetweenmarginalandsuboptimalintheWissahickonCreek,exceptforWISS600.Overall,theresultsbetweentheWVWAandCCRaresimilarandindicatethatallsitesintheWissahickonWatershedhavehabitatwithsomedegradationandimpairment.

ConclusionsOverall,boththeWVWAandthePWDresultsindicatedimpairmentsintheWissahickonWatershedwithnositeslistedasoptimal.Embeddednesswasthelowestrankedparameterthroughoutthewatershed,reflectingerosionasanissueintheWissahickonWatershed.ThisisconsistentwiththeurbanstreamsyndromeandthesedimentTotalMaximumDailyLoadfortheWissahickonWatershed.However,thehighestscoredparameter,channelalteration,indicatedthebenefitsofthepreservationeffortsbytheWVWAandothersintheWissahickonWatershedtocreateaprotectiveriparianbufferfortheWissahickonCreek.

Site Years Lowest Highest ScoreWISS850 2015-2016 Velocity/Depth (5) Channel Alteration (16) Marginal (103)WISS800 2011-2015 Embeddedness (9.2) Channel Alteration (14.8) Sub-Optimal (119)WISS750 2011-2016 Epifaunal Substrate (11) Channel Alteration (16.3) Sub-Optimal (132)WISS700 2015-2016 Frequency of Riffles (2.5) Channel Flow Status (17) Marginal (104)WISS600 2011-2016 Frequency of Riffles (2.0) Channel Flow Status (15.2) Marginal (80)WISS550 2011-2016 Embeddedness (4.8) Channel Alteration (15.2) Marginal (105)WISS500 2011-2016 Bank Stability (10.5) Frequency of Riffles (15.8) Sub-Optimal (126)WISS400 2011-2016 Riparian Vegetative Zone Width (9.5) Channel Alteration (16.2) Sub-Optimal (121)WISS250 2011-2016 Embeddedness (7.2) Bank Stability (13.3) Marginal (107)WISS150 2011-2016 Riparian Vegetative Zone Width (6.2) Bank Stability (13.2) Marginal (96.2)SR300 2011-2013 Riparian Vegetative Zone Width (4) Embeddedness (12.7) Marginal (79)SR200 2011-2016 Frequency of Riffles (8.7) Channel Flow Status (14.2) Marginal (108)SR100 2011-2016 Embeddedness (5.3) Channel Alteration (14.3) Marginal (101)PR100 2014 Riparian Vegetative Zone Width (5) Channel Flow Status (16) Marginal (108)T400 2013-2016 Bank Stability (10) Channel Flow Status (15) Sub-Optimal (125)T100 2013-2014 Sediment Disposition (7) Velocity/Depth Regime (13.5) Marginal (108)

Average Parameter Score

Page 35: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

35

Take-awaypointsandsummarymapAfewtakeawaypointsfromhabitatassessmentsintheWissahickonWatershedfrom2011to2016:

• 73habitatassessmentswerecompletedfrom2011to2016.Oftheassessments,1.3%werecategorizedaspoor,50.7%weremarginal,and48%weresuboptimal.

• WISS750andT400(ProphecyCreek)wereonaveragethehighestscoredsites.ThisisconsistentwithProphecyCreekbeingthemostprotectedandleastdevelopedsubwatershedintheWissahickonWatershed.WISS600hadthelowesthabitatassessmentsscores.

• ThehighestaverageparameterintheWissahickonWatershedwaschannelalteration.ThisislikelyduetotheGreenRibbonPreservethatbufferstheWissahickonCreek.

• Thelowestaverageparameterwasembeddedness,indicatinganissuewitherosion.Thisisconsistentwiththeurbanstreamsyndrome.

• Therewasvariationovertimeinhabitatassessmentscoresatsites,butthesearelikelyfromchangesinthetimeofyearhabitatassessmentswereconducted.

• Eachsite’shabitatassessmentcategoryacrossthewatershedcanbefoundinFigure5-3.

Page 36: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

36

Figure5-3.AmapoftheWissahickonWatershedandthehabitatassessmentsitesfrom2011-2016.Sitesinbluewereconsideredmarginalandsitesingreenweresuboptimal.Allsiteswerenotsurveyedfrom2011to2015.

Page 37: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

37

SECTIONSIX:WATERQUALITYTheStreamMonitoringandAssessmentProgram(StreamMAP)startedasawaterqualitymonitoringprogramin2004.Waterqualitymonitoringisvitalinanyecologicalmonitoringprogrambecauseitcaptureswhatisoccurringinthestream,includingstressorsandpollutants,whichcannotbedeterminedvisually.Theseresultscanthenbeusedtodeterminethefactorsthatarecontributingtotheconditionofthebiologicalcommunity.

MethodsThesitesandfrequencyofsamplinghaschangedoverthelifeofStreamMAPfromtheearlydaysoftheprogramwithfivesites,tothepresentdaywith13activesites.Table6-1detailswhensampleswerecollectedateachsitefrom2004to2016.Afewmajorchangesintheprograminclude(1)addingSandyRunsitesin2008,(2)addingwinterseasonsamplingin2011,(3)addingtributarysitesin2013,and(4)joiningtheDelawareRiverWatershedInitiativein2014.Table6-1.TheyearsandseasonsthatsitesweresampledintheWissahickonWatershedfrom2004to2016forStreamMAP.Quartersrefertothesamplingseason,startingwith(1)forwinter,(2)forspring,(3)forsummer,and(4)forfall.Areasingreyindicateastandarddryweathersamplewascollectedatthatsiteforthesamplingquarter.Darkgreyindicatesawetweathersamplewascollected.

SamplingmethodsTheparametersthatwerecollectedduringStreamMAPchangedovertimeandincludedphosphorus(totalandorthophosphate),nitrogen(nitrate,nitrite,andammonia),totalsolids(suspendedanddissolved),bacteria(fecalcoliform,E.coli,ortotalcoliform),chloride,sulfate,bromide,alkalinity,hardness,aluminum,iron,andtotalorganiccarbon(Table6-2).WaterqualitysampleswerecollectedbytheWVWAandsenttoanaccreditedlaboratoryforanalysis,includingQClaboratories(2004–2010),HamptonClarkeVeritech(2011–2012),TestAmerica(2013–2015),andSuburbanLaboratories(2015–2016).Streamsideparameterswererecordedateachsiteincludingtemperature,conductivity,andpHusinganYSI63,anddissolvedoxygenusingaYSIODOafter2014andOAKTONDO6+priorto2014.

YearQuarters 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 5 1 2 3 4WISS850WISS800WISS750WISS700WISS600WISS550WISS500WISS400WISS250WISS150SR300SR200SR100PR100T400T100

2015 20162007 20102009 2011 2012 2013 20142004 2005 2006 2008

Page 38: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

38

WaterqualitysampleswerecollectedforStreamMAPasgrabsamples.From2004to2013sampleswerecollectedeitherdirectlyfromabanksideriffleorbyloweringabucketintothestreamandcollectingsamplesfromthebucket.In2014theWVWAadoptedtheDRWIQualityAssuranceProjectPlan(QAPP)andtheQAPPmethodofcollectingallsamplesdirectlyfromarifflearea,ideallyhalfwayacrossthestreamchannel.Waterqualitysampleswerecollectedinthemiddleofeachseasonincludingtypically,(1)wintercollectionsinFebruary,(2)springcollectionsinApril,(3)summercollectionsinAugust,and(4)fallcollectionsinNovember.Sampleswerecollectedduringdryweatherwithideallyatleastthreedayssincethelastrainfall.OneexceptionwasNovember2006,whichwasawetweathersamplingevent.Samplescollectedfrom2011to2014werecollectedovertwodayswhileallothersampleswerecollectedinasingleday.Table6-2.ThewaterqualityparameterscollectedforStreamMAPfrom2004to2016.Quartersrefertothesamplingseason,startingwith(1)forwinter,(2)forspring,(3)forsummer,and(4)forfall.Areasingreyindicatetheparameterwasincludedinthesamplingevent.Thequartersthataremarkedingreyindicatethatadditionalsampleswerecollectedforqualityassuranceandqualitycontrolpractices

QualityassuranceandqualitycontrolTheDRWIQAPPincludedqualityassuranceandqualitycontrol(QA/QC)practicesthattheWVWAadopted.QA/QCpracticesimprovedataintegritybyprovidingevidencethatsamplingmethodsandanalysisareexecutedproperlyandwithoutcontamination.TheDRWIQAPPrequiresthecollectionoftwoduplicatesandtwofieldblanksforeachsamplingevent.Sampleduplicates,twosamplescollectedusingthesamemethodsatthesamelocationandtime,mustbewithin15%relativepercentdifferencetobeaccepted.Fieldblanks,asampleofpurifiedwaterthatisbroughtintothefieldandtreatedasasample,mustbebelowtwicethemethoddetectionlimittobeaccepted.PriortotheadoptionoftheDWRIQAPP,duplicatesampleswerecollectedinthesummerof2009andthewinterof2011.Startinginthewinterof2014allsamplingeventsincludeda

3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4Ortho-PhosphateTotal PhosphorusNitrateNitriteAmmoniaTotal Suspended SolidsTotal Dissolved SolidsFecal ColiformE. ColiTotal ColiformChlorideSulfateBromideTotal AlkalinityHardnessAluminumIronTotal Organic Carbon

2006 20162013 2014 20152007 2008 2009 2010 2011 20122004 2005

Page 39: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

39

sampleduplicateforQA/QCpurposesandstartinginthesummerof2014allsamplingeventsincludedtwosampleduplicatesandtwofieldblankstofullycomplywiththeDRWIQAPP.Lastly,acalibrationrecordforstreamsidesamplingprobeswasestablishedinthesummerof2014fordocumentingcalibrationmethodsandcalibrationdriftattheendoftheday.

StudylimitationsStreamMAPwasdevelopedwiththegoalofmonitoringtheWissahickonWatershedovertimetobetterunderstandthewatershed,butallstudydesignshavelimitationsandassumptionsthatarebuiltintothem.Waterqualitysamplingislimitedtoindicatingtheconditionofastreamonlyatthemomentofsamplingbecausethewateratthesiteisconstantlychanging.StreamMAPfocusedondaytimeandlow-flowperiods,whicharetwofactorsthatinfluencetheconcentrationsofmanywaterqualityparameters.Totalsuspendedsolidconcentration,aproxyforerosion,isagoodexampleofaparameterthatfluctuatesbyordersofmagnitudebetweenlowflowtimeperiods,withouterosion,andduringraineventswhenerosionisactivelyoccurring.Diurnalpatternsarealsocommon.Dissolvedoxygenisagoodexampleofaparameterthatiselevatedduringthedaywhenalgaearephotosynthesizing,butislowatnightwhilealgaearerespiring.StreamMAPalsofocusedontheconcentrationofwaterqualityparameters,insteadoftheloadingatthesite.Thismeansthatawaterqualityparametercouldappeartobeimprovingatasite,butinsteadsamplingoccurredduringtimeperiodsofhigherflowandtheparameterismorediluted.Overall,thoughStreamMAPprovidesalotofinformationonwhatishappeningintheWissahickonWatershed,itisimportanttorecognizethatitislimitedtowhenthesamplesarecollected.TheStreamMAPhasundergonemanychangessincethestartoftheprogramin2004,includingchangesinsitesandparameterscollected.Thismeansthateachsiteorparametermaynothavethefull12yearsofdataandconclusionsonthesiteorparametermaybelimited.Lastly,QA/QCprocedureshaveonlybeeninplaceafterthesamplingmethodswereadjustedfortheQAPPin2014.Samplescollectedpriorto2014werewithadifferentsamplingmethodandonlytwoQA/QCsamplescollectedwiththesemethods.Thismeansthatsamplescollectedbefore2014shouldstillindicatethetrendsthroughouttheWissahickonCreek,butcautionshouldbeusedwhenanalyzingthisdataorlookingatindividualsamplingeventsandsites.

ResultsThissectionwilldescribetheresultsforeachparametercollectedforStreamMAP,including(1)adescriptionoftheparameter,(2)whenitwassampledforStreamMAP,(3)waterqualitystandardsassociatedwiththeparameter,(4)QA/QCresults,(5)monitoringtrendsthroughouttheWissahickonandovertheyearsofmonitoring,and(6)StreamMAPresultscomparedtothePWDCCRforanyparametersthatwereincludedintheCCR.

StreamsideparametersStreamsideparameterscollectedforStreamMAPincludedconductivity,dissolvedoxygen,temperature,andpH.In2014theWVWAadoptedtheDWRIQAPPthatrequiredrecordingcalibrationresultsbeforeandaftersamplingforQA/QC.Thissectionwillincludethedatacollectedin2015and2016.ThesearethetwoyearsaftertheDWRIQAPPwasadoptedandallprobeswereservicedorreplaced.

Page 40: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

40

ConductivityConductivityistheelectricalconductanceofwateracrossasetdistanceandwasdeterminedusingastreamsideprobe(YSI63).Conductivityiscommonlyusedasaproxyforotherwaterqualityparameters,includingtotaldissolvedsolidsandchlorides,whichareinfluencedbypointsources,roadsaltinthewinter,stormwaterinputs,andthenaturalgeologyofaregion.TherearenoPennsylvaniawaterqualitystandards(PAWQS)forconductivity.ConductivityandspecificconductivitywerebothrecordedforStreamMAP.Onlyspecificconductivitywillbereportedherebecauseitisconductivitythatisnormalizedto25OCandcanbeusedtocompareconductivitymeasurementsacrosstemperatures.Thepatternsinspecificconductivityweredifferentbetweenupstreamanddownstreamsitesdependingonthetimeofyearin2015and2016(Figure7.1).Conductivitywashigherduringwintersamplingatallsites,likelyduetorunofffromroadsalt.ConductivitywashighestatWISS850andWISS800intheWissahickonmainstreamandthendecreasedmovingdownstreamtothemouthoftheWissahickonCreek.Duringthethreeotherseasons,WISS850andWISS800frequentlyhadthelowestconductivityintheWissahickonmainstreamandinsteadconductivityincreasedatWISS750andthendecreasedmovingdownstreamtothemouthoftheWissahickonCreek.SitesWISS850andWISS800arelikelythemostinfluencedbychangesinrunoffbecausetheyareupstreamofwastewatertreatmentplantsandtheUpperWatershedhaslittlegroundwaterinput.Atthetributarysites,bothSandyRunsiteshadsimilarconductivityreadingsastheWissahickonmainstem.ProphecyCreek(T400)isthemostprotectedsubwatershedandhadthelowestconductivityreadingsthroughouttheWissahickonWatershed.

Page 41: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

41

Figure6-1.AverageseasonalspecificconductivitymeasurementsintheWissahickonWatershedfrom2015to2016.Thesymbolsareasfollows(1)starindicatesaveragespecificconductivityinthewinter,(2)circleindicatesaveragespecificconductivityinthespring,(3)triangleindicatesaveragespecificconductivityinthesummer,and(4)crossindicatesaveragespecificconductivityinthefall

pHCommonlyreferredtoas‘acidity’,pHisthemeasureoftheconcentrationofhydrogenionsinwater.FactorsthatinfluencepHinfreshwatersystemsinclude,geologyofaregion,non-pointandpointsources,photosynthesis,andtheburningoffossilfuelsthroughacidrainandatmosphericdeposition.ThePAWQSispH6.0-9.0fortroutstockingfishery(TSF),theprotectedwateruseclassificationoftheWissahickonCreek,cold-waterfisheries,andwarmwaterfisheries(WWF)(PA,2001).TSFmustmaintaincertainWQSfromFebruary15toJuly31forthestockedtroutandthenmaintainWWFstandardsduringtherestoftheyear.DiurnalpatternsarecommonforpH,particularlyinhighlyproductivesystemswherepHincreasesasphotosynthesisincreases.ThesediurnalpatternsarelikelytoinfluencetheStreamMAPdata,sincestationswereoftensampledconsecutivelythroughouttheday.StreamMAPresultsindicatedthatpHvaluesweretypicallybetween7and9,allrecordingswereabove6.0,andtwicepHwasabove9.0inMay2016atWISS700andWISS600.Thesemeasurementsweretakeninthemiddleoftheafternoonwhilephotosynthesisishighest.Additionally,WISS700isdownstreamofasectionthathasnotreecanopycover,whichincreasesalgaeproductivity.TheStreamMAPreadingsweresimilartothepatternsfoundintheWissahickonCreekWatershedComprehensiveCharacterizationReport(CCR)bythePhiladelphiaWater

Page 42: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

42

Department(PWD,2007).SamplingfortheCCRfounddiurnalpatternsinpHandanywaterqualitystandardviolationswerepH>9.0andnotpH<6.0.

TemperatureWatertemperatureisinfluencedbyclimate,dischargefrompointsourcesandnon-pointsourcesintothesystem,treecanopycover,andimpoundments.Watertemperatureheavilyinfluencesthebiologicalcommunitypresentatasiteasaquaticorganismshavealimitedrangeoftemperaturestheycansurviveandreproducein.Additionally,watertemperaturedeterminesthemaximumconcentrationofdissolvedoxygeninthewatercolumn,wherecoolerwatercanhaveahighermaximumconcentration.Temperaturehassuchastronginfluenceonaquaticcommunitiesthatfisheriesaregroupedintowarmwaterandcoolwaterspecies.PennsylvaniahasamaximumwatertemperatureWQSbydateforcoolwater,warmwater,andtroutstockedfisheries(PA,2001).Themaximumstreamtemperaturerecordedoverthetwoyearswas31.2OC(88.2F)atWISS700insummer2016,exceedingthePAWQSforTSFinAugust.WISS700isaslowmovingsitethatisjustdownstreamfromasectionoftheWissahickonCreekwithoutatreecanopy.StreamMAPdoesnotincludeasitejustupstreamofthesectionwithoutatreecanopy,sothereisnowaytodeterminehowmuchtheexposedsectionoftheWissahickonCreekisincreasingthestreamtemperature.LikepH,temperatureisalsodiurnallyinfluenced,andbecauseStreamMAPsamplingisconductedonesiteatatimethroughoutadaythedatacannotbeusedtodeterminewatershedwidepatterns.

DissolvedoxygenDissolvedoxygenistheconcentrationofoxygeninthewatercolumnandisvitalforthebiologicalcommunity.Dissolvedoxygenconcentrationsareinfluencedbystreamtemperature,thetimeofday,pointandnon-pointdischarges,andthebiologicalcommunity.Dissolvedoxygenexhibitsdiurnalpatternswithelevatedconcentrationsinthedayfromalgaephotosynthesizingandreducedconcentrationsatnightwhenalgaearerespiring.Thesediurnalvariationsareexpectedinallfreshwatersystems,butaremorepronouncedindevelopedsystems.PennsylvaniahasaminimumWQSof5.5mg/Ldissolvedoxygenfora7-dayaverage,and5.0mg/Lasaminimumthroughouttheyear.Additionally,TSFmustmaintainaminimum7-dayaveragerequirementof6.0mg/LfromFeb15toJuly31(PA,2001).StreamMAPresultsindicatethatduringsamplingmostsiteshad100%saturation,howeverthesesampleswerealltakenduringthedaytimewhenconcentrationsareexpectedtobehighestduetopeakphotosynthesis.Therewerenosamplestakenduringthenighttime,whendissolvedoxygenconcentrationsareexpectedtobeattheirlowest.Again,duetothediurnalnatureofdissolvedoxygenandbecauseStreamMAPsamplessitesaresampledoneatatimeitisimpossibletousethisdatatoexaminewatershedwidepatterns.

PhosphorusNutrientsarethelimitingfactorsforthegrowthofprimaryproduction(e.g.algae)insystemandphosphorusistypicallythelimitingfactorinfreshwatersystems.Phosphorusisnaturallyoccurringatverylowconcentrationsfromthebreakdownofplantmatter,andtheweatheringofrocksandsediments.However,indevelopedsystemsmostphosphoruscomesfromhumaninfluencesincludingpointsourcedischarges,wastewatertreatmentplants,stormwaterrunoff,fertilizers,agriculture,increasederosionfromstormwaterand

Page 43: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

43

manymore.ExcessivephosphorusintheWissahickonWatershedisaknownissuethatiscontributingtoexcessivealgaegrowth(USEPA,2015a;USEPA,2015b).Phosphoruswascollectedfrom2004to2016forStreamMAPintwoforms,totalphosphorusandorthophosphate.Totalphosphorusisameasureofallformsofphosphorusincluding,organic,orthophosphate,andinorganicforms.Orthophosphateisthedissolvedformofphosphorusandisavailablefororganismstouseforprimaryproduction.Organicandinorganicformsofphosphorusarenotbioavailableandaretypicallyboundtoparticulatematterorsoils.

OrthophosphateQA/QCduplicatesfororthophosphatewerewithinacceptableranges20/24timesandblankswereinacceptableranges17/17times.TheStreamMAPdatawasseparatedforanalysisfrombefore2011,whensampleswerecollectedthreetimesayear,andafter2011whensampleswerecollectedfourtimesayear.ThewatershedwidetrendswereinvestigatedbylookedatthetrendsstartingattheUpperWatershedandmovingdownstreamtothemouthoftheWissahickon.From2004to2010theupstream/downstreamtrendfororthophosphatewashigherconcentrationsatWISS750,aslightreductionatWISS600,thenanincreaseinconcentrationsatWISS550,andreducedconcentrationsheadingdownstreamtothemouthoftheWissahickon(Figure6-2).TheSandyRunsiteshadanincreasedconcentrationatSR200andlowerconcentrationsattheupstream(SR300)anddownstream(SR100)sites.TheonewetweathersamplingeventinNov2008haddecreasedorthophosphateconcentrations,indicatingdilutionduringstormevents.From2011to2016thesameupstream/downstreamtrendswereobservedwithincreasedconcentrationsatWISS750,WISS550,andSR200.WISS850andWISS800hadthelowestorthophosphateconcentrationsintheWissahickonCreekandthetributariesincluding,T100(Trewellyn),T400(Prophecy),andPR100(PineRun)hadthelowestconcentrationsthroughouttheWissahickonWatershed(Figure6-3).Overall,2011to2016datahadlowervariabilityandlowerconcentrationsthanthedatafrom2004to2010.SeasonalorthophosphatetrendsindicatedmoreseasonalvariabilityinsitesbelowWISS600comparedtoupstreamofWISS600(Figure6-4).Typically,thespringhadthelowestorthophosphateconcentrationsandthefallhadthehighestconcentrations.Thisfollowsthepatternofvegetativegrowthduringthespringanddieoffinthefall.Changesintheannualorthophosphateconcentrationswereinvestigatedateachsitefrom2008to2016(Figure6-5).Thisindicatedthatallsitesthatwereabovewastewatertreatmentplantsandinsmalldrainageareashadthelowestorthophosphateconcentrations,includingWISS850,WISS800,SR300,PR100,T400,andT100.ThetrendsovertimealsofoundasignificanttrendofdecreasingorthophosphateconcentrationsatWISS750(p-value=0.00827),WISS600(p-value=0.00536),WISS550(p-value=0.0092),andWISS150(p-value=0.0212).TrendsovertimealsofoundasignificanttrendofincreasingorthophosphateconcentrationatSR100(p-value=0.0123).Flowdatawouldbeneededtodetermineiftheorthophosphateloadingalsochangedbetween2008-2016atthesesites.

Page 44: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

44

Figure6-2.Orthophosphatewassampledfrom2004to2010duringdryweatherandincludedonewetweathersamplingevent.Thefilledincirclesrepresentthemedianorthophosphateconcentrationsofthesitesthatweresampledduringalldryweatherevents.Thehollowcirclesaretheorthophosphateconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.ThetrianglesaretheorthophosphateconcentrationsduringonewetweathersamplingeventinNov2006.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.

Page 45: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

45

Figure6-3.Orthophosphatewassampledforallfourseasonsfrom2011to2016duringdryweather.Thefilledincirclesrepresentthemedianorthophosphateconcentrationsofthesitesthatweresampledduringalldryweatherevents.Thehollowcirclesaretheorthophosphateconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.

Page 46: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

46

Figure6-4.Orthophosphateconcentrationdatafrom2014to2016wasusedtoinvestigateanyseasonaltrendsintheWissahickonCreekonly.Thesymbolsareasfollows(1)starindicatesaverageorthophosphateinthewinter,(2)circleindicatesaverageorthophosphateinthespring,(3)triangleindicatesaverageorthophosphateinthesummer,and(4)crossindicatesaverageorthophosphateinthefall.

Page 47: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

47

Figure6-5.ChangesinorthophosphatetrendsovertimeatallsitesintheWissahickonWatershedwerelookedatusingdatafrom2008to2016.Thefilledincirclesareaverageorthophosphateconcentrationatthesiteifallfoursamplingseasonswerecollected.Thehollowcirclesaretheaverageorthophosphateconcentrationifthreesamplingseasonswerecollected.Sitesandyearswithlessthanthreesamplingseasonswerenotincluded.Siteswithanasterisk(*)indicatethechangeinconcentrationwassignificant(p-value<0.05).

TotalphosphorusTotalphosphorus(TP)QA/QCduplicateswerewithinacceptableranges20/24timesandblankswereinacceptableranges17/17times.TheStreamMAPdatawasseparatedforanalysisbetweenbefore2011,wheresampleswerecollectedthreetimesayear,andafter2011wheresampleswerecollectedfourtimesayear.CurrentlythereisnoPAWQSforTP,buttheEPAhasproposedadraftTMDLin2015thatwouldlimittheconcentrationofTPintheWissahickonWatershedto0.04mg/L(USEPA,2015a).Asexpected,TPhadsimilarwatershedwidetrendsandpatternsasorthophosphate.ThesetrendsincludedincreasedTPconcentrationsatWISS750,WISS550,WISS500,andSR200comparedtotherestofthewatershedfrom2004–2010(Figure6-6)and2011to2016(Figure6-7).Seasonally,thefallhadthehighestTPconcentrationswhilethespringtypicallyhadthelowestconcentrations(Figure6-8).AdditionallythesitesthatweredownstreamofsmalldrainageareasandupstreamofwastewatertreatmentplantdischargesallhadthelowestTPconcentrations,includingWISS850,WISS800,T400,T100,PR100,andSR300.LastlythesamesiteshadsignificanttrendsofdecreasingTP,includingWISS750(p-value=0.008269),WISS600(p-value=0.005326),WISS550(p-value=0.009197),WISS150(p-

Page 48: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

48

value=0.02123),andSR100hadasignificanttrendofincreasingTP(p-value=0.01231)(Figure6-9).Flowdatawouldneedtobeevaluatedifthechangeisconcentrationisalsoachangeinnutrientloading.TheWissahickonCCRfoundsimilarphosphorustrendsasStreamMAP,including(1)phosphorusconcentrationswerereducedduringwetweather,and(2)MontgomeryCountysiteshadhigherorthophosphateconcentrationsthanPhiladelphiasitesintheWissahickonCreek(PWD,2007).TheCCRmentionsalongtermdecreaseinorthophosphatefromhistoricaldataandStreamMAPdataalsofoundthistrend.ThoughphosphorushasbeenfoundtobedecreasingatseveralsitesintheWissahickonwatershed,374ofthe418StreamMAPsampleswereabovetheproposed0.04mg/LTPstandard.Ofthe44samplesbelow0.04mg/L,37ofthesewerefromsitesabovewastewatertreatmentplants,includingWISS850,WISS800,T100,T400,PR100orSR300.Overall,eventhoughTPandorthophosphatehavereducedinconcentrationssince2008atseveralsites,theconcentrationsofphosphorusarestillexcessiveintheWissahickonWatershed.

Figure6-6.Totalphosphorus(TP)wassampledfrom2004to2010duringdryweatherandincludedonewetweathersamplingevent.ThefilledincirclesrepresentthemedianTPconcentrationsofthesitesthatweresampledduringalldryweatherevents.ThehollowcirclesaretheTPconcentrationsofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.ThetrianglesaretheTPconcentrationsduringonewetweathersamplingeventinNov2006.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.ThesolidlineistheEPAproposedTMDLTPlimitof0.04mg/L.

Page 49: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

49

Figure6-7.Totalphosphorus(TP)wassampledforallfourseasonsfrom2011to2016duringdryweather.ThefilledincirclesrepresentthemedianTPconcentrationsofthesitesthatweresampledduringalldryweatherevents.ThehollowcirclesaretheTPconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.ThesolidlineistheEPAproposedTMDLTPlimitof0.04mg/L.

Page 50: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

50

Figure6-8.Totalphosphorus(TP)concentrationdatafrom2014to2016wasusedtoinvestigateanyseasonaltrendsintheWissahickonCreekonly.Thesymbolsareasfollows(1)starindicatesaverageTPinthewinter,(2)circleindicatesaverageTPinthespring,(3)triangleindicatesaverageTPinthesummer,and(4)crossindicatesaveragespecificTPinthefall.ThesolidlineistheEPAproposedTMDLTPlimitof0.04mg/L.

Page 51: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

51

Figure6-9.Changesintotalphosphorus(TP)overtimeatallsitesintheWissahickonWatershedwerelookedatusingdatafrom2008to2016.ThefilledincirclesaretheaverageTPconcentrationatthesiteifallfoursamplingseasonswerecollected.ThehollowcirclesaretheaverageTPconcentrationifthreesamplingseasonswerecollected.Sitesandyearswithlessthanthreesamplingseasonswerenotincluded.Siteswithanasterisk(*)indicatethechangeinconcentrationwassignificant(p-value<0.05).ThesolidlineistheEPAproposedTMDLTPlimitof0.04mg/L.

NitrogenNitrogenistypicallynotthenutrientlimitingphotosyntheticgrowthinfreshwatersystems.Nitrogenisnaturallyavailablethroughmicrobesfixingatmosphericnitrogenandthebreakdownofplantmatter.Similartophosphorus,inurbansystemstheanthropogenicinputsofnitrogentendstooutweighthenaturalinputs.Anthropogenicinputsincludeagriculturalrunoff,wastewatertreatmentplanteffluent,fertilizers,andanimalwaste.Nitrogencomesinmanyforms,includingdissolvedinorganicforms(nitrate,nitrite,andammonium),organicforms,andammonia.PennsylvaniahasaWQSof<10mg/Lofnitrate+nitriteinpublicdrinkingwatersources,buthasnoWQSforTSFliketheWissahickon.Nitrogenwascollectedasnitrate(2004-2016),nitrite(2004-2006,2011-2016),ammonianitrogen(2004-2006,2011-2016),andTotalKjeldahlNitrogen(2015-2016)forStreamMAP.

NitrateNitratewascollectedfrom2004to2016andtheQA/QCblankswerealwaysinacceptablerangeswhileduplicateswerewithinacceptablerangesfor22/24duplicates.Nitrateresults

Page 52: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

52

wereseparatedbetween2004to2010and2011to2016,afterwintersamplingwasaddedforanalysis.From2004to2010nitratewascollected16timesduringdryweatherandonceduringwetweather(Figure6-10).Theonewetweathersamplingeventhaddecreasednitrateconcentrations,indicatingdilutionduringstormevents,asimilarpatterntowhatwasfoundintheWissahickonCCR(PWD,2007).From2004to2010theupstream/downstreamtrendindicatedelevatedconcentrationsatWISS750thatdecreasedatWISS600,andthenincreasedagainatWISS550anddecreasedtothemouthoftheWissahickonCreek.Thiswasthesametrendasphosphorus.IntheSandyRun,SR200hadelevatednitrateconcentrationswhileSR100andSR300werelower,buttherewaslimiteddatafortheSandyRunsitesfrom2004to2010.From2011to2016thereweremoresitessampledandwinterwasincludedasasamplingseason.Thesameupstream/downstreamtrendcontinuedwithlowconcentrationsatWISS850andWISS800,increasedconcentrationsatWISS750thatdecreasedtoWISS600andthenincreasedtoWISS550anddecreasedtothemouthoftheWissahickonCreek(Figure6-11).ThetributariesPR100,T100,andT400allhadlownitrateconcentrationswhileSR200waselevatedandSR100wassimilartotheWissahickonmainstem.From2004to2016theinitialsitesdownstreamofwastewatertreatmentplants(SR200,WISS750,andWISS550)hadelevatednitrateconcentrationscomparedtotherestofthesites.Additionallythesitesthatweredownstreamofasmalldrainageareaandupstreamofwastewatertreatmentplants(WISS850,SR300,T400,T100,andPR100)allhadthelowestnitrateconcentrationsintheWissahickonWatershed.Theseareallthesamepatternsseenfromphosphorussampling.Seasonalvariationsofnitrateconcentrationsfrom2013to2016indicatedthatnitrateconcentrationswerehighestinthefallandlowestconcentrationsinthewinter(Figure6-12).Changesintheannualnitrateconcentrationsfrom2008to2016wasinvestigatedateachsiteandfoundthatWISS800hadasignificanttrendofdecreasingnitrate(p-value=0.03582),particularlyafter2013(Figure6-13).TheNorthWalesWastewaterTreatmentPlant,upstreamofWISS800,closedin2013andlikelyexplainsthereducednitrateconcentrationsatthissite.From2004to2016nitratesamplesexceededthe10mg/Llimitforpublicdrinkingwatersources50outof389times.

Page 53: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

53

Figure6-10.Nitratewassampledfrom2004to2010duringdryweatherandincludedonewetweathersamplingevent.Thefilledincirclesrepresentthemediannitrateconcentrationsofthesitesthatweresampledduringalldryweatherevents.Thehollowcirclesarethenitrateconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.ThetrianglesarethenitrateconcentrationsduringonewetweathersamplingeventinNov2006.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.

Page 54: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

54

Figure6-11.Nitratewassampledforallfourseasonsfrom2011to2016duringdryweather.Thefilledincirclesrepresentthemediannitrateconcentrationsofthesitesthatweresampledduringalldryweatherevents.Thehollowcirclesarethenitrateconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite

Page 55: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

55

Figure6-12.Nitrateconcentrationdatafrom2014to2016wasusedtoinvestigateanyseasonaltrendsintheWissahickonCreekonly.Thesymbolsareasfollows(1)starindicatesaveragenitrateconcentrationinthewinter,(2)circleindicatesaveragenitrateconcentrationinthespring,(3)triangleindicatesaveragenitrateconcentrationinthesummer,and(4)crossindicatesaveragenitrateconcentrationinthefall.

Page 56: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

56

Figure6-13.ChangesinnitratetrendsovertimeatallsitesintheWissahickonWatershedwerelookedatusingdatafrom2008to2016.Thefilledincirclesareaveragenitrateconcentrationatthesiteifallfoursamplingseasonswerecollected.Thehollowcirclesaretheaveragenitrateconcentrationifthreesamplingseasonswerecollected.Sitesandyearswithlessthanthreesamplingseasonswerenotincluded.Siteswithanasterisk(*)indicatethechangeinconcentrationwassignificant(p-value<0.05).

OtherformsofnitrogenTheotherformsofnitrogen(nitrite,ammonia,andTotalKjeldahlNitrogen)werealltypicallybelowdetectionlimitsduringStreamMAPsampling.Nitritewascollectedfrom2004–2006,andagainfrom2011to2016andhadconsistentlyacceptableQA/QCresults.Nitriteresultsfrom2004-2016indicatednitritewastypicallybelowdetectionslimitsandalwaysbelow0.5mg/Lofnitrite.Lownitriteconcentrationsaretypicalinfreshwatersystemsasnitriteisquicklyconvertedtonitrate.ThiswasalsofoundintheWissahickonCCRwherenitritewastypicallybelowdetectionlimits(PWD,2007).AmmoniawasalsotypicallybelowdetectionlimitsthroughoutStreamMAP.Ammoniawascollectedfrom2004–2006andagainfrom2011–2016.QA/QCduplicatesampleswereabovedetectionlimits9outof24timesandonly4ofthe9sampleswerewithinanacceptablerange.Ammoniawascollected317timesforStreamMAPandonly111sampleswereabovedetectionlimits(typically0.1mg/L).Overall,ammoniawasnotalargecomponentofnitrogenintheWissahickonWatershed.StreamMAPhadsimilarpatternstotheWissahickonCCRthatfoundonly18%ofsampleswithammoniaabovedetectionlimits(PWD,2007).

Page 57: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

57

TotalKjeldahlNitrogen(TKN)wascollectedfrom2015to2016andhadconsistentlyacceptableQA/QCsamples.TKNwascollectedfor99samplesandonly31hadTKNabovedetectionlimits(0.5mg/L).ThisissimilartotheWissahickonCCRthatfoundlowTKNconcentrationsduringdryweathersampling(PWD,2007).

TotalsuspendedsolidsTotalsuspendedsolids(TSS)includesvisibleparticulatesinthestreamwaterincluding,sediment,algae,anddecayingmatter.Typically,samplesthatarebelow20mg/Lareclearwhilesamplesabove40mg/Larecloudy(MDEQ).NegativeimpactsofTSSonaquaticorganismsinclude(1)blockingsunlightfrompenetratingintothewatercolumn(2)smotheringorganismsandcloggingtheirgills,and(3)coveringhabitatswithsiltandsedimentrenderingthehabitatunusable.AllQA/QCblankswerewithinacceptablerangeswhileduplicatesampleswereinconsistentwith11/19inanacceptablerange.ThisislikelyduetoTSSbeingverylowintheWissahickonWatershedduringdryweathereventsandvariabilitybetweenthesamplesbeinghighbecauseTSSbeingameasureofcoarseparticulatematterthatisnotalwayshomogenous.TSSsampleswerecollectedintheWissahickonCreekfrom2004to2006andagainfromSpring2014tothepresent.OverallTSShasverylowvaluesduringdryweathersampling,asexpectedbecausetheWissahickonCreektypicallyrunsclear.ThroughoutTSScollectionsthereweredifferentcollectionmethodsanddetectionlimits.Toanalyzethedata,thesetimeperiodswerekeptseparate,including(1)2004-2006withadetectionlimitof1.0mg/L,and(2)samplingbetweenSpring2015toFall2016thathadadetectionlimitof1.0mg/L.All2014samplingandthesummerof2015samplingeventswereexcludedbecausethedetectionlimitswere4or5mg/Landmostreadingswerebelowdetectionlimits.TSSsamplingfrom2004to2006hadaslightpatternoflowerreadingsintheupperWissahickon,increasingconcentrationstoWISS400anddecreasedconcentrationsatWISS150(Figure6-14).TSSisknowntoincreaseifthereiserosionduringwetwhetherevents,buttherewasnotasubstantialincreaseinTSSintheWissahickonCreekduringtheonewetweathereventsampledin2006.TSSwaslowacrossthewatershedin2015and2016,buttherewasvariabilityinTSSacrossthewatershedandbetweensamplingevents(Figure6-15).InthetributariestheSandyRunsiteshadsimilarpatternsastheWissahickonCreekandT400hadlowestTSSconcentrations.OnedatapointhadreadingsanorderofmagnitudeabovetherestoftheTSSsamplescollectedonthesamedayandwasremovedasanoutlier(Spring2016,WISS700).OverallTSSconcentrationswerelowandvariableforbothsamplingperiods.However,thesamplingwasdoneprimarilyduringdryweatherevents,andsamplingattheWissahickonCCRandUSGSgagesbothindicatelargeincreasesinturbidity,aproxyforTSS,duringstormevents.TheWissahickonWatershedhasasedimentTMDLdueexcessivesedimentintheWissahickonWatershed.

Page 58: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

58

Figure6-14.Totalsuspendedsolids(TSS)weresampledfrom2004to2006duringdryweatherandincludedonewetweathersamplingevent.ThefilledincirclesrepresentthemedianTSSconcentrationsofthesitesthatweresampledduringalldryweatherevents.ThehollowcirclesaretheTSSconcentrationsofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.ThetrianglesaretheTSSconcentrationsduringonewetweathersamplingeventinNov2006.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.

Page 59: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

59

Figure6-15.Totalsuspendedsolids(TSS)weresampledforallfourseasonsfrom2015to2016duringdryweather.ThefilledincirclesrepresentthemedianTSSconcentrationsofthesitesthatweresampledduringalldryweatherevents.ThehollowcirclesaretheTSSconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavedatahavemissingdata.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.

TotaldissolvedsolidsTotaldissolvedsolids(TDS)areacombinationofmajorions,includingsodium,potassium,calcium,magnesium,chloride,sulfate,carbonate,andbicarbonate.Totaldissolvedsolidsaredeterminedbyfilteringasample,dryingthesample,andweighingthematerialthatwasabletopassthroughthefilter.Weatheringoftherocks,pointsourcedischarges(e.g.wastewatertreatmentplants),roadsalt,stormwater,andotherfactorsalladdtotheconcentrationofTDSinastream.ThePAWQSforpublicdrinkingwatersourcesforTDSisamaximumof500mg/Lasamonthlyaverage,and750mg/Lasanacutemaximum(PA,2001).ThereisnoWQSfortheWissahickonCreekasaTSF.TDSwassampledfrom2004to2016andallQA/QCblankswereinacceptableranges.QA/QCduplicateswereinacceptableranges25/26times.TDSdatawasseparatedbetweenbeforeandafterwintersamplingwasstartedin2011.From2004to2010,WISS750hadthehighestTDSconcentrationsthatthenreducedmovingdownstreamtothemouthoftheWissahickonCreek(Figure6-16).IntheSandyRunsitestheupstreamsite(SR300)hadthelowestTDS,whilethedownstreamsitewassimilartothesitedownstreamofwheretheSandyRunenterstheWissahickonCreek(WISS500).Datafrom2011to2016hasasimilarpatternwithhighTDSatWISS750andthendecreasingwithmovingdownstreamtothemouthoftheWissahickonCreek(Figure6-17).SR300continuedtohavelowerTDSthanthe

Page 60: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

60

restoftheSandyRun.T100(Trewellyn)hadsimilarTDStotheWissahickonmainstem,whileT400(ProphecyCreek)hadthelowestTDSofallsites.AverageseasonalTDSconcentrationsweredeterminedfrom2014to2016andfoundthatthewintersamplingseasonhadhigherTDSconcentrationswhiletheotherthreesamplingseasonshadsimilarconcentrations(Figure6-18).SeparatingthesamplingseasonsalsoindicatedthatWISS800hadthehighestTDSconcentrationsinthewinter,whileWISS750hadthehighestconcentrationsfortherestoftheseasons.TheelevatedTDSconcentrationsinthewinterarelikelyduetoroadsaltthatisrunningintothestream.ThisisparticularlyapparentatWISS800,whichislikelythemostrun-offdominatedsiteontheWissahickonmainstemasitisabovewastewatertreatmentplantsandisinanareawithlittlegroundwaterinput.Lastly,2011to2016datawasusedtoexaminechangesovertimeatsitesusingtheannualaverageTDSconcentrationateachsite(Figure6-19).OnlysiteswithsamplingoverallfourseasonswereusedforthisduetotheincreaseofTDSduringthewinterseason.SeveralsiteswerefoundtohaveasignificanttrendofincreasingTDS,includingWISS600(p-value=0.02416),WISS550(p-value=0.02547),WISS500(p-value=0.02229),WISS400(p-value=0.04441),SR100(p-value=0.01532),andSR200(p-value=0.003013).FlowdataisneededtoevaluateiftheTDSloadingalsochangedoverthistimeperiod.Overall,TDSishighintheWissahickonWatershedandindicateshumaninfluenceanddevelopment.Aconcentrationof>250mg/LTDSisconsideredasignofhighsalinity(AllanandCastillo,2009),and364/385collectedsamplesforStreamMAPwereabove250mg/L.

Page 61: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

61

Figure6-16.Totaldissolvedsolid(TDS)wassampledfrom2004to2010duringdryweatherandincludedonewetweathersamplingevent.ThefilledincirclesrepresentthemedianTDSconcentrationsofthesitesthatweresampledduringalldryweatherevents.ThehollowcirclesaretheTDSconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.ThetrianglesaretheTDSconcentrationsduringonewetweathersamplingeventinNov2006.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.

Page 62: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

62

Figure6-17.Totaldissolvedsolids(TDS)wassampledforallfourseasonsfrom2011to2016duringdryweather.ThefilledincirclesrepresentthemedianTDSconcentrationsofthesitesthatweresampledduringalldryweatherevents.ThehollowcirclesaretheTDSconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.

Page 63: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

63

Figure6-18.Totaldissolvedsolids(TDS)concentrationdatafrom2014to2016wasusedtoinvestigateanyseasonaltrendsintheWissahickonmainstemonly.Thesymbolsareasfollows(1)starindicatesaverageTDSinthewinter,(2)circleindicatesaverageTDSinthespring,(3)triangleindicatesaverageTDSinthesummer,and(4)crossindicatesaverageTDSinthefall.

Page 64: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

64

Figure6-19.ChangesintotaldissolvedsolidstrendsovertimeatallsitesintheWissahickonWatershedwerelookedatusingdatafrom2011to2016.ThefilledincirclesareaverageTDSconcentrationatthesiteifallfoursamplingseasonswerecollected.ThehollowcirclesaretheaverageTDSconcentrationifthreesamplingseasonswerecollected.Sitesandyearswithlessthanthreesamplingseasonswerenotincluded.Siteswithasterisks(*)indicatethatthechangeinconcentrationwassignificant(p-value<0.05).

ChlorideChlorideisacommonwaterqualityparameterthatindicatesthe‘saltiness’ofwater.Chlorideisinfluencedbygeologyandweatheringofrocks,inputsfrommarinesystems,androadsaltinwintermonthsindevelopedwatersheds.Chlorideisbiologicallyinactiveinaquaticsystemsandhasalongresidencytimeonceitisinawaterbody.ThePAWQSforpublicdrinkingwatersourcesis250mg/LandtheEPArecommendedaquaticlifecriteriaislessthan230mg/Lasacontinuousconcentrationandlessthan860mg/Lasanacutemaximum.ChloridewascollectedforStreamMAPfrom2004to2016.AllcollectedQA/QCduplicatesandblankswereinacceptableranges.Chloridedatawasseparatedbetweenbeforeandafter2011becausewintersamplingstartedin2011.From2004to2010,onewetweatherand16dryweathersampleswerecollected(Figure6-20).Duringwetweathersamplingthechlorideconcentrationswerereducedcomparedtodryweathersampling,indicatingdilutionduringstormevents.WISS750hadthehighestchlorideconcentrationsandthenconcentrationsdecreasedmovingdownstreamtothemouthoftheWissahickonCreek.ChlorideconcentrationsatSandyRunsiteswereslightlylowerthanWISS500,just

Page 65: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

65

downstreamofwheretheSandyRunenterstheWissahickonCreek.From2011to2016wintersamplingwasconductedandadditionalsiteswereaddedtothesampleregime.Themedianchlorideconcentrationsfrom2011to2016wereallhigherthan2004to2010,potentiallyfromtheadditionalwinterweathersampling(Figure6-21).AgainWISS750hadthehighestchlorideconcentrationsandchloridedecreasedinconcentrationmovingdownstreamtothemouthoftheWissahickon.SR100,closetotheWissahickon,hadsimilarchlorideconcentrationsastheWissahickonmainstem.PR100hadthehighestchlorideconcentrationforallofthetributariesandT400hadthelowestconcentrationthroughoutthewatershed.Since2011,samplingwasconductedinallfourseasons.Datafrom2013to2016wasusedtolookattheaverageseasonalchlorideconcentrations(Figure6-22).Winterhadthehighestchlorideconcentrationsandallsiteswereabovetherecommendedaquaticlifecriteria.Allotherseasonshadlowerconcentrationsandwerebelowtheaquaticlifecriteria.Thechangeinannualchlorideconcentrationsateachsitewasinvestigatedusingonlydatasince2011atsiteswithdatafromallfourseasons(Figure6-23).SignificanttrendsofincreasingchlorideconcentrationswerefoundatWISS600(p-value=0.0497),WISS500(p-value=0.04164),andWISS400(p-value=0.03884).Flowdatawouldneedtobeevaluatedtodetermineifthechlorideloadinghasalsochangedduringthesametimeperiod.

Figure6-20.Chloridewassampledfrom2004to2010duringdryweatherandincludedonewetweathersamplingevent.Thefilledincirclesrepresentthemedianchlorideconcentrationsofthesitesthatweresampledduringalldryweatherevents.Thehollowcirclesarethechlorideconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.ThetrianglesarethechlorideconcentrationsduringonewetweathersamplingeventinNov2006.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.ThesolidlineistheEPAmaximumrecommendedaquaticlifecriteria.

Page 66: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

66

Figure6-21.Chloridewassampledforallfourseasonsfrom2011to2016duringdryweather.Thefilledincirclesrepresentthemedianchlorideconcentrationsofthesitesthatweresampledduringalldryweatherevents.Thehollowcirclesarethechlorideconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.ThesolidlineistheEPAmaximumrecommendedaquaticlifecriteria.

Page 67: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

67

Figure6-22.Chlorideconcentrationdatafrom2014to2016wasusedtoinvestigateanyseasonaltrendsintheWissahickonmainstemonly.Thesymbolsareasfollows(1)starindicatesaveragechlorideinthewinter,(2)circleindicatesaveragechlorideinthespring,(3)triangleindicatesaveragechlorideinthesummer,and(4)crossindicatesaveragechlorideinthefall.ThesolidlineistheEPAmaximumrecommendedaquaticlifecriteria.

Page 68: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

68

Figure6-23.ChangesinchloridetrendsovertimeatallsitesintheWissahickonWatershedwerelookedatusingdatafrom2011to2016.Onlysitesandyearswithallfourseasonssampledwereincluded.Siteswithanasterisk(*)indicatethechangeinconcentrationwassignificant(p-value<0.05).ThesolidlineistheEPAmaximumrecommendedaquaticlifecriteria.

SulfateSulfateconcentrationsareinfluencedbynaturalinputs,includingweatheringrocks,andanthropogenicinputsincludingmining,fertilizers,non-pointdischarges,andburningoffossilfuels.ThePAWQSforsulfateis250mg/Lforpublicdrinkingwatersources.ThereisnoWQSfortheWissahickonCreekasaTSF.Sulfatewasmeasuredfrom2004to2016forStreamMAP.QA/QCduplicateswereinacceptableranges23/24timesandblanksampleswerealwaysinacceptableranges.Sulfatedatawassplitbetweenbefore2011andafter2011,whenallfoursamplingseasonswerecollected.From2004to2010,onewetweatherand15dryweathersamplingeventswereconducted.Sulfateconcentrationswereconsistentlybelow250mg/Landtheonewetweathersamplingeventhadareducedsulfateconcentrationindicatingdilutionfromstormevents(Figure6-24).IntheWissahickonCreeksulfatewashighatWISS750andthendecreasedmovingtowardthemouthoftheWissahickonCreek.SandyRunsiteshadlowersulfateconcentrationsthantheWissahickonCreeksites.From2011to2016sampleswerecollectedforallfourseasons.Thedatafrom2011to2016hadsimilarpatternsas2004to2010withWISS750asthesitewiththehighestconcentrationsthroughouttheWissahickonWatershedandthendecreasingconcentrations

Page 69: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

69

movingtowardthemouthoftheWissahickonCreek(Figure6-25).TributarieshadlowersulfateconcentrationsthantheWissahickonmainstemandProphecyCreek(T400)hadthelowestsulfateconcentrations.Sulfateconcentrationsdifferedseasonallywiththefallandsummerhavinghigherconcentrationscomparedtothespringandwinter(Figure6-26).Thisispossiblyduetochangesinstreamflow,butcannotbedeterminedwiththeStreamMAPdatabecauseflowwasnotrecordedateachsiteduringsampling.Annualchangesinsulfateconcentrationsateachsitewerelookedatwithdatafrom2008to2016(Figure6-27).WISS800hadasignificanttrendofdecreasingsulfatefrom2011to2016(p-value=0.0406),withasharpdecreasebetween2012and2013.Additionally,WISS600hadasignificanttrendofincreasingsulfate(p-value=0.01283).ThedecreasingtrendatWISS800maybefromtheclosingoftheupstreamNorthWalesWastewaterTreatmentPlantinJuly2013.The2011-2016annualdataalsohighlightsthelowsulfateconcentrationsatWISS850,PR100,T400andT100,andhighconcentrationsatWISS750.

Figure6-24.Sulfatewassampledfrom2004to2010duringdryweatherandincludedonewetweathersamplingevent.Thefilledincirclesrepresentthemediansulfateconcentrationsofthesitesthatweresampledduringalldryweatherevents.Thehollowcirclesarethesulfateconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.ThetrianglesarethesulfateconcentrationsduringonewetweathersamplingeventinNov2006.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.ThesolidlineisthemaximumPAWQSfordrinkingwatersources.

Page 70: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

70

Figure6-25.Sulfatewassampledforallfourseasonsfrom2011to2016duringdryweather.Thefilledincirclesrepresentthemediansulfateconcentrationsofthesitesthatweresampledduringalldryweatherevents.Thehollowcirclesarethesulfateconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.ThesolidlineisthemaximumPAWQSfordrinkingwatersources.

Page 71: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

71

Figure6-26.Sulfateconcentrationdatafrom2014to2016wasusedtoinvestigateanyseasonaltrendsintheWissahickonmainstemonly.Thesymbolsareasfollows(1)starindicatesaveragesulfateconcentrationsinthewinter,(2)circleindicatesaveragesulfateconcentrationsinthespring,(3)triangleindicatesaveragesulfateconcentrationsinthesummer,and(4)crossindicatesaveragesulfateconcentrationsinthefall.ThesolidlineisthemaximumPAWQSfordrinkingwatersources.

Page 72: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

72

Figure6-27.ChangesinsulfatetrendsovertimeatallsitesintheWissahickonWatershedwerelookedatusingdatafrom2008to2016.Thefilledincirclesareaveragesulfateconcentrationatthesiteifallfoursamplingseasonswerecollected.Thehollowcirclesaretheaveragesulfateconcentrationifthreesamplingseasonswerecollected.Sitesandyearswithlessthanthreesamplingseasonswerenotincluded.Siteswithanasterisk(*)indicatethechangesinconcentrationsaresignificant(p-value<0.05).ThesolidlineisthemaximumPAWQSfordrinkingwatersources.

AlkalinityAlkalinityistheacidneutralizingcapacityofasystemandwascollectedfrom2004to2006and2011to2016.AlkalinityisdeterminedbymeasuringtheamountofacidneedtochangethepHofasampleto4.5.Alkalinityisparticularlyimportantinareaswithacidrain,whereadditionalacidraincanchangethepHofawaterbodyifthealkalinityislow(e.g.Adirondacks),butwillremainunchangedinanareawithhighalkalinity(e.g.NYFingerLakes).Alkalinityisdeterminedbythegeologyofanarea.PennsylvaniahasminimumWQSforalkalinityof20mg/Lintroutstockedfisheries(PA,2001).QC/QAduplicateandblanksampleswerealwayswithinacceptablelimitsforalkalinity.Alkalinitywascollectedfrom2004to2006,andagainfrom2011to2016.From2004to2006,sevendryweathersamplesandonewetweathersamplewascollectedinNov2008.Thewetweathersamplehadloweralkalinitythanthedryweathersamples,indicatingdilutionduringwetweatherevents(Figure6-28).Theupstream/downstreamtrendsindicatedanincreaseinalkalinitydownstreamofWISS550,wheregroundwaterbecomesalargercomponentofstreamflow.Lastly,allalkalinityconcentrationswereabovetheminimumWQSof20mg/L.

Page 73: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

73

Datafrom2011to2016hadsimilarpatternsasthe2004to2006data,withalkalinityconsistentlyabovetheminimumWQSof20mg/LthroughouttheWissahickonWatershed(Figure6-29).Againin2011to2016alkalinityincreasedatWISS400andthendecreasedtowardthemouthoftheWissahickonCreek.Datafrom2011to2016alsoincludedSandyRunandtributarydata.ThisshowedthatSR300hadthelowestalkalinityinalloftheWissahickonWatershedsiteswhileT100hadthehighestlevelsofalkalinity.

Figure6-28.Alkalinitywassampledfrom2004to2006,includingsevendryweathersamplingeventsandonewetweathersamplingevent.Thefilledincirclesrepresentthemedianalkalinityconcentrationsduringdryweatheratthesitesthatweresampledforallsevenevents.ThehollowcircleisthealkalinityconcentrationofWISS750fromonesamplingeventintheFallof2004.ThetrianglesarethealkalinityconcentrationsduringonewetweathersamplingeventinNov2006.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.ThesolidlineisthePAWQSminimumforalkalinityinTSF.

Page 74: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

74

Figure6-29.Alkalinitywassampledforallfourseasonsfrom2011to2016duringdryweather.Thefilledincirclesrepresentthemedianalkalinityconcentrationsofthesitesthatweresampledduringalldryweatherevents.Thehollowcirclesarethealkalinityconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.ThesolidlineisthePAWQSminimumforalkalinityinTSF.

HardnessHardnessistheconcentrationofcalciumandmagnesiumcationsandisinfluencedbythegeologyofanarea.Highionconcentrationsproduceinsolublecompoundswhenmixedwithsoapsanddetergents,commonlyknownasthedifferencebetweenhaving‘hard’or‘soft’water.Waterswithlessthan60mg/Lascalciumcarbonateareconsideredsoft,61to120mg/Laremoderatelyhard,121to180mg/Lashard,andmorethan180asveryhard(USGS).Hardnesscanbeimportantinnaturalsystemsasthetoxicityofmanydissolvedmetalsisinverselyrelatedtohardnessconcentrations.Alkalinityandhardnessarecommonlyconfusedwitheachotherasbothareexpressedasthemgofcalciumcarbonate(CaCO3)perliter(Allan&Castillo,2009).Inmanysystemsthesetwoparametersarehighlycorrelated,butitispossibleforsystemstobehighinoneparameterandnottheotherone.HardnesswassampledforStreamMAPfrom2011to2016.AllQA/QCblanksandduplicateswereinacceptableranges.StreamMAPdataindicatedthattheheadwatersites(WISS850andWISS800)weremorevariablethantherestofthewatershed(Figure6-30).Hardnesswaslowerattheheadwatersites,increasedatsiteWISS700,decreasedtoWISS550,andincreasedtoWISS400andthendecreasedtothemouthoftheWissahickonCreek.MostsitesthroughouttheWissahickonWatershedwereabove180mg/Landwereconsidered‘veryhard,’exceptforSR300andT400thatwereabove120mg/Land

Page 75: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

75

considered‘hard.’TheWissahickonCCRfoundasimilartrendandhadnosamplesitesthatwerebelow103mg/L(PWD,2007).OveralltheWissahickonCreekisveryhardanditisunlikelytohaveincreasedtoxicityofdissolvedmetalsduetolackofhardness.

Figure6-30.Hardnesswassampledforallfourseasonsfrom2011to2016duringdryweather.Thefilledincirclesrepresentthemedianhardnessconcentrationsofthesitesthatweresampledduringalldryweatherevents.Thehollowcirclesarethehardnessconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.Thesolidlineat180mg/Listhecutoffbetween‘hard’and‘veryhard’water.

BacteriaBacteriaweremeasuredinthreedifferentformsforStreamMAP,includingE.coli,fecalcoliform,andtotalcoliform.E.coliwascollectedfrom2004to2006,totalcoliformfrom2008to2010,andfecalcoliformfrom2004to2016withsomebreaksbetween2008and2010wheretotalcoliformwasusedinstead.E.coliisthemajorspeciesoffecalcoliformthatisonlyfoundindigestivetractsofanimalsandrarelyoccursnaturallyintheenvironment.Totalcoliformisameasureofallofthecoliformbacteriathatisfoundinasample.Coliformbacteriaarefoundinthedigestivetractofanimals,includinghumans,andinsoilsandplants.Fecalcoliformsarecoliformsthatarespecificallyfoundinthedigestivetractsofwarm-bloodedanimals(mammalsandbirds)andtheirwastes.Thesearemorespecifictobacteriacontaminationfromwastesthantotalcoliform.PAWQSforwaterbodiesclassifiedforwatercontactsportsislessthan200colonyformingunits(CFU)/100mloffecalcoliformbasedonfivesamplestakenwithina30dayperiodbetweenMay1andSept30andlessthan2000CFU/100mlbasedonfiveconsecutive

Page 76: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

76

samplestakenwithina30dayperiodfortherestoftheyear.TheWissahickonCreekisaTSFanddoesnothaveanyWQSforcoliforms.

E.coliE.colisampleswerecollectedfrom2004to2006includingsixdryweatherandonewetweathersamplingevent.AllsampleswerecollectedbeforeQA/QCprotocols.Resultsfrom2004to2006indicatedanE.coliwaselevatedduringwetweathersamplingcomparedtodryweathersampling(Figure6-31).DuringdryweathersamplingE.coliwasvariableanddidnotexhibitastrongupstream/downstreamtrend.

Figure6-31.E.coliwassampledfrom2004to2006,includingsevendryweathersamplingeventsandonewetweathersamplingevent.ThefilledincirclesrepresentthemediantotalE.coliduringdryweatheratthesitesthatweresampledforallsevenevents.ThehollowcircleistheE.coliofWISS750fromonesamplingeventintheFallof2004.ThetrianglesaretheE.coliduringonewetweathersamplingeventinNov2006.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.

TotalcoliformTotalcoliformwascollectedforthreeseasonsin2008,twoseasonsin2009,thefallof2010,andwinterof2011.Ofthesevensamplingevents,fourofthemalsohadfecalcoliformcollectedandtheremainingthreesamplingeventsallhadtotalcoliformconcentrationsthatexceededthemethoddetectionlimits.QA/QCduplicateswerecollectedtwicefortotalcoliformandonewasinanacceptablerangewhiletheotherwasnot.Giventhesefactors,totalcoliformresultswillnotbereportedandfecalcoliformwillbeusedinstead.

FecalcoliformFecalcoliformwascollectedsemi-continuouslyfrom2004to2016.In2015and2016thenumberofsiteswithfecalcoliformcollectionswerereducedinordertomeetsample-handlingtimes.AllQA/QCsampleblankswerewithinacceptableranges,whileonly5ofthe15sampleduplicateswereinacceptableranges.Theresultsoffecalcoliformsamplingwillstillbereportedhere,butthedatashouldnotbeusedtomakeconclusionsaboutfecalcoliformintheWissahickonWatershed.

Page 77: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

77

From2004to2011,onewetweatherand16dryweathersamplingeventstookplace.ThewetweathersamplingeventhadmoreCFUthanthedryweathersamplingevents(Figure6-32).Therewasnostrongupstream/downstreamtrend.Datafrom2012wasnotusedbecausetheaveragefecalcoliforminthespringandsummerof2012wasover8000CFU/100ml.From2013to2016theresultswerevariableateachsite,butthemedianwaslessthan200CFU/100mlatallWissahickonmainstemsites(Figure6-33).Inthetributaries,T100hadthelowestconcentration.Lastly,theseasonaldifferenceswerelookedatwiththefivesitesthatweresampledforallof2013and2016andfoundthatthesummerwashighestandwinterwaslowestinfecalcoliform.ThoughtheStreamMAPdatashouldbeevaluatedwithcaution,manyofthepatternsseeninStreamMAPwerealsofoundintheWissahickonCCR,includingelevatedfecalcoliformduringwetweathereventsanddryweathereventstypicallybelow200CFU/100ml(PWD,2007).

Figure6-32.Fecalcoliformwassampledfrom2004to2011duringdryweatherandonewetweathersamplingevent.Thefilledincirclesrepresentthemedianfecalcoliformofsitesthatweresampledduringalldryweatherevents.Thehollowcirclesarefecalcoliformofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.ThetrianglesarethefecalcoliformduringonewetweathersamplingeventinNov2006.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.ResultsshouldbelookedatwithcautionasQA/QCresultswerebeyondacceptablelimits.

Page 78: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

78

Figure6-33.Fecalcoliformwassampledforallfourseasonsfrom2013to2016duringdryweather.Thefilledincirclesrepresentthemedianfecalcoliformconcentrationsofthesitesthatweresampledduringalldryweatherevents.Thehollowcirclesarethefecalcoliformconcentrationofthesitesthatwerenotsampledforallsamplingeventsandhavemissingdata.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.ResultsshouldbelookedatwithcautionasQA/QCresultswerebeyondacceptablelimits.

AluminumAluminumisnaturallyoccurringfromweatheringrocksandgroundwaterinputs,butisalsofoundinindustrialdischarges.AluminumwasaparameterforStreamMAPfrom2004to2006includingsevendryweatherandonewetweathersamplingevent.NosampleswerecollectedforQA/QCpurposes.TheEPArecommendsaquaticlifecriteriaforaluminumof0.75mg/L(USEPA,2004).Aluminumconcentrationsneverexceededtheaquaticlifecriteriaforanysamplingevents(Figure6-34).Aluminumwasbelowthemethoddetectionlimit(0.1mg/L)for17ofthe34dryweathersamples.AluminumconcentrationswerehighestatthemiddleWissahickonsites(WISS550,WISS500,andWISS400).Aluminumconcentrationswereelevatedduringtheonewetweathersamplingeventcomparedtothedryweathersample,butwasstillbelowtheaquaticlifecriteria.TheWissahickonCCRalsoobservedincreasedaluminumconcentrationsduringwetweathersamplingevents(PDW,2007).

Page 79: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

79

Figure6-34.Aluminumwassampledfrom2004to2006,includingsevendryweathersamplingeventsandonewetweathersamplingevent.Thefilledincirclesrepresentthemedianaluminumconcentrationsduringdryweatheratthesitesthatweresampledforallsevenevents.ThehollowcircleisthealuminumconcentrationofWISS750fromonesamplingeventintheFallof2004.ThetrianglesarethealuminumconcentrationsduringonewetweathersamplingeventinNov2006.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.TheUSEPArecommendsanaquaticlifecriteriaoflessthan0.75mg/L.

IronIronisnaturallyoccurringintheenvironmentfromweatheringofrocksandgroundwaterinputs.Typically,ironislowinfreshwaterenvironmentsandisnottoxictoorganisms.IroncanbecometoxicinsystemswithlowpH,butStreamMAPsamplinghasindicatedthattheWissahickonWatershedpHistypicallyfrom7to9.TheUSEPArecommendsanaquaticlifecriteriaoflessthan1.0mg/Lforiron(USEPA,2004).ThePAWQSforironislessthan1.5mg/Loftotalrecoverableironasa30-dayaverageforTSF(PA,2001).IronwasaparameterforStreamMAPfrom2004to2006,includingsevendryweatherandonewetweathersamplingevent.NosampleswerecollectedforQA/QCpurposes.IronconcentrationsintheWissahickonCreekwerealwaysbelowtheaquaticlifecriteriaalldryweathersamplingevents(Figure6-35).Theonewetweathersamplingeventhadelevatedironconcentrations,butconcentrationswerestillbelowtheaquaticlifecriteriaandthePAWQS.From2004to2006,ironconcentrationsslightlyincreasedfromupstreamsitestoWISS400andthendecreasedatWISS150.WISS400hadthehighestironconcentrations,possiblyduedotheincreaseingroundwaterintheWissahickonCreekaboveWISS400.TheWissahickonCCRreportedsimilarresultstoStreamMAPfindingsincludingthatironwaspresentinmostsamplesandironconcentrationswereelevatedduringwetweatherevents,possiblyduetostormwaterrunoffthroughironpipingandstormdrains(PWD,2007).

Page 80: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

80

Figure6-35.Ironwassampledfrom2004to2006,includingsevendryweathersamplingeventsandonewetweathersamplingevent.Thefilledincirclesrepresentthemedianironconcentrationsduringdryweatheratthesitesthatweresampledforallsevenevents.ThehollowcircleistheironconcentrationofWISS750fromonesamplingeventintheFallof2004.ThetrianglesaretheironconcentrationsduringonewetweathersamplingeventinNov2006.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.

TotalorganiccarbonTotalorganiccarbon(TOC)infreshwatersystemsisfromsoils,vegetation,algae,andothersources.TOCisparticularlyofinteresttowatertreatmentfacilities,whereincreasedTOCconcentrationsrequireadditionaltreatmentfordrinkingwater.TOCwasaparameterforStreamMAPatsixsitesfrom2004to2006,includingsevendryweathersamplingandonewetweathersampling.NosampleswerecollectedforQA/QCpurposesduringthesesamplingeventsandTOCdoesnothaveaWQS.TOCintheWissahickonCreekhadaconsistentupstream/downstreampatternduringthedryweathersamplingevents.TOCwaslowatWISS750andWISS600,increasedatWISS550andthendecreasedmovingdownstreamtothemouthoftheWissahickon(Figure6-36).TheonewetweathersamplingeventonNov2008hadelevatedTOCconcentrationsatallsites,asraineventsbringorganiccarbonintothestreamthroughrunoff.

Page 81: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

81

Figure6-36.Totalorganiccarbonwassampledfrom2004to2006,includingsevendryweathersamplingeventsandonewetweathersamplingevent.Thefilledincirclesrepresentthemediantotalorganiccarbonconcentrationsduringdryweatheratthesitesthatweresampledforallsevenevents.ThehollowcircleisthetotalorganiccarbonconcentrationofWISS750fromonesamplingeventintheFallof2004.ThetrianglesarethetotalorganiccarbonconcentrationsduringonewetweathersamplingeventinNov2006.Theerrorbarsindicatethe25thand75thpercentilesofallsamplingeventsateachsite.

BromideBromideiscommoninmarinesystems,butistypicallylowinfreshwatersystems.Higherconcentrationsinfreshwatersystemsaretypicallyassociatedwithminingoperationsforfossilfuels(McTigueetal.,2014).BromidewasaparameterforStreamMAPatsixsitesfrom2004to2006,includingsevendryweathersamplingandonewetweathersampling.NosampleswerecollectedforQA/QCpurposesduringthesesamplingeventsandtherearenowaterqualitystandardsforbromideinPennsylvaniaforatroutstockedfisheryorrecommendedaquaticlifecriteria.StreamMAPresultsindicatedlowbromideconcentrationsintheWissahickonCreek.Ofthe34samplingevents,onlysixhaddetectableconcentrationsofbromide(>0.1mg/L).NobromidewasdetectedduringthewetweathersamplingeventinNov2008.Overall,bromidewasrarelydetectedintheWissahickonWatershed,asexpectedbecausetherearenominingactivitiesintheWissahickonCreek.

ConclusionsWVWAStreamMAPwascreatedtoprovideabetterunderstandingofthewaterqualityoftheWissahickonWatershedincludingupstream/downstreamtrends,changesovertime,andtoidentifyproblemareasinthewatershed.StreamMAPresultsindicatedthatthewaterqualityoftheWissahickonWatershedshowssignsofdevelopment,humaninteraction,andtheurbanstreamsyndrome.

Page 82: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

82

StreamMAPdataindictedthattheWissahickonWatershedhadelevatednutrientconcentrationsfrom2004to2016.Allnutrientconcentrationshadasimilarupstream/downstreampatternintheWissahickonWatershed(Figure6-37,6-38).Thesitesupstreamofwastewatertreatmentplantshadthelowestnutrientconcentration.Thesitesdirectlydownstreamofwastewatertreatmentplants(WISS750,WISS550,SR200)allhadthehighestnutrientconcentrations.Inaddition,thesiteswithlowconcentrationswerealsodownstreamofasmalldrainageareaandarepotentiallysubjecttolessnutrientrichrunofffromfertilizerandlanduse,whichalsocontributetoelevatednutrientsinurbanandsuburbansystems.Lastly,orthophosphateandtotalphosphorusconcentrationshaddecreasingtrendsfrom2008to2016atthreeWissahickonmainstemsites,butmostsitesstillhaveconcentrationsthatareabove0.04mg/L,thedraftTMDLlimit.AnotherindicatorofdevelopmentintheWissahickonWatershedwaselevatedconcentrationsoftotaldissolvedsolids,chloride,andsulfate.Theseparametersallfollowasimilarupstream/downstreampatternwithhighconcentrationsatWISS750anddecreasingconcentrationsmovingtowardthemouthoftheWissahickonCreek(Figure6-39,6-40).Totaldissolvedsolidsandchloridehadlargeseasonalvariations,withthehighestconcentrationsoccurringinthewinter.TheelevatedconcentrationsinthewinterarelikelyfromroadsaltswashingintotheWissahickonCreek.Totaldissolvedsolidsandchlorideconcentrationswerealsofoundtobeincreasingatseveralsitesbetween2011and2016.Parametersthatwereprimarilyinfluencedbygeology,includingalkalinityandhardness,hadanupstream/downstreampatternofincreasedconcentrationsaroundthemiddleofthewatershed(WISS550/WISS400),wheregroundwaterbecomesalargerproportionofthestreamflowintheWissahickonCreek.Additionally,nearlyallcollectedparametersdecreasedinconcentrationfromWISS400tothemouthoftheWissahickon.Itispossiblethatthisdecreaseinconcentrationisduetodilutionfromincreasedflow,butwithoutflowdataforallsamplingeventsitisunclear.Thereareseveralotherwatershedwidetrendstonote.First,therewerelowconcentrationsoftracemetals(aluminumandiron)andbromideintheWissahickonWatershed.Thiswasexpected,asthereisnominingactivityintheWissahickonandlimitedindustrialdischargethroughoutthewatershed.Second,thetributarysitestendedtohavethelowestconcentrationsofallcollectedparameters.ProphecyCreek(T400),themostprotectedsubwatershedintheWissahickonWatershed,consistentlyhadthebestwaterquality.Fourth,thereweresomeindicationsthatWISS700,downstreamofanareawithnotreecanopy,hadhigherproductivityandtemperatures.Thishighlightstheimportanceofthetreecanopytoprotectstreams.Finally,nitrateandsulfatebothsignificantlydecreasedatWISS800from2011–2016,withadistinctreductioninconcentrationsafter2013whentheNorthWalesWastewaterTreatmentPlantwasclosed.

Take-awaypointsandsummarymapsAfewtakeawaypointsfromwaterqualitymonitoringintheWissahickonWatershedfrom2004to2016:

• PhosphorusconcentrationsdecreasedatfourWissahickonCreeksitesbetween2008and2016,andincreasedatoneSandyRunsite.However,phosphorusconcentrationsintheWissahickonWatershedarestillelevatedandflowdatawouldbeneededtodetermineifthephosphorusloadingalsodecreasedduringthistimeperiod.

Page 83: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

83

• Thelowestnutrientconcentrationsarefoundupstreamofwastewatertreatmentplantsandinsmalldrainageareas.Thehighestnutrientconcentrationswerefoundatdownstreamofwastewatertreatmentplants(Figure6-37,6-38).

• ProphecyCreek,themostprotectedsubwatershed,hasthebestwaterqualityoftheStreamMAPsites.

• Chlorideandtotaldissolvedsolidconcentrationsarehigherinthewintersamplingseason,likelyduetorunoffofroadsalts.Chlorideconcentrationswerecommonlyabovetherecommendedaquaticlifecriterialimitinthewinter.

• Atsomesites,chlorideandtotaldissolvedsolidsconcentrationshadsignificantincreasingtrendsfrom2011to2016.Flowdataisneededtodetermineiftheloadingalsoincreasedduringthistimeperiod.

• ChlorideandTDSconcentrationswerehighestatsiteWISS750andthendecreasedmovingdownstreamtothemouthoftheWissahickonCreek(Figure6-39,6-40).

Page 84: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

84

Figure6-37.Totalphosphorus(TP)wassampledforallfourseasonsfrom2011to2016duringdryweather.ThemaprepresentsthemedianTPconcentrationsateachsitefrom2011to2016.Sitesbetween0and0.04mg/LwerebelowtheEPAproposedTMDLTPlimitof0.04mg/L.Allsiteswerenotsampledfrom2011to2016.

Total Phosphorus

Page 85: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

85

Figure6-38.Nitratewassampledforallfourseasonsfrom2011to2016duringdryweather.Themaprepresentsthemediannitrateconcentrationsateachsitefrom2011to2016.Allsiteswerenotsampledfrom2011to2016.

Page 86: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

86

Figure6-39.Chloridewassampledforallfourseasonsfrom2011to2016duringdryweather.Themaprepresentsthemedianchlorideconcentrationsateachsitefrom2011to2016.Allsiteswerenotsampledfrom2011to2016.

Page 87: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

87

Figure6-40.Totaldissolvedsolids(TDS)weresampledforallfourseasonsfrom2011to2016duringdryweather.ThemaprepresentsthemedianTDSconcentrationsateachsitefrom2011to2016.Allsiteswerenotsampledfrom2011to2016.

Page 88: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

88

SECTIONSEVEN:CONCLUSIONSTheWVWAcollecteddatafortheStreamMonitoringandAssessmentProgram(StreamMAP)from2004to2016,includingmacroinvertebratesurveys(2011to2015),habitatassessments(2011–2016),andwaterquality(2004to2016).EachcomponentofStreamMAPprovidedevidencethattheWissahickonWatershedhasimpairmentsthatareassociatedwithurban/suburbandevelopment.Theseimpairments,knownastheurbanstreamsyndrome,arecommoninwatershedswithmorethan10%imperviouscoverandtheWissahickonWatershedhas29%imperviouscover.TheexpectedimpactsofhighimperviouscoveraredetailedinSectionTwo.ThesamefigureusedinSectionTwo(page12)todescribetheurbanstreamsyndromewillbeusedheretodescribetheevidencefromStreamMAPoftheseimpairments(Figure7-1).

Figure7-1.SiteWISS550withlettershighlightingsignsoftheurbanstreamsyndrome.

Intheabovefigure:• (A)Duringarainevent,stormwaterquicklyrunsoffimperviouscover,likethe

picturedbridge,directlyintothecreekornearbystormdrainandisthenpipedintothecreekwithouttreatment.Stormwatercanberichintrash,roadsalt,andnutrientsfromfertilizers.

o StreamMAPwaterqualitysamplingdatafoundelevatedtotaldissolvedsolids,chloride,andnutrientsintheWissahickonWatershed(SectionSix).

• (B)Duetoincreasedimperviouscover,stormwaterentersthecreekmorequicklythaninanaturalsystemandathighervolumes,causinglargeerosionevents.

o StreamMAPhabitatassessmentsfoundlowbankstabilityscoresatseveralsites,indicatingerosioninthewatershed(SectionFour).

Page 89: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

89

• (C)Erosionreleasessedimentfromthebanksthatdepositsonthestreambedandreducesthequalityofhabitatformacroinvertebrates.

o StreamMAPhabitatassessmentsfoundthatembeddednesswasthelowestrankedparameterthroughouttheWissahickonWatershed,signifyingthatsedimentfromerosioneventsiscoveringthestreambedandreducingthehabitatforaquaticorganisms(SectionFour).TheStreamMAPmacroinvertebratesurveysindicatedthatthemacroinvertebratecommunitywasconsistentlyimpairedintheWissahickon.TheaveragePennsylvaniaindexofbioticintegrity(IBI)intheWissahickonWatershedwaslessthan20%,andanyIBIbelow50%isconsideredimpaired(SectionFive).

• (D)Overtime,erosioncausesthestreambedtowiden,thestreamdepthtoreduce,andthestreamflowtobecomehomogenous.

o StreamMAPhabitatassessmentsfoundreducedflowdiversitywithanaveragescoreof11(scale0-20)fortheparametervelocity/flowregime(SectionFive).

• (E)Asthestreambedwidens,moresunlightisabletoreachthestreambedduetothetreesbeingsetbackfromthestream.

• (F)Additionalsunlight,plustheadditionalnutrientsfromstormwaterrunoffandotherinputs,allowsforprolificalgaegrowththatreducesthehabitatqualityforaquaticorganisms.

o StreamMAPdidnotdirectlysurveyalgaeproductivity,butdiurnalfluctuationsassociatedwithalgaeproductivitywerefoundindissolvedoxygenandpHeveninsamplingthatwasrestrictedtothedaytime(SectionSix).DiurnalfluctuationsinpHanddissolvedoxygenareclearatUSGScontinuousgages(Gage#01474000and#01473900).Additionally,themacroinvertebratecommunitywasimpairedwithlittlediversitythroughoutthewatershed(SectionFive).

StreamMAPdatasupportsthattheWissahickonWatershedhasimpairmentsthatarecommonlyfoundinstreamsinurban/suburbansystems.TheWissahickonWatershedwouldbenefitfromactionsthatmitigatetheimpactsofdevelopment,including:

• Widespreadimplementationofgreeninfrastructuretoreducetheeffectiveimperviouscover.Thisincludesbreakinguplargesectionsofexistingimperviouscover,likeparkinglots,andaddinggreeninfrastructure(e.g.,raingardens)throughout.

• Restoringtheriparianbufferandtreecanopywhereneeded.• Upgradingwastewatertreatmentplantstoreducenutrientconcentrations.• Stormwaterbestmanagementpractices,includingimprovingstormwaterdetention

basinstoincludeinfiltrationofstormwater.• Implementinglowimpactdevelopmentpracticesforanynewdevelopments.

StreamMAPalsofoundpositivesignsintheWissahickonWatershed.First,habitatassessmentsweretypicallymarginalorsuboptimal,higherthanwouldbeexpectedifthelanddirectlysurroundingtheWissahickonCreekwerenotpreservedaspartoftheGreenRibbonPreserve.Thiswasparticularlyevidentinthehigherhabitatscoresassociatedwithchannelalteration,bankvegetativeprotection,andriparianvegetativezone.Second,while

Page 90: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

90

nutrientsremainhigh,since2008phosphorusconcentrationshavedecreasedatfoursitesontheWissahickonCreek,butalsoincreasedatonesiteontheSandyRun.Third,ProphecyCreek,themostprotectedsubwatershed,wasconsistentlythebest-ratedsite,highlightingtheimportanceofprotectingopenspaceandmaintainingatreecanopy.Lastly,theclosingoftheNorthWalesWastewaterTreatmentPlantin2013wascorrelatedwithreductionsinnitrateandsulfateconcentrationsatWISS800,justdownstreamoftheclosedplant.

Page 91: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

91

LITERATURECITEDAcademyofNaturalSciencesofDrexelUniversity(ANS).2014.QualityAssuranceProjectPlanforClusterGroups:DelawareRiverWatershedInitiative.Allan,J.D.andCastillo,M.M.2009.StreamEcology:StructureandFunctionofRunningWaters.SecondEdition.Springer.Dordrecht,TheNetherlands.Barbour,M.T.,J.Gerritsen,B.D.Snyder,andJ.B.Stribling.1999.RapidBioassessmentProtocolsforUseinStreamsandWadeableRivers:Periphyton,BenthicMacroinvertebratesandFish,SecondEdition.UnitedStatesEnvironmentalProtectionAgency.OfficeofWater.Washington,D.C.EPA841-B-99-002.CenterforWatershedProtection.2003.Impactsofimperviouscoveronaquaticecosystems.WatershedProtectionResearchMonographNo.1.EllicottCity,Maryland.CommonwealthofPennsylvaniaDepartmentofEnvironmentalProtection.(PA)2001.PennsylvaniaCodeTitle25.EnvironmentalProtection.Chapter93.WaterQualityStandards.Gorman,O.T.andKarr,J.R.1978.HabitatStructureandStreamFishCommunities.Ecology,59:507–515.doi:10.2307/1936581.Maddock,I.1999.Theimportanceofphysicalhabitatassessmentforevaluatingriverhealth.FreshwaterBiology.41:373–391.Meyer,J.L.,M.J.Paul,andW.K.Taulbee.2005.Streamecosystemfunctioninurbanizinglandscapes.JournaloftheNorthAmericanBenthologicalSociety.24:602–612.MichiganDepartmentofEnvironmentalQuality(MDEQ).TotalSuspendedSolids.Retrievedfromhttp://www.michigan.gov/documents/deq/wb-npdes-TotalSuspendedSolids_247238_7.pdf).PennsylvaniaDepartmentofEnvironmentalProtection(PADEP).2012.ABenthicMacroinvertebrateIndexofBioticIntegrityforWadeableFreestoneRiffle-RunStreamsinPennsylvania.DivisionofWaterQualityStandards.PhiladelphiaWaterDepartment(PWD).2002.PhiladelphiaWaterDepartment–Belmont&QueenLaneTreatmentPlants(PWSID#151001)Section3:QueenLaneIntakeSourcesWaterAssessmentReport.PhiladelphiaWaterDepartment(PWD).2007.WissahickonCreekWatershedComprehensiveCharacterizationReport.Roy,A.H.,A.D.Rosemond,M.J.Paul,D.S.Leigh,andJ.B.Wallace.2003.Streammacroinvertebrateresponsetocatchmenturbanisation(Georgia,USA).FreshwaterBiology.48:329–346.

Page 92: Wissahickon Watershed Stream Monitoring and Assessment ......Figure 6- 40. A map of the Wissahickon Watershed sites and median total dissolved solide concentrations from 2011 to 2016

92

TempleUniversityandNewell,TereskaandMackayEngineering.2014.WissahickonCreekWatershedAct167Plan.UnitedStatesEnvironmentalProtectionAgency(USEPA).2003a.ModelingReportforWissahickonCreek,PennsylvaniaNutrientTMDLDevelopment.UnitedStatesEnvironmentalProtectionAgency(USEPA).2003b.NutrientandSiltationTMDLDevelopmentofWissahickonCreek,Pennsylvania.UnitedStatesEnvironmentalProtectionAgency(USEPA).2004.NationalRecommendedWaterQualityCriteria.OfficeofWater.UnitedStatesEnvironmentalProtectionAgency(USEPA).2015a.TotalPhosphorusTMDLfortheWissahickonCreekWatershed,Pennsylvania.UnitedStatesEnvironmentalProtectionAgency(USEPA).2015b.EvaluationofNutrientsasaStressorofAquaticLifeinWissahickonCreek,PA.UnitedStatesGeologicalSurvey.WaterHardnessandAlkalinity.Website:https://water.usgs.gov/owq/hardness-alkalinity.html.VisitedonFeb2017.URS.2011.WVWAFieldMethodology.InternalReport.UnitedStatesGeologicalSurvey(USGS).2016.TheStreamStatsprogram,onlineathttp://streamstats.usgs.gov.AccessedonNov2016.Walsh,C.J.,A.Roy,J.W.Feminella,P.D.Cottingham,P.M.Groffman,andR.P.Morgan.2005.Theurbanstreamsyndrome:currentknowledgeandthesearchforacure.JournaloftheNorthAmericanBenthologicalSociety.24(3):706-723.Walsh,C.J.,T.D.Fletcher,andA.R.Ladson.2005.Streamrestorationinurbancatchmentsthroughredesigningstormwatersystems:lookingtothecatchmenttosavethestream.JournaloftheNorthAmericanBenthologicalSociety.24:690–705.WissahickonValleyWatershedAssociation(WVWA).2013.StreamMonitoringandAssessmentProgram:2012Report.InternalDocument.


Recommended