+ All Categories
Home > Documents > WJ_1978_02_s57

WJ_1978_02_s57

Date post: 03-Jun-2018
Category:
Upload: leadstructure
View: 214 times
Download: 0 times
Share this document with a friend

of 6

Transcript
  • 8/11/2019 WJ_1978_02_s57

    1/6

    Stress G ra d ie n t C o r re c t io n Fac tor fo r

    Stress In te n s i ty a t W e l d e d G usset P la tes

    Stress gradient correction factor is determ ined for gusse t plates

    with circular transitions and groove welded to flange tips

    B Y N . Z E T T L E M O Y E R A N D J . W . F I S H E R

    T h e d r i v i n g f o r c e b e h i n d f a t i g u e

    r o p a g a t i o n is t h e r a n g e o f s t re s s

    i t y f a c t o r , A K . T h i s p a r a m e t e r i s

    s u p e r i m p o s i n g v a r

    c o r r e c t i o n f a c t o r s o n A K f o r a

    t h r o u g h c r a c k in a n i n f i n i t e

    t e n s i o n . ' '

    1

    ' -

    1

    n e o f t h e c o r r e c t i o n f a c t o r s , F

    e

    , is th e

    r es s g r a d i e n t c o r r e c t i o n f a c t o r a n d i s

    n d e d to a c c o u n t f o r e i t h e r a n o n -

    o r st re s s c o n c e n t r a t i o n c a u s e d b y

    T h e a u t h o r s ' e v a l u a t e d

    F

    e

    f o r s t i f f

    e d u r e e m p l o y e d is o f t e n c a l l e d

    G r e e n ' s f u n c t i o n o r s u p e r p o s i t i o n

    i 1 7

    I n t h i s a p p r o a c h t h e

    in t h e c r a ck f r ee bo d y a r e used

    a t e s t re s s i n t e n s i t y b y m e a n s o f

    a p p r o p r i a t e G r e e n ' s f u n c t i o n . T h e

    v a n t a g e is t h a t o n l y o n e st r es s a n a l

    e n t t e c h n i q u e ) n e e d s t o b e m a d e

    e a c h j o i n t g e o m e t r y . T h e o n l y

    u i r e m e n t i s t h a t t h e c r a c k p l a n e b e

    o w n in a d v a n c e .

    T h e o b j e c t i v e s o f t h e s u b j e c t s t u d y

    1. T o d e t e r m i n e F

    E

    f o r gu ss e t p l a t e s

    i t h c i r c u l a r t r a n s i t i o n s a n d g r o o v e

    2. T o p r o v i d e f o r t h e a u t o m a t i c

    r e d i c t i o n o f

    F

    K

    f o r a n y c r a c k l e n g t h

    r a r y d e t a i l g e o m e t r y .

    I n g e n e r a l , t h e p r o c e d u r e p r e v i o u s l y

    t h e a u t h o r s ' w a s f o l

    l o w e d ;

    t h e o n l y m a j o r d i f f e r e n c e w a s

    h e d e t a i l i n v o l v e d .

    N. ZETTLEMOYER is Research Engineer,

    Exxon Production Research Co., Houston,

    Texas; /. W. FISHER is Professor ol Civil

    Engineering, Fritz Engineering Laboratory,

    Lehigh University, Bethlehem, Pennsylvan

    ia.

    C r a c k F r e e S t r e ss A n a l y s i s

    A na l y t i ca l Mode l

    T h e b a s i c g e o m e t r y f o r t h e g u s s e t

    p l a t e i n v e s t i g a t i o n i s s h o w n i n F ig . 1 .

    S y m m e t r y w a s a s s u m e d a b o u t t h e

    g u s se t m i d l e n g t h a n d th e w e b c e n t e r -

    l i n e . ( T h e i m p l i e d s y m m e t r i c a l g u s s e t s

    o n o p p o s i t e f l a n g e t i p s a r e c o m m o n i n

    b r i d g e s a n d a l s o m a x i m i z e s t re s s

    concen t ra t i on .

    7

    ) F u l l p e n e t r a t i o n o f

    t h e w e l d w a s t h e o n l y c a s e c o n s i d

    e r e d ;

    t h e w e l d d e p t h w a s t a k e n a s

    c o n s t a n t a n d e q u a l t o t h e g u s s e t p l a t e

    t h i c k n e s s . T h e t e r m i n a t i o n o f t h e w e l d

    a t t h e p o i n t o f t r a n s i t i o n t a n g e n c y w a s

    a s s u m e d t o b e g r o u n d s m o o t h t o

    m a i n t a i n t h e i n t e n d e d c o n t o u r . T h e

    w e l d t h i c k n e s s i n t h e p l a n e o f t h e

    f l a n g e a n d g u s s e t w a s t a k e n a s p a r t o f

    t h e g u s s e t w i d t h .

    F o u r v a r i a b l e s w e r e s t u d i e d . T h e y

    w e r e t h e t r a n s i t i o n r a d i u s R , t h e

    a t t a c h m e n t l e n g t h L , t h e g u s s e t p l a t e

    w i d t h W

    g p

    , a n d t h e g u s s e t p l a t e t h i c k

    ness T

    gp

    . T a b l e 1 l i st s t h e p a r a m e t r i c

    c o m b i n a t i o n s i n v e s t i g a t e d . E a c h o f t h e

    v a r i a b le s w a s n o n d i m e n s i o n a l i z e d b y

    e i t h e r f l a n g e w i d t h o r t h i c k n e s s . T h e

    f l a n g e w i d t h w a s t y p i c a l l y 1 2 i n . ( 30 5

    m m ) .

    A ll p r o b l e m s w e r e a n a l y z e d t w o -

    L / 2

    d i m e n s i o n a l l y ; h e n c e , o n l y t h e r e l a t iv e

    p l a t e t h i c k n e s s e s w e r e i m p o r t a n t . E c

    c e n t r i c i t y o f t h e g u s se t p la t e ' s c e n t r o i -

    dal p l a n e a t m id th i ckness r e l a t i v e t o

    t h e f la n g e c e n t r o i d a l p l a n e w a s n e

    g l e c t e d .

    P l a n e s t re s s e l e m e n t s f r o m a n e x i s t

    i n g f i n i t e e l e m e n t c o m p u t e r p r o g r a m ,

    S A P I V ' , w e r e u s e d f o r t h e s t re s s a n a l y

    sis.

    Y o u n g ' s m o d u l u s w a s s e t a t 2 9 ,6 0 0

    ks i ( 2 x 1 0 ' M P a ) , an d P o i ss on ' s r a t i o

    was t aken t o be 0 .30 . T he f ac t t ha t a

    g u s s e t t r a n s i t i o n w a s a s s u m e d g r e a t l y

    s i m p l i f i e d th e i n v e s t i g a t i o n s i n c e n o

    s i n g u l a r i t y e x i s t e d a t t h e d e t a i l . T h u s ,

    t h e v e r y f i n e m e s h s i z e s u s e d i n t h e

    p r e v i o u s s t i ff e n e r a n d c o v e r p l a t e

    a n a l y s e s ' w e r e u n n e c e s s a r y . S t i l l , as

    t h e ra d i u s d e c r e a s e d c o n c e n t r a t i o n

    i n c r e a s e d a n d t h e e m p h a s i s o n m e s h

    s i z e a l s o i n c r e a s e d . T h e m e s h s i z e h a d

    t o b e s m a l l e n o u g h i n e a c h g e o m e t r y

    t o c a p t u r e t h e p e a k c o n c e n t r a t i o n .

    U n i f o r m s t re s s w a s i n p u t t o a t w o -

    d i m e n s i o n a l c o ar s e m e s h w h i c h e m

    p l o y e d p l a n e s t re s s e l e m e n t s . F or

    g u s s e t s w i t h l a r g e t r a n s i t i o n r a d i i

    ( R / W , > 0 . 5 ), t h e e l e m e n t w i t h t h e

    h i g h e s t s tr e s s w a s l o c a t e d a n d t h a t

    v a l u e w a s u s e d t o d e t e r m i n e t h e

    m a x i m u m s tr es s c o n c e n t r a t i o n f a c t o r ,

    2.42W

    f

    /2

    gp

    W

    f

    /2

    Gusset Plate

    r Groove Weld

    X Flange Tip

    Region of Interest

    Flange

    Point of Transition

    Tangency

    x;

    Symmetry *- Web (

    Fig.

    1Detail

    geome try for gusset plate investigation

    WELDING RESEARCH SUPPLEMENT

    I

    57-s

  • 8/11/2019 WJ_1978_02_s57

    2/6

    2 1667 W

    f

    4@O I667Wf

    [email protected]

    f

    0.04l7W

    f

    6

    ()0.0208W

    f

    2 0.0417 Wf

    2

    a)

    0.0833W

    f

    O.I667W

    f

    l . 2083W

    f

    R/W

    f

    = 0 .25

    L/W = 4.33

    W

    g p

    /W

    f

    =

    1.00

    3 10

    3 @ '

    0.0833Wf 0.0208W

    f

    0.0833Wf

    Fig. 2Sample coarse mesh for gusset plate investigation

    SCF.

    For gussets wi th smal l t ransi t ion

    rad i i ( R / W , < 0.5), i t was also neces

    sary to emp loy a f i ne mesh wh ich used

    the d i sp lacemen t ou tpu t o f the coa rse

    mesh as input . SCF was der iv ed f ro m

    the max imum cen t ro ida l s t ress found

    in any o f the f ine e lements.

    A sample coarse mesh is given in Fig.

    2. T h e b o u n d a r y co n d i t i o n s p r e ve n t

    noda l d i sp lacemen ts a t and pe rpen

    d icu lar to l ines o f symmetryFig. 1. In

    genera l , the f lange d iscre t iza t io n is

    una f fec ted by the va r ious pa rame t r i c

    changesTable

    1. In fact , the d iscre t i

    zat ion of the gusset plate is also

    basica l ly constant except the extent

    var ies wi th the parametr ic va lues.

    D iscre t i za t i ons fo r o the r geomet r i es

    can be deve loped by ske tch ing the

    per im eter o f the gusset on F ig. 2 and

    obse rv ing the mesh pa t te rn w i th in the

    boundar ies . I f ex tens ion o f the w id th is

    r e q u i r e d ,

    the e lement s izes are

    i d e n

    t ica l to those in the current outer row.

    In the t ransi t ion zone the mesh for a

    smal l rad ius is fo un d by s imp ly

    extend ing the g iven mesh l ines.

    The coa rse mesh does con ta in some

    er ro r due to the i naccu ra te rep resen

    ta t i on o f the c i r cu la r t rans i t i on w i th

    s t ra igh t l i nes (cho rds) be tween nodes.

    The nodes themse lves a re pos i t i oned

    d i rec t l y on the cu rve . One way to

    measure the geometr ica l er ror is by the

    largest dev ia t i on o f any cho rd f rom the

    curve , as a perc ent o f the rad ius -

    Figure 3 shows this error can be

    est ima ted f rom the cho rd l eng th and

    the cu rve rad ius . The max imu m cho rd

    length var ies s ign i f ican t ly f rom rad ius

    to rad ius s ince the la rger rad i i reach

    the larger mesh sizes. However, the

    largest error is fo un d for the s ma l lest

    radius and is under 5%.

    In the tangency reg ion the error is

    a lways less than 1 % . Such error in

    geom et ry is cons ide re d to have a

    negl ig ib le e f fect on resu l tspart icu

    lar ly s ince the e lement 's cent ro ida l

    stress was used for SCF w i t ho ut ext ra p

    o la t ion. Theoret ica l ly, s ingu lar st ress

    cond i t i ons do ex i s t a t the skewed

    in tersect ions o f chords, but the ang le

    d i f fe rence be tween cho rds i s a lways

    ve ry s l i gh t and the i n te rsec t i ons them

    se lves rece ive no specia l f in i te e lement

    t rea tmen t .

    The reg ion o f in terest fo r h ighest

    s tress con cen t ra t i o n is in the v i c i n i t y o f

    the po in t o f t rans i t i on tangency-F ig .

    1. Based on pho toe la st ic stud ies ma ny

    re fe rences suggest tha t the max imum

    concen t ra t i on occu rs p rec i se l y a t the

    po in t o f tangency .

    1 3

    -

    1 S , K

    H o w e ve r ,

    the f ind ings o f th is study ind icate the

    wors t con d i t i o n is s l i gh t l y rem oved

    f rom th i s po in t . The dev ia t i on o f the

    p o i n t o f ma x i mu m co n ce n t r a t i o n f r o m

    the po in t o f t rans i t i on tangency cou ld

    be caused by the cho rd app rox ima t ion

    o f the smoo th cu rve .

    In order to examine th is premise, the

    resu l ts f rom two d i f fe rent coarse mesh

    d i sc r e t i za t i o n s w e r e co mp a r e d . O n e

    mes h size was eq ual to th at in Fig. 2,

    whi le the o ther was twice as la rge in

    the reg ion o f in terest . The resu l t ing

    po si t io n o f SCF f ro m the po in t o f

    tangency was found a t rough ly R /5 for

    both discretizations. (Th is app rox im a

    t ion seems to be reasonable for any

    rad ius no mat ter what the gusset p la te

    l e n g t h ,

    w id th , o r th i ckness. ) H ence ,

    Transition Curve

    % Error= 100[-=-] 100 [l -cos(S)] = 100 [l

    J\

    - ( ^ - )

    Fig. 3Geometric error due to approxima

    tion of transition curve by chords

    0 0 0 4 0 W

    f

    I9O0002I

    W

    f

    5

    0 0

    0042 W.

    5 @0 . 0 2 0 8

    W

    f

    Max. Stress Concentrat ion

    /-Point Of Tangency

    2 0 )

    0.0208 W,

    Fig. 4Sample fine mesh for gusset plate investigation

    5 8 -s I F E B R U A R Y 19 78

  • 8/11/2019 WJ_1978_02_s57

    3/6

    he chord approx imat ion d id no t

    appear to cause the shi f t in maximum

    onc en t ra t i o n l oc a t i on .

    The crack path can be assumed

    perpend icu la r to the f l ange t i p o r the

    i rect ion of s t ress input .

    s

    Hence, SCF

    represents s t ress in the d i rect ion of

    app l ied st ress, but not gen eral ly r ight

    at the point of tangency. Nevertheless,

    the nominal s t ress used to evaluate

    SCF was that wh ich was inp ut

    (i.e.,

    that across the f lange width pr ior to

    the t rans i t i on) .

    Figure 4 presents a typical f ine mesh

    d isc re t i za t ion . Imposed boundary d is

    p lacements are e i ther taken di rect ly or

    der i ved by l i near in te rpo la t ion f rom

    the output of the coarse

    meshFig.

    2.

    The mesh size is typical of f ine

    d isc re t i za t ions fo r o ther rad i i . Since

    the max imum s t ress concent ra t ion

    fac to r is norm al l y somew hat remo ved

    f rom the po in t o f tangency , the f i ne

    mesh usual ly doesn' t s t raddle that

    l o ca t i o n . However, the cases of

    R

  • 8/11/2019 WJ_1978_02_s57

    4/6

    3.0

    SCF

    2.0

    Peterson

    J L

    0.1 0.2 0.3 0.4 0.5

    W,

    Fig.

    5Variation

    of maximum stress con

    centration factor with gusset plate tran

    sition radius

    2 . 0 0

    I W.

    1.75

    S CF

    1.50

    1.25

    1.00

    D a t a Point ( t yp . )

    W,

    0.25

    0 . 5 0

    P e te r son

    1.0

    2.0

    3 .0 4 .0

    5.0

    Wf

    Fig. 6Variation of maximu m stress concentration factor with gusset p late

    length

    1.75 r -

    1.25

    -

    1.00

    Data Point ( typ.)

    o o

    Peterson

    igp

    =4 . 33

    =1.00

    0.5

    1.0

    W,

    gp

    w

    3.0

    2.5

    SCF

    2.0

    1.5-

    1.5

    2.0

    1.0

    _ o -

    -a

    A

    _ J > '

    A

    __o- -

    J >

    R

    ___--

    A

    ___

    -cr

    Wf

    4.33

    1.67

    1.00

    0.67

    =0 . 083

    'gp

    1.00

    0.25

    0.50

    T,

    0.75

    1.00

    gp

    Fig.

    7Variation

    ot maximu m stress concentration factor with Fig. 8Variation of maxim um stress concentration factor with gusset

    gusset plate width plate thickness

    f u n c t i o n p r o p o s e d b y A l b r e c h t a n d

    Y a m a d a . ' T h e n u m e r i c a l f o r m o f t h e F

    s

    e q u a t i o n c a n b e w r i t t e n a s:

    -

    2 m

    r

    / **

    j

    +1 \

    K

    t l

    [ a r c s i n ( j J

    J

    1

    H^ ]

    (2)

    i n w h i c h a is t h e c r a c k l e n g t h a n d / is

    t h e d i s t a n c e a l o n g t h e c r a c k p a t h . K,j

    is t h e s tr es s c o n c e n t r a t i o n i n e l e m e n t j

    o f th e fi n i t e e l e m e n t d i s c r e t i z a t i o n ; /,,.,

    a n d /j a r e t h e d i s t a n c e s t o o p p o s i t e

    s i d e s o f e l e m e n t j . L i m i t m i s

    t h e n u m b e r o f e l e m e n t s t o c r a c k

    l e n g t h a .

    F i g u r e 1 0 p r e s e n t s F

    B

    d e c a y c u r v e s

    (F

    g

    /SCF) f o r s a m p l e g u s s e t p l a t e

    d e t a i l s . A s w i t h t h e s t i f f e n e r s a n d

    c o v e r p l a t e s , S C F a l o n e d o e s n o t

    d i c t a t e t h e e n t i r e d e c a y c u r v e . '

    1 1

    T h e F

    p r e d i c t i o n p r o c e s s m u s t a c c o u n t f o r a

    d i f f e r e n t m i x o f g e o m e t r i c a l p a r a m e

    t e r s t h a n a f f e c t s S C F a l o n e .

    Co r r ec t i on F ac to r P r ed i c t i on

    A n a l y s t s o f t e n d e s i r e a m e a n s o f

    p r e d i c t i n g F

    B

    w i t h o u t f i n i t e e l e m e n t

    s t u d i e s. O n e a p p r o x i m a t e f o r m u l a f o r

    p r e d i c t i n g F a u t o m a t i c a l l y i s : '

    SCF

    1

    1 + - a

    d

    (3)

    i n w h i c h a is t h e n o n d i m e n s i o n a l i z e d

    c r a c k l e n g t h , a / W

    r

    . F o r a t y p i c a l g u s s e t

    p l a t e g e o m e t r y c o n s t a n t s d a n d q c a n

    be t ak en as 1 . 158 an d 0 . 6 0 5 1 , r e s p e c

    t i v e l y .

    A m o r e p r e c i s e p r o c e d u r e f o r p r e

    d i c t i n g t h e e n t i re F

    E

    c u r v e f o r a r b i t r a r y

    g e o m e t r i c c o n d i t i o n s is c o m p a r a b l e t o

    t h a t a d o p t e d e a r l i e r b y t h e a u t h o r s . '

    T h e a c t u a l F

    g

    d e c a y c u r v e s a r e c o r r e

    l a t e d w i t h t h e s tr es s c o n c e n t r a t i o n

    d e c a y f r o m a n e l l i p t i c a l h o l e i n a n

    i n f i n i t e p l a t e . S i n c e S CF is g e n e r a l l y

    l es s t h a n 3 . 0, t h e h o l e i s o r i e n t e d w i t h

    i ts m i n o r s e m i d i a m e t e r , h , p e r p e n d i c

    u l a r t o t h e a p p l i e d s t r e s s .

    F i g u r e 1 1 a s h o w s t h e e l l i p s e s h a p e i s

    d i r e c t l y r e l a t e d t o S C F . K n o w i n g S C F

    [ e q

    ( 1 ) ] ,

    t h e p r o p e r e l l i p s e s h a p e c a n

    b e e s t a b l i s h e d t h r o u g h r e a r r a n g e m e n t

    o f t h e f o l l o w i n g e q u a t i o n :

    h

    SCF = 1 + 2 -

    g

    (4)

    F i g u r e 1 1 b d e m o n s t r a t e s t h a t t h e

    r a p i d i t y o f s tr es s c o n c e n t r a t i o n d e c a y

    60-s I FEBRUARY 1978

  • 8/11/2019 WJ_1978_02_s57

    5/6

    9Stress concentration factor decay

    prospective crack path across flange

    at sample gusset plate detail

    p e n d s o n a c t u a l h o l e s i z e , n o t j u s t

    H e n c e , t o p r e d i c t F

    g

    f r o m t h e

    K, c u r v e , s e m i d i a m e t e r

    t b e k n o w n . Fo r g u s s e t p la t e s t h e

    r e l a t i o n b e t w e e n t h e c u r v e s is

    u p o n e q u a l l if e p r e d i c t i o n f o r

    g r o w t h t o t h e w e b l i n e .

    S t re s s c o n c e n t r a t i o n d e c a y a l o n g t h e

    i n o r a xi s o f a n e l l i p t i c a l h o l e ( u n i a x -

    l t e n s i o n i n m a j o r a xi s d i r e c t i o n ) c a n

    as :

    1

    I i -j

    1 + 2e

    2T

    -

    4e-

    2

    +

    e

    -[

    H

    l+ 2e

    + e Y

    } {

    ,n

    | +

    3

    +

    s i n h ( 2 n ) { c o s h ( 2 n ) + l c o s h ( 2 y ) +

    } ] / ( c o s h ( 2 n ) + l )

    ;

    (5)

    w h i c h n is t h e g e n e r a l e l l i p t i c c o o r

    a t e a n d y i s t h e v a l u e o f n a s s o

    d w i t h t h e h o l e p e r i m e t e r . T h e

    o r d i n a t e c a n r e a d i l y b e

    e v a l

    (6)

    i nh(y ) = I y g v2

    L ( h ) - 1 J

    s i n h ( n ) = 1 + 5 \ sin h(y ) (7)

    F o r a n y g i v e n g e o m e t r y a n d c r a c k

    a , t h e s t re s s c o n c e n t r a t i o n

    K, is k n o w n if h is k n o w n .

    r , i f h h as b e e n c o r r e l a t e d t o

    K, a n d F

    g

    , t h en t h e s t r ess

    i e n t c o r r e c t i o n f a c t o r is a l s o e s t a b

    A c o r r e l a t i o n s t u d y f o r t h e g e o m e

    T a b le 1 h as r e l a t e d t he

    t i m u m e l l i p s e s i ze t o t h e v a r i o u s

    m e t r i c a l p a r a m e t e r s a n d i n i t i a l

    T h e r e s u l t i n g r e g r e s s i o n

    _

    - 0 . 0 1 6 2 0 - 0 . 1 1 0 5

    0 .03 3 07

    (

    W ,

    w,

    (Equation continued on

    next page)

    11Two steps required for ellipse

    Oi 02

    0 3

    RELATIVE DISTANCE - i /Wf

    R/Wf L/W f Wgp/Wf Tgp/Tf SC F

    0 5

    0.500

    0.083

    0.083

    0.I67

    0.083

    4.33

    0.67

    0.67

    8.67

    4.33

    I.O

    I.O

    I.O

    2.0

    I.O

    I.O

    0.5

    I.O

    I.O

    I.O

    1.465

    1.770

    2.022

    2.229

    2.788

    Fg/SCF

    0 . 2 0.3

    d/Wf

    Fig. 1 0 - f j . decay curves for sample g usset plate details

    0 . 4 0 . 5

    a Measured From Ellipse Tip

    SCF = F (h/g)

    (3) \ _ / XD

    K, = G(SC F,a /g) = G (h /g , a /h )

    v

    [p-Direct ion of Applied Stress (typ.)

    a. Ellipse Shape

    b. Ellipse Size

    WELDING RESEARCH

    SUPPLEMENT

    I

    61-s

  • 8/11/2019 WJ_1978_02_s57

    6/6

    (Equation continued from previous page)

    L \

    nnn

    *.n,

    1

    0.02821

    (

    W

    r

    )

    - 0 . 0 0 2 4 3 6

    W

    - 0 . 0 0 8 7 7 6 /

    K

    *,

    )

    -

    0 .032 91

    I

    - ?

    Y

    + 1.673

    ( W, )

    ( W

    f

    )

    + 0 . 004437

    43.49

    w T )

    (

    w;

    )

    0 .08587

    (

    r.

    (8)

    T h e s t a n d a r d e r r o r o f e s t i m a t e , s , f o r e q

    (8) is 0 .01070.

    T h e c r a c k s h a p e a s s u m e d i n t h e

    a b o v e c o r r e l a t i o n s t u d y w a s q u a r t e r -

    e l l i p t i c a l (a t t h e c o r n e r o f t h e f l a n g e

    t i p ) u n t i l la r g e e n o u g h t o f o r m a

    t h r o u g h ( e d g e ) c r a c k . ' H e n c e , t h e

    p o i n t o f t r a n s i t i o n b e t w e e n q u a r t e r -

    e l l i p s e a n d t h r o u g h c r a c k w a s d i c t a t e d

    b y f l a n g e t h i c k n e s s . F or t h i c k n e s s e s u p

    t o 1 i n . , h w a s f o u n d t o b e u n a f f e c t e d

    b y c r a c k s h a p e c o n s i d e r a t i o n s . H o w

    e v e r , l a r g e r t h i c k n e s s e s r e q u i r e d a

    m o d i f i c a t i o n t o e q (8 ) .

    F o r a n y f l a n g e t h i c k n e s s l a r g e r t h a n

    1 i n . , e q (8 ) s h o u l d b e m u l t i p l i e d b y

    t h e f o l l o w i n g a m p l i f i c a t i o n f a c t o r :

    1.0

    U

    3 4 .5 4

    log ( W , )

    (9)

    w h e r e U

    = 1.0

    1.0 for

    1 i n . < T

    r

    < 2 i n .

    T

    f

    > 2 in .

    T y p i c a l l y , t h i s f a c t o r r e s u l t s i n a

    ch a n ge i n h o f l e ss t h a n 1 5% .

    C o n c l u s i o n

    S tr es s c o n c e n t r a t i o n a n a l y s e s h a v e

    b e e n c o n d u c t e d f o r v a r i o u s g e o m e

    t r ie s o f g u s s e t p l a t e s g r o o v e - w e l d e d t o

    f l a n g e t i p s . E a c h r e s u l t i n g s t r e s s c o n

    c e n t r a t i o n f a c t o r d e c a y c u r v e w a s

    t r a n s f o r m e d i n t o a s tr es s g r a d i e n t

    c o r r e c t i o n f a c t o r f o r c r a c k t i p i n t e n s i t y

    t h r o u g h u s e o f a G r e e n ' s f u n c t i o n . T h e

    c o r r e c t i o n f a c t o r c u r v e s w e r e c o r r e

    l a t e d w i t h s tr es s c o n c e n t r a t i o n f a c t o r

    d e c a y f r o m a n e l l i p t i c a l h o l e i n a

    u n i a x i a l l y s t r e s s e d p l a t e . E a c h c o r r e l a

    t i o n r e s u l t e d in a n o p t i m u m s i z e o f

    e l l i p t i c a l h o l e f o r p r e d i c t i n g t h e c o r

    r e c t i o n f a c t o r c u r v e . G i v e n t h e o p t i

    m u m e l l i p s e s i ze , a u t o m a t i c p r e d i c t i o n

    o f s tr es s c o n c e n t r a t i o n e f f e c t s o n

    f a t i g u e c r a c k g r o w t h f o r a r b i t r a r y

    g e o m e t r i e s i s p o s s i b l e .

    References

    1.

    Alb rec ht, P., and Yam ada , K.,' Ra pid

    Calcu la t ion o f S t ress In tens i ty Factors ,

    lournal of the Structural Division, ASCE,

    V o l .

    103, No. ST2, Proc. Paper 12742,

    February 1977, pp. 377-389.

    2.

    Batcheler, R. P., Stress Co nc en tra t io n

    at Gusset P la tes w i th Curve d Tra ns i t ion s,

    CE 103 Repor t , Leh igh Un ivers i ty , Beth le

    h e m ,

    Pa., M ay 1975.

    3. B athe , K.

    ).,

    Wi lso n, E . L , and Peterson,

    F. E SAP I V - A S t ruc tura l Ana lys is

    Program for S ta t ic and Dynamic Response

    of L inear Systems, Ear thqu ake E ng inee r ing

    Research Center Report No. EERC 73-11,

    Univers i ty o f Ca l i fo rn ia , Berke ley , Ca l i fo r

    n ia , June 1973 (revised Apr i l 1974).

    4. Biez eno , C. B., and Gr am m el, R.,

    E las t ic P rob lems o f S ing le Mach ine E le

    men t s , V o l . I I , Engineering Dynam ics,

    Black ie & Son, L td . , London, Eng land, 1956,

    p p . 84-90.

    5. Boyer, K. D., Fisher, |. W ., I r w i n , C. R.,

    Roberts, R., Kr ishna, G. V., Morf , U and

    Slo ck bow er, R. E., Fra ctu re Analyse s of Ful l

    S ize Beams wi th We lde d Latera l A t t ac h

    me nts , F r itz Eng ine er ing Labora tory Re

    por t N o. 399-2(76), Leh igh Un ivers i ty , Beth

    l e h e m , Pa., Ap ril 1976.

    6. Fisher, J. W. , Alb rec ht, P. A., Ye n, B. T

    K l i nge r man , D . I., and McNamee , B . M . ,

    Fat igue S t rength o f S tee l Beams wi th

    W e lded S t i f f ene r s and A t t achmen ts ,

    NCHRP Repor t No. 147 , T ranspor ta t ion

    Research Board , Nat io na l Research Cou nc i l ,

    W ash ing ton , D . C , 1 97 4 .

    7. Gurney, T. R., Fatigue of Welded Struc

    tures, Ca mb r idge Un ive rs i ty P ress, Lo ndo n,

    E n g l a n d ,

    1968.

    8. Koba yas hi, A. S., A Simple Proc edu re

    for Est imat ing Stress Intensi ty Factor in

    Reg ion o f High St ress Gr ad i en t , S ign i f i

    cance o f Defects in Welded S t ruc tures,

    Proceedings, 1973 Japan-U.S. Seminar, U n i

    versi ty of T ok yo Press, To ky o, Japan, 1974,

    p. 127.

    9. Law renc e, F. V., Es t im at i on o f Fa

    t igue-Crack Propagat ion L i fe in But t

    W e l d s , Welding lournal, 52, (5) , Ma y 1973,

    Research Supp l . , p p . 212-s to 220-s.

    10. M ad do x, S. J ., Assess ing the S ign i f i

    cance of Flaws in Welds Subject to Fa

    t i g u e ,

    Welding lournal, 53 (9), Sept., 1974,

    Research

    Supp l . ,

    p p . 401 -s to 409-s.

    1.1.

    N eube r , H. , Kerbspannungslehre, 2nd

    e d i t i o n , Spr inger -Ver lag , Ber l in , Germany,

    1958,

    pp. 52-56.

    12 . Paris, P. C , and S ih, G. C, Stress

    Ana lys is o f Cracks, Fracture Toughness

    Testingand Its Applications, STP381, A m e r

    ican Soc ie ty fo r Test ing and Mater ia ls , Ph i l

    adelphia, Pa., 1965, p. 30.

    13 .

    Peterson, R. E., Stress Concen tration

    Factors, J. W ile y & Sons, Ne w Y ork, N. Y.,

    1974.

    14. Ra ndal l , P. N., Sev er i ty of Na tural

    Flaws as Fracture Or igi ns , and a Study of the

    S u r f ace -Cr acked S pec im en , A F ML- T R- 66 -

    204,

    August 1966 (pub l ishe d in AST M STP

    410,

    p. 88).

    15 .

    Seely , F. B., an d Sm ith , ).

    O.,

    Advance d M echanics of Materials, 2nd

    e d i t i o n ,

    W i le y , N e w Y o r k / L o n d o n / S y d n e y /

    Toronto , 1952.

    16 . Tad a, H., Paris, P. C , an d

    I r w i n ,

    G. R.,

    The Stress Analysis o f Cracks Handbo ok,

    Del Research Corpora t ion , He l le r town, Pa. ,

    1973.

    17 . Tada, H. , and I r w i n , G. R., K-Value

    Analys is fo r Cracks in Br idge S t ruc tures,

    Fr i tz Eng ineer ing Labora tory Repor t No.

    399.1, Leh igh Un ivers i ty , Beth lehem, Pa. ,

    June 1975.

    18 . T imoshenko , S . , Strength of Materi

    als, Part IIAdvanced Theory and Problems,

    3 r d ed i t i on , D . V an Nos t r and , P r i nce ton /

    N e w Y o r k / T o r o n t o / L o n d o n , 1 9 5 6 .

    19 . Ze tt le mo ye r, N ., and Fisher, J. W.,

    Stress Gradient Correct ion Factor for Stress

    In tens i ty a t We lde d S t i f feners and Co ver

    P la tes , Welding lournal, 56 (12), Dec . 1977,

    Research Suppf, pp. 393-s to 398-s.

    A p p e n d i x

    T h e f o l l o w i n g s y m b o l s a re u s e d i n

    t h i s p a p e r :

    a = c r ac k s i ze

    D = c h o r d l e n g t h o n g u s s e t p l a t e

    c i r c u l a r t r a n s i t i o n

    F

    B

    = s tr es s g r a d i e n t c o r r e c t i o n f a c

    t o r

    g = m a j o r s e m i d i a m e t e r o f e l l i p

    t i c a l h o l e i n a n i n f i n i t e p l a t e

    h = m i n o r s e m i d i a m e t e r o f e l l i p

    t i c a l h o l e i n a n i n f i n i t e p l a t e

    K, = s tr es s c o n c e n t r a t i o n f a c t o r

    A K = r a n g e o f s t r es s i n t e n s i t y f a c t o r

    / = d i s t a n c e a l o n g c r a c k p a t h f r o m

    o r i g i n

    l o g = l o g a r i t h m t o b a s e 1 0

    L = a t t a c h m e n t l e n g t h

    m

    = n u m b e r o f f i n i t e e l e m e n t s t o

    c r a c k l e n g t h a; m a x i m u m d i s

    t a n c e b e t w e e n g u s s e t p l a t e

    c i r c u l a r t r a n s i t i o n a n d c h o r d

    a p p r o x i m a t i o n

    R = r a d i u s o f c i r c u l a r t r a n s i t i o n a t

    e n d o f g r o o v e - w e l d e d g u s s et

    p l a t e

    s = s t a n d a r d e r r o r o f e s t i m a t e

    S CF = m a x i m u m s tr es s c o n c e n t r a t i o n

    f a c t o r a t t h e c r a c k o r i g i n

    T, = f l a n g e t h i c k n e s s

    T

    r a

    = g u s s e t p l a t e t h i c k n e s s

    W , = f l a n g e w i d t h

    W

    g p

    = g u s s e t p l a t e w i d t h

    o = n o n d i m e n s i o n a l i z e d c r a c k

    l e n g t h , a / W ,

    y = v a l u e o f e l l i p t i c c o o r d i n a t e n

    r e p r e s e n t i n g e l l i p t i c a l h o l e p e

    r i m e t e r

    n = e l l i p t i c c o o r d i n a t e

    6 = h a l f o f a n g l e d e l i n e a t i n g c h o r d

    l e n g t h o f g u s s e t p l a t e c i r c u l a r

    t r a n s i t i o n

    6 2 - s l F E B R U A R Y 1 9 7 8