+ All Categories

wli07

Date post: 04-Jun-2018
Category:
Upload: adriana-rezende
View: 218 times
Download: 0 times
Share this document with a friend

of 66

Transcript
  • 8/14/2019 wli07

    1/66

    Porosity Mineralogy Logs

    PorosityMineralogy Logs

  • 8/14/2019 wli07

    2/66

    Porosity Mineralogy Logs

    PorosityMineralogy LogsObjectives:

    Density Logging Gamma Ray Back Scattering

    Compensated Density 2 or 3 detectors

    Neutron Logging Slowing Down Length

    Neutron Thermalization and AbsorptionCompensated Neutron Ratio Effect of Gas

    Sonic Logging Slowness of Wave TravelBorehole Compensation

    Depth of Investigation

  • 8/14/2019 wli07

    3/66

  • 8/14/2019 wli07

    4/66

    Porosity Mineralogy Logs

    Density Logging

    Gamma Ray Back

    Scattering

  • 8/14/2019 wli07

    5/66

    Porosity Mineralogy Logs

    DensityTool

  • 8/14/2019 wli07

    6/66

    Porosity Mineralogy Logs

    Gamma RayInteractions

  • 8/14/2019 wli07

    7/66

    Porosity Mineralogy Logs

    Density of Common Minerals

  • 8/14/2019 wli07

    8/66

    Porosity Mineralogy Logs

    Correction

    for

    Standoff

  • 8/14/2019 wli07

    9/66

    Porosity Mineralogy Logs

    Density

    Correction by

    Spine and Ribs

  • 8/14/2019 wli07

    10/66

  • 8/14/2019 wli07

    11/66

    Porosity Mineralogy Logs

    Log of

    CorrectedBulk

    Density

  • 8/14/2019 wli07

    12/66

  • 8/14/2019 wli07

    13/66

    Porosity Mineralogy Logs

    Compensated Density Log

    Gamma Ray bombardment

    multiple collisions with electrons

    energy loss due to Compton scattering

    size of Gamma Ray cloud inversely

    proportional to electron density

  • 8/14/2019 wli07

    14/66

    Porosity Mineralogy Logs

    Density Summary

    bombardment by medium energy GRs

    interactions with electrons in formation

    Compton scattering

    size of cloud of GRs inversely

    proportional to electron density

  • 8/14/2019 wli07

    15/66

  • 8/14/2019 wli07

    16/66

    Porosity Mineralogy Logs

    NeutronInteractions

  • 8/14/2019 wli07

    17/66

    Porosity Mineralogy Logs

    Neutron Nuclei Interaction

  • 8/14/2019 wli07

    18/66

    Porosity Mineralogy Logs

    Thermal Neutron Annihilation

  • 8/14/2019 wli07

    19/66

    Porosity Mineralogy Logs

    Neutron

    Slowing Down Length

  • 8/14/2019 wli07

    20/66

    Porosity Mineralogy Logs

  • 8/14/2019 wli07

    21/66

  • 8/14/2019 wli07

    22/66

  • 8/14/2019 wli07

    23/66

  • 8/14/2019 wli07

    24/66

    Porosity Mineralogy Logs

    Neutron Logging Technologies Emission Detection

    Fast Neutron Thermal Neutron

    Fast Neutron Capture Gamma

    Fast Neutron Epithermal Neutron

  • 8/14/2019 wli07

    25/66

    Porosity Mineralogy Logs

  • 8/14/2019 wli07

    26/66

    Porosity Mineralogy Logs

    NeutronLog

  • 8/14/2019 wli07

    27/66

    Porosity Mineralogy Logs

    Simple Neutron Logging bombardment by 5 MeV neutrons elastic coll isions with nuclei

    energy lost per collision depends onrelative mass of nucleus

    hydrogen is most effective

    size of neutron cloud inversely proportional tohydrogen content

    population of neutron cloud is a function ofabsorption qualit ies

  • 8/14/2019 wli07

    28/66

    Porosity Mineralogy Logs

    Neutron

    CalibrationPit

  • 8/14/2019 wli07

    29/66

    Porosity Mineralogy Logs

    Compensated Neutron Logging

    reduces borehole effects

    reduces salinity effects

    increases depth of investigation

  • 8/14/2019 wli07

    30/66

    Porosity Mineralogy Logs

    Comp.

    Neutron

    Log

  • 8/14/2019 wli07

    31/66

    Porosity Mineralogy Logs

  • 8/14/2019 wli07

    32/66

    Porosity Mineralogy Logs

    Compensated Neutron Calibration

  • 8/14/2019 wli07

    33/66

    Porosity Mineralogy Logs

    Depth of Investigation

  • 8/14/2019 wli07

    34/66

    Porosity Mineralogy Logs

    Density

    NeutronLog

  • 8/14/2019 wli07

    35/66

    Porosity Mineralogy Logs

    Neutron Logs are Hydrogen Logs

    Neutron Logs are sensitive to . . .porosity

    matrix material

    gas saturation

    clay

    light oil

  • 8/14/2019 wli07

    36/66

    Porosity Mineralogy Logs

    Factors Affecting Neutron Logs

    anything withHydrogen

    WATER

    clay

    oil

    gas

  • 8/14/2019 wli07

    37/66

    Porosity Mineralogy Logs

    Clay Minerals Contain Hydrogen

    in OH ion in crystal lattice

    in electrostatically bound water

    on platelet surfaces

    therefore clay strongly impactsNeutron logs

  • 8/14/2019 wli07

    38/66

    Porosity Mineralogy Logs

    Neutron Response in Gas

    Hydrogen concentration in gas is low

    compared to water or oil

    apparent Neutron porosity isanomalously low

  • 8/14/2019 wli07

    39/66

    Porosity Mineralogy Logs

    D-N

    Combo

    Gas

    Indicator

  • 8/14/2019 wli07

    40/66

    Porosity Mineralogy Logs

    D-N GasDetection

  • 8/14/2019 wli07

    41/66

    Porosity Mineralogy Logs

    Neutron Logging

    greater H content

    larger N absorption

    cross section

    smaller N cloud size lower count rate

    higher N

    lower N population lower count rate higher N

  • 8/14/2019 wli07

    42/66

  • 8/14/2019 wli07

    43/66

    Porosity Mineralogy Logs

    Neutron Summary bombardment by 5 MeV neutrons

    elastic coll isions with nuclei

    energy loss per collision

    size of neutron cloud inversely

    proportional to Hydrogen content

    population of neutron cloud related

    to absorption qualities

  • 8/14/2019 wli07

    44/66

    Porosity Mineralogy Logs

    Sonic / Acoustic Logging

  • 8/14/2019 wli07

    45/66

    Porosity Mineralogy Logs

    Sonic Logging

    1. Send out pulsefrom magnetostrictive transmitter

    2. Listen for received signal at two ormore different distances

    3. Record acoustic signal waveformand differences in arrival time

  • 8/14/2019 wli07

    46/66

    Porosity Mineralogy Logs

    from the Sonic Transmitter . . .

    Energy spreads spherically

    Velocity differences distort sphere

    S di T itt E

  • 8/14/2019 wli07

    47/66

    Porosity Mineralogy Logs

    Spreading Transmitter Energy

  • 8/14/2019 wli07

    48/66

    Porosity Mineralogy Logs

    Transmission Modes

  • 8/14/2019 wli07

    49/66

  • 8/14/2019 wli07

    50/66

  • 8/14/2019 wli07

    51/66

    Porosity Mineralogy Logs

    Rough HoleEffect

  • 8/14/2019 wli07

    52/66

    Porosity Mineralogy Logs

    BoreholeCompensation

  • 8/14/2019 wli07

    53/66

    Porosity Mineralogy Logs

    BHCSonic

  • 8/14/2019 wli07

    54/66

  • 8/14/2019 wli07

    55/66

    Porosity Mineralogy Logs

    SonicErrors

    Long

  • 8/14/2019 wli07

    56/66

    Porosity Mineralogy Logs

    Long

    SpacingCure

    BHC for

  • 8/14/2019 wli07

    57/66

    Porosity Mineralogy Logs

    BHC for

    LongSpacing

  • 8/14/2019 wli07

    58/66

    Porosity Mineralogy Logs

    Unscrambling SonicTransmission Modes

    Longer spacingvelocity differences separate P, S, T

    Array of receivers

    semblance processing coherency plot

    Dipole shear imaging tool

    generates flexural wave directly

  • 8/14/2019 wli07

    59/66

    Porosity Mineralogy Logs

    Array Sonic Tool

  • 8/14/2019 wli07

    60/66

    Porosity Mineralogy Logs

    ArraySonic

  • 8/14/2019 wli07

    61/66

  • 8/14/2019 wli07

    62/66

  • 8/14/2019 wli07

    63/66

    Porosity Mineralogy Logs

    Soft RockShear Absent

    Flexural

  • 8/14/2019 wli07

    64/66

    Porosity Mineralogy Logs

    Wave fromDSI

    Dipole

  • 8/14/2019 wli07

    65/66

    Porosity Mineralogy Logs

    p

    ShearImager

  • 8/14/2019 wli07

    66/66

    Porosity Mineralogy Logs

    Sonic Summary

    Initiate acoustic wave and measureslowness

    Compressional, Shear, and Stoneleytransmission modes

    Compressional is fastest