+ All Categories
Home > Documents > Work Energy

Work Energy

Date post: 21-Jul-2016
Category:
Upload: arvind-kumar
View: 42 times
Download: 8 times
Share this document with a friend
Description:
Practise questions
21
1. A brother and sister take the same time to run up a set of steps. The sister has a greater mass than her brother. Which of the following is correct? Has done the most work Has developed the greatest power A. brother brother B. brother sister C. sister brother D. sister sister (Total 1 mark) 2. The graph shows the variation with force F of the extension s of a spring. The work done in changing the extension of the spring from 3.0 cm to 6.0 cm is A. 15 N cm. B. 30 N cm. C. 45 N cm. D. 60 N cm. (Total 1 mark) 3. For a particle moving at constant speed in a horizontal circle, the work done by the centripetal force is A. zero. B. directly proportional to the particle mass. C. directly proportional to the particle speed. D. directly proportional to the (particle speed) 2 . (Total 1 mark) 4. The variation with time of the vertical speed of a ball falling in air is shown below. 1
Transcript
Page 1: Work Energy

1. A brother and sister take the same time to run up a set of steps. The sister has a greater mass than her brother. Which of the following is correct?

Has done the most work Has developed the greatest power

A. brother brother

B. brother sister

C. sister brother

D. sister sister(Total 1 mark)

2. The graph shows the variation with force F of the extension s of a spring.

The work done in changing the extension of the spring from 3.0 cm to 6.0 cm is

A. 15 N cm.

B. 30 N cm.

C. 45 N cm.

D. 60 N cm.(Total 1 mark)

3. For a particle moving at constant speed in a horizontal circle, the work done by the centripetal force is

A. zero.

B. directly proportional to the particle mass.

C. directly proportional to the particle speed.

D. directly proportional to the (particle speed)2.(Total 1 mark)

4. The variation with time of the vertical speed of a ball falling in air is shown below.

1

Page 2: Work Energy

During the time from 0 to T, the ball gains kinetic energy and loses gravitational potential energy Ep. Which of the following statements is true?

A. Ep is equal to the gain in kinetic energy.

B. Ep is greater than the gain in kinetic energy.

C. Ep is equal to the work done against air resistance.

D. Ep is less than the work done against air resistance.(Total 1 mark)

5. Mechanical power

(a) Define power.

...................................................................................................................................

...................................................................................................................................(1)

(b) A car is travelling with constant speed v along a horizontal straight road. There is a total resistive force F acting on the car.

Deduce that the power P to overcome the force F is P = Fv.

...................................................................................................................................

...................................................................................................................................

...................................................................................................................................

...................................................................................................................................(2)

(c) A car drives up a straight incline that is 4.8 km long. The total height of the incline is 0.30km.

2

Page 3: Work Energy

The car moves up the incline at a steady speed of 16 m s–1. During the climb, the average

friction force acting on the car is 5.0 102 N. The total weight of the car and the driver is

1.2 104 N.

(i) Determine the time it takes the car to travel from the bottom to the top of the incline.

.........................................................................................................................

.........................................................................................................................

.........................................................................................................................(2)

(ii) Determine the work done against the gravitational force in travelling from the bottom to the top of the incline.

.........................................................................................................................(1)

(iii) Using your answers to (c)(i) and (c)(ii), calculate a value for the minimum power output of the car engine needed to move the car from the bottom to the top of the incline.

.........................................................................................................................

.........................................................................................................................

.........................................................................................................................

.........................................................................................................................

.........................................................................................................................

.........................................................................................................................(4)

(d) From the top of the incline, the road continues downwards in a straight line. At the point where the road starts to go downwards, the driver of the car in (c), stops the car to look at the view. In continuing his journey, the driver decides to save fuel. He switches off the engine and allows the car to move freely down the hill. The car descends a height of 0.30 km in a distance of 6.4 km before levelling out.

3

Page 4: Work Energy

The average resistive force acting on the car is 5.0 102 N.

4

Page 5: Work Energy

Estimate

(i) the acceleration of the car down the incline.

.........................................................................................................................

.........................................................................................................................

.........................................................................................................................

.........................................................................................................................

.........................................................................................................................

.........................................................................................................................

.........................................................................................................................(5)

(ii) the speed of the car at the bottom of the incline.

.........................................................................................................................

.........................................................................................................................(2)

(e) In fact, for the last few hundred metres of its journey down the hill, the car travels at constant speed. State the value of the frictional force acting on the car whilst it is moving at constant speed.

...................................................................................................................................(1)

(Total 18 marks)

6. A vehicle is driven up a hill at constant speed. Which of the following best describes the energy changes involved?

A. Chemical energy is converted into gravitational potential energy.

B. Chemical energy is converted into gravitational potential energy, sound and thermal energy.

C. Gravitational potential energy is converted into chemical energy.

D. Gravitational potential energy is converted into chemical energy, sound and thermal energy.

(Total 1 mark)

7. A lift (elevator) is operated by an electric motor. It moves between the 10th floor and the 2nd

5

Page 6: Work Energy

floor at a constant speed. One main energy transformation during this journey is

A. gravitational potential energy → kinetic energy.

B. electrical energy → kinetic energy.

C. kinetic energy → thermal energy.

D. electrical energy → thermal energy.(Total 1 mark)

8. A constant force acts on a mass that is initially at rest. Which of the following graphs best showshow the kinetic energy EK of the mass changes with the work W done on the mass? Friction is negligible.

(Total 1 mark)

9. A vehicle is driven up a hill at constant speed. Which of the following best describes the energy changes involved?

A. Chemical energy is converted into gravitational potential energy.

B. Chemical energy is converted into gravitational potential energy, sound and thermal energy.

C. Gravitational potential energy is converted into chemical energy.

D. Gravitational potential energy is converted into chemical energy, sound and thermal energy.

(Total 1 mark)

10. A ball falls vertically and bounces off the ground. Immediately before impact with the ground the speed of the ball is u. Immediately after leaving the ground the speed is v.

6

Page 7: Work Energy

Which of the following expressions is the ratio of collision beforey immediatelenergy kinetic

collisionon lost energy kinetic

?

A. u

v

B. u

v1

C.

2

u

v

D.

2

1

u

v

(Total 1 mark)

11. A lift (elevator) is operated by an electric motor. It moves between the 10th floor and the 2nd floor at a constant speed. One main energy transformation during this journey is

A. gravitational potential energy → kinetic energy.

B. electrical energy → kinetic energy.

C. kinetic energy → thermal energy.

D. electrical energy → thermal energy.(Total 1 mark)

12. A pump extracts water from a well of depth h at a constant rate of R kg s–1. What is the power required to raise the water?

A. gh

R

B. Rgh

C. h

Rg

D. R

hg

(Total 1 mark)

13. This question is about collisions.

(a) State the principle of conservation of momentum.

......................................................................................................................................

7

Page 8: Work Energy

......................................................................................................................................

......................................................................................................................................(2)

(b) In an experiment, an air-rifle pellet is fired into a block of modelling clay that rests on a table.

(not to scale)

The air-rifle pellet remains inside the clay block after the impact.

As a result of the collision, the clay block slides along the table in a straight line and comes to rest. Further data relating to the experiment are given below.

Mass of air-rifle pellet = 2.0 gMass of clay block = 56 g

Velocity of impact of air-rifle pellet = 140 m s–1

Stopping distance of clay block = 2.8 m

(i) Show that the initial speed of the clay block after the air-rifle pellet strikes it is

4.8 m s–1.

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................(2)

(ii) Calculate the average frictional force that the surface of the table exerts on the clay block whilst the clay block is moving.

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

8

Page 9: Work Energy

...........................................................................................................................(4)

(c) Discuss the energy transformations that occur in the clay block and the air-rifle pellet from the moment the air-rifle pellet strikes the block until the clay block comes to rest.

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................(3)

(d) The clay block is dropped from rest from the edge of the table and falls vertically to the ground. The table is 0.85 m above the ground. Calculate the speed with which the clay block strikes the ground.

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................(2)

(Total 13 marks)

14. This question is about a simple pendulum.

(a) A pendulum consists of a bob suspended by a light inextensible string from a rigid support. The pendulum bob is moved to one side and then released. The sketch graph shows how the displacement of the pendulum bob undergoing simple harmonic motion varies with time over one time period.

On the sketch graph above,

9

Page 10: Work Energy

(i) label with the letter A a point at which the acceleration of the pendulum bob is a maximum.

(1)

(ii) label with the letter V a point at which the speed of the pendulum bob is a maximum.

(1)

(b) Explain why the magnitude of the tension in the string at the midpoint of the oscillation isgreater than the weight of the pendulum bob.

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................(3)

(c) The pendulum bob is moved to one side until its centre is 25 mm above its rest position and then released.

(i) Show that the speed of the pendulum bob at the midpoint of the oscillation is

0.70 m s–1.

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

10

Page 11: Work Energy

(2)

(ii) The mass of the pendulum bob is 0.057 kg. The centre of the pendulum bob is 0.80 m below the support. Calculate the magnitude of the tension in the string when the pendulum bob is vertically below the point of suspension.

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................(3)

(d) The point of suspension of the pendulum bob is moved from side to side with a small amplitude and at a variable driving frequency f.

For each value of the driving frequency a steady constant amplitude A is reached. The oscillations of the pendulum bob are lightly damped.

(i) On the axes below, sketch a graph to show the variation of A with f.

(2)

11

Page 12: Work Energy

(ii) Explain, with reference to the graph in (d)(i), what is meant by resonance.

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................(2)

(e) The pendulum bob is now immersed in water and the variable frequency driving force in (d) is again applied. Suggest the effect this immersion of the pendulum bob will have on the shape of your graph in (d)(i).

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................(2)

(Total 16 marks)

15. A railway engine of mass m moves along a horizontal track with uniform speed v. The total resistive force acting on the engine is F.

Which of the following is the power of the engine?

A. mv

F

B. Fv

C. F

mv

D. F

v

(Total 1 mark)

16. This question is about momentum, energy and power.

(a) In his Principia Mathematica Newton expressed his third law of motion as “to every action there is always opposed an equal reaction”. State what Newton meant by this law.

......................................................................................................................................

12

Page 13: Work Energy

......................................................................................................................................

......................................................................................................................................(1)

(b) A book is released from rest and falls towards the surface of Earth. Discuss how the conservation of momentum applies to the Earth-book system.

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................(3)

(c) A large swinging ball is used to drive a horizontal iron spike into a vertical wall. The centre of the ball falls through a vertical height of 1.6 m before striking the spike in the position shown.

The mass of the ball is 3.5 kg and the mass of the spike is 0.80 kg. Immediately after striking the spike, the ball and spike move together. Show that the

(i) speed of the ball on striking the spike is 5.6 m s–1.

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................(1)

(ii) energy dissipated as a result of the collision is about 10 J.

13

Page 14: Work Energy

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................(4)

(d) As a result of the ball striking the spike, the spike is driven a distance 7.3 × 10–2 m into the wall. Calculate, assuming it to be constant, the friction force F between the spike and wall.

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................(3)

(e) The machine that is used to raise the ball has a useful power output of 18 W. Calculate how long it takes for the machine to raise the ball through a height of 1.6 m.

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................(3)

(Total 15 marks)

17. Which of the following is a correct definition of work?

A. Product of force and distance

B. Product of force and distance moved in the direction of the force

C. Product of power and time

D. Product of force and displacement(Total 1 mark)

18. This question is about power and efficiency.

14

Page 15: Work Energy

A bus is travelling at a constant speed of 6.2 m s–1 along a section of road that is inclined at an angle of 6.0° to the horizontal.

(a) (i) The bus is represented by the black dot shown below. Draw a labelled sketch to represent the forces acting on the bus.

(4)

(ii) State the value of the rate of change of momentum of the bus.

...........................................................................................................................(1)

(b) The total output power of the engine of the bus is 70 kW and the efficiency of the engine is 35 %. Calculate the input power to the engine.

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................(2)

(c) The mass of the bus is 8.5 × 103 kg. Determine the rate of increase of gravitational potential energy of the bus.

......................................................................................................................................

15

Page 16: Work Energy

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................(3)

(d) Using your answer to (c) and the data in (b), estimate the magnitude of the resistive forces acting on the bus.

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................(3)

(e) The engine of the bus suddenly stops working.

(i) Determine the magnitude of the net force opposing the motion of the bus at the instant at which the engine stops.

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................(2)

(ii) Discuss, with reference to the air resistance, the change in the net force as the bus slows down.

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................(2)

(Total 17 marks)

19. A ball is thrown vertically upwards and comes down again. Air resistance is negligible. Which of the following graphs shows how the gravitational potential energy EP varies with time t?

16

Page 17: Work Energy

(Total 1 mark)

20. Which of the following is equivalent to the principle of energy conservation?

A. Newton’s first law

B. The first law of thermodynamics

C. Newton’s second law

D. The second law of thermodynamics(Total 1 mark)

21. A nuclear power station produces 10 GW of electrical power. The power generated by the nuclear reactions in the core of the reactor is 25 GW. The efficiency of the power station is

A. 15 %.

B. 35 %.

C. 40 %.

D. 60 %.(Total 1 mark)

22. This question is about forces.

An athlete trains by dragging a heavy load across a rough horizontal surface.

The athlete exerts a force of magnitude F on the load at an angle of 25° to the horizontal.

17

Page 18: Work Energy

(a) Once the load is moving at a steady speed, the average horizontal frictional force acting on the load is 470 N.

Calculate the average value of F that will enable the load to move at constant speed.

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................(2)

(b) The load is moved a horizontal distance of 2.5 km in 1.2 hours.

Calculate

(i) the work done on the load by the force F.

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................(2)

(ii) the minimum average power required to move the load.

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................(2)

(c) The athlete pulls the load uphill at the same speed as in part (a).

Explain, in terms of energy changes, why the minimum average power required is greaterthan in (b)(ii).

......................................................................................................................................

......................................................................................................................................

......................................................................................................................................(2)

(Total 8 marks)

23. A particle of mass m is moving with constant speed v in uniform circular motion. What is the total work done by the centripetal force during one revolution?

A. Zero

18

Page 19: Work Energy

B. 2

2mv

C. mv2

D. 2πmv2

(Total 1 mark)

24. This question is about mechanics and thermal physics.

The graph shows the variation with time t of the speed v of a ball of mass 0.50 kg, that has been released from rest above the Earth’s surface.

The force of air resistance is not negligible. Assume that the acceleration of free fall is

g = 9.81 m s–2.

(a) State, without any calculations, how the graph could be used to determine the distance fallen.

......................................................................................................................................

......................................................................................................................................(1)

(b) (i) In the space below, draw and label arrows to represent the forces on the ball at 2.0 s.

(1)

19

Page 20: Work Energy

(ii) Use the graph opposite to show that the acceleration of the ball at 2.0 s is

approximately 4 m s–2.

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................(2)

(iii) Calculate the magnitude of the force of air resistance on the ball at 2.0 s.

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................(2)

20

Page 21: Work Energy

(iv) State and explain whether the air resistance on the ball at t = 5.0 s is smaller than, equal to or greater than the air resistance at t = 2.0 s.

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................(2)

(c) After 10 s the ball has fallen 190 m.

(i) Show that the sum of the potential and kinetic energies of the ball has decreased by780 J.

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................(3)

(ii) The specific heat capacity of the ball is 480 J kg–1 K–1. Estimate the increase in the temperature of the ball.

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................(2)

(iii) State an assumption made in the estimate in (c)(ii).

...........................................................................................................................

...........................................................................................................................(1)

(Total 14 marks)

21


Recommended