+ All Categories
Home > Documents > Workshop on Low-Dimensional Quantum Workshop on Low ......Workshop on Low-Dimensional Quantum Field...

Workshop on Low-Dimensional Quantum Workshop on Low ......Workshop on Low-Dimensional Quantum Field...

Date post: 15-May-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
298
INSTITUTE FOR NUCLEAR STUDY UNIVERSITY OF TOKYO INS -JT-493 Tanashi, Tokyo 188 February 1990 Japan Workshop on Low-Dimensional Quantum Field Theory and its Applications -Collected Transparencies of the Talks- Institute for Nuclear Study, University of Tokyo December 18-20 1989 Edited by H. Yamamoto INSTITUTE FORNUCLEARSTUDY UNIVERSITY OFTOKYO Tanashi Tokyo188 Japan INS- T -493 February 1990 Workshop on Low-DimensionalQuantum Field Theory and its App 1i cations -Collected Tr ansparenciesof the Ta lks InstituteforNuclearStudy Universityof Tokyo December18 201989 Edited by H.Yamamoto
Transcript
INSTITUTE FOR NUCLEAR STUDY UNIVERSITY OF TOKYO INS -JT-493 Tanashi, Tokyo 188 February 1990 Japan
Workshop on Low-Dimensional Quantum Field Theory and its Applications
-Collected Transparencies of the Talks-
Institute for Nuclear Study, University of Tokyo
December 18-20 1989
Edited by H. Yamamoto
INSTITUTE FOR NUCLEAR STUDY UNIVERSITY OF TOKYO Tanashi Tokyo 188 Japan
INS -T -493
Institute for Nuclear Study University of Tokyo
December 18201989
December 18 - 20, 1989
University of Tokyo
Organizers I. Ichinose (lust, of Physics, Univ. of Tokyo)
K. Ishikawa (Hokkaido University)
C. Itoi (Nihon University)
K. Shizuya (Osaka University)
H. So (Niigata University)
December 18 -20 1989
University of Tokvo
Organizer5 ¥. Ichinose (IlIst. of Physics Univ. of Tokyo)
K. Ishikawa (Hokkaido tTniversity)
c. Hoi (Nihon Ulli¥it.y)
T. Matsuyama (RJFP)
K. Shizuya (Osaka U ni versi t.y)
H. So (N iigata LJ ni versi ty)
H. Yamamoto (¥N)
The workshop on "Low-Dimensional Quantum Field Theory and its Appli-
cations" was held at INS on December 18 - 20, 1989 with about seventy par-
ticipants. Some pedagogical reviews and the latest results were delivered on
the recent topics related to both solid-state and particle physics. Among them
are quantum Hall effect, high Tc superconductivity and related topics in low-
dimensional quantum field theory. Many active discussions were made on these
issues.
We hope the workshop serves as an opportunity to promote the substantial
cooperation between the two fields in Japan. We thank to all the speakers and
the participants.
The workshop on "Low-Dimensional Quantum Field Theory and its Appl
ations"was held at INS on December 18 -20 1989 with about seventy par-
ticipant.s. Some pedagogical reviews and the latest results were delivered on
the recent. t.opics related to both solid-state and pa.rt.icle physics. Among them
are quant.um Hall effect high Tc superconductivity and related topics in low-
dimellsiollal quantumeldtheory. Many active discll ionswere made on t.hese
!ssues
We hope t.he workshop serves as an opportunit'y 1.0 promote the subst.antial
cooperat.ion between the twoelclsin J apan. We t hank 1.0 all the speaker and
t he part ici pan ts.
Editor
Hisashi Yamamoto
W o r k s h o p o n L o w — D i m e n s i o n a l Q u a n t u m
F i e l d T h e o r y a n d i t s A p p l i c a t i o n s
- 2 0 B
1 2 /1 1 9
10:00-10:55 ¥ T C * A
11:40-12:55
17:35-17:55 ^ . f t H
Quantized Hall Effect of Per fec t C rys t a l s in Two
Dimensions
Theory of E l e c t r o n i c Diamagnetism
in Two-Diroensional L a t t i c e s
i | O S a n ( - f c I I 5 Induced Chern-Simons I I
Anyons and Quantum Theories with Chern-Simons
Term
RVB I) ( l ) ^ J ^ © * > x * A o ^ u - •> 3
1 2 ; j
Hubbard Model ^©JffflSliSlM Approach

W 0 r k 5 h 0 P 0 n L 0 W - D m e n 5 0 n a 1 Q u a n t 11 m
F e 1 d T h e 0 r y a n d t 5 A p p 1 c a t 0 n s
'
:
10:00-10:45 ()
10:0010:55 ()
Oimensions
Term
1455-16:15 ()
10:00-10:35 ()
10:40-11:50 ()
14:55-15:40 ()
Hubbard Model Approach
( K x ) 87
Quantized Hall liffect of Perfect Crys ta ls in Two Dimensions
) 107
T h e o r y of E l e c t r o n i c D i a m a g n e t s m in T w o - D i m e n s i o n a l L a t t i c e s
. (!«AftttW) Induced C hern -Simons Jl
1 3 5
Anyons and Q u a n t u m T h e o r i e s w i t h C h e r n - S i m o n s T e r m
151
169
Mill**? ('kkm 187
RVB IK 1 j >j 'r :w* y TJ] >\sa i/ * j . is— -y 3 v
' I 'RIliliai C r f f i K A n 205
Chiral Spin S la te s in Extended t - J Model
^fti/t^~-ffi CMkmm) 239
-mm-k (*A;ftfS) 249 Bose -Fermi Transmutaton COSH^WIXtSl1
&mrr, (HACPB r.) 271
irt • r- +- - ^ a a i 14\m f'. •> y-7^fj
*_h.& (OiAft*) 28i
2 9 1
IF1QHEGLPIl

[1¥ Ha ldane i-
111M()..... … -…… ... … ………… …………......… 97
Quant lzed Hall E ffect of Perfect Crystals in Two Dimensions
ft1J (;1t'l:) h .......................H .. …………… …u …...H ..…… 107
Theory of Eletroni c Diamagnetsm in Two-D i mens i ona 1 L a t t i ces
Id:.()… - …… ...H ……………………H H H .........H 119
1nduced Chern -Simons
Anyons and Quantum Theories wi th CherSimonsTerm
(>;';) ..... …................• . • . • • . . • . • • . . 0 .... …........……… 151
r11{ι
(;It:f'n
187
[1 g~IJ iI\kif: ('j::U ‘ ….... ω u …………………..… … 205
Chi ral Spin S lates in Extended t -J Model
() …… … .... 0 … …‘ … … H H 239
f!llhhard ~10de 1 p~ "pproach
'ffli (!U) .••••• ••• ..... ……… - … ......H ....…….... 249
l30se -Ferm i Transmutaton
1.¥ (- J*JI γ 7I
il<J-. C!U;)…… ….. …-…… -……… …...........H -…………....…...H 281
JI7!

An¥'onmass1 ess mode
()........ …H H ..… ............….....… … … … ….....H 319
- 1 -
()
()
* - )\> 8> * A P5 < £ « ) JMftttrS (*SK*a)
1989.12.18
8 8 ft *• * - ;P 8& *
v» < -p © ai s * j£ ft •? it * - ^ g ta © it R
2fc5c#7>y$i*f t©»£ £tt@A«fy«-r'&& § © a * ;e**7i>v;ui:S«:*T>v;p)
QHE
.2 , N: integerj
xy - n-1 = - e
° Determination of the fine structure
constant:
Ouantized Hall Effct
}
n '1 ..f" '!.:::& I o' '" I 0 -~ ...
2.DS'Istem
3 .
5 .
6 • 2
7 .
}
Determinationof the fine structure
o N = 0 "v'XIO':l./
~ ::::: 1)( 10 →S")( I o-'~ s
p-type 5i
-? = (1'..... 30)5 ...
r -/ -/~'--It
b l
leu Corbi'no dt'sU
(b) Lovvj HoM b r .Vj t irbar Ce) Wiie. Hall lurrtrCt ba r
Glmenslons in
(c) WrJe HQIl c.<.LI"'..e:tb F
GaAsl1 q.~As
Dlmenslons ln /IJ!I
Qfi1uo:.MlE 13084 WA6ERN
sh aH l$K
- 7 -

¥
F - d - 4 M d
F d a d U 4 4 E F 4 E 4 v - 4 d v
3
3

A
H
L S U
g Z
o CO
HEESι ↓


N SJ
J I l - -
:

/
-

.OF
(

z t a
F
o'

-a

! ? i
Itl
oah
-
I..c.
a —..—
o o o o o o o o o o o o o o o ' °
1JJ f c J f c ^ ^ ^ ^ ^ ^ ^ I ^ M ^ ^ J
^ J ^ ^ 1 | | J J ^ ^ ^ ^ ^ ^
co — en
oo t co eg — M o o o o o — — eg
C M o en
co JE oo vf to as "* o o o o
<-• to o eg o
o jg.
V C O C O C O C O C O C O C O C O C O C O C O C O C O C O C O C O C O .
jjj ^
e e ^> > A t/5
S5
G 1 G3 S 1 G 1 ? S2 G2 S 1 S 1 G 1 S 1 G 1
G 1 G 1 ? S 1 9


}
}




}






} 1 4 6 5 4 1 3 9 d 8 0 1 4

4 2 7 5 3 1 3 1 3 0 1 1 1 2 1 3
1

(
(
(
{
{
(
(
(
(
(

(
(

(
(

}



}




}


}


}

6 6 3 0 2 7 6 6 6 8 2 3 2 2
1 a n E Q U A - z q u o ι
4 n u n u n u n u n u ' '



9 6 4 5 5 9 8 0 3 6 1 1 8 9

8 4 6 9 4 0 G o o - 6 0 2 0 2 0
+ - Q U Q U Q U Q u n u n u n u n u n u n u n u n u n u n u n u n u
-n
a ' ..
ι ιn 4 0 ι
ι ι ιn ' -
n “ .....•..........
e 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
/ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
h 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
}


B
L
5
5
L
B
L
S
L
L
L
L
I
L

T
T
B
B
T
T
T
B
T
T
P
S
C
T

P E N N E P E N E E N V L E
•••• 2 4 a n u n o n o n o n o - -
1 1 w
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
U p o - - 3 1 2 2 3 3 3 4 4 4 4 5 5
Q
@ e a B A B e 6 6 6 a B A B A B A B A B A 6 6 6 6 6 a δ 6 6 6 6
5
c rY
=70 mK
ETL (S ta) ( NP L ( VS L (
LCIE(7

1/
10
G = G a A s / A 1 xG a l-xA s (x=O.3)
a:!2S1(Lab).!2SI(Lab)
c:!2SI(ETL).!2SI (E T L)(?)
e : 1 !2 BIPM( t ())=1 !2SI-(! .516-0.0554(t-1985))μQ !2BIPM!2SI. (0.1-O.lppm)
:S=Si-MOSFET
~ I.IT. WTM' T1 )
o N9-8H53 (e 2 /4h)
72-17H53(eY8h) • 72-17H53 (eι/4h)
F-J 11
133 10 20
ISD (μ'A)
'(osJi J..i .. t.l. : Plty' /a".. 9 3.1 (J 'i ") "'/1‘
1 4 15 0.38 4 10.5 0.38 . 4 10.5 1.36
/
"XV
\ free electron
V n(
Fig. 1. Definition of "slope". In this paper we define the inclined Hall plateau as: slope=(d/7x//dK l)QHE/ (d/»v/dKg)ra, at the value of Vt where pxx drops to a minimum, p£n, under the quantum Hall effect (QHE) regime.
Joji KINOSHITA et al. llitt ? 2«.it 1 SflM
10'
, . . . I 10 100 1000
IS D ("A) Fig. 4. (slope)"1 and cr£j* as functions of Ii0.
10"
-f Q-hh 4iZZJC-uf"
Joji KINOSHITA tt 0/. (' '" ) 2...1 1 sQ f1
1O6
1O7
ω
l - M l
0V tfp.r 7.U o
--- 7.12. 1O
100 1000 ISD (nA)
vgn s
Fig. 1. Definition of“s)ope". In this paper we define the inclined Hall plateau as: slope=(dpxyl d V.)QHEI (dp. !dV.).at the value of Y. wherc Pxx drops to a minimumρ;;n undcr thc quantum Hall etfect (QHE) regime.
Quantized Hall Resistance
von Klitzing constant:
Fine structure constant a :
?
Fig. 1 Comparison of the measured values for the von Klitzing con- stant at the PTB (*) with values measured at various other institutes (o), which are given in the report of the 1987 international com- parison of 1-n-restsUnces. AH data were measured in terms of the as-maintained unit and converted to «69-BI (1987-10-20) using this international comparison. The dashed line is the weighted man value ftKof»\l data except PTB's. PTB *-«n-t'T -»*rjfr- L t / V » ;
BIPM
CSIRO
ETl
M
lClE
NBS
NIM
NPl
NRC
VSl
0fM
-i
Resistanoe
10x(~ 1 )- "K
Fig. 1 Comp:uison of tht; measured values for the von Klitzing con- stant at the PTB ()with nlues measured at v:uious other institutes (0) which :ue giYen there tof the 1987 international com- p:uison of l-n-resistances. Adatawere measured in terms of the as-maintained unit dc .vertedto n69-Bl (198710-20)using this ternationalcomparisonda1ineis the we.tedman va1ue
RJC ofaUωta except PTB's PTfjt '''1
0.800 0.802 I I I I
0,804
[(flK/25 812.8 Q)-1Jx106
0,000 0.100 0.200 0,300 0.400 0,500 0.6&
I(HK/25 812.8 n ) - 1 ] x 1 0
?
RK-25 812 0 (0).
0 0 0M 0806 0 0810 0012 0814
5 .. lH) .. CSIRO/G.l.I. -
N8Sα'pRH)t . ' l10)
0..2¥111 H l'V
N8S lo;
F1g.A1 . • -CSlRO l1)
00∞ 01∞ 02∞ 0300 04∞ 05∞ 0
[(RK/258128 Q)1)x 10 6
.".CaI......"K-aMnToI.τeaI rai.w';;
/μ~' .. u\~ o('t r~~ l r ~.- ¥''1". h)
-I ~ln _1 f.' .2.(l t.\~ ci ('RH)al----E77)
""lfl ¥ ~U. R 'i'J
012 0'14
R g R.CI)
source standard cell potentiometer
Tig. 1. Sehuutlc diagram of tba quantlxad Hall nilacanc* Btaaurlng apparatua.
2
L_ JL-_.J 150 & Si-MO~FET source
standard celt L~ L___ potentiometer
F11' 1. SehUcd1alr.. of tha 'l"U.zadlIal.l. raa11>1appratu.
oII CO
-"-.
- n H M

a O
A H 3
R. R. (+) + R. 15.7 15.8 15.9 16.0 R.. R... (+) + R. VG(V) R. )¥(T)/2 R G'f~3. 2 .n. R.u
\1*1. 5-JO
Sources of uncertainty
Realization of "SI-NML Transport of CSIRO 1-fl resistors Comparison of 1-fl resistor with CSIRO 1-fl resistors Temperature fluctuation of 1-fl resistor Drift of 1-fl resistor Comparison of 6453.2-fl resistor, RR, with 1-fl resistor Comparison of quantized Hall resistance with RR
Total (RSS)
0.01
Rea 1 fzat1 on . of B ~p
OsI Trans ofIRO B 0.01 2 1-0 sis rs
Csptartson of 14 A 0.017 3 stor w1th CSIRO B 0.009 4
1-0 res1sto
1-0 resistor
stor II
B 0.011 8 II
s1stor II
Crisonof A ?1
Total (5) 0.08
CONST. CURR. SOURCE
0.6
1
to
1
(4)
0.2
RR(4) - 100 Q
Total uncertainty (RSS) of RH(4,GaAs) RH(2,GaAs) - R.(2)
RR(2) - 100 Q
Total uncertainty (RSS) of Rn(2,GaAs) RH(4,Si) - R,(4)
RR(4) - 100 Q Total gain of null detector
Total uncertainty (RSS) of RH(4,Si)
RH(4,GaAs) - R,(4)
Feedback output /dial Total uncertainty (RSS) of RH(4,GaAs) RH(2,GaAs) - RR(2)
RR(2) - 100 Q
Feedback output /dial
Uncertainty
GaA(4)
No.
0.2
2
Uncertainty
Ra(4) -100 Q 0.0074 5
Tota1 gain of nu11 detector 0.0075 10
Tota1 uncertainty (RSS) of Rn(4As) 0.0191
RH(2G 5) - R.(2) O.∞99 14
RR (2) -100 Q 0.0288 4
Tota1 gain of nu11 detector 0.0251 10
Tota1 uncertainty (RSS) of Rn(2GaAs) 0.0395
RH(4Si) -R. (4) 0.0158 20
RR(4) -1∞Q O.∞174 5
Tota1 gain of nu11 detector 0.0075 10
Total uncertainty (RSS) of RH(4Si) 0.0190
RH(4GaAs) -R.(} 0.0104 10
RR(4) -1∞Q 0.0022 6
Feedback output /dial 0.0050 10
Total uncertainty (RSS) of RH(4GaAs) 0.0117
RH(2GaAs) -RR(2) 0.0384 12
RR(2) 100Q O.52 6
Feedback∞tput /dial 0.0050 10
τota1 uncertainty (RSS) of RH(2As) 0.0391
N. Nagashima, S. Kawaji, J. Wakabayashi, Y. Yoshihiro, J. Kinoshita, K. Inagaki and C. Yamanouchi
RH(4,Si-MOSFET) RH(4,GaAs/AlGaAs) RH(2,GaAs/AlGaAs)
163 046 093
Results indicate that RE is not independent of device.
material, and Landau quantum number.
A. M. M. Pruiskeh (1983)-
axx anc' °xy a r e ^dependent scaling variables.
dilute i'w»t»n-t(r»i tnpdti
N. Nagashima S. Kawaji J. Wakabayashi Y. Yoshihiro J. Kinoshita K. Inagaki and
C. Yamanouchi A. M. M. Pruiskeh (1983)
RtI(4 Si-MOSFET) RtI{4 GaAs/AIGaAs) RtI(2 GaAs/AIGaAs)
Comparisons:
0.093 0.040 ppm
of devic~
materia1. and
dillAte htlJ
Rκ • L'X R". C.l)
T. Ando / Universal scaling relation of conductivities in quantized Lain
Short-Range Scatterers
I • " •!• i
S1-M0S NC100) 72-17H53-33 H - 15 CT) Vsd= 0.5(mV) T » 350 (mK)
I -
0.0 0-1 0.2 0-3 0-4 Hall Conductivity (-e2/fi)
Fig. 2. Flow linrs for a t r and o t l. for the lowest two Landau levels. The proportional to oxx and the Hall conductivity for different energies and system Four points denoted by same marks correspond to a, t and ax,. of a given energy system- sizes. Note that the origin for the Hall conductivity of the N - 1 Land shifted I / the amount — e2/k.


T. Ando / Universal scaling relarion 01 conducriviries in quanri=ed Lan.
1.0
X Q:/ a yJx
E
0.0 0.1 0.2 0.3 0.4 0.5
Hall Condud ivity (-e2 tn ) Fig. 2. F10w lin.-:s for σ'.u and G.H for thc lowcst twO Landau lcvels. The proporuonal toσ¥r" and thc Ha11 conductivity for different energics and systcm Fourpoin denotedby same marks coπespond toσ syste siz:~. Note that the origin for the Ha11 conductivity of thc N -1 Land shifted l:.the amount -~2/h.
5 Si.-MOS N( 100)
3
Vg CV)
@ .
p.CD It)r ~
0.6 0.8 1.0 T(K)
FIG. 2. The upper portion shows the T dependence of (dpv/dB)m" for Landau levels N-0\, If, and 1J; the lower portion shows the T dependence of 1/A5 for the N — 11 and 11 Landau levels. The open symbols are data taken in a dilution refrigerator, whereas the filled symbols are data taken in a }He system. The slope of the straight lines gives {dpxyldB)'"" —T~' and LB~T* with K-0.42 + 0.04. The typical uncer- tainty in T k - 0 . 0 2 K at 0.4 K.
1295
0.01
q1
0.1 1 T(K)
{
0.1 0.2 0.4 0.60.81.0 2 3 4 T(K)
FIG. 2. Thc uppcr rtionshows thc T dcpcndcncc of (dp"/dB)mu for Landau Icvcls N -01 1 t. and 11; thc lowcr portion shows thc T dcpcndcncc of 1/6B for thc NItand 11 Landau Icvcls. Thc opcn symbols arc data takcn in a dilution rcfrigcrator whcrcas thc fil1cd symbols arc data takcn in a 3Hc systcm. Thc slopc of thc straight lincs givcs (dp"/dB)"'U -T-~ and 6B-T~ with 1( 0.420.04.Thc typical unccr- lainly in T is -0.02 K al 0.4 K.
1295
SH Si-MOS N(100) 12~7H5333
8=15(T) V=O.5(mV)
T(K)
- u

V <
-24
a
. E 2
h a z = - a i s - - a a
z a i - - 1 2 E Z 2Z E E Z E - - h a Z E B - - E
3
& s z - E S E S E - a g p d
SFEEZE-M S - a E S E - a s' s a - - - z a S Z E E a - - - E‘
e
("1M'"“.r'.(Jf) T11.l."ntftlιK..' Klitzl IAllllly.'/"amtlf;j72
D i s c 1 • ~ ..~ C 0 r b i s 0
.
----
uaF'
π/2.
. '
i;:oi?--'" ~_ ... ‘
H—*
8

MAGNETO -CONDUCTIVITY σm Si -MOS N.{100 ) SN5 -16 H = 150 KOe T = .3.3K
-25 -
50

fv
II
V &
.5
*x :-
rji
Hi
'V
ff
- 29 -
E d m e h J M H a
+
ω $ F h p . 8 F
1 S F L T W 4 g
Z 3 4 e q
Ist
z-wg

}
F F
E C
Y J J d T - h f
- l l z w
r p t
ι
J
( ~ } . i M r A W
l p F h F

5~ .fi
M .
efe MEAN
i r - L 2z ωd 2 4 J ? "
4
a
_1.. _ #
~ 11 F ‘ E • Z 1 ).l<. + -~
..:- -< ~
-I~ QI
L ? "
a F ‘
{ H J )
2 ?
7 s h !
u q e s a f d L F
"‘ J-rw
- 4 -e
S p a s - 8 #
.
S S Z d d
-u s g d .
• 8 4 h p g J 0

d d - d F e r r r .
d d n w
h M - t F d

ar e M R S H
-30 -
-4b86' +ι+ - 51-4
τ LTr
{
I il
i
1-5-
4-
V _
4
4 8 3 4 H a f t g e d - Z
h L L
H

q u a h L n
{
-31 -
. 4 4 h Z + # t ι 7 3 e e
λJ
+‘ ~ 1-:)-
03

• • '

-

.ωzou-

g.pg
;

w~-TCI.~~~: I
3 a1R.~ëb<.t '12lbL
I ~4. d;s-~ s I~~'i~ wud-1-~Ç~I Jωk
S. ~\.
7. t;h
-
ψ l l

. k








? z
t ~ LJa~s
6 6 0


ν
I'x
dse--
s
r
E

-tt J d l z d p d ) J

+{R-F
w v v @ 4
3 @
3 sd
J W H E
e

"... s
7
s x - r k
A S
-u i
"4‘
-m
A A L n d f v L S F 6
υ - h T

W 3 S . F Z


i l j i f - - f s t a T
7 3 5 } H Z E K
'
/1 01
x';
n q
F F 9 )

=== ð-. 1.~""~1d.t. d(1:-t.1..)
~. ioLE}=btll¥.""i;)u..l.l~lI1il t~l lIIl~)<tII~11I
Jχl"AI :::;bl.t¥UtJ1ftl 'IIIi~<":'
Jzut=b.t!"'}.;trrft>I"i<~.~
lf
= _ -e:' fx• [Eρ222a+J14dtR64aihH1r
dztzid=IILK-XJ13a
JF= 4l
dtdt2. < T ( bl. (~/t)IZ ( ft ))~J1.
)d-t¥dta.dx ~l. lud
j~chχ1

ves
t'V '1) -
". VFtRA)zs-;pih)-L(jSUj
q ~O T
tRA)Rfwli-~\' I S~}1':.¥;'.)-t (~J S-:pJ}+ '('~lfl= {dω¥.¥1P t.= l dιdtP)~Uι.. + J~'Qμ 1 .. ι1..)J
0':(1= (~".(I f~)
M*

{LPLPt¥
J
H H { ) 2 L J -
. d


? ι 4 4 b


...... ~ "!.-T .....
+ /1
S 3 5y J K J d + { 4 S E γ d r m !
?
( J I M H { 4 6 U £

S L a t } γ H
(ιd ( ι d m E
H { ι J
' 7 -JU3 1 3 3 F 1 d
i i
^ S7 i. H
1 l


)

-S-T S 3 Q 4 F
{ o + ω d H E d
rcd ¥? !ti
L J efu
H 2 5 2 L M H
u { ι = L H
1 6
::: ι-.).
ci. ~ ~ ~ ι
3 4 4 4
. q d
. 3 e h ' f d T J O
2 . F
b
gm
CVF
F 3
J L M M
u
γ F

f J
H - K 2 8 S F L
o
d
. F - 3 { ? ;
F R 1
'

6
ω R F !
a
J
-S



Hωl
" .-p
O H E d - - F 1 H - d s v - 3
JY - S L M
-
( d r F 1 r + {
{d - r - 5 7 " { d F 2 7 2 L M
If . ω 'ZH
- M
. - d
r * tf'
5 r
-" M
H W u d
- J
3 2
-'F4hpF
-
-"T :-"ci
"
ζ
h o s n
r 1 1
3 d J d d d d .3 + 6 J

U
~ -\~ ~ I.c''ÒJf~ Nvl
d g o S υ f F r
mM
r i 3



?
upd Y S P I E f

-40
S :
--IT---e-~giμ
i A P E ι
? ' v υ Z
. 7 e JFU
11
It
('<J-


A
1 7 g d i t - g g d { g A
5 5 e
g d
3 3 E s g -{g-SAg-d)
.... ε
a... L

( m d f


v
t
s
p
o u d o p e
f f
e z g g
.RLH ' P =
Z S . # s g d J Z .
d d p
S e e M r s - vωrhf
g
U W V
H-m-edm E P O - - 5 3 d e #
..jt -
J
c i x.dF-g
g Z 4 4 p z f
-42 -
.-
ppgans z r e g o d z e ?
- I " -/w
7 J r t
e F
J -YH
H -
k E L d - - f
J N 1 4 4 + 4 4 "
q
w +
a- -
H
q 4 r + J f
d q e n
" J
d
Ti-d
- 4 - 6 1 3 2 τ 4 f
U 4
S
e s M 4 e ¢ & 4 6 s A 3 H A . z
r J g J h E d u
44 4 T B 4
. fd
W aE: 0'_
JII d a...
2 2 d ;
ι F U

Lw-pzuhhdypHJ
1 l y w M M H A E f
u " - M 1
ω
. d ? 7VJτ
z z u
g w S J T H 4 M W 4 r . - - Z F
setιtιd'has f
w v "
J
1 A 5
zese
b? 8 e a H J 4 e
g
J V 3 H
e i o f d
. 4 4 5 z t g
Hf t f t H 2 e + d m 5
d

~
σ~ 0
μnJ."Wlento.1
;: 2 + a a. no ~..c O C4 S
h'" tø~ \ 7
Q..H E ; p1o.leo. niE.:rr/j
7 Y?' h J' 5 ga.p ~le ιtrø1l . n)
F Q. H E
...- el 7 J r' -ηl ?-
Z 5(f'-RO()
E ZF θ
Figure 6.3.2 Hagne to-transport ir» a high quality sample at a temperature of 100 mK. FQHE Is observed at 2/3. V 3 . 5/3. 3/5. 7/5. 8/5. and k/7. Intriguing structures are also present In pxx near U/S and 3/4 (Boebinger et.al. 19g5aY'.
2. U S.
3. 4 ft
L J
ν= pj 4í~ι fh e rfJ. r ~y r.

0.5
4 - x x
Flgure 6.3.2 Magneto-transport ln a h1gh qual1 ty sample at a Lemperature oC !OO mK. FQ Isobserved at 213 ~'3 5'33/5 7.'58/5 and 1/7. Intr1guing structures are. a1so present' ln Pxx near '*'5and (Boebl.nger et. 'cil. 19al.
o
Ci

.~
k
t←


. ‘Ew ..s:.
A
r b t
E E E E B E E E E Z J
NeI
~...l
l =
1 -
‘F
--e
B''ATe-
A
H
R
e
F 4
>:: π? zfiω r!!
M H
r d
G
S :;;. ::s c;:)

‘' τ~


V
h

.. 4 ~
h F

ω



p ' s . 0
" 1


0.44 0.26 0.22 0.19 0.16 (0.41) (0.32) (0.23) (0.19) (0.17)
m -I I I 1 T 1
0 1 2 3 4 5 6 7 8 9 10
z ea
[P(z:z;](Z: -z;/
p" (x ~ J " ~ θ /YJ: 1) J .d. I
lij=2aahfaas/ ~=" - IC
11'j = 2 ;ft~.
N-pl.rtle {-~ (~
%(zf-z;y lo
lL...!. tJ~
e-Q2
(1)-INDEX
0.44 0.2s 0.22 0.19 0.16 10.ω) 10.32} 10.23} 10.19} (O.17)
0.51 __
*
J


W


........

J U ' s e u H F L
4 h
~
~ S ~
?

4.t lj. S
~i<'~. ν=3
CZo)=(z:-z-jVννz
J.r1Iost N+( f4ι .t; S.
(1 j) &( f). .s ieleetro N~ →//
ψcz-J=?fZ7-zfJψ
(T;tl ?
Lωd ιrite"'0
2 2
4--0 "' cddre" e F'

-') o
nv
d Ofω .t
enerl Y .d ( =fCA/s(A
t(jEt111~( 5)!rA I proj ~de rl. osc.'/ltdor s f:r~" f
faj=ds.IA~AAI protletl 5tr~ c.~(( re D.c.tor
. = f" if!c.ieJ. J.eHs ''1; "fEr~ι1
Una
I
rt ↑
ω
s d . k e N B - - N F U
~
h
" .mmr

L

F - N

$

-c .:t
e
(2 21)

N
Z. .e" t. "11 → 1tf
= pjfz.tp [P(zo ..) or; J 1i1= a
↓ ::""~ 'J 'fb..
Z'A2E11"(-)(Ntf -1
2.. 1.'.l 1-.£ 0%
IJft
"".
μ t ~t ~1J.~flI
.(11 < I t.l.-41. sl"tlfLfry
!'I
orJ.er ;N-(N-υ=fN
N4 = 3Ni= .;. /1/
•&^
^
-
(2.) p. '( I AHc.l}OMfl.t ' S~ ~'r""" P hlS' R;..;. 8 J! (1111) 3 ~J~
I11¥ 1': 1/. ~t P t ps t~ 10 S p"'" a
~~~ Pseμeωωω“ddωes (t' -J;)



l π(2.; J;) ¥.tT I..J44
→:=:'1 'J rl. ~dl
6. ~ Iv. ¥.4ilel t/C Aro~4S scJ't'e 1ft~.~. .u (/ft+) J2
LA~. 711 if!. ;. þ~.B er '1 pt1IU '"
l}μμ{;J;;J H (1.) H+rV(r-(e)
J tJ~ +1. 0 1J. ~.s
dWJ s iJ.'f~.) I -J.t.o _..". dιz(ti-z.} --~ <.ψ(l.) ( 1i.
~ JJ1~' 'Z.(I) bf.ll2



“ ..
-c::'
h

11

j
>- ↑
L 2 L

i! ¥..b
u
R
h u
FIG. 2. Diagonal resistivity p« and Hall resistance pxy
larged section (a) of Fig. 1] at 7 = 100 to 25 mK. Filling tors v are indicated in pxx while quantum numbers p/q shown in pxy.
fky*.Uv.*Jt. I? CfV 177!
.7. t.1j![J
823te . .
t 3.. ...;'"
j
@ ιν 1/ 6tl. < 41Z3.
ν:::: 27f1.ltn M R
(7-w zFAf-ftMdEJ
4 6
FIG. 2. Diagonal resistivity pxx and Hall resistance Pxy largt::d section (a) of Fig. 1] at T = 100 to 25 mK. . Filling tors v are indicated in px~ while q.uantum numbers p/q shown in pxy
l)nJ1e.tt . e:f 01. F/1.Ys. Rev. i..JJ.. εf ('1'7/r
IU
6
MAGNETIC FIELD (teslo)
FIG. 1. Diagonal-resistivity pxx data for various tilt angles 6 at 25 mK. Arrows mark field positions of v •- f filling factor. Resistivity minima above and below the v -> f feature occur near v*-j and y-, respectively.
tn d.al. . M/i.lj £2
Pf
(¥vJ1F.?i ; Pγ.~. ~. ~γ. '1 - fJ }γ.J ?η:'"
pιR3 :lílf~ )
5
7‘11
a> n

7
FIG. 1. Diagonal-resistivity PT'T' data for various tilt. angles e at 25 mK. Arrows mark field sitionsof v -t filling factor
Resistivity minima above and below the v featureoccur near v 5and.respectively.
7 6
•2
v> '
t
.•
tt
~ M
AA }
J

λ ' @ 4 k

H
M
U




-v
. .
E
)
J
1

.b
is
r
i
c h
↓ h r

¥
' U
v u L G
h r
- A

.. t


5 1
l

U
. U
. U
. ';;;.
Q
/.1
h
d u L a q A w h J 1 6
( h u L u h
MLEA‘
h h
f
E
4 1 " I >' ! ‘r
<&l '! aR'
tY
u
~I
lv

a h G
t. -. ut .~.
}
-.
d y s ω
R ' μ
- 'Fiv
hv
h j
X S Q


J S
U
w e 1


A
K J 4
k
§
u q E S

8 n
(N
fl£ ^
o BCS Coo.'f"pai r Z~ "0 SO'n-

o b>Hε (J;r Iν~i 2741 (μ) boso J

baS1Z - ~ t;a~a~
=15GC-~f)eι‘4 l~t -~3 J Ol
Aa-20 Vl1 11"'7< ~ 9d"-~~ .
::.T!"~ 1re-rl

.μ φ0
=e'ZV 2:f!'(~r'$
== l~-
:
+
& w a W N O E

V
V23 f J N
ι
f

~
e m
-h
G d d a O ~
s
~ n
s p aι A* ( h ω .a'...L. \~ : v.... .' ~ 3 qL4If. ~'tJ n ~ c wH-:z. =i 4i V 3H thfe~ v V
- Z … )
Z " p o -
-79 -

" 2
- 2

~ ~
L - S H A N V - d q n y
' u z

FO@
dsul
-2LClpD7~λ+Y …--( CS..l
Ikq ''''-t-_ eft=-b
ι/(1-J"()(-)ts b=- J(.J.-4)
tt.‘
)
l fl. If = eρ
aje=b (b::. E...')

N J ? " X N -b-
E - - - -
‘ h

k
A S
v - S W




"gN
q a w
V
-2 ∞?""
M r
5
-E

aM
4.
"

-83 -
ιv

{ " J
u h v t
6.U ‘

u -e-0
- S
) ε A

g e v
( d a E J W A
-
Jwdve

p d r
. 4 m A W
JFS d w sJ u w k g h s
STSavow-
"

=13 3 ~
U 4 0
'

¥
ω l

A S S ω A O t S 1 "
-84 -
& h v o g q k a
L U F 2 u v

s Q
II
vhv U
d r
w d @
: +
qsgw'dA4~4v
M S b
@:
+ A
)1
+ g

4
d v
H o d - J )ω

v d
- P S
~ e "'-v-
r u
M E J
w
~e i.
ι

S e M
U 3
4A7 1T
l(←→l(
~". 1.o<LA-n.
00 <c
Errp.‘
t J
A H
u
d


(
d h

'tμ
3 1 Jm Q U o
~ ι
- A Z J

U . m g
R V T - s 1
d - h d A m

↑( C A A }
3 ( l y - G

J d N
3 S 0 5 ω u r s
d hw
¥…J
ψ - L U
4 t
( d v H (
M W S E J L ~
q F 3 “~ 3
L

I M U
- 1 0
~ t
+
mbM(}↓ A

( J S H L
a J
L
- w i
T


u f
.
W H h h

a b ~ i -
J M
( + ( )
(
L 4 + ( ) + "
3 &
-AT
v
T
or
I
V-l
A h
) γ 3 ; 3 3
J d s s y
u f ( ι w h - )
5 t f
4 2 s d " N 1 J w h A S 2 2
. S
A
h T F
M - -S
e S Q U
e d e e
¥ Z E . 2 n w ? ι J

J . J d M l g te

-

5
6


A F
(

) ! "
H H (
n d "
- ) ( w f
H L E J h
“3
u b L u q - J

L
M L J

-
-11 t
t q b 4 1 q γ B 4 2 7
7 4
l p h W 1 1
1 l
F M M n d p
M H
m
O H W (
l
{ 3.
F J A P J
-93 -
3 i s l z m w h H J
- J S - e
v d d l )
( (
r i 4 2 d d
L
A
i H 3 ( ) )

t~ r ? " ι t M

U 2
d Z F - ( U d v S 3 L 1 3 a u H


-A@

~
z
4 3
] . 4 2
J h w t A U 4 4 d w M A W
4 1 λ - R h
u m T l j
; ωr 1 3 Q U H
-94 -

Q H ↑
b
G
- 95
tzz-J~Aυ
p~ι~.....\?~(.(')
[ω…?J4 i ←~.I -t'.1. Cf":- . . . 1f
l AfW 1¥. e-efj
~~.-(;'1'11
) <~/ :J~ rne~t
>t~ P.eÙ.J&2
'J ca~le.~s "L-(
cowt7"... t-IYωIf.ε.a:;I1~tÞt UI.Jt(
(;-7<.1..4'c.l1. )t.
O in
h
E
? ? 4
3 3 §
( 3
b T A W - e
i 3 4 6 1
Z U H ) '
¥ + ? " " ?
( P 4 ω
;

+ N ( 2 L a s t J
i L i F J 8 3 4 i
-96 -
Haldane
- 97 -
J~
2.. ~
3. lL
lD 5{( ~1-sØ1 loe\"'~
H=jSC5J
J)o.) =Slc:>1)[;]zlh}33 t d S 1$'7η l1~
S1;'m7 fJ"
S:: 1/2
--z
cp
h.D.
s= L '(i! b ) StIAH"! J \0.~ 5':..'J 0. P n -t ~ 11 }iiJ~f11
Lr')lJ¥ .l-:. lt.J
:'1'~He 's es b/ ~I-;J. (9 0(3)σ
~n1 ;xεq%'1.4
( )
3 F


15::

c/2 fI
N
o t u T D c
g
H

( ' o - )



(
.~
}
J
CQ
N
C A m
- q y e U N
H
f . U J
~:. 1b L-td I1 ~
{ h
+

1ω j

ε
c
σ3
a—
I -
4*
2!i(Q2 Ou)!
Cp:L→ (Hop-f)

=1TS

ι (J) ~Ql~) =-0
l
J1-:.
ω
F
g g g
b h Y 4 v - S H F A hw h
2 g ε O H
4 r W E N C h
e
F 2 4 M
e F R O -
O c
E
6

' q r T
ε J
)
o

-V
R L E
M V
n A

11

Quantized Hall Effect of Perfect Crystals in Two
Di mens i ons
! ! l i t - - i i ; 1 4
in Two Crystals Perfect of Effec t Quan t i zed Ha 11
()
107
J

H
J
t a d z d
d t
5 J E O ) k 8 3 N l
+ (
O
J
h
h

J
v
ω
U
a H J U J V - N J 1 u z

kv
~ t E L U J 4 Z a 1 6 d h F g
V F v m t =
2 ι v h z
ι

PE--d-F'‘ E d d o JTd
109-
vdω
- I N
ti •O
-111 -
- 1 1 2 -
M V U ( £ e d } e d J J ω + M M U (
4 5 4 J L ] a H f
( υ G d u d s d z t " ) Z
T
J d v d J 1 3
.υ.d
F N J U E J Z E d -
J f f u u N d H t M
4 3 d h z p



4N
.1
O

d
t (
t J .
h
d
L
h
L

-112

d
F U
.~
'

& )
8 d 1 3 4d ↑
-d J

4
F 3 o d
1 1
- 1 1 4 -
J 2 4 - v v k d b J U J
4
+
f M M !
l z n d m Z A m
.


-vv+ Z 4 z v
J 3 v
H d d v
H
--
ω ' g t ω d - e - - J
A N U 1 3 d v -
-3
M
sbha
-114 -
'

+ 3 4 8 a r u L v t Z 2 7 ψ #
J u u
υ A 1
du
w r υ 4 8 d h V N T H
h F d y -

@
r!
y
d
L e p z d
μ P
E
14dEME
z q v r t p g
i b $ 4 4 4
L
ω

d

l
d
2
L
H t H 7 d 1/

" <:/:It
ι
l ‘W 4- o tI / ‘Jl:r -" g d
.t
T z j 5 d v k w a J
w-
6

t ρ 6 - 4 J
}
@
@ a v M M

F
nuh HV A W

d v - v v x E J 7 4 L
316
6- U
A
d

A 4 h v a

ω
d
- 1 1 7 -
g h e p + F r d b t J

6γ '
iu dz ‘.
~ 7 6 4 4 4 3 L o t s -

I s t
g
; dgou=dz
‘J 4 Md a....

+

g ~

.b
ιuι
>- b~

Theory of E l e c t r o n i c D i a m a g n e t i s m
in Two~Di mens iona1 L a t t i c e s
- 1 1 9 -
Ck
j
M 4 E b
4 7 )

. 2 6 4 4 ?z
E
+ P V
P A V }

E
121-
O
4 QS ..
Si 53

F

s-tω
id
3 ↑
.

w

2D UNIFORM 89-12-13
3 4 ? " ε
- 4 F V O
?


ez 4 e
+42 H
} 4 4 1
o d
i'v
i
a
I
{α)
.' ' 'c "#
H w ....

(bl
...
S»x»»*
P. W~C#OOC_ -(PiιA
T-"'.R~p. ~eJ.hYH. l - M
l

ll
0.0
4
0.5

s~'i
=υ.::t CFP .. L F Ie.. O.
"
'
s ~
~ 3Aw--
s =

d u + i U 4 u s h ) J Mv l
u .

+ b u
a L 4
5 2 4 g )
-Eft ~....Jl J ¥ ~I! 1
-~ ..-.... 1--'---' )3
"‘. -~-

( E d d +
3
).4OE h l
3 1 u t d v J P

B
---σ

~ -1"
~I~
S d h t - bm

Fig.B
ω
-''' ..-11-= i"p .. ~ " 1 I
....Ii: 1-
-a
"
SQUARE: PHI-0 0.0 K ' I " '
UJ -0.5
N
89-11-17
11
SQUARE LATTICE 89-11-17
•133 -
0.0
1-:. ...
r'"“ ::.cJú.~ (A.F)
;?d uι.>'
ωC~~

61.
6 4.
ω1-
THEORIES FIELD
x 1}'"
4 m
2 1 2
;c-

t ' p v M
i g w R S


ε-T

4 F 4υ
ιεA. "
9
. H
( - v
Ja--4
4 1 t M 4 4

44u
;
.h"

j
j
J
... .i. 11
S H W
2 4

f - f a i r j 1 P
A F + -
4 } -+
4 v
£ r J F
ψ
.“ G
..J
i y
‘ 3
J
+ I-L
.3
d u -h
M A P S
H
‘--.J
JwaR
3 4 6 H . A M
*1
t
2


( H .
' . . ‘ @ 1
-u'
o d M h

.‘‘ ...... EE - - e
aa-----------ili--

a b
r.J
Q

dm.
u
JUe
U ..t.
~t
li ~l
d d " J F 4 + J R ( : h y v
EF
JI~ ft)
.1$
- 1 d H S
t
O
1. h 2
( a L ? t L ι
)
d a { λ
3-J
141-
] +
a-Tg
4 4Q t N %
e M q u
}.Z
U J
3
U ν J:.R
J!
. ~- Z3
3. :J.‘ ~tfo' ¥.J.J. Hl. A-D ll\f.....f~.
i. sJ)
^ I~ td
4 6 ‘

{ d v S A V t
A V ? H J? q z t
(
<d al s U4:b 'L lZ 6
... ~ <.d "‘
<<d
J N ~
m d o


4
4
5
t1
G M O +
-


2 +
4
1
‘Leys-
λ-

4 m

U a
(w
-1-

>1
zs e k e g h
ξ

7" r
F 5 5 3 Z ↑
S

S S E - v t A F ?
(Luu
~ F -f.!: τ
U 1
l~ i ..41:1
'
O A T
M U h e
: h - φ ? n o ~ ? A H
A

hdφ 4 d

h v g ?
@v
d
l h
uz
(

4 1 4
- N V

~IL
3jA
-su
d

• - P Z
1
=
....‘ s ~ ¥
..i < Ir¥~
k
rll
z q g m L S J U
§
C(~ s <::oft 1 _ ~
~~
P-
t
3 L J d A
a
£ j
‘ct.l.
jidft)3 CK

.ysu
J..
E
. r
IJ
w o e - " "
d t o v
a r A 8 4
3 v l U 3

150
.d J J M
ψ J V
V J L J f
A 1 1 1 1 1 1 1
d y - -
J 4 3 .
Anyons and Q u a n t u m T h e o r i e s w i t h C h e r n - S i m o n s
T e r m
Term
()
l
-α'm. -Simon:r -+ftp>r
G3hR
)ConeJ"
CK»rn-Simons -te«r«*»* Hopf -ten*
=> TopotoxicaUy & Dynamically rwr«+rio-i«J?
• - Maxwell -term + (C-S -fc*rm) -r Mftitei-
^ri-«y ftnomaly ^ To^oU^iaxl Qua»rt««edriow ,
© C-S tw« -t Mertter
F»W Theory, 5*<t *ol«Wle, polynomial^
o Erotic
Witt»n
Ch~n-SiMOnS'
Mcdt~..
t."
=
1.
-s.r"

~'" 't ~tt~ ...
* 'YO" 1-: 3
Impose boundory condition
H=8ttq→=EClk Eli nb TopoloiCQI Sohton-ωJlin0"model1
Hail-tanicu H=J{z
‘"'Qbles
ChQn3t =1.2nClln‘=l
0.0. J l+
ωe lne ‘
1T~(S -=2
of -ti.sωiMl'
"'eio" ~ Esp~(j f& II~ = int...
I.. totc.ii" (~r -E...c ~i~ nba 1;;' - E...cεsa n zzjzpo 0(("'=0
palo~i C:QI
c.lo..-:1) ~(.S
t-Uyfr •terra
' sfin less
i(S=z.s→ sa
r"~=1 ith =(::)
n.t-in~ '= ~i Cl (~}lft ~in~J. nn W" ;¥...- "lito
0( (TJ~211'. O((OI=O
spi.. leu = @8~
iot" ...r ↓ ~~A_-ω Sol 4tA.μ
=iiZf.."" )..:s1.
-.. H=l ~.
i
"&~"lσ..~
." *
H=j“
"'''''1 by
¥t
Look W a bjo energy effective* theoiy
CP model with Hopf term II ne^lcd: higher deriottt^e
model uritln Chern-S««nons t e i w
Estimate
Conjectrc (by. Wi»jman, DfaUthinckii.
Anti-{ferromagnetic system can be by the CP1 model with C~S term setting
Result Bose-Fermi tran,ymtrtatio« ?- quanta + C - S
Transition amplitude
— 2: e
•Partition -function
z = • ^ " IB)
Estill'ltlt~ <ω..kPO~Icω
<w)=l-tiu41(+r fw.dx14l+.. > !ωεnetgy e'ectiυea kiDr
{ ( ird <A 'i'-) )I ldi! J dA~ IA..(~ e "/
/ 'cr"..cI.riIJ'~
tJ=1t:{ N.'.cf =-L A- I ¥hlh':.tA;rI¥''i' "SM It"11 ~J dA.. e '.-. -----. -------1 :r-o
-L.!.. r(EIA.a"r~p J'P I sYt'.. ~:rrl' ... h~ø
p['fdX 14d'e
Hopt t.erm hi:¥tel" detiu-o*i&)e
1ft"
....--ftw'n
b)' iII~ CP'el c-S t"rm S'e'2P=1t
oc.lIhiftlkii. P.i)‘h J
frf
'y"-¥icJ
l1tì. ~.va"J~(w> ~DI'ItTO.W r1"te
/ StokE-s' /; zF ¥ 'lcl~M= Jd'ct.-.II E~t' i" 8 p
=Plltidllfllctll! i mie."
= '11tiiFmE151
So
-mL(f...) J _ q....“¥ q.(3t.X') = 1: e ... =.: e J
<&11')
Trick
£«i««n brocket
This \$ Bose - Fermi
Xnclu.de charged 4ermion
S
L '~C<s)dr -...2 . ^ i IPJ~ ~ds =j?dL- Id@e ""_1) ~'It' J
momt'"Frene-t-S .. .-t lQ
E' i p.o=" L =17dLPL
In -=: C Ib -e E'
C: r.siot':
ez35 8:ωNXttute
{ ctf.ij'" -'" J l = \~-dl e P21U JclC C
pto pcaIQ~o" .0 Diroc -m-iF6 u::q
":'C;
ie-IJ=tI'Ionic(-~ tit"lcC Sosonic
.• (J 1:mto:t-ion.80se -f"" $ lhit = elCp 1IdS (! clu l - ∞ l
"chA"8e-d nc:lu.delt
T...c
ot.ftra li. SU(2) {e‘~ e-b¥ = fAfe-c ....
-TrM“l Jd. e ìJ~cIS C<s d. e"o
CIS \..'~J dC r-I) ~...(s.J …~.... ($..1
Corspond...c.
= 0;. .… 0"....
Homllton (bnnalism)
Cononica! Momentum
Poisson Bracket
Canonical Hamil-tonian
Hc:= ~fFt J~ TT"-L i;.¥.'2
=gpJd~{65tz-J
zEJ}LPLeaAWJ)-zdhodFJ
θicl~ ìi dtlij 1" At<l'i'&(i-~QI E e~"ωa. Apu" }
H ittonian
ft'iaory@"ctUonE¥er-La'¥"Q1
z8εuQlrrAp+gzzepsdJ+zeahz-PJ4atzo;
φZ
L→ cletermine U;
={ Hpl~O 7 (pG'-1Ja1'(1-<i'JÐ~iJIl
ωn
Cor icolMomtwrt paE EL .-M = iq:-mQqCl'+ e~iJ
---t p.;mQl)' (on"0.;
.POisson
Then x (c'jstiuf, (wj
H T = - = isr« (If-
bro.Q:ets
x()Stl{hadBt311
n betω1¥$of¥btclckcts
{Alctl. 1T.lCjJ}D = ~ 3ij ~û-1J
{AH'.li }o=::{I¥oIII 'Tfi<jlT = 0
{(XIlfoti'J)D: dCr.'Ilo ~tl
{t p1 }o=J1J hr"u1D=eolo4"&(i'_
~8a!rc!91(fJ l H m D l
~~ !u.H:'.pliQr
H iltn;ant.otG1 ftf-tauIP-;.¥"1 -;1ð~1ι
/' noi" itdt'f'.
o
u6c~-iJ
+0... firt c.¥fAS.
?z=eεr.t Ii; ct i'I(ï~J::::1f ωhere zd"~1 =CÞ~z (i I'wd\u~{4>t..¥ ( c'"1)st(~.Wll) J
Cst(W.~ =tqt'tWÎdl ::. -ZD fst 'Cw‘a)
( C-t~t(ùS..=t&w"J
•fixing
0
I I
{Cononi .1Qtitation> z= jldJAil~εIU?Aad e!Að<r- í(!t iAfctJ
Eqwa"1m.ωm.ttotor X fi{l [q~~i..{}(pt'LeAAì()]
}→ TKL eJd ~i.ÅIAJ}
Gusefixins rmined o.s
=29
FO.. l. 1 -
o
/0
-to elimintit*
(-cl~-tAi.f.qQJ)(-iaal _ e-A'(({ =E"'~
hettl
a~= -;;-;dq
"<<tioft
ALl l\A)= ð~@)
(onsidet- ~li..inOlt.
AI(~I by"1tt.. tM..e 0'1 Y'.
b)' 'ThiS is o.chi91X'c:(
-ex
Ex-qQJZ tGn.QQ)=
= a~ {l:. _eo.e't'I: eCe~ .llt'J} -':s.GlCs I(~.s" &. "
..QCi
NteC dcfi)Jc.
Then
N. lot $
y s t M
show b«co«ie
({1)::: ocp[zSE}}
Sthrodnaer t
Exc.hGnSt' p ionof .-rtid •• t ~. N
:;JX::::: :l s ~ N
h... 3iωf' ~ ... ctI E...)~.
ω. shd
3 - H
V
" ( J 7 t
geET-- ζ ι
s E i g
he z a z g + ? ? v - z Q m u 2dw-aMm
2 4 t s
Ler-Tam--g ‘ i T p v a w W
q ' p w J V M q

p w d
pre
zsavHF
{ F
W M q s p Z M +
uvZ J
e
-rw - g + S d w d s r Z M "
f t
52re q s C H T (s -dm
M
In (2-U)-dim. j highly non-trtaial
quantum 3?el<i theories appear.
origin: Q\em - Simons "term
-term )
e i s -
be
Sccanonical Strycture Q~I.... "' Field ...ìe-~Chetn -SimOf¥f b.
j: AnJul '"0"'.
eiS = e2.1t‘
Clppeo.r. 1:E'rm Chern -SilllonS
Maω" klnetic Te-rm (l.-"d. clee)
1:L _0 J=O o<<R .1 - T
Fo .. • HQ1er't hem-S¥PIIfUle"2. l - m |
~ \ii3~ -T" Mat'r
StructtAr~ is di*"rent.
δK.$'-S
Chaae oan
Constraint
There remains nw-W! <wi»%Hwv>
CLboU't" ¥ni1"mc:rtioft•
J:=-μεi~ Å~ (~T+~ )J'; -+~Wf.
USin~ M~er
~~ (Shoul~ Conatf'Ginl
e'.Il.et m
(~I- ìeAt) → e ‘ i Cð'+ !~)rp
Ehmi". ::(11.-MI
lμt3iφ= 4
l - m m l
G.I..ie. tliE. ð'=eA~ =(d;(lnli-j1atconlt.) Jd''''
←j(JnltjrCIN't.)rci)
ψωctI......... (rpa t:…..?
"

- ) commutator
: <fw> 9t3) ± e iKfty< ?tx> = •••
can show
by YSin CjrJ.me'"
CherJ¥-SinS
ω..
l
CQn ωe rer
;1._~ j(i)φ-i...1l-JJ1"." e -....-.-<pctJ e--• =-e 1' ↓
etES{.Q(i-J'}-ll'1b= "Ir I
a '"fI'r :
e hhdaE9494=
i-r -L_ .. 2~ m
Quantum Field
t ic Ma$nw>
A-B Effect
Dislocation of Crystal
¥. HrdSLl)Gl
@(-Rlff -822 (sephson1"on Incomrn surot.eCDW
(l+l)-dlm.
Chira.1 Anomal>
Optlco.l Fi ber 8e~ ~~ωe lHolonomy) tl+l>-dim.
ct- c-Rlf.P-03( HcdlE fArQ~ Rcrtation
ro';cNonon
c-t1~1e...
(-sωeU t1..1t~
aHt
M
ep‘HM }
n‘4
" H Y 1
3 b 3
.4'A £" U 4

4 a
Fdmν
ν N
J V
ν
J H h ' A
¥ L y H h H u
l
. m i r -
E M n a e - ¥
L
Y


'ma
E E 2 2 a - - z ' g a z
- - E E i - - E S - - E t g - M a z g ‘ y a s t a - - - E g g - T 7
a S A B - - a E E - 5 4 E S ‘ E Z E E A q a z a z - - - 2 E E E E E E e ' z
- a e - - z z h W E e - M F B Z E E - s - t s f t E E ‘ a
ZSEs-a
se--21E E-RE32 M g f f - z a z ' 5 5 6 F E a E E -
- a z - - h t I ' S E E s - E s - S E a - b E E - a Z e - E E E E - t M t E S a s
s - . E E . E a E a t e - E S S E
E S E g - E - E S E E S Z E h e '
E 3 s S E E S - ' s t 4 E E E a S F F E Z E E 2 2
t
r
-2
- Z z a - a a - - = s a E - s E f
a h E
' S z a - - ' S E z - a - z E g R a E k e - u s E a a E E ‘ E - = t e Z u - - E E
S'BEE-ssEzt2BE-ER'-SEase--sag-@-BE--gEE
4 2 z a = R E T - - ' 5 2 2 1 p s - . h a ' a p g g E S E t s -
ah4''EnME-E-EEESE--Bez---fu
E Z E ‘ . a a ' E E
a s t - - - ‘ a a - e Z E B - - h g E E ' E ' g g p a a a F d τ S E z s ‘ =
g e - - E E . ' e s - - E S E - t g J h z f a 4 2 s a a - - a - a s a -
- z a - - 2 s s r = - z : z a u E E ω 4 - Z "E E ι E S Z O B . g e
- e E ? - o a 2 2 E - B E E - Z E = E t E 5 E U S E - - E 5 2 a z
-a E E E E B - - S M 2 s a s s
3 4 - E
E E S E 2 E g g I E E 2 E E t ‘

a E E - - E E E Z 4 E a E P
a 6 2 2 a i E E Z E E ' f h S E a s -
t s a - d z a aso. : t a z E E S T a s ' Z E E - E a E - E
hEESza--abM ' z E e S E E - = - ' Z E b a u E E - - E F
S
ERaua4F-B‘S
azs'EEEE'UaatE5'PEEPMe
a s - - B s s E E - - E = E M a e E E E Z E z . ‘ 2 E E S - F
hEE -a.ESE-Qa--EEUH

h : R ' E S Z S 4 z a S ‘ - a - z i Z a E Z“
E E E A . E 3
etasaE‘aza .. E - S E a t s - ' z a - E E a E G - -
B ‘ a s

a s a . ‘ E a g a - 1 4 : z e a E - E 5 2 3 a f
s E B E E - s i t s - a h - z s t u t - - = Z E E - E ' S
B--Mmau--=a2bahe
-oa.MadBba
a-a'zEb - B E E - E R S J h E E E S E E T E e - - - a a ea2
6E'zzS E E E ' E u a E E E B ' s t - E E d m g z
'2.'Esd-m--sa-2aZ3vs-aa'a"EzeAL2 H
e E - E a J a a
E S E Z E s a g a - - z q a u - - 3 . a 5
4 s t g - a E a a z o - - U E S t a - - a S E E M E TEEgd ZX
'a- n d
h a A E E S h
M 4 3 2 £
-e-EB--
E
; j i - - t
~
E ~
e M
ω .
¥
ι
50 60
Fig. 3. Low-temperature resistivity of a sample with .v(Ba) —0.75, recorded for different current densities
s.
-a a
ldaLLH ~1I 11.
? H
4~~ ..ft
1:~~n.f
fo= h.cl'Ie
30 40 T (KI
Fig.3. Low-temperdturc rcsistivity of a s>llTIplc with x(Ba) ~ o. 75
E ordedfor di!ferent currcnt dcnsitics
7.5A/cm2
2.5Alcm2
0.5A/cm2
2 -
SOUIO magnetometer Toroidal solenoid \
40 60 80 100

E

--
z
50
TEMPERA TURE IKI
FIG. 2. 1-V characteristics of Nb/Ba-Y-Cu-0 point-contacl junction with the application of 8-GHz microwave radiation. Voltage steps can be clearly seen.
. fa.

n t
I l l 1 1 M I l l i l i - - l i l -
-l111111114
llluJ1
'" -;t./J
a O O N '
fIG. 2. l-V characteristics of Nb/Ba-Y -Cu-O Doint~contacl junction with the application of ~GHz microwave radiation. Voltage steps can be clearly seen.
40μV O 40Jl'V
-174 -
E
E

~
(BiO)Sr CaCuO. (TlO)BaCaCuO.
(b)
-175-
(a)
- J D
r z
M «_
0.1
$ This work
- 1 7 7 -
1 1 1 1 1 1
l l h i l l - - f l i l i - - -
E
E
Shafer.et al.
!18
^ 1 !
. dln7c/dP t 7CJ • ; Nd,.,,Cteo.iiCuO,-,(NCCO), O : Nd,..Ce0.,Sr..!Cu01.i(NCSCO), • , + , J7 ; i Y - « J: [/Eu-Ba-Cu(M)-O(M=Fe, ;
i I
! I I
P I * . A. ; Y-«i'yGid-B;a-Cu-O, ,D,: * ; Bi-Sr-« i U TI-BarCa-Cu-O, ^A, X ; La-Sr-Cu-O(lSCO)
(QPd) 7;
\ I V
X (Ce) X (Sr)
1! I M - - - -
C 1 M /
I l l 1 I l l i - - - hIli--v l i l - - A M I l a s - -
- d p ¥
E
l i - - J -
-
‘I l l i m - -
l
i
m
i
H a F Z ¥ E
40
Tc(K)
d In Tc/dP
φ: Nd...Ce""CuO._(NCCO) 0: Nd.Cesr...CuO._(NCSCO). .+ v;iY-E Eu-BaCu(M)O(M=Fe.
pO.~i.t(' Z 0; Y~Ba-CuO.
i:~:vd P-CO.
:d.. X ; La-SrCu-O(LSCO)
A U V H
z ‘
d -‘
10-1i 0 ~ :z:1
• RH>O



N h J P h h / ¥ b N
b¥l N V "
j

l b

3hJ
W

d l q 2 1 0 U
x ?
T -
h 4


ιL h



-180 -


A
F
t:-
O SP

; d u q q ↑
.~
2u v

!
h ' ¥ h
am-- v
- J J '
N S h w s d

281 S J W

hE





3 ¥ V
¥
¥OS
p u w
t
? " n q L
d h d
w v s a ~
e A m 4 9
v W 3J
V
~ 4 3 P
4 h
h v w ' J
ut hvww
EJW

Q

.~
O H ' W
Stvo nq ce> rre la t!a?i
aMo nq e He ctro/iS.
f{Jdg Ot<.y !110yanCε Gbd¢μt
s.γ'0')γ rα~ r.telan
allton.# e lec"()I1S .
...0& tn 'T ~ 1--.. ~ r" ... ..."a!.(A}T~ -- -
o.Y¥y' T :.0 Huadnasse--f f4d.+y
o."y? ρ
H&"""..l@-zt ~~
AtJYON
)


-t
S 6 4 J F
4 2 a h
Z
-190-

a h T ω
d - S we-
J f d F
: . 3 F M g
ω u e
d S I N g 4 2 A V
. 2 U 4
d d a S 6
2 h r v g E 4hhz 3 2 3

6 6 Z N d
. 6 { V

a a
4

6
“' " S 4 0
J R -
d c s a x s h w e d - e p d w
a - - E E E F
-
1'"
z d z d d v d w g a
‘eAW
:‘"‘ F " J h y
r
e
V*
. '.1. .11

-a.E d
4 ‘' # ..
-192-
r
-IN
* I*

'a
3 u p d
- h N 6 5 3 r g A V d p p d - u h - -
:4i:T ¥ ~ '. S~ ¥3¥
S L T 2 . P L 6
-vd d 3 -

E W
h d ? "
Z
2 1
“ d
d-36
.1:: -4-
-193-
S - 4
' J u p μ M F ' ' N M V Z A V F J R d -
J S h A 4 6
" ' u h d d d


T d T 3 -
‘‘
/ es-t.2"2
7
uLed-"J-f
wpF333L g 2 1

d d d λ O W J H V 6 1 2 g '
e d e h A£ d
4 2
6 w
" a

as“ h

"
a
d -
2 8 a E Z j p z a X A F 4
6 ' 3
V A J H
v

d F d F 4 b v
d d v f d
6 M A
d-e d A F g e 3 3 3
+ 3
S M f t - e g 4Ea u
-sztuf ua
. F
ed--“ d
-

w
G - d
tea
ZU
d
N
↓ ‘
J F d v +
6 4 s v 4w
2 6 J
A J V



1 J4
5 " MM
ds~ .8 '
TJ 1~
6 3 4
1 2 u .
' h - 4 J d
+
s a J E J h

.3"
p r h
p h d
ed--dSJvre
= r d S 2 3 u g g e h a
5 3 4 w S J T Z ρ
. d v d d w % d
@

‘ 3 4 U

P
- @ d
ε4n- - W 6 H . ι T U Z N
W4W
z
2 2 ' f z u ...1
4
-196
ARtτ u
p s v
. 4 4 μ - s ~ p d E F J 6 A T E - 3
-
H 4
t f b W 6 + d - d
2 h
- * a.
a
IV
0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 o o o o o o o o o
O O 0 O P O — O O O O Q O B O — O C Q O O Q O O O O O
Q O Q O O O O O Q O o o o-O 0
Q 0 O O O O O 0 0 0 O 0- O O C O O O
0 O » W»8i»f » 9 0 Q O »—O •
- 1 9 7 -
@


a
J" h-E
9 3 m M ?
-"''Mr
g S 2 3

T .
Z M S
@
H~p.....t\clc -r--"011.
ε...1iωc?
y~EVm Z t;.<. "l..a
u'J.‘
s
H-42s ;;2. ιι=33Z2Z i d ez t 2. <.llitf -1.
-e.A.-etl.. <j
ω"t
lncl"c.cd .... e: b' :
4 4 3 F A H V W
4 1
"V1MS
-t&
e w v
3 S
τ pguZOA-
J d
4 1 6 ) E w h
l M W H K
u g

J ? s d J d
- f e
SAMV
+

- p t z e h b
j s Z

.."




- L 3 L J 3 0 4 L

M d p d F - M L



v
ν V U 3
?-)U3 t
ω



t z e i3 s s ' 1 5 p Y t
2 3 2 t a s3 2 i l t
.v J J F d ' d J F 9 4 ωha dE4 4~
ooroBaCi
001
-<>-
........ ".1tJ l1-e = l<1fheB)
rte
q(T=O)()
*ι.l.
0¥ Se (0

...c.l4S‘.
ωpz
It'fMCι .tc. se T¥eoω}~'\f..-- rrcι""-Jt
~
+
d
+ 4 .
3 ""i 3
-
S
ss La

4
3 4 a t e - - s d
=↑
- F
t J F 3
- v
wZ
.eed
J-e d w v t s d ? d E F e - -
JT ‘
d p J Y Z aN

3 3 S O S - A

- 2 0 5 -
rt JJ fy RVB
J> T.TIf) .1 ¥ bj/ '/ b.)¥i

I~ske:.r~ -A"Jt'rJ'rJYl N4karc.-Mr;.T.rfA" i'T11J 44 ~λ
'
/))tiJ
l
“J(~aωa4;;F.'(rj!Jr
<li>o
/
+LIn nω -JACCfr
8"cJ<<. -20IA -A ...Je.. t'fJl-O
H (C";~~r~ 1.. c )
-tIL JCJrCrr~t)
6:: -<z. n..~> r
Lo I6y etry GJ..J "
/ L "/'-./ I_I_L /~. L /~/:./. T I
:ιj-f Lυ-~/
;.L7..7' YV " __'.:1_¥ L
b.:. 4" ~TJ1 I
OJ0.os.O-O 6- ev
o


A d
5
}
h v h 0
1
H H
‘ ω ‘
3 4 4 .‘

s t f +
-L
h
… h N H

Jw. h V
e
q - F n q 2
hy
.---. ..
= r t
‘ M
l
-208-


H~At Bar) l1.tAor/.
2 "e~ ?rllVn(/ .J'MH!. s ft~rI
"'P ;ly/(jCl)
n.e fJb le. ~<< I'JÁAI~ (/þrρ'tIt ".~d 410
..t"II'(J}(.I$ß~k øf ρ'SCt#tt. 5j'Jffetr' c j ð~I' →-~.
71'pJ.e.t/l4~
fJ:t" n "'01. MtI''-t/rvr
j 1-ωsω~ Avetηe id
re 7ω'd e > ==
t
-
K-m O(JZ
-. TJ ..... tf'ce
MlYI-pe. 'rfi.'c:; .ná~s f'tWtr/ fFJlolUω ...rA7ltrJ
4-) F~γ !aYft TI {s: t $0.04
t()'lrtlttl μ~~ ."MSt""" ~ "'S'J'd' J'~øI A . u ^ ~
S!p1N1 mb" 1 ()cυ.-
.3:
a

H q
- x
o
E ~....
t '"
o p ~

-1"0
<n..
««« T-J MODEL THERMAL CYCLE DATA PLOTTER »«* INPUT FILE NAME ».DAT; »«Q42O1T
V .03 eV
SIZE SPEC,; <12*12»12> HOLE SPEC; D • .0700 HOPPING SPEC; TO » .30 HOPPING SPEC.; Tl . coupllnc J • • 1 eV * of STEPS (ONE WAY) - 40, (INITIAL Beta) • 200.0 1/eV (d«lt*BBTA) • S 1/eV. WARM UP SWEEPS • 0; RET to continue
AVERAGING SWEEPS • 400
J = 0.10000 [eV]
Abscissa 50 [1/eV]
J - 0.10000 teV]
i—_—i—
T1 .
317
0.00050 [eVl 50 [J/eV]
- τJMODEL TKERMAL C~CLE DATA PLOTτER ••• INPUT FILR NANE ..DAT: ..0420IT
S1ZISPBC.: <121212> KOLI SP!C.: D .0700 HOPPINO SPBC.: TO.30eV HOPPINO SPBC.; TI.03eY coupllnc J.1 eV
• 01 STBPS (ONB WAYl40. IINITIAL Bt2200.0l/eV (d1ta8BTAl l/eY. WAR UPSWBBPS 0: AYERAGING SWEEPS • RET 10 con 11 nue
417 2/17
1 scale= Ordinate Abscis9d
Phase 1 scale= 50 [1/eV]
PHS4201T.DAT SIZE SPEC; <MM1»MM2*MM3> where MM1*MH2*MM3 < 12«»3 MH1 > 12 KM2 - 12 MM3 > 12
Tl » .030000 D • .070000 Be « 400.0
/ / / / r — \ —— r —• r —- T —- r —— / / / / / / / / / / /
N - . N N N N N N N V N S / / / / / / / / / / /
-— J •—• J •— J •— 1 -— 1 -— J / / / / / / / / / / /
/ / / / / / / / / / / 1" •—• I — I —- I — I —• T —- / / / / / / / / / / /
S N N S S S . V N N N S N / / / / / / / / / / /
—' 1 — 1 — 1 •— I — 1 •— 1
1 —' i -— 1. —— V -— 1 -— 1
SHEET 1
ROTATION ANGLE
THETA = 0.
77=.o3 t>- 07
'ft'here MM1+MM2101M3( 123 PHS4201T .DAT SIZE SPECo (1011011101M2101M3> 1041011 12 ""2 12 101M3. 12
l'
. .~:.~~~..""
¥
/
¥
‘.
' ' r ' r ' F J F J J ' J ' F J P ' r ' J '
J


!
¥
J ' r ' r ' ' ' ' F J J ' J ' ' ' ' p ' r ' r ' ' ' '
le/!.
Phaee
- . I
1
1
SHEET 1
ROTATION ANGLE
I t t I I I ! I I I I I
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 I 1 1 1 ! ! 1 1 I I I • / • \ « / » \ « / « \ " / » \ » / « \ « / « I I I / 1 I 1 1 1 I I I
1 1 1 1 1 1 1 1 1 1 1 1 • \ ' . / . \ . / . \ . / . \ . / . \ . / . \ .
1 I 1 1 l_l 1 1_1 1 1 1
° 1 1 I I I I 1 1 1 1 1
I t 1 1 I I I 1 t t t I
1 1 1 1 1 1 1 I I I 1 1 • \ . / . \ . / . \ . / « \ . / . \ . / . \ . 1 1 1 1 1 1_1 1 1 1_1 1
THETA = 0.600
o shows + dev.
Max. dE = 0.01041 [eV]
ROTATION ANGLE
THETA = 0.
PH54201T.DAT SIZE SPEC; <HM1*MH2*HM3> whare MM1*MN2*MM3 < 12**3 MN1 • 12 KM2 - 12 MH3 • 12
VI D Be
.070000 400.0
PHS4201T.DAT SIZE SPEC; <MH1*MM2*MM3> where MM1*MM2*HM3 < 12**3 MH1 • 12 HN2 • 12 MM3 • 12
Tl - .030000 D • .070000 Be - 400.0
SHEET 1
Max. dE = O.141 [eV)
'i E. a o ' 1 l -sAO'l i EE--BE. l

J
-
/
-
¥

/
-
¥
-
¥

l o - -
-
¥

/

¥
-
¥
-
J
l o l - - 1 l o l - - a l - - l l 1

l o l - - e l - l o i - - 1


¥
-
J
t o l - - l 0 T E - - l 1 . IB--2. yt



¥
-
J
-
/



-
/

¥
-
‘ T1 TB l l 074

¥

l o - -
SHEET 1
J
where 1H23< 123 PHU201T.DAT SIZlI SPl!Co <1111123) 11111 12 11112 12 113 12
whr 111111111211113< 12..3 PHS4201T.DAT SIZlI SPl!Co <l1111211113) IIM1 12 z~ 12 11M3 12
N H h l
nu H V
nu H V

--a'
••• 1
e
H
nu m u
**» T-J MODEL THERMAL CYCLE DATA PLOTTER •** INPUT FILE NAME *.DAT; *'G4808T
SIZE SPEC.; <12»12*12> HOLE SPEC; D • .0200 HOPPING SPEC; TO • .30 eV HOPPING SPEC; Tl » .03 eV coupllnf J > .1 eV
» of STEPS (ONE WAY) • 60, (INITIAL B«t«) > 100.0 t/eV (daltaBBTA) • 5 1/eV. WARN UP SWEEPS - 0; AVERAGING SWEEPS • 400 RET to continue
J = 0.10000 [eV]
en I
Radial part
317
[eV]
l
ι W A F
Fnur1L
nu
a n l
n L V
• • • • • • •
• • •
- T-J MODEL THERMIIL CYCLB DIITII PLOTTER ••• INPUT FILH NIIME ..DIIT; G4808T
400
SIZH SPBC; (121212> HOLH SPBC.; D. .0200 HOPPING SPBC.: TO.30eV HOPPIGSPEC.; Tl .03eV coupllnl J.1eV
6fSTEPS (ONE WAYl60 !1NlTIIIL Blal100.01/eV (d11BHTIIl 1/eV. WAR UPSWEBPS. 0; AVERIIOING SWEBPS RET 10 Qon tI nue
'4
[eV]
J
-'.-....-'.-......' . .' .I
← - -.h ..............-..
dial part
CORELATIONO 1-5 '••<*•:
CORELATIONO 1-79 CORELATION 1-79
aM
" .
1e/1?
[1/eV]
.. .T •
• • . . a
R
--a
l
Rediel part
A 6
I I / / / - / . - - / / I / — — - - S \ \ I \ \ N —
\ \ / • " / - - v \ - \ \ \ 1
S \ 1
l / / / / s \ *• \ y \
\ I i s
bond length = 2Eave
Max. dE = 0.03509 [eV]
PH5487tT.DAT SIZE SPEC; <MM1*MM2*NN3> where MM1*MM2*MM3 < 12**3 NN1 • 12 NH2 • 12 MN3 • 12
Tl ' .030000 D • .020000 Be > 400.0
One of typical non'periodic CONF1QURAYIONS teen among 12 sheets
FHS4B76T.DAT SIZE SPEC; <MM1*MH2*MM3> where MM1*MM2*NM3 < 12**3 MM1 > 12 HM2 • 12 MM3 • 12
Tl • .030000 D • .020000 Se ' 400.0
SHEET 4
bond Jength = 2Eave red circJe; Max.dev.
Mtx. dE = O.359[eV]
h
l
i
PHS4876T.DAT SIZE SPI!C; <MMlMM2MM3> MMl 12 2 12 M3 12
wh.re MMlMM2MM3< 123 PHUI78T.DAT SIZI SPI!C; <MMlMM2MM3> MMI 12 11M212 2 12
l N H
n u n u
n u A U
A u n u
- E - a
One of tYPlc1non-perlodlc CONFJOURAJ!ONS .een a..onl 12heet
SHEET 4
red circle; Max. dev.
Max. dE = 0.03509 [eV]
oo PHS4t7tT.DAT I SIZE SMC; <HH1*HH2*MN3> where MN1*MM2*MM3 < 12«*3
NN1 • 12 HH2 • 12 NH3 • 12
Tl • .030000 D • .020000 B« • 400.0
• •• T-J MODEL THERMAL CYCLE DATA PLOTTER **• INPUT FILE NAME *.DAT; »«G4807T
SIZE SPEC,; <12»12»12> HOLE SPEC; D > .0050 HOPPINO SPEC; TO - .30 eV HOPPIJW SPEC; Tl " .03 eV couplim J - .1 iV
* Of STEPS (ONE WAY) • 60, CNITIAL Bit*) • 100.0 1/eV (del((BETA) • 5 1/eV. WARM UP SWBEPS • 0; AVERAGING SWEEPS RET to continue
J • 0.10000 [eV]
SHEET 4
JO.10000
1 8CIII e~ Ordinote Absci 8811
- T-J MODEL THERMAL CYCLE PATA PLOTTER ••• INPUT FILE NAME ..PAT; 04807T
400
91ZE 9PEC.; <12u12> HOLE SPBC.; D. .0050 HOPPINO 9PEC.; TO' .30 eV HOPPI~O 9PEC.; T1.03 eV coupllnl JJ .V
• Of 9TEPS (ONE VAYl60. ('NITIAL Bt3100.0l/eV (dl1aBETAl l/eV. WARN UP 9WEEP9 0; AVERAGJNG 9WEEPS RET 10 con tI nUe
-- -.-.. -.. . . . . . . . . . . . .
. . . . . . . . . . . . . . -. . . .
nv
u
‘h u b p
PH547T.DAT IIZI I'IC; <NNlNN2NN3) E 12 NN2 12 3 12
l M ∞ l
J = 0.10000 [eV]
CORELATION0 1-3 CORELATION 1-3
I Order Parameter 1 •.- A^i"".' Order Parameter 3../ i> '
•;/••'. • Radial part
C0RELATI0N0 1-5 CORELATION 1-5
{
-
'
.• -F
- q
(lIeV] Phoee
/ 1 J
SHEET 1
bond length • 2Eave
Max. dE = 0.05202 [eV]
PHS4t6ST.DAT SIZS SPEC; <NN1*MN2*NH3> where MM1*MM2*MH3 < 12**3 MM • 12 NN2 • 12 NM3 • 12
Tl ' .030000 D • .005000 Bt • 400.0
No periodic CONFIGURATIONS seen iioni 12 iheett
PHS4SStT.DAT SIZE SPEC; <MM1*MM2*HM3> where MM1*HM2*MM3 < 12**3 NM1 • 12 NM2 • 12 HM3 • 12
Tl • .030000 D « .006000 Be « 400.0
.."~~.. "a
SHEET 1
Max.dE = 0.05202 [eVj

where MM1MII211113< 122 PHI4S6eT. DAT SIZ! SPEC; <11111MM2MM3)1 12 2 12 H2 12
PHS48er.DAT SIZE SPEC: <MM1M211113) where IIM1M23 < J22 1IM112 212 M3 12
I N N - -
B 400.0
o o
o o
o o
o O
INPUT flLE NAME ... DAT;=G4402T
SIZE SPEC.; <12121> .ESP o= .0700 lPPINGSPEC. ; TO = c 30 .V 'PINGSPEC.; TI .00 .V couplJnl J:= .1 eV a 01 STEl'S {QNE WAVl 60. (INITlAL Bta) 100. 0 1/.V (d1t.BETA> = 5 I/.V. WfulM )JP SWEEPS = 0; I¥VERAGING 5WEE'S = 400 RET t"o contlnUIt
SI1EET 1
J = 0.1αm
PHS4866T.DAT
"" "" -
n u p s -

--a
Order Parameter 1 »•••%- Order Parameter 3 . . . . :<• . * . ; : ' . : •
• • ' • . ' . • -
& '
Tl-0 0- o? (1- /oo~4.oo
CORELATION 1-3
CCRELATION 1-5
'17
J = O.lC. -..
~.γ
e L

F E l - - r i t - - F i l l Ea--4.

u
v


1 M M M l
(2. X/2.fβ= 1(1:l"';400 D: .07 Tt= 0 (; /2/CI P=I∞H 00ρ&!' . CI7 il=o.
S17
\
\
\
S
s
N
PHS4406T.DAT SIZE SPEC; <NH1*HH2*HM3> where HM1 ' 12 NN2 > 12 MM3 • 12
Tl ' .000000 D ' .070000 Be * 400.0
1 /
Max. dE = 0.00700 [eV]
PHS440ST.DAT SIZE SPEC; <HM1*NM2*NM3> where MM1*MM2*MM3 < 12**3 MN1 • 12 MM2 • 12 HM3 • 12
Tl » .000000 D > .070000 Be " 400.0
SHEET 2
where NNlNN2.NN3 < 123
PHSHOT.D.¥T SIZ! SPEC; <NN1.NN2NN3> Nl 12 NN2 12 NN3 12
..here NNI.N2.NN3 < 123
PHS“06T .I).¥T SIZ! SPEC; (NNl.HHZHH3 NHl 12 MM2 12 MM3 12
l N N U l
n u n u
n u n u
n u n u -
n u " ' n u
.•
n u n u
n u n u
n u n u -
--a-
I to bo
Max. dE = 0.00700 [eV]
FHS440ST.DAT SIZI SPEC; <HH1*HM2*MH3> where MN1*NK2*MN3 < 12**3 MM1 • 12 NM2 • 12 NIK • 12
Tl • .OOOOOO D - .070000 Be • 4 0 0 . 0
• * • T-J MODEL THERMAL CYCLE DATA PLOTTER • * » INPUT FILE NAME ».DAT; *=G4605T
SIZE SPEC.l <12*12* 1> HOLE 'SPEC. ; D = . 0200 HOPPING SPEC, i TO = . 30 >V HOPPING SPEC, i Tl - . 00 oV
coupling J » . 1 iV tl of STEPS (ONE WAV) » E0. (INITIAL Btt«> - 100. 0 1/<V <d>lt«BETA> - E l / .V. WARM UP SWEEPS = 0; AVERAGING SWEEPS • RET to continue
t'"..
l M N h l
PH1440dT. DIIT SJU SPIIC; <MMlM2.MM3> where 14141MN2MN3 < 12..3 1 12
""2 12 z 12
Tl.000000 D • .07000
Max.dE = 0.00700 [eV]
INPUT FILE NAMl! ...1;46051
SIZE SPEJ::.: <1212 1> IJ:.E'SPEJ:: D" .0200 ll'I'l.SP '.τo~ .30.V HOf~ING SPEX Tlz .00 eV euplln.J = . I .V
• .1 51PS (()f WAY)" 60. C¥NITIAl. B¥0)- 100.0 1.v (d.1 taBETA> . 6 I.V. WIII¥PS:EFS=:1 0; 1¥'INGSD'S40 RET to eont1nu
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • .J‘ •
- E
J.5
XM8OOU
J = Dl(

.".)..~~-)# Pse
i
N
l . . '. . ".
~.JI' _'~.‘._..t .. ..'
1 le= 50 [1/eV)
. . n
':.:'
IZXU.;(
Phase
β. (00 'v0::> .0) 1=0 12λ//β100-4.00::. .02 Is: 0
- \ I I I / I \ - \ ~ ^ I i s - \ \ ;
s I — / ' s s I *~ / s s -- S \ \ \ - \ 1 \ _ _ / • / — / ^ •" -- N \ I / /
\ I \ — - - / N ^ \ \ \ —
SHEET 4
ROTATION ANGLE
THETA = 0.
••« T-J MODEL THERMAL CYCLE DATA PLOTTER •»• INPUT FILE NAME *.DAT; *-G4302T
SIZE SPEC! <12*12* 1> HOLE SPEC.; D > .0060 HOPPING SPEC; TO • .30 eV HOPPING SPEC; Tl « .00 eV coupling i * .1 eV
• of STEPS (ONE HAY) • GO, (INITIAL Bet*) • 100.0 1/eV (ddttBETA) > 5 1/eV. WARN UP SWEEPS • 0; AVERAO1NQ SWEEPS RET to continue
PHS4B05T.DAT SIZE SPEC; <MM1*MK2*MM3> where MM1»MM2(MM3 < 12**3 NM1 • 12 HM2 • 12 MM3 ' 12
Tl • .000000 D • .020000 Be ' 400.0
Typical non periodic configuration aaonx 12 iheeti.
J • 0.10000 [eV]
SHEET 4
- T-J NOOEL THERNAL CYCLE DATA PLOTTER ••• INPUT FILE NANE ..OAT;.04302T
9IZB SPEC; (12121> HOLB 9PEC.; D. .0050 HOPPINO SPEC.; TO.30.V HOPPINO SPEC.; TI .‘00 .V couplln J. .I.V of STEPS (ONE WAYI60
(INITIAL Bet} 100.0I/eV (d1taBETAI I/eV. WAR UP9WEEPS 0; AVERAOINO SWEEPS • fl:n to CDn t 1 nue
…G …
J
i
J
J
400
"'here MMlNNhM3< 1243PHS480OT.0I.T lZI!SPI!C; <NINNZNM3) l1li1 12 IIItZ 12 NN3 12
l M M m l
O. 10000 [elJ] 50 [l/eV]
1 8cele Ordinete Absciese
Typlcal non perlodlc conflurIlonaona;12heeta.
'•"!••' ?T .t.....|tl,r....i1..:.i J - 0.10000 feV]
] scale= Ordinate D.00050 [eV] Abscisea 50 [1/eV]
CORELATIONO 1-3 CORELATION 1-3

Order Parameter 3. H.."*i5*-V<""~" Phase 1 seale= 50 [1/eV]
CORELATIONO 1-5 ...*pi''*r:?' CORELATION 1-5
Radial part : '•'• • ? • • • ;—i .<- ! • : .
"77=0 £>».o»«r
Radial part
.. 1 ~J<!τ
•*. ~ ** s 1 ! \ ^ / • ,- \
I y — \ i / / / / i - - /
SHEET 2
ROTATION ANGLE
THETA = 0.
*•* T-J MODEL THERMAL CYCLE DATA PLOTTER »*» INPUT FILE NAME «.DAT; »«Q42O7T
SIZE SPEC,; <12»12«12> HOLE SPEC; D • .0700 HOPPINO SPEC; TO « .30 eV HOPPINO SPEC; Tl « .06 eV coupling J • ,1 eV
* of STEPS (ONE WAY) • 40, (INITIAL Beta) ' 200.0 1/eV (delUBETA) - 6 1/eV. WARM UP SWEEPS > 0; AVERAGING SWEEPS s 400 RET to continue
PHS4305T.DAT SIZE SPEC; <MM1*MM2*MM3> where NM1*MN2*MM3 < 12**3 NM1 • 12 NM2 • 12 MM3 • 12
Tl • .000000 D • .005000 Be ' 400.0
Typical non-periodic confifuratlon aaong 12 •heeU. None of then are commor in flhape each other.
J • 0.10000 [eV]
1 scale* Ord'nate 0.00500 [eV] Abscissa 50 [1/eV]
- T-J MODEL THERMAL CYCLE DATA PLOTTER ••• INPUT FILE NAME ..DAT;24207T
SHEET 2
SIZE SPEC; <121212) HOLE SPEC.: D. .0700 HOPPING SPEC.; TO. .30 eV HOPPING SPEC.: Tl. .06 eV coupllna J. .1 eV
fSTBPS (ONE WAY)40 lNlTlALBel3200.0l/eV (dellaBBTA) l/eV. WARM UP 5WEEPS. 0; AVERAGING SWEEP5 • RBT lo contlnue
ROTAT ION ANGLE
400
fHS4306T.DAT
SIZ! SP!C: <MMlH2MM3) vhere MMI.MM2.MM3 < 122 1 12 MM2 12 MM3 12
1 M M ∞ l
1 6cele .. Ordinete AbscisSd
n W E n - -
--aa
••• 1
R U S E
TyplcInonprlodlcconflaurallon aona12 heel.None of lhe.recommor 1 n ahpeechother.
J = 0.10000 [eVJ
CORELATIONO 1-3 CORELATION 1-3
Order Parameter 1 ,?«:'•"•'
0= .0*7
Order Parameter 3
CORELATIONO 1-5 CORELATION 1-5
-.
1 scale= Ordi nate 0.00050 [eVJ Absci ssa 50 [l/eV)
F
. .
CORELA Tl ON 1-5
7f s . 06 {):: . c) 'i (30;1-00 -1'00 12"'1 ~/2.
I 1 \ \ 1 I I \ I I I I
! I I I t 1 1 1 ! I I I
1
0
o
0
o
o
o
o
' 0
o
0
o
o
o
O
0
o
O
0
O
o
0
o
0
o
0
o
O
o
o
O
0
o
o
o
o
0
O
O
o
o
0
o
o
0
0
0
o
O
o
O
o
o
0
o
o
o
o
o
o
o
THETA = -1. 200 0 O O O O 0 O O O O 0 O
SHEET 1
Max. dE = 0.00700 [eV]
o I
PHS4207T.DAT SIZE SPEC! <MM1*MM2*NM3> where MM1*NH2*MM3 < 12**3 MM1 • 12 NM2 « 12 MH3 • 12
Tl • .060000 0 « .070000 Be ' 400.0
All conflagrations of 12 sheets are exactly of thla type without exception.
PHS4207T.DAT SIZE SPEC; <MM1*MM2*MM3> where MM1*NM2*HM3 < 12**3 MM1 > 12 MH2 > 12 MM3 ' 12
Tl • .060000 D » .070000 Be > 400.0
--m -.
.1

-


vhere 141Mh143< 123 PHS4207T.DAT SIZl! SPEC; <M1142143> 11111. 12 212 11113 12
l N U D l
where 14114M2M3< 123

n v h u
--a
n u n u - - -
-- a a n
••• T-J MODEL THERMAL CYCLE DATA PLOTTER ••* INPUT FILE NAME t.DAT; *<C4208T
SIZE SPEC,; <12*12«12> HOLE SPEC; D > .0200 HOPPING SPEC; TO • .30 eV HOPPING SPEC; Tl • .06 eV coupling J • . 1 eV
* Df STEPS (ONE WAY) • 40, (INITIAL B«ta) ' 100.0 1/eV (deltiBBTA) « 5 1/eV. WARM UP SWEEPS ' 0; AVERAGING SWEEPS RET to continue
J - 0.10000 [eV]
J = 0.10000 [eV]
Order Parameter-"]"" Order Parameter £
....
317
[eV) J z 0.10000
. " . . .
- T-J MODEL.THERMAL CYCLR DATA PLOTTER ••• INPUT FILR NAMR ..DAT;-04208T
SIZE SPRC; <121212) HOLI SPRC.; D. .0200 HOPPINO SPRC.; TO .30eY HOPPINO SPRC.; Tl - .06 eY couplin J.1eY
• of STIP! (ONR WAYI40 (INITIAL Bt1- 100.0 l/eV (deltBITAI l/eV. WAR UP!WEEPS 0; AVRRA01NO SWRRPS _ I¥IT to contlnue
400
.~.
CORELATIONO 1-3 <. ,«• •—•-"
CORELATION 1-5
CORELATIONO l -
CORELATIONO 1-79 CORELATION 1-79
r1-'•Nvs Radial part
13.117
.~
Phese
CORELATION1-5......T.-
-J
Phase
/ —
^ N ^. - - \ \ \
^ V ~ N \ \ -^ V — —
bond length * 2Eave
CO
I PH342OIT.DAT SIZE SPEC; <MM1*MM2*HM3> where i<Ml*MM2*NM3 < 12«*3 MM1 > 12 MM2 • 12 MM3 • 12
Tl • .060000 D - .020000 Be • 300.0
Highest enerfy sheet
PHS420iT.DAT SIZE SPEC! <MM1*MH2*MM3> where MM1*NM2*MM3 < 12«*3 MM1 • 12 NN2 • 12 MH3 • 12
Tl » .060000 D * .020000 Be • 300.0
~. _.--._.~. ~.r=^.... . ....... "
bond ¥ength = 2E8ve
Mex.dE = 0.05752 [eV]
whcre MMlMM2MM3 < 123
PHS4201T.DAT IIIZI! SPEC: <MM1M2M3) 11M 1 12 MM2 12 1'11'13 12
wh e r e i1M hMM21'13 < 12 3 PHS420T.DAT SIZI! SPI!C: <111111'11121'13> MMI 12 MM2 12 11M312
l M ω ω l
nvnυ
nvnυ

unHυwnυ
nvwnuu.
eR
SHEET 6
Max. dE = 0. 05752 [eV]
PHS4208T.DAT SIZB SPEC; <MMI*MM2*MM3> where MM1*MM2*MM3 < 12**3 NH1 • 12 MM2 • 1 2 MM • 12
Tl > .060000 P • .020000 Be • 300.0
*** T-J MODEL THERHAL CYCLE DATA PLOTTER **• INPUT FILE NAME *.DAT; *»G4701T. PAT
SIZE SPEC,; <12*12*12> HOLE SPEC; D • .0060 HOPPING SPEC; TO • .30 eV HOPPINO SPEC; Tl • .06 eV coupling J > .1 eV
* of STBPS (ONE WAY) • 40, (INITIAL Beta) • 150.0 1/eV (deltlBETA) - 5 1/eV. WARM UP SWEEPS - 0; AVERAGING SWEEPS RET to continue
J - 0.10000 [eV]
0.05000 [eV] 50 [1/eV]
"“2123 12
SHEET 6
T-J MODEL THERALCYCLE DATA PLOTTER ••• INPUT FILE NAE.DAT;.047011'.DAT
SIZE SPEC.; <121212> HOLE SPEC.; D. .0060 HOPPING SPEC.; TO.30.V HOPPING SPEC.; Tl.06.V coupll nl J. .1.V
4ofSTBPS (ONE WAY)40. INITIAL8.(8)150.0l/eV (4llaBETA) • 5 l/eV. WARM UP 9WI!EPS 0; AVERAGINO 9WEI!P9 RET to aontlnue
400
J = 0.10000 [eV]
Radial part
CORELATIONO 1-3 CORELATION 1-3
Tt*.Qt
_.....<6
--e .•
...._-~_..;..


...
v
Radial pert
... .
[1/eV]
\ —
\ _ -.
Max. dE = 0.02775 [eV]
PHS4706T.DAT SIZE SPEC; <MM1*MM2*NM3> whtre MN1*MM2*NM3 < 12*»3 MM1 • 12 MH2 • 12 NM3 • 12
Tl • .060000 O • .006000 Be • 36O.0
Loved energy sheet; tnerclet In 12 iheeti range fro* -.5073 to -.6016. None of conflxurfttIons !• periodic.
PH3*705T.DAT SIZE SPEC; <HM1*HH2*HM3> where MH1*MH2*MH3 < 12**3 MM1 > 12 NH2 - 12 NN3 • 12
Tl > .060000 D - .00600C Be > 360.0
SHEET 1
x.dE = O. 02775 [eV]
wherMMlM2-MM3 < 12..3
PHiU705T. DAT 91ZI! SPEC; <MMlM2M3:' MMl 12 MM2 12 MM3 12
PH14701T. DAT SIZI IPI!C; <MMlMM2MM3> whreN1M2M3 < 12..3 NN1 12
""2 12 MN3 12
l N ω
H
AW
n u n u
a u a u
o
n W A V E -
0
- e D
Max. dE = D. 02775 [eV]
i »*
SHEET 2
ROTATION ANGLE
THETA = 1.750
PHS47O6T.DAT SIZE SPEC; <NM1*MM2*MM3> vhere MM1*MM2*MM3 < 12»»3 HM1 • 12 MM2 • 12 HM3 • 12
Tl • .060000 D • .006000 Be • 350.0
PHS4906T.DAT SIZE SPEC; <NM1*MM2*MM3> where HH1«HH2»MH3 < 12**3 MM1 - 24 MM2 > 24 HH3 • 3
Tl • .000000 D • .070000 Be * 400.0
SHEET 2
Hu
nu

F
‘ E. .. a p a - - 6 . .. a ' a ' a T O ' a
-----e- 4
4

' a ‘ a T a .. a ' a y a a T E . a •.
-F - F - F - - F ι F L
-
-



-
-
-
-
F
F
‘ a a ' a - E B ' a e ' a T a ' a ' s a ' a
-- 4
.‘ JF
‘ dF
----
a ' a a ' a ' a ' s ' a v a ' a ' a a y a
ι--
"
ι F . - ' F - . F ι h F ι - F
a9F
a4

a
.
F
R
h
ι
F
ι
F
'a.
a T S ' a ' a ' s ' a T a f a ' s
a T A
----- J
a
‘ “ ‘ dv
‘ J'
JV
A .--.---
'a.' ‘. ' s ' a . f ' . ' ' a T a ‘ ' a T a s •
h
a ' a a ' a

Recommended