+ All Categories
Home > Documents > WP3.1: GNSS Campaigns and Research DOP - ife.uni-hannover.de · Deformationsüberwachung mit...

WP3.1: GNSS Campaigns and Research DOP - ife.uni-hannover.de · Deformationsüberwachung mit...

Date post: 17-Aug-2019
Category:
Upload: dangdien
View: 214 times
Download: 0 times
Share this document with a friend
1
The Joint Research Project SIMULTAN WP3.1: GNSS Campaigns and Research Tobias Kersten and Steffen Schön Institut für Erdmessung | Leibniz Universität Hannover | {kersten, schoen}@ife.uni-hannover.de Urban GNSS Sites and Campaign Design (a) SL03 (b) GRAV12 (c) GGP1 (d) HHDE (e) HH01 (f) HH09 Figure 1: Co-located urban GNSS sites as part of geo- monitoring networks to control and observe subsidence pro- cesses, (a-c) Bad Frankenhausen (Thuringia), (d-f) Hamburg Groß-Flottbek. SIMULTAN-Project I Sinkhole Instability, MULTiscale monitoring and ANalysis: gain a deeper understanding of the complex processes, interactions and characteristics of the underground and the surface interaction in urban environments, [Kersten et al., 2017]. GNSS-Campaign Design in SIMULTAN I Multi-GNSS equipment (Leica GRX1200+GNSS, Novatel 703GGG, Leica AR25.R3) with height adaptor FG ANA 100B for precise height determination. I Four hour sessions, at least 3 independent repetitions per site. I Data recording (1 Hz) at co-located sites (GNSS, levelling, gravimetry). I Star-like GNSS monitoring network, fixed in local reference stations. Urban GNSS Sites I Urban infrastructure yields to variable and high multipath as well as challenging satellite geometry at each co-located site. I Short baselines of approx. 700-1800 m. Hamburg - Network I HHDE: Local reference station at DESY (Deutsches Elektronen-Synchrotron), stability check by SAPOS R stations (Lower Saxony) Buchholz (0680), Stade2 (1662), Lüneburg (0660). I HH01: Co-located site in a park with several trees which reduces satellite visibility at low elevations. I HH05: Site located in proposed stable environment, northern part, close to DESY. Used to monitor subsidence in Wobbe-See (HH02-HH04) and the old storage basin (HH08). I HH03: Co-located site to monitor subsidence; challenging satellite visibility, cf Fig. 3. 593550m 593600m 593650m 593700m North 557000m 557500m 558000m 558500m 559000m East Hamburg Groß-Flottbek old storage basin Flottbek Markt Wobbe-See HH09 HH05 HHDE HH01 HH08 9071 9069 9081 9000 9104 9092 NivP78 NivP88 RF5303 UF3093 HH02 HH04 HH03 STD2 (1662) BHLZ (0680) LNBG (0660) Hamburg Flottbek (Hamburg, Germany) Legend SAPOS-NI GNSS station Local GNSS reference Leveling reference GNSS only Levling only GNSS & Leveling Leveling & Gravimetry GNSS & Leveling & Gravimetry areas of subsidence Map: Ortho-photo, © BKG 2016 Horizontal datum: ETRS89 Vertical datum: DHHN2016 Projection: UTM, zone 32N Figure 2: Combined geophysical network in Hamburg, Groß- Flottbek. 4 6 8 10 12 14 # GPS-Satellites 7 8 9 10 11 12 GPS-Time [hours] 0 2 4 6 DOP PDOP VDOP HDOP (a) DOP values at HHDE 4 6 8 10 12 14 # GPS-Satellites 7 8 9 10 11 12 GPS-Time [hours] 0 2 4 6 DOP PDOP VDOP HDOP (b) DOP values at HH03 Figure 3: Comparison of several DOP-Values (dilution of precision) and overall satellite visibility as quality indicators for characteristic sites of he monitoring network for the local Reference HHDE (a) and a site in the Wobbe-See subsidence area HH03 (b). Hamburg - Details Figure 4: Temporal variation for specific height difference in the vicinity of Wobbe-See (HH03) by leveling (ref. to Niv.P78) and by GNSS (ref. to HH05). Both points are located in the north of the subsidence area. I Subsidence processes observed although the scale of drift is very small (1.5-2 mm). I Independent methods (leveling and GNSS) agree very well and show drift in the areas of interest. I Results evaluated in cooperation with AP/WP3.2 and 3.3, gravity changes between sites indicate furthermore mass transport (separation from seasonal signals), [Weise et al., 2017a, Weise et al., 2018]. Hamburg - GNSS Repeatability Findings I Generally, repeatability with magnitudes of 2 mm achieved, higher values caused by vegetation and frequent traffic at sites. I Optimal location for co-location sites of interest (leveling, gravimetry) not at any time feasible, cf. Fig. 3, [Icking et al., 2016]. I Magnitudes of RMS generally at 0.3-0.4 mm and 0.2-0.3 mm (optimal sites), respectively (cf. Fig. 5). HH03 HH05 0 2 4 6 8 10 Repeatability [mm] October 2015 (reference) April 2016 (1st Epoch) September 2016 (2nd Epoch) April 2017 (3rd Epoch) September 2017 (4th Epoch) Legend Figure 5: Characteristic repeatability of co-located sites to moni- tor subsidence in different scales (time, depth, spartial). Bad Frankenhausen - Network GRAV01 GRAV02 GRAV06 GRAV10 GRAV11 GRAV12 GRAV3 GRAV4 GRAV5 GRAV7 GRAV8 GRAV9 SL03 0 km 0.1 km 0.2 km map scale © GeoBasis-DE / BKG (2016) S o u t h E a s t K y f f h ä u s e r GRAV02 SL03 GGP1 ’Rathaus’ AP2 AP4 100 200 300 400 Altitude (m) 11°04' 11°06' 11°08' 51°20' 51°22' 51°24' Bad Frankenhausen (Thuringia, Germany) Legend GNSS / Levelling / Gravimetry Levelling / Gravimetry GNSS only GNSS baselines Levelling only (between AP2 and AP4) 0 1 2 km S E N W (a) GNSS network Bad Frankenhausen 15 15.5 16 GPS Time [h] -0.050 -0.025 0.000 0.025 0.050 DD [m] 0 15 30 45 60 75 90 Elevation [°] SNV 19 reference SVN 12 EL1C: 1,2cm EL5Q: 2,3cm EL7Q: 2,2cm EL8Q: 2,1cm Legend (b) SL-12: DD and elevation versus GPS Time Figure 6: Analysis of Galileo GNSS sites, (a) network with indicated baseline, (b) double difference residuals for four hour session captured at GRAV12 (cf. Fig. 1b). I SL03: Local reference station (stability check by SAPOS R stations Erfurt (0209), Buttstädt (0221), Sondershausen (0200), Mühlhausen (0214)). I GRAV12: Co-located point in close vicinity to a concrete wall (located in the north of the GNSS site), challenging obstruction geometry present. I Baseline SL03-GRAV12 (SL-12): 190 m, significant impact of multipath detectable. I Multipath signatures detectable (sinusoidal) with frequencies of 20 minutes that lead to amplitudes in Galileo DDs (E5a, E5b and AltBOC E5a+b) although low noise is present. Highest noise on Galileo E1 signal detected, [Ruwisch et al., 2016]. Conclusions and Further Steps I Study of Galileo observations in challenging, urban environments by [Ruwisch et al., 2016]. I Challenging satellite geometry improved by applying adaptive dynamic elevation masks (dynMsk) studied by [Icking et al., 2016]. I Campaigns finished and processing of epoch comparisons ongoing; solutions published frequently. I Data provided through WebDAV server for both projects (HHX and BFH) for dedicated WP partners. Ongoing and further steps I Development and evaluation of integrated model for leveling and gravimetric data sets, [Kersten et al., 2017, Weise et al., 2017b]. I Quantification and separation of superimposed signals as e.g. hydrological, atmospheric, seasonal variations and tidal effects. I Studies and application of GNSS low-cost reference stations in combination with urban infrastructure as street furniture like, e.g. streetlamps etc., [Kröger et al., 2017] to gain consistent and longer time series. Acknowledgement & Funding Acknowledgement The authors thank the TLVerm Thuringia, the Glückauf Vermessung GmbH Sondershausen, the MEA2 Group of the German Electron Synchrotron (DESY) and the city of Bad Frankenhausen for their kind and friendly cooperation. Additional FG ANA 100B GNSS height adaptors and corresponding accessories were provided by the LGLN (Lower Saxony). The Center of Orbit Determination in Europe (CODE) is grateful acknowledged for providing freely high precise orbits and corresponding products. Funding The work in the project of SIMULTAN is funded under the grant 03G0843D by the Federal Ministry of Education and Research, based on a resolution by the German Bundestag. References Icking, L., Kersten, T., und Schön, S. (2016). Dynamische und adaptive Elevationsmasken zur Optimierung von GNSS-Netzen. In Geodätische Woche 2016, 11.-13. Oktober, Hamburg. Kersten, T., Kobe, M., Timmen, L., Schön, S., und Vogel, D. (2017). Geodetic Monitoring of Subrosion-Induced Subsidence Processes in Urban Areas - Concept and Status Report. Journal of Applied Geodesy, 11(1):21–30. DOI: 10.1515/jag-2016-0029. Kröger, J., Kersten, T., und Schön, S. (2017). GPS/GNSS Low Cost Permanent-Stationen für urbane Monitoringnetze. In Geodätische Woche 2016, 26.-28. September, Berlin. Ruwisch, F., Kersten, T., und Schön, S. (2016). GNSS-Doppeldifferenzanalyse für urbane Monitoring-Ansätze. In Geodätische Woche 2016, 11.-13. Oktober, Hamburg. Weise, A., Gabriel, G., Kersten, T., Schön, S., Timmen, L., und Vogel, D. (2017a). Deformationsüberwachung mit Gravimetrie? Ein Experiment im Erdfallgebiet in Hamburg-Flottbek. In Jahrestagung der Deutschen Geophysikalischen Gesellschaft, March 27-30, Potsdam, Germany. Weise, A., Kersten, T., Schön, S., Timmen, L., und Vogel, D. (2017b). Deformationsüberwachung mit Gravimetrie? Ein Experiment im Erdfallgebiet in Hamburg-Flottbek. In Proceedings of 77. Jahrestagung der Deutschen Geophysikalischen Gesellschaft, March 27.-30., Potsdam, Germany. Weise, A., Kersten, T., Timmen, L., Gabriel, G., Schön, S., und Vogel, D. (2018). Ein integrativer geodätisch-gravimetrischer Ansatz zur Erkundung von Subrosion im Erdfallgebiet Hamburg Flottbek – Oberfächendeformation und Massentransfer. Allgmeeine Vermessungsnachrichten - Sonderheft Geomonitoring, Seiten 1–16. (accepted). (Projekträger Jülich :: Status-Seminar Dresden, Grant-ID: 03G0843D) Created with L A T E X
Transcript
Page 1: WP3.1: GNSS Campaigns and Research DOP - ife.uni-hannover.de · Deformationsüberwachung mit Gravimetrie? Ein Experiment im Erdfallgebiet in Hamburg-Flottbek. In Jahrestagung der

The Joint Research Project SIMULTANWP3.1: GNSS Campaigns and ResearchTobias Kersten and Steffen Schön

Institut für Erdmessung | Leibniz Universität Hannover | {kersten, schoen}@ife.uni-hannover.de

Urban GNSS Sites and Campaign Design

(a) SL03 (b) GRAV12 (c) GGP1

(d) HHDE (e) HH01 (f) HH09

Figure 1: Co-located urban GNSS sites as part of geo-monitoring networks to control and observe subsidence pro-cesses, (a-c) Bad Frankenhausen (Thuringia), (d-f) Hamburg

Groß-Flottbek.

SIMULTAN-ProjectI Sinkhole Instability, MULTiscale monitoring and

ANalysis: gain a deeper understanding of thecomplex processes, interactions andcharacteristics of the underground and thesurface interaction in urban environments,[Kersten et al., 2017].

GNSS-Campaign Design in SIMULTANI Multi-GNSS equipment (Leica

GRX1200+GNSS, Novatel 703GGG, LeicaAR25.R3) with height adaptor FG ANA 100B forprecise height determination.

I Four hour sessions, at least 3 independentrepetitions per site.

I Data recording (1 Hz) at co-located sites(GNSS, levelling, gravimetry).

I Star-like GNSS monitoring network, fixed inlocal reference stations.

Urban GNSS SitesI Urban infrastructure yields to variable and high

multipath as well as challenging satellitegeometry at each co-located site.

I Short baselines of approx. 700-1800 m.

Hamburg - Network

I HHDE: Local reference station at DESY(Deutsches Elektronen-Synchrotron), stabilitycheck by SAPOS R© stations (Lower Saxony)Buchholz (0680), Stade2 (1662), Lüneburg(0660).

I HH01: Co-located site in a park with severaltrees which reduces satellite visibility at lowelevations.

I HH05: Site located in proposed stableenvironment, northern part, close to DESY. Usedto monitor subsidence in Wobbe-See(HH02-HH04) and the old storage basin (HH08).

I HH03: Co-located site to monitor subsidence;challenging satellite visibility, cf Fig. 3.

2017, IfE-LUH Image: Ortho-photo Hamburg Groß-Flottbek, © BKG 2016, projection: UTM Zone 32N

593550m

593600m

593650m

593700m

Nort

h

557000m 557500m 558000m 558500m 559000m

East

Hamburg Groß-Flottbek

old storage basin

Flottbek Markt

Wobbe-See

HH09

HH05

HHDE

HH01 HH08

9071

9069

9081

9000

91049092

NivP78

NivP88

RF5303

UF3093

HH02HH04

HH03

STD2�(1662)

BHLZ�(0680)

LNBG�(0660)

Hamburg Flottbek(Hamburg, Germany)

Legend

SAPOS-NI GNSS station

Local GNSS reference

Leveling reference

GNSS only

Levling only

GNSS & Leveling

Leveling & Gravimetry

GNSS & Leveling & Gravimetry

areas of subsidence

Map: Ortho-photo, © BKG 2016

Horizontal datum: ETRS89

Vertical datum: DHHN2016

Projection: UTM, zone 32N

Figure 2: Combined geophysical network in Hamburg, Groß-Flottbek.

4

6

8

10

12

14

# G

PS

-Sat

ellit

es

7 8 9 10 11 12

GPS-Time [hours]

0

2

4

6

DO

P

PDOPVDOPHDOP

(a) DOP values at HHDE

4

6

8

10

12

14

# G

PS

-Sat

ellit

es

7 8 9 10 11 12

GPS-Time [hours]

0

2

4

6

DO

P

PDOPVDOPHDOP

(b) DOP values at HH03

Figure 3: Comparison of several DOP-Values (dilution of precision) and overall satellite visibility as quality indicators for characteristicsites of he monitoring network for the local Reference HHDE (a) and a site in the Wobbe-See subsidence area HH03 (b).

Hamburg - Details

Figure 4: Temporal variation for specific height difference in the vicinity of Wobbe-See (HH03) by leveling (ref. to Niv.P78) and byGNSS (ref. to HH05). Both points are located in the north of the subsidence area.

I Subsidence processes observed although the scale of drift is very small (1.5-2 mm).

I Independent methods (leveling and GNSS) agree very well and show drift in the areas of interest.

I Results evaluated in cooperation with AP/WP 3.2 and 3.3, gravity changes between sites indicatefurthermore mass transport (separation from seasonal signals), [Weise et al., 2017a, Weise et al., 2018].

Hamburg - GNSS Repeatability

FindingsI Generally, repeatability with magnitudes of 2 mm

achieved, higher values caused by vegetationand frequent traffic at sites.

I Optimal location for co-location sites of interest(leveling, gravimetry) not at any time feasible, cf.Fig. 3, [Icking et al., 2016].

I Magnitudes of RMS generally at 0.3-0.4 mm and0.2-0.3 mm (optimal sites), respectively (cf.Fig. 5). HH03 HH05

0

2

4

6

8

10

Rep

eata

bili

ty [

mm

]

October 2015 (reference)April 2016 (1st Epoch)September 2016 (2nd Epoch)April 2017 (3rd Epoch)September 2017 (4th Epoch)

Legend

Figure 5: Characteristic repeatability of co-located sites to moni-tor subsidence in different scales (time, depth, spartial).

Bad Frankenhausen - Network

GRAV01

GRAV02

GRAV06

GRAV10

GRAV11

GRAV12

GRAV3

GRAV4 GRAV5 GRAV7

GRAV8

GRAV9

SL03

0 km 0.1 km 0.2 km

map scale

© GeoBasis−DE / BKG (2016)

S o u t h E a s t K y f f h ä u s e r

GRAV02SL03GGP1

’Rathaus’

AP2

AP4

100

200

300

400Altitude (m)

11°04' 11°06' 11°08'

51°20'

51°22'

51°24'

Bad Frankenhausen (Thuringia, Germany)

Legend

GNSS / Levelling / Gravimetry Levelling / Gravimetry GNSS only GNSS baselines Levelling only (between AP2 and AP4)

0 1 2

km

S

E

N

W

(a) GNSS network Bad Frankenhausen

15 15.5 16GPS Time [h]

-0.050

-0.025

0.000

0.025

0.050

DD

[m

]

0

15

30

45

60

75

90

Ele

vati

on

[°]

SNV 19reference SVN 12EL1C: 1,2cmEL5Q: 2,3cmEL7Q: 2,2cmEL8Q: 2,1cm

Legend

(b) SL-12: DD and elevation versus GPS Time

Figure 6: Analysis of Galileo GNSS sites, (a) network with indicated baseline, (b) double difference residuals for four hour sessioncaptured at GRAV12 (cf. Fig. 1b).

I SL03: Local reference station (stability check by SAPOS R© stations Erfurt (0209), Buttstädt (0221),Sondershausen (0200), Mühlhausen (0214)).

I GRAV12: Co-located point in close vicinity to a concrete wall (located in the north of the GNSS site),challenging obstruction geometry present.

I Baseline SL03-GRAV12 (SL-12): 190 m, significant impact of multipath detectable.

I Multipath signatures detectable (sinusoidal) with frequencies of ≈20 minutes that lead to amplitudes inGalileo DDs (E5a, E5b and AltBOC E5a+b) although low noise is present. Highest noise on Galileo E1signal detected, [Ruwisch et al., 2016].

Conclusions and Further Steps

I Study of Galileo observations in challenging, urban environments by [Ruwisch et al., 2016].

I Challenging satellite geometry improved by applying adaptive dynamic elevation masks (dynMsk)studied by [Icking et al., 2016].

I Campaigns finished and processing of epoch comparisons ongoing; solutions published frequently.

I Data provided through WebDAV server for both projects (HHX and BFH) for dedicated WP partners.

Ongoing and further stepsI Development and evaluation of integrated model for leveling and gravimetric data sets,

[Kersten et al., 2017, Weise et al., 2017b].

I Quantification and separation of superimposed signals as e.g. hydrological, atmospheric, seasonalvariations and tidal effects.

I Studies and application of GNSS low-cost reference stations in combination with urban infrastructure asstreet furniture like, e.g. streetlamps etc., [Kröger et al., 2017] to gain consistent and longer time series.

Acknowledgement & Funding

Acknowledgement The authors thank the TLVerm Thuringia, the Glückauf Vermessung GmbH Sondershausen, the MEA2 Groupof the German Electron Synchrotron (DESY) and the city of Bad Frankenhausen for their kind and friendly cooperation.Additional FG ANA 100B GNSS height adaptors and corresponding accessories were provided by the LGLN (LowerSaxony). The Center of Orbit Determination in Europe (CODE) is grateful acknowledged for providing freely high preciseorbits and corresponding products.

Funding The work in the project of SIMULTAN is funded under the grant 03G0843D by the Federal Ministry of Education andResearch, based on a resolution by the German Bundestag.

References

Icking, L., Kersten, T., und Schön, S. (2016). Dynamische und adaptive Elevationsmasken zur Optimierung von GNSS-Netzen. InGeodätische Woche 2016, 11.-13. Oktober, Hamburg.

Kersten, T., Kobe, M., Timmen, L., Schön, S., und Vogel, D. (2017). Geodetic Monitoring of Subrosion-Induced SubsidenceProcesses in Urban Areas - Concept and Status Report. Journal of Applied Geodesy, 11(1):21–30. DOI: 10.1515/jag-2016-0029.

Kröger, J., Kersten, T., und Schön, S. (2017). GPS/GNSS Low Cost Permanent-Stationen für urbane Monitoringnetze. InGeodätische Woche 2016, 26.-28. September, Berlin.

Ruwisch, F., Kersten, T., und Schön, S. (2016). GNSS-Doppeldifferenzanalyse für urbane Monitoring-Ansätze. In GeodätischeWoche 2016, 11.-13. Oktober, Hamburg.

Weise, A., Gabriel, G., Kersten, T., Schön, S., Timmen, L., und Vogel, D. (2017a). Deformationsüberwachung mit Gravimetrie?Ein Experiment im Erdfallgebiet in Hamburg-Flottbek. In Jahrestagung der Deutschen Geophysikalischen Gesellschaft, March27-30, Potsdam, Germany.

Weise, A., Kersten, T., Schön, S., Timmen, L., und Vogel, D. (2017b). Deformationsüberwachung mit Gravimetrie? EinExperiment im Erdfallgebiet in Hamburg-Flottbek. In Proceedings of 77. Jahrestagung der Deutschen GeophysikalischenGesellschaft, March 27.-30., Potsdam, Germany.

Weise, A., Kersten, T., Timmen, L., Gabriel, G., Schön, S., und Vogel, D. (2018). Ein integrativer geodätisch-gravimetrischerAnsatz zur Erkundung von Subrosion im Erdfallgebiet Hamburg Flottbek – Oberfächendeformation und Massentransfer.Allgmeeine Vermessungsnachrichten - Sonderheft Geomonitoring, Seiten 1–16. (accepted).

(Projekträger Jülich :: Status-Seminar Dresden, Grant-ID: 03G0843D) Created with LATEX

Recommended