+ All Categories
Home > Documents > Wq Mon Guide

Wq Mon Guide

Date post: 06-Apr-2018
Category:
Upload: veronica-rivera
View: 237 times
Download: 0 times
Share this document with a friend

of 159

Transcript
  • 8/2/2019 Wq Mon Guide

    1/159

    Water QualityMonitoring

    Technical Guide Book

    THEOREGON

    PLANforSalmon andWatersheds

    July 1999

  • 8/2/2019 Wq Mon Guide

    2/159

    W

    aterQuality

    Monitoring:

    TechnicalGuide

    Book

    July 1999

  • 8/2/2019 Wq Mon Guide

    3/159

    Oregon Plan for Sa lmon and W atersheds

    W ater Q ual ity M oni tor ing

    G u i d e b o o k

  • 8/2/2019 Wq Mon Guide

    4/159

    Version 2.0 i Water Quality Monitoring Guidebook

    Oregon Plan for Salmon and Watersheds

    W a t er Q u a l it y M o n i to r in g G u id e b o o k

    Un der s tand ing the s ta tus and t r ends in na t i ve f i sh popu la t ions and the s t r eam and lands cape co nd i t ions tha t a f fec t

    them ar e e s s en t ia l to the s ucces s o f the Or egon P lan for Sa lmon a nd W a ter s heds (OPS W ). Hav ing a s tandar d too l

    tha t he lps loca l gr oups , agency pe r s onne l and o ther s de te r mine thes e t r ends and cond i t ions in a cons i s ten t and

    ver i f iab le way i s a l s o e s s en t ia l . The us e o f s tandar d mo ni tor ing t echn iques pr ov ides the pub l ic w ith s uch a too l .

    The da ta co l l ec ted thr ough moni tor ing can be u s e fu l for deve lop ing p lans to r e s tor e and pr o tec t a s tr eam' s

    b io log ica l capac i ty , as we l l as de te r min ing whe ther com ple ted r e s tor a tion pr o jec t s ach ieved the i r in tended goa ls .

    W a ter s hed counc i l s and o ther loca l gr oups p lay a c r i t ica l r o le in iden t i f y ing the cau s es o f dec l ine in a s t r eams

    ab i l i t y to s uppor t sa lmon and t r ou t popu la t ions and o ther bene f i c ia l us e s , as we ll as docum ent ing r e s u l t s o f

    r e s tor a tion pr o jec t s . The pur po s e o f th is gu idebook i s to pr ov ide t echn ica l gu idance s o wate r s hed counc i l s and o ther vo lun teer s may ach ieve the i r r e s tor a t ion goa ls as par tner s in the OP SW .

    M any d i f fe r en t agenc ie s , vo lun teer gr oup s , and pr iva te c i t i z ens ar e invo lved in da ta c o l l ec t ion , so hav ing a

    cons i s ten t me thod i s impor tan t . To as s i s t in co l l ec t ing cons i s ten t and accur a te da ta , the OP SW W ater Qual i t y

    M oni tor ing Team ha s pr epar ed gu ide l ines to meas ur e wate r qua l i t y . Thes e gu ide l ines ar e des igned for us e by

    ind iv idua l landowner s , wa te r shed cou nc i l s , o ther c i t iz en gr oups , and agency p er s onne l . Thes e gu ide l ines

    c o m p l e m e n t t h e G W E B W a t e r s h e d A s se s sm e n t M a n u a l ( N E S , 1 9 9 9 ) .

    The O r egon W ater s hed As s es s ment M a nual pr ov ides a gu ide for char ac te r i z ing cond i t ions in loca l wate r s heds and

    pr ov ides a s t r ong bas e for iden t i f y ing s pec i f ic r e s tor a t ion and pr o tec t ion oppor tun i t i e s and mo ni tor ing needs . The

    mo ni tor ing t echn iques , or " pr o toco l s ," pr es en ted in th i s gu ide des cr ibe the s t eps us ed for ob ta in ing s pec i f i c ,

    f i e ld -bas ed da ta a bou t wate r q ua l i t y . The W a ter s hed As s ess ment M anual s e r ves as a br oad d iagnos t i c too l . TheW a ter Qual i t y M o ni tor ing Guidebo ok i s a ve r i f i ca t ion too l tha t can be us ed to r e f ine the pub l ic ' s under s tand ing

    and d iag nos i s o f wa te r shed an d wate r qua l i t y cond i t ions .

    The in i t ia l chap te r s prov ide back gr ound in for mat ion , mo ni tor ing s tr a teg ie s and ways to deve lop a mo ni tor ing

    p lan . A l s o exp la ined in thes e ch ap te r s ar e c r i t e ria for s e lec t ing m oni tor ing s i te s , da ta qua l i t y gu ide l ines , and

    me thod s to stor e and ana ly z e wate r qua l i ty da ta . Re fe r ences and con tac t s are pr ov ided in each chap te r to ob ta in

    mo r e de ta i l ed or up- to -da te in for mat ion . The s ubs equen t chap te r s prov ide pr o toco l s for mon i tor ing:

    _ s tre am tem pe ra tu re

    _ d isso lve d o xy g en

    _ p H_ c o n d u c tiv ity

    _ n it ro g en /p h os ph o ru s c o nc e nt ra ti on

    _ tu rb id ity

    _ m ac ro in ver te bra te s_ p es tic id es an d to xic c he m ic als

    Each o f thes e pr o toco l chap te r s is des igned to be a s tand-a lone docum ent tha t pr ov ides bas ic moni tor ing

    techn iques for tha t pr o toco l . In for mat ion on add i t iona l re fe r ences i s a l s o pr ov ided in each chap te r . How each

    ind iv idua l , gr oup , or agency wor ks thr ough thes e p r o toco l s w i ll depend o n the i r t echn ica l backgr ound ,

    exper ience , and what r e s u l t s they hope to accom pl i s h . Howe ver , the s e pr o toco l s wor k bes t when in tegr a ted w i th

  • 8/2/2019 Wq Mon Guide

    5/159

    Version 2.0 ii Water Quality Monitoring Guidebook

    the wate r qua l i t y , phys ica l hab i ta t , wa te r s hed as s es s ment , and o ther mo ni tor ing pr o toco l s deve loped as par t o f the

    OP SW . They m ay a l s o be us e fu l in as s e ss ing wate r qua l i t y in wate r s heds wher e Sena te B i l l 1010 p lans , To ta l

    M ax imu m D ai ly Load (TM D L) as ses s ments or sour ce ar ea as s es s ments under the Sa fe Dr ink ing W ater Ac t ar e

    d e v e l o p e d .

    An a dd i t iona l bene f i t in fo l lowing the m anual ' s r ecomm endat ions i s pr ov id ing c r ed ib le da ta for a s ta te -w ide

    da tabas e . Techn ique s for ca l ibr a t ing ins t rume nts , s e lec t ing appr opr ia te s it e s , and m anaging d a ta ar e inc luded in

    the gu idebook an d , i f us ed , w i ll he lp agency per s onne l deve lop s uch a da tabas e . The da tabas e would even tua l ly

    s uppor t the OPSW s e f for t to r e s tor e and pr o tec t f is h hab i ta t and wate r shed hea l th thr oughout Or eg on . Bu t the

    r ea l va lue in us ing the m oni tor ing t echn iques des cr ibed in th i s manua l i s pr ov id ing wate r shed cou nc i l s and o ther

    loca l vo lun teer s w i th r e l iab le m e thods for moni tor ing wate r qua l i t y in near by s t r eams which they ca n then us e to

    ma ke the i r own as s es smen ts . Accu r a te moni tor ing da ta can he lp in for m loca l dec i sions abou t how to bes t man age

    for f ish and watersheds .

    The p ar t i c ipa t ion o f loca l c i t iz ens in th i s e f fort i s e s s en t ia l . Cor r ec t l y co l l ec ted da ta i s us e fu l to lando wner s ,

    concer ned c i t iz ens , and agency per s onne l . Poor ly co l l ec ted da ta o f unknown q ua l i t y can r e s u l t in los s o f t ime and

    mo ney . I t is the in ten t o f th i s gu idebook to s har e da ta co l l ec t ion t echn iques tha t w il l he lp ever yone wor k towar d a

    s o lu t ion to re s tor e f is h popu la t ions . W hi le con tac t s for equ ipmen t manufac tur er s and m ode l s o f ins tr uments ar ed i s cus s ed in th i s gu ideboo k , thes e r e fe rences do n o t cons t i tu te an endor s emen t o f any pr oduc t .

    CreditsTh is s et o f p ro tocols was deve loped by a W ate r Qua l i ty Moni tor ing Team f orm ed dur ing the O PSW M oni tor ingP lan Scoping Ses s ions ( Janua r y 1997) . Th e wor k gr oup was mad e up of repr esen ta t ives f rom the Un i ted S ta tesEn vi r onmenta l P r o tec t ion Agency (EPA ) , Un i ted S ta tes Bur eau of Land M anagem ent ( BLM) , Or egon Depar tmen tof Agr icu l tu r e ( ODA ) , Or egon Depar tmen t o f En vi r onmenta l Q ua l i ty ( DEQ ) , Or egon Depar tmen t o f For es tr y( OD F) , Na t iona l Coun c i l o f the Paper I ndus t r y for Ai r and S t r eam I m pr ovement ( NC ASI ) , Boise CascadeCor por a t ion , and the M id- Coas t W ate r shed Coun c i l . Key cont r ibu tor s to these gu ide l ines inc luded: Dr . Geor ge Ice ,L iz Den t , Jenny W alsh , Rick Haf e le , Dave W i lk inson , Lana Br odz iak , Lar r y Ca ton , T r av is Hun t , E l len Ham mon d,

    and P aul M ease les . Th e pr o tocol r el i e s heavi ly on pr o tocols developed by the Or egon D epar tment o f En vi r onmenta l Qua l i ty ( DEQ 1996) and the Or egon Depar tm ent o f For es tr y ( OD F) . Va luable r ev iew comm entson ea r l i e r d r a ft s wer e r eceived f rom Ken Bie r ly, Dr . Bob B eschta , Dr Sher r i Johnson , D r . Bi l l Br aumw or th , Dr .Alan Her l ihy , Sue M auger , S tephanie G uncke l , Kr i s topher W r ight , An dr ew Ta laber e , Geof fr ey Habr on , Chr i s t ianTor ger son , Dana H icks and o the r s . The i r recogni t ion in no wa y ind ica tes an en dor sement o f th i s gu idebook.

  • 8/2/2019 Wq Mon Guide

    6/159

    Version 2.0 iii Water Quality Monitoring Guidebook

    W A T E R Q U A L IT Y M O N IT O R I N G G U ID E B O O K

    Tab le o f Content s

    TA BLES . IV

    FIG UR ES ...................................................................................................................................................................................................IV

    CH APT ER 1 - BA CK GR OU ND ... . . .. . . . .. . . . . .. . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . .. . . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . .1-1

    CH APT ER 2 - MO NITO RING STR AT EGY AN D PLA N... . . . . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .2-1

    CH APT ER 3 - SEL EC TING SITES .. . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . .. .3-1

    CH APT ER 4 - DA TA QUAL ITY .. . . . .. . . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .4-1

    CH APT ER 5 - DA TA STO RA GE AN D AN AL YSIS . . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .5-1

    CH APT ER 6 - STR EA M TE MP ER AT UR E PR OTO CO L... . . . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . ..6-1

    CH APT ER 7 - DISS OLVE D OX YG EN PRO TO CO L .. . . . .. . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . .. . . . . .. . . . .. .7-1

    CH APT ER 8 - pH PROT OC OL .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . .. . . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .8-1

    CH APT ER 9 - CO ND UC TIVITY PRO TO CO L... . . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . .. . . . . ..9-1

    CH APT ER 10 - NITR OG EN AN D PHOS PHO RU S PROT OC OL S .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . .10-1

    CH APT ER 11 - T UR BIDIT Y PR OTO CO L... . . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. .11-1

    CH APT ER 12 - STR EA M MAC RO INVER TEB RA TE PRO TO CO L .. . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . .12-1

    CH APT ER 13 - PEST ICIDE S AN D TO XINS PRO TO CO L .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . .13-1

    AP PEN DIX A - OR EG ON SAL MO N PLAN M ON ITOR ING FRA ME W OR K .. . . .. . . . . .. . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . .A-1

    AP PEN DIX B - MO NITO RIN G TY PES ... . .. . . . . .. . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . .B-1

    APPE NDIX C - W ATE RSHE D DA TA FO R INTER PRET ATION O F TEM P. INFORM ATION . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .C-1

    AP PEN DIX D - RO AD HA ZA RD INVEN TOR Y .. . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .D-1

    AP PEN DIX E - SED IME NT DE PO SITION .. . . . . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. .E -1

    AP PEN DIX F - MA CR OINVE RT EB RA TE TA XA LIST .. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . F-1

  • 8/2/2019 Wq Mon Guide

    7/159

    Version 2.0 iv Water Quality Monitoring Guidebook

    Tables

    T a b l e 2 - 1 . E s t im a t e d p e r s on n e l t i m e f o r a s t re a m t e m p e ra t u re m o n i to r in g p r o je c t. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . 2 - 4

    T a b le 4 -1 . W a t er q u al it y p a ra m e t er s b y d a ta q u a li ty le ve l. D a t a q ua l it y l ev el d ep e n d son a com bination of quali ty con trol and m ethod select ion. . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . 4-4

    T a b l e 6 - 1 . O p t i m u m a n d l e t h a l l im i t te m p e r a tu r e r a n g e s f or c o h o , c h i n o o k , a n d b u l l t ro u t . . .. .. .. .. .. .. .. .. .. .. . 6 - 2T a b l e 6 - 2 . T e m p e r a t u re r e c o rd e r m a n u f a ct u re rs a n d t h e ir t e l ep h o n e n u m b e rs . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . 6 - 2

    Ta ble 6-3. Est im ated equipm ent cos ts . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . . 6-4

    Table 6- 4 . Tem per a tur e logger audi t f o rm . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. .. . .. . .. . .. .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . 6 - 6

    Table 6- 5 . Exam ples for s tr eam temp er a ture da ta summ ar y . . . .. . .. . .. .. . .. . .. . .. .. . .. . .. . .. . .. . .. . .. . .. . .. .. . .. . .. . .. .. . .. . .. . .6 - 12

    Ta ble 7-1. Eq uipm ent cos ts . . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. 7-2

    Table 7- 2 . Oxygen so lub il i ty ( s a tur a t ion) in f resh wa te r ( mg/L) . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. 7 - 5

    T able 10 -1 . M ateria ls needed to collect samples for nitrate/nitrite, kjehldahl nitrogen, rthophosphate, andtotal phosphorous ................................................................................................................. 10-3

    Ta ble 12-1. Level 1 assessmen ts . . . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. .12-4

    Ta ble 12-2. Level 2 and 3 assessm ents . . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . ..12-4

    Table 1 2- 3 . Leve l o f m acr o inver tebra te iden t i f ica t ion f or Leve l I I I ana lys is . . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. 12- 9Ta ble 12-4. Fam ily level m etr ics and scor ing cr i ter ia . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . .12-11

    Ta ble 12-5. Gen us/species level m etr ics an d scor ing cr i ter ia . . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . .12-13

    T able A -1 . R evised con cep tu al framework and example of how the sediment issuecould be addressed with this framework................................................................................ A-2

    Table D- 1 Elemen ts o f r oad hazar d inventor y . .. .. . .. . .. . .. .. . .. . .. . .. .. . .. . .. . .. . .. . .. . .. .. . .. . .. . .. .. . .. . .. . .. .. . .. . .. . .. .. . .. . .. . .. ..D- 1

    T a b le D -2 F ie ld d a ta sh e e t fo r s u rfa c e d r ai n a ge a n d st re a m c ro ss in g d e ta i ls an dexam ples of co l lec ted da ta . I n th i s examp le a t ten t ion i s r equi red on thelast entry becau se the culvert is partially block ed .. . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . ..D -8

    Table D- 3 F ie ld da ta shee t s f o r s idecast de ta i l s . Exam ple inc luded . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . ..D- 9

    Ta ble E-1 Field form . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . .E -4

    T a b le E - 2 E x a m p l e o f s p re a d sh e e t o rg a n i za t io n fo r F i gu r e E - 1 c a lc u la t io n s .D ata represen t 11 tran sects of pebb le cou nt data . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . .. . . E-5

    Figures

    Figu re 2-1. Stream tem perature t im e l ine. . . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . . 2-5

    Figu re 3-1. Sam ple point and reach-scale locat ions . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . . 3-2

    F igur e 6- 1 . I l lus t r a tion of t em per a tur e recor der ins ta l la tion and s i t e loca t ions . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . 6 - 8

    Figu re 10-1. Th e ni trogen cycle . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. .10-2

    Figu re 10-2. Form s of pho sphorou s in w ater . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . .10-3

    Figu re 12-1. Field sam ple label inform ation. . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. .12-6

    Figu re 13-1. Op erator quest ion naire . . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. .13-7

    Figu re 13-2. Wa ter quali ty chem ical samp ling form . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .13-8

    F igur e B- 1 . Schem at ic exam ples of mon i toring types appl ied wi th in a sub- bas in . . . . .. . .. . .. . .. . .. . .. . .. . .. .. . .. . .. . .. . .B- 3

    F igur e D - 1 Typica l r oad sur f ace dr a inage an d d r a inage f ea tur es . . .. . .. .. . .. . .. . .. . .. . .. . .. . .. . .. .. . .. . .. . .. .. . .. . .. . .. . .. . .. . ..D- 5

    F igur e D- 2 S t r eam- cr oss ing cu lve rt wi th key d imen s ions . . . .. . .. .. . .. . .. . .. . .. . .. .. . .. . .. . .. . .. . .. .. . .. . .. . .. . .. . .. .. . .. . .. . .. . .. . .D- 5

    F igur e E- 1 Exam ple of g r aphica l d i sp lay of da ta f or a reach of s tr eam . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. .. .E - 6

  • 8/2/2019 Wq Mon Guide

    8/159

    Background 1 - 1 Water Quality Monitoring Guidebook

    Version 2.0

    C h a p t e r 1

    B a c k g r o u n d

    M any factors influence the health of aquaticecosystems and the plant and anima l l ife thatdepend on them. These factors include physicalhab ita t , ripar ian function, water quantity,watershed health, and w a t e r q u a l i ty . Thisguidebook focuses on methods for monitor ing wa terquality.

    M onitor ing involves a ser ies of observations,measurem ents, or samples collected and analyzedover t ime. W ater quality var ies naturally withlocation and time. For example: the headw aters of

    streams at h igh elevation tend to be cooler thanwide streams at lower elevations; solar radiationinfluences stream temperature f luctuationsthroughou t the day; natural differences in c limateand the r ipar ian vegetative cover cause differencesin stream temperature . Disturba nces such as f ires,windthrow or even debris torrents can influencestream temperature , turbidity, and other waterqua lity parameters. G eology, geomorphology, andclimate also inf luence w ater qua lity.

    Pollution can be defined as the fouling or m aking

    unclean air or water wh ich harms beneficial uses.W ater pollution is generally character ized asoriginating from either point or nonpointsources. Point source pollution is associated with aparticular si te on a stream a nd typically involves aknown q uantity and type of pollutant that can b econtrolled at the site. An exa mple of point sourcepollution is effluent f rom a factory outle t (an end-of-pipe discharge) delivered directly to a stream.Point sources are regulated under the Clean W aterAct with N ational Pollution Discharge EliminationSystem (NPD ES) pe rmits .

    N onpoint source pollution is more diff icult tomanage a nd monitor than point source pollution.N onpoint source pollution typically results f rommultiple contaminant sources in the vicinity wherewa ter qua lity has been impaired. The volume orload from individual sources is diff icult to

    measure and of ten water qu ality may not bedegraded at the source site . Instead, theaccumu lated impacts of multiple sources of pollution can cause the water quality problem. Anexample o f nonpoint source pollution is f inesediment deposition in a stream bed. Th e streammay f low through a new h ousing development,agricultural operations, and forested areas withroads. All of these activit ies contr ibute var iousqua ntities of sediment to the stream channel inaddition to the natural level of sediment the streamcontains.

    Em phasis has increased on controlling nonpointsource pollution because water qua lity cannot beprotected or restored by focusing on point sourcesalone. M onitor ing is an essentia l component of thiseffor t. Th e stra tegy for controll ing nonpoint sourcepollution includes the development of BestManagement Practices (BMPs) to achieve waterqua lity cr i ter ia and meet non-degradationrequirements.

    BM Ps are def ined as practices selected by anagency that are practical and effective in reducingpollution from nonpoint sources to levelscompatible with water quality goals. O nce anagencys BM Ps a re approved by the s ta te wa te rqua lity regulatory agency, they may b ecome a par tof the wa te r qua l i ty management p lan (W QM P) forthose landowners that implement them.

    An approved WQMP includes descr iptions of theactions or activit ies that w ill a llow a landow ner toachieve acceptable water quality. For example, theOregon Department of Environmental Quality(DEQ) approved the Oregon State Forest Practices

    Act as an acceptable BM P program. I t is theresponsibil i ty of the O regon D epartment of Forestry(O DF ) to monitor effectiveness of these BM Ps inachieving water qua lity standards.

    In O regon, agricultural activit ies in watershedswith w ater quality l imited waterbodies can come

    W hile there are a number of water qualityparameters regulated by DEQ, this guidebook

  • 8/2/2019 Wq Mon Guide

    9/159

    Background 1 - 2 Water Quality Monitoring Guidebook

    Version 2.0

    under the provisions of Senate Bill 101 0. Th is billrequires the Oregon D epartment of Agriculture(O DA ) to help reduce water pollution fromagricultural sources. Under the guidance of theOD A, loca l committees deve lop a W QM P for theagricultural portion of the basin.

    W ater quality standards have been developedunder the leadership of DE Q and can be used inassessing the effectiveness of BM Ps. W aterqua lity standards involve three elements: 1) anarrative that explains wha t the goals of thestandards are; 2) the num eric cr i ter ia ; 3) and anon-degradation policy.

    Th e numeric cr i ter ia are set to protect the mostsensit ive beneficial uses. Th ese standards are

    ava i lab le on the w eb a t. The non-degradationpolicy dictates that if a stream h as better w aterqua lity than the def ined standards, that streamshall not be degraded to a lower standa rd (unlessthere are compelling reasons) .

    focuses on those that have the greatest impact onfish and f ish hab ita t or are important in thelist ing of w ater qua lity l imited streams (streamsidentified on D EQ s 303d list) . Param eters forT o ta l M a x im um D a i ly L oa d ( T M D L ) 1

    assessments, or parameters that are par t of sourcearea assessments for municipal wa ter suppliesare also included. Th ese include streamtemperature , dissolved oxygen, pH , conductivity,nitrogen and phosphorus, sediment,macroinvertebrates, and pestic ides and toxins.

    Standards for each of these parameters have beenestablished in order to protect a streamsbeneficial uses. Th ese standards have beendeveloped af ter lengthy pu blic review andinvolvement and are b ased on the la test scientific

    knowledge.

    1Total Maximum Daily Load (TMDLs) is a tool used to meet water quality standards in those streams that do not meet such standards. TMDLs are

    based on a scientific method that uses extensive water quality data to identify locations and times of water quality impairment and the sources andvolumes (loads) of the contributing pollutants. The TMDL process is rigorous enough that it can be duplicated by other parties using the sametechniques.

  • 8/2/2019 Wq Mon Guide

    10/159

    Monitoring Strategy and Plan 2 - 1 Water Quality Monitoring Guidebook

    Version 2.0

    C h a p t e r 2

    M o n i to r in g S t ra t eg y a n d P l a n

    A monitor ing plan descr ibes the monitor ing stra tegythat will be used. I t is developed before star t ing amonitor ing project. A monitor ing plan provides aguide for why, how , when, and where to monitorwa ter qua lity parameters. Th e monitor ing plan canbe referred to throughout the course of a monitor ingproject to help maintain consistency and providedocumentation to others.

    W h y M o n it o r?

    M any reasons exist for monitor ing water quality.

    M onitor ing can be used to identify areas wh erewa ter quality standards are not being met andresources such as sa lmon and trout are beingimpaired. M onitor ing can also be used to identifythe sources and loads of pollutants that are causingthese declines. O nce the areas and causes of thesewa ter quality problems ha ve been identif ied, thenmonitor ing can be used to measu re the overalleffectiveness of the water quality protection effor tsand individual practices. M onitor ing is a lsoimportant when knowledge of the effects f rom past

    restoration treatments or past mana gement practicesare desired in order to help design futuremanagem ent actions. Resource managers needmonitor ing data to improve practices and to betterprotect f ish and f ish habita t . Th e monitor ingprocess and the data generated can a lso provide avaluable educa tional tool for a wide variety of usergroups, such as w atershed councils , school groups,researchers, and other interested people .

    M onitor ing without a def ined purpose providesli t tle benefit , so the f irst step to ask is , "W hat arethe goals of the monitor ing effor t?" Typically,specif ic questions need to be answered. Th equestions vary depending on the aqu atic resource(s)of interest . For example, asking if the stream meetsthe DEQ water quality standards for temperatureand dissolved oxygen, or whether the BM Ps areeffectively reducing sediment inputs to the streamchannel, leads to different monitor ing approach es.

    Q uestions such as these will help focus themonitor ing effor ts and give a b etter idea of whereand for how long monitor ing is needed. Begin bylist ing all re levant questions abou t the aqu aticsystem. Prior it ies can then be established in theirorder of importance and a t imetable for thenecessary m onitor ing projects developed.

    In general, monitor ing projects may provideinformation to address h istor ical , current, or desiredfuture conditions. M onitor ing projects can also

    describe ecological trends that may or ma y notresult f rom the effects of management practices.M onitor ing can also descr ibe the impacts frommanagem ent activit ies, as w ell as interpret theeffectiveness of management actions such as BM Ps.Additionally, some problems cannot be addressedthrough mon itor ing water qua lity parameters andmay need a research approach. M onitor ing canhelp identify these problem areas, as well . Th eOPS W M oni tor ing Team has deve loped aM onitor ing Framework that depicts these areas of

    monitor ing (Appendix A).

    T y p e s o f M o n i t o r in g

    M onitor ing stra tegies may be organized b y differentmonitor ing types. Th e type chosen depends on theprojects objectives. Refer to Appendix B for anin-depth discussion on m onitor ing types.Identifying the monitor ing type is us eful whencoordinating with other m onitor ing effor ts andunderstanding how to interpret and apply results .H owever , identifying the type of m onitor ing is notas important a s identifying the important resourcequestions and properly preparing a monitor ing planto answer them.

    T h e M o n i t o r in g P la n

    A plan u sually consists of a few important sections.By u sing this guide as a template and inser tingsite-specif ic needs and objectives, a monitor ing plancan be developed for an individual stream or stream

  • 8/2/2019 Wq Mon Guide

    11/159

    Monitoring Strategy and Plan 2 - 2 Water Quality Monitoring Guidebook

    Version 2.0

    reach. Stating the problem definit ion, goals, andobjectives a t the beginning of the monitor ing planstructures i t so that a re liable set of data can be

    developed which a nswers the init ia l set of questions. W ithout a monitor ing plan to collectdata that answ ers specific questions about thewa tershed, the data collected could be of l imitedvalue.

    M o n i t o r in g P la n s e c t io n s in c lu d e t h ef o l l o w in g :

    Problem definit ionTh is section defines the problem. For example:People are concerned that temperatures in Dry

    Creek excee d water qual i ty s tandards and areharm ing f ish .

    G oa lTh e goal sta tes the purpose for monitor ing. W hatinformation and/or analysis is antic ipated frommonitor ing? For example: The go al o f th is Plan i sto de termine i f temperatures are exceeding w ater qual i ty s tandards in Dry Creek and i f manage men t

    practices are contributing to e levatedtemperatures .

    ObjectivesO bjectives usually are structured in the form of aspecif ic question. For example: Are strea mtemperatures abo ve the s ta te water qual i tys tandard o f 64F anddoes i rr igat ion wi thdrawal

    f rom D ry Creek resul t in downstreamtemperatures that exceed that s tandard? The k indof questions asked w ill determine the type of monitor ing and amount of resources required.

    HypothesesIdentifying the ob jective leads to creating an

    "experimental hypothesis" that tests whether arelationship exists between an a ction or activity andthe water quality parameter of concern. Th eexperimental hypothesis for the D ry Creek examplecould be: I rr igat ion wi thdrawal f rom D ry Creek resul ts in downstream temperatures that are

    greater than 6 4 F . This experimental hypothesis

    leads to designing an experiment or monitor ingproject to resolve whether the experimentalhypothesis can be confirmed or refuted. Simply

    monitor ing temperatures a t different sta tions in D ryCreek may not answ er this question because i t doesnot demonstrate why the temperature pa tternoccurs. Patterns that can be t ied to a cause-and-effect response support experimental hypothesesmore strongly.

    In the Dry Creek exam ple, one approach might beto stop water withdraw als during periods whenmaximu m temperatures are occurr ing and comparestream temperature with per iods when withdrawalsoccur . The null hypotheses (a sta tement thatassum es no direct re lationship exists) for theexperimental design could be: There i s nodi f fe rence in the hours that Dry Creek ex ceeds64 F for days wi th or w i thout water w i thdrawal .

    N atural var ia tions in the temperature response of D ry Creek will exist because no day is exactly thesame as another , but the experimental andmonitor ing design can test wh ether the nullhypothesis is accurate or not (assuming tha t thequa lity and variations of the data are w ithin

    acceptable tolerances) . As the importance of thesequestions increases, collecting high qu ality data anda su ff ic ient number of samples (for sta tist icalcredibil ity) may b e needed both to h ave confidencein whether this null hypothesis can b e accepted orrejected and to minimize differences in interpretingresults .

  • 8/2/2019 Wq Mon Guide

    12/159

    Monitoring Strategy and Plan 2 - 3 Water Quality Monitoring Guidebook

    Version 2.0

    Site D escriptionTh is section descr ibes the ph ysical character ist icsof the sampling site(s) and places the m onitor ing

    site in the context of other watershed sites. Forexample, ch annel grad ient, e levation, vegetativecover , landuse, region, soils , and geology can b edescribed. Providing stream reach locations usinglati tude and longitude allows com parisons to bemade to data sampled nearby or in other areas withsimilar si te conditions, using a geographicinformation system (G IS).

    Da ta Ga ther ing S t ra tegyTh is section descr ibes the physical location, dateand time of data ga thering, the types of data to be

    gathered and minimum and optimum data needs.Th e locations of data si tes should includeconsideration of ecoregion, stream netw ork, orother var iables depending on the scale of thequestion to b e answ ered (see Chapter 3, SelectingSites) . Th e t iming for gathering data should ref lectthe hydrologic processes su spected of inf luencingwa ter quality. For example, if the data to begathered is re lated to storm events, low f lows, orother seasonal var iab les, these should be identif ied.Th e need for monthly, daily, hourly or continuous

    data gathering sh ould be identif ied both todetermine the level of effor t or equipment necessaryand to establish the level of confidence in the data .

    MethodsTh is section descr ibes the technical portion of themonitor ing project. I t explains to readers the datacollection techniques u sed, equipment calibrationand use (see pages 16-1 8) , what types of data werecollected, and when. Th e methods sectionessentia lly creates a contractregarding how thedata w ill be gathered, what types of data will be

    collected, and how the equipments a ccuracy willbe ma intained for those conducting the monitor ingand for others who ma y be depending on the data .

    Da ta Q ua l i tyQu a l i ty Assurance and Qua l i ty Contro l (QA/QC )are essentia l e lements of any m onitor ing plan.

    Th ey provide evidence that the data is accura te andprecise enough to address the qu estions beingasked. Th ese elements are addressed in detail in

    Chapte r 4 .

    Da ta S torage and Ana lys isTh inking through this section is cr i t ical ear ly in themonitor ing process in order to have the su pportnecessary to store , transport , or analyze the data . I f the da ta a re to be used wi th the OPS W , knowinghow to transport the data to local watershedcouncils , DE Q off ices, or other public datarepositor ies in the agreed-upon format is important.D EQ has developed a data storage template thatcan be used to format data records (See Chapter 5,

    Da ta S torage and An alys is) .The monitor ing teamwill a lso want to establish i ts own da tabase for thestreams it is monitor ing. Planning ahead can savetime, money, and avoid the agony of lost data .

    Timetable and Staff RequirementsEa ch monitor ing project will have a uniqueschedule of activit ies w hich mu st occur for i t to besuccessful. Planning and implementing theseactivities take t ime. Figure 2-1 and Table 2-1 areprovided as general examples of the sequencing of steps and time requirements for a temperatu remonitor ing project.

    Confidentia lity and Landow nerPermission/RelationsOb tain ing pr ior perm iss ion f rom pr ivatelandowners for m oni tor ing s i te s that could belocated on the ir proper ty i s e ssent ia l. T he OPSWis based on cooperation, so all monitor ing effor tsneed to maintain good w ill with the affectedlandowners. Creating an agreement with thelandowner ab out how the da ta collected on his/her

    property will be used a nd reported is a lsoimportant. In some cases, specific locations maynot be reported to mainta in confidentiality. It isalso useful to provide landowners with previews of information collected. Th ey may have insightsabou t the data and are of ten interested in using thedata to adjust their management decisions .

  • 8/2/2019 Wq Mon Guide

    13/159

    Monitoring Strategy and Plan 2 - 4 Water Quality Monitoring Guidebook

    Version 2.0

    Tab le 2-1 . Est imated personnel t ime for a s tream temperature-moni tor ing project .

    A ctiv ity H ou rs

    P lan develop m en t * 4 0 h ou rs

    Temperature recorder calibration

    Pre -dep loyment

    Pos t -dep loyment

    4 h ours /ba tch

    4 h ours /ba tch

    Field site selec tion * * h ou r/site + travel tim e

    U n it p lacem en t in stallation 0 .5 h ou rs/u n it + travel tim e

    Field au d its 0 .2 5 h ou rs/u n it + trave l tim e

    A n cillary da ta co llection 1 -2 h ou rs/u n it + travel tim e

    U n it retrieva l 0 .5 h ou rs/u n it + travel tim e

    D ow n load data 0 .2 5 h ou rs/u n it

    D ata sto rage * * * 0 .2 5 h ou rs/u n it

    D ata an alysis/in te rp retation * * * * 4 -8 h ou rs/site

    T o ta l: M i n im u m o f 6 0 h ou r s p e r p r oje c t p lu s 1 0 -2 0hou rs per each study site .

  • 8/2/2019 Wq Mon Guide

    14/159

    Monitoring Strategy an Plan 2 - 5 Water Q

    Version 2.0

    J A N FE B M A R A P R M A Y JU N JU L A U G SE P O

    Figure 2-1. Stream tem perature mon itoring time line. The chart shown abov e depicts the steps one needs to complete during a typicalsteps which would no rma lly be performed th e first year and every succeeding year of a long-term study. Steps in unshaded bo xes usuafirst year of a long-term study.

    ProjectPlanning

    Ordering

    Equipment

    SelectingSites

    Checking

    Equipment

    Collecting

    Field Dat a

  • 8/2/2019 Wq Mon Guide

    15/159

    Monitoring Strategy and Plan 2 - 6 Water Quality Monitoring Guidebook

    Version 2.0

    * Th e t im e requ i red to com p le te a p lan wi l l va rywi th th e com p lex i ty o f the p ro jec t and expe r ienceof the pe rsonn e l . F or ty hours is a good e s t im a te ,bu t m ore o r l e ss t im e cou ld easi ly be needed . Th em os t im por tan t cons ide ra t ion i s to a l loca te

    suffic ient t ime to comp lete this s tep.

    * * S i te s e lec t ion beg ins wi th the p ro ject p lan andpre l im ina ry iden t i fi ca t ion o f s it e s on m aps . Th ef ield t im e in vo lves wa lk ing p lan ned s tudy s i te sand f ind ing a su i t ab le loca t ion to in s ta l l eachtem pera tu re recorde r .

    * ** Data s to rage can tu rn in to a t im e dra in ingtask i f i t isn t p lanned a t the beg inn in g o f thepro ject . De te rm ine th e so ftware to be used (onecom pa t ib le wi th th e t em pera tu re recorde r s

    software) , the data f ie lds necessary, and thepe rsonne l re spons ib le fo r bo th s e t t ing up thesof tware and up load ing the da ta . A sugges tedda ta fo rm a t i s shown in the da ta ana lys i s s ec t ionof th i s chap te r and can be ob ta ined f rom thecoopera t ing s t a te agenc ie s (OD F & DE Q ) .

    **** Tem pera tu re recorde rs p roduce thousands o f da ta po in t s . Th e da ta m us t be sum m ar ized toprov ide a usefu l in te rp re ta t ion o f the da ta . Th e t im eto com ple te th i s s t ep wi l l va ry wi th the com plex i ty o f the p ro jec t and l eve l o f expe r ience o f the pe rsonne l

    This in t roduc t ion to the bas ic s t ruc tu re o f am on i to r ing p lan i s in tended to h e lp p rov ide p ro jec tvo lun tee rs wi th an unde rs tand ing o f a typ ica l p lan scom pon ents . As a p lan i s deve loped fo r a speci f ics t ream or s t ream reach , m ore de ta i l ed desc r ip t ions o f the project s object ives wil l be needed. P lease referto the Volun teer M oni tor s Guide to Qu al i t y

    As s ur ance P r o jec t P lans (1996) by EP A, theNa t iona l Han dbook o f W ater Qua l i ty M on i tor ing

    (1996) by NR CS , and o the r m oni to r ing gu ides( C a l la h a m 1 9 9 0 ; D i s s m e ye r 1 9 9 4 ; a n d M a c D o n a l d ,S m a r t , and W is sm ar 1991) fo r fu r the r he lp . F or he lpor a s s i s tance a t th i s s t age , con tac t the m oni to r ingm en tor fo r the OP S W shown in each p ro toco lchap te r , the loca l ODF W office , or the reg iona l DE Qm on i to r ing coord ina to r shown be low.

    S ta tewide DEQ Volun tee r Moni to r ing Coord ina to r :K a r e n W i l li a m s : ( 5 0 3 ) 2 2 9 - 5 9 8 3Em ai l : wi l l iam s . ka ren@ deq . s ta te . o r. us

    Nor thwes t Reg ion :Lar ry Ca ton : (503) 229-5983 .Em ai l : ca ton . l a r ry@deq . s ta te .o r . us

    Wes te rn Region :Dennis Ades , (503) 229-5983Em ai l : ades . denn i s@d eq . s ta te . or . us

    Eas te rn Reg ion :Lar ry Marxe r , (503) 229-59 83Em ai l : m arxe r . la r ry@deq . s ta te .o r . us

    References

    C a l l a h a m , R . Z . 1 9 9 0 . G u i d e l i n e s fo r m a n a g e m e n t o f w i ld land wate r s hed pr o jec t s . Repor t 23 .W i ld land R esources Cen te r , Unive rs ity o f Ca l i fo rn ia :

    Berke ley, CA .

    Dis sm eyer , G . E . 1994 . Evalua t ing the e f f ec t i venes so f for e s t bes t manag eme nt pr ac t i ce s in mee t ing

    water qua l i t y goa l s or s tandar ds . Misce l l aneousP ubl ica t ion 1520 . US D A F ores t S e rv ice : At lan ta ,G A .

    M a c D o n a l d , L .H . , S m a r t , A . W . , a n d W i ss m a r , R . C .1 9 9 1 . M oni tor ing gu ide l ines to eva lua t ing e f f ec t s o f

    fores try act iv i t ies on s treams in the Paci f ic

    Nor thwes t and A las ka . E P A 9 1 0 / 9 - 9 1 -0 0 1 .U . S . Envi ronm enta l P ro tec t ion Ag ency , Reg ion 10 :

    S ea t t l e, WA .

  • 8/2/2019 Wq Mon Guide

    16/159

    Monitoring Strategy and Plan 2 - 7 Water Quality Monitoring Guidebook

    Version 2.0

    Na t iona l Ha ndbook o f W a ter Qu al i t y M oni tor ing .

    1996 . P a r t 600 . Na t iona l Wate r Qua l i ty Handbook .Na tura l R esources Con se rva tion S e rv ice :W a s h i n g t o n , D . C .

    T h e V o l u n te e r M o n i t o r s Guide to Qual i t yAs s ur ance Pr o jec t P lans . 1 9 9 6 . E P A 8 4 1 - B -9 6 - 0 0 3 .U. S . En vi ronm en ta l P ro tec tion Agency , Off ice of Wet lands , Oceans , and Wate rsheds : Wash ing ton ,D . C .

    M e thods in S t r eam Eco logy . 1996 . F . R . Hauer andG. A. Lam ber t i. Ed i to rs . Academ ic P res s , Harcour tB r a c e & C o m p a n y . S a n D i e g o. 6 7 4 p a g e s.

  • 8/2/2019 Wq Mon Guide

    17/159

    Selecting Sites 3 - 1 Water Quality Monitoring Guidebook

    Version 2.0

    C h a p t e r 3

    S e le c t in g S i t e s

    Selecting the appropria te s i te or s i tes for monitor ingwa ter quali ty depends on the desired objectives.Th ere are three geographic scales to consider inselecting the a ppropria te monitor ing si te : (1) thesample po in t provides representa t ive 2 data a t thatspot, (2) the r e a c h a p p r o a c h uses m ult iple si tes toref lec t condit ions and trends for a segment of s tream, and (3) the bas in sca le uses mu lt iplereaches to ref lec t conditions and trends through outa w a te r shed .

    In addit ion to the scientific considerations formonitor ing si tes (e .g. using standard data gather ingtechniques for consistency, mainta ining dataqua li ty, e tc . ) , there are a lso practica lconsiderations. Easy access (such as roadcrossings) and landowner permission are two of these practica l considerations. Sampling sta t ionsshould b e accessible for a l l f low condit ions thatwil l be sampled is a good working rule whenselecting si tes (Stednick 1991) . I f equipment isbeing insta l led for a long per iod of t ime, recognizethat f low will change throughout the year .

    Eq uipment that was not designed to be submergedcan be f looded. Conversely, equipment that needsto be subm erged can be lef t high and dry .

    Precautions against vanda lism, thef t, and accidenta ldisturbance should be considered wh en locatingequipment. In areas frequented by the public ,secur ing or camouflaging equipment is advisable .Visible te thers and equipment sta t ions are notadvisable since they a t trac t a t tention. W henequipment cannot be protected f rom disturbance, analternative monitor ing si te shou ld be considered.Access to e lectr ica l power can a lso be aconsideration for some equ ipment.

    2"Representative data" refers to the degree to which the data

    represents the actual environmental conditions at the time ofmonitoring. In this case, it should reflect the water quality integratedacross and through the water column and not isolated elements.

    S a m p le P o in t C o n s id e r a t io n s

    Th e simplest and most specif ic geographic scale isa sampling point. Here , focus should be onselecting a location that w il l result in the m ostrepresenta t ive measure of the water qua li typarameter a t tha t s i te .

    W hen se lecting a sample point , remember that if samples are collec ted where emerging groundwateror isola ted eddies exist , the data w il l not representthe main por t ion of the stream. In order to collec trepresenta t ive data , sampling si te se lection m ustminimize the inf luence of potentia l confoundingfactors. Some exam ples of confounding factorsinclude:

    the confluence of tr ibutar ies groundwater inf lows channel s tructure or "morphology"

    (par t icular ly condit ions that create isola tedsegments or pools)

    spr ings, wetlands, water w ithdrawals, eff luent

    discharges beaver ponds and other impoundments

    By s ampling in a section of a s tream channel withgood w ater mixing, the data w il l represent the si tesaverage water quali ty condit ion. H owever , specia lcases can exist where monitor ing should includesites conta ining these confounding factors. In thesecases the ob jective of the monitor ing may be todetermine their inf luence on overall w ater qua li ty.

    Reach Scale

    A m onitor ing project can be expanded to documentwa ter quali ty trends of a s tream reach and/or effectsof management practices on those trends. Th is isaccomplished by m onitor ing the water qua li typarameter a t mult iple sample points . I f theobjective is to understand m a n a g e m e n t im p a c tso n w a t e r q u a l i ty , o r w a t e r q u a l it y tr ea t m en te f f ec t s , t h en t h e mo s t p o w er fu l an d m ean i n g fu l

  • 8/2/2019 Wq Mon Guide

    18/159

    Selecting Sites 3 - 2 Water Quality Monitoring Guidebook

    Version 2.0

    m o n i t o r in g d e s ig n w i ll in c l u d e a p r e -p ro j ec t , o r" b as e l in e , " d a t a co l lec t i o n p e r i o d .

    Fo r ex am p l e , if t h e o b j ec t iv e i s to d e t e rm i n eh o w a l o g g i n g o p e ra t i o n a f f ec t s s t r eamt em p era t u re , t h en m u l t ip l e s am p l e p o i n t s w i ll

    b e n eed ed . I d ea l ly , t h e s e s h o u l d b e e s tab l is h edp r i o r t o t h e l o g g i n g ac t i v it y o v e r t h e s am e

    p o r t i o n o f t h e y ea r w h en p o s t - lo g g i n gco n d i ti o n s w i ll b e m o n i t o r ed . T w o , o rp re f e r ab l y t h r ee , s am p l e p o i n t s s h o u l d b ep l aced s li g h tl y u p s t r eam an d o n e s li g h tl yd o w n s tr e a m f r o m t h e h a r v e s t u n i t (F i g u r e 3 - 1 ,p o i n ts 2 a n d 3 ) .

    = Sample Point

    Figure 3-1 . Samp le point and reach-sca l e l ocat ions .

    Furthermore , in order to understand the observedtrends (e .g. any mea sured change in temperature)through the u nit , sample points around controlreaches wil l be needed. A control is designed tomeasu re the parameter of concern a t s i tes that arenot impacted by ma nagement or other effects .Th ese control s i tes are designed to help isola te the

    mana gement or other effects f rom trends that mayoccur regardless of managem ent or other impacts .In f igure 2-1, the reaches between points 3 a nd 4and between 1 and 2 can act as controls . I f thesereaches ha ve intact r ipar ian areas, then observedtemperature trends through the harvest unit can becompared to these control reaches. These

  • 8/2/2019 Wq Mon Guide

    19/159

    Selecting Sites 3 - 3 Water Quality Monitoring Guidebook

    Version 2.0

    reaches should be located upstream anddownstream o f the harvest unit . I t is critical torecognize tha t wi thout pre - t rea tment da ta ,in fe rences about managem ent e f fec ts can be weak .

    Many documents and protocols recommend

    establishing a reference reach to help providecomparisons and context between the stream reachof concern and a similar s tream reach w ith lessintensively managed condit ions. (Dissmeyer 199 4) .Stream and r ipar ian condit ions for referencereaches represent the best ava ilable condit ions.Th e reference reach for a forested area wou ld mostl ikely have good water qu ali ty, complex f ishhab ita t , high qua li ty spawning gravels , shade,cover , and rear ing hab ita t for sa lmonids, amplelarge woody deb r is in the stream, and future

    supplies f rom the upstream adjacent r ipar ian areas.In some ca ses, the reference stream is the leastimpacted reach ava ilable for monitor ing(Plotnikoff 1992 ) .

    H owever , l imita t ions to the reference-reachapproach exist . For instance, a wide range of conditions result from natural disturbances. Fire ,f loods, and windstorms can cau se major changes instreams and water quali ty. The occurrence or lackof occurrence of one of these events shapes streamcharacter ist ics . Th erefore , caution is needed when

    comparing stream reach es with dif ferentdisturbance histor ies. In addit ion, not a l l s treamecosystems should look a l ike . Anestuary- inf luenced reach w ill not look l ike aheadw ater s tream, and a high gra dient , forestedreach w ill not look l ike a meadow-dom inated, low-gradient s tream (see Oregon Watershed AssessmentM anual discussion of channel habita t types) .

    B a s in S c a l e C o n s id e r a t io n s

    At the ba sin scale , landscape and stream patterns

    become the focus of monitor ing. Ba sin-scalemonitor ing represents the ma jor dilemma facing anysampling project i t is impossible to monitoreverything, everywhere , a l l the t ime. W hile everylocation and stream reach in a w atershed is unique,general patterns can b e identified that help inunderstanding and managing watersheds. Watershed analysis is a process that resourceprofessionals use ba sed on identifying these

    patterns in the landscape and streams (N onPointSource Solutions, 199 9) . Th is analysis involvesdeveloping hypotheses about how the watershedcondit ions and mana gement activi t ies on thelandscape are l inked to the r ipar ian and streamresponse . G ood basin-scale monitor ing involvesrecognizing these l inkages and developingmonitor ing that can be extended from a few si tes toa more general representa t ion of the watershedresponse .

    A ba sin approach is more than merely a strung-together ser ies of s i tes or reach- level monitor ingactivities . A l imited number of monitor ing si tesmust b e identified whose information can representcondit ions across the entire watershed. Stra t ifyingthe basin into similar environmental and land-use

    condit ions is one wa y of identifying candidatemonitor ing si tes . D efining the basin by "ecoregion"is another c lassif ica tion that can b e useful inidentifying where factors such as geology orc limate are re la t ively uniform. (Ecoregions areareas of re la t ive ecosystem hom ogeneity conta iningessentia l ly similar cha racter ist ics such asvegeta t ion, geology, hydrology, soils , and c l imate) .

    Ba sin-scale monitoring programs should a lsoconsider the m ost sensit ive or cr i t ica l s i tes , both forsources of pollutant loads and water qu ali ty

    impacts . For example , roads buil t near s treams onslopes with a high r isk of landslides represent apotentia l source of sediment. Cri t ica l s treamreaches, such as high va lue spawning or rear inghab ita t for sa lmon, may be identified as sensit ive tosediment deposition. Again, these si tes may have ahigh pr ior i ty for monitor ing to understand thewatershed response .

    An exa mple of the value of basin-wide mo nitor ingcompared to an assessm ent f rom individualsampling points is a s tudy of temperature patternsin the S teamboa t Creek Wate r shed of Oregon byH oladay (1992) . Ho laday found that despite therecovery of r ipar ian vegeta tion in Steamboat C reekf rom 1969 to 19 90 , no measurab le change in thestream temperatures a t the m o u t h of SteamboatCreek dur ing summ er extremes had occurred. Y etwa ter temperature reductions of 1 to 11 F weremeasu red for every major tr ibutary to Steamboat

  • 8/2/2019 Wq Mon Guide

    20/159

    Selecting Sites 3 - 4 Water Quality Monitoring Guidebook

    Version 2.0

    Creek. The watershed-w ide pattern, show ing thatincreased shade was reducing maximum tr ibutarytemperatures, was c lear . H owever , i f temperaturemeasurements a t the mouth of Steamboat Creekwere the only measurem ent taken, then i t wouldappear that wa ter temperature had not improved.Including tr ibutary temperatures in the m onitor ingproject more accurate ly ref lec ted the w atershed-wide temperature p attern..

    C h o o s in g S i te s

    Several types of s i tes may b e se lected formonitor ing surveys:

    Study si tes are se lected to answ er specif icquestions. These could include questions aboutthe effects of cer ta in land uses, improvement

    following restora tion work, or the effectivenessof Best Ma nagement Practices, among others.

    Reference si tes ref lec t the best a vailablecondit ions present within a specif ic s tream,watershed basin or ecoregion. An idealreference si te wou ld be in a pr ist ine , natura lcondit ion. A realis t ic reference si te usuallyrepresents the best a t ta inable condit ions andhas exp er ienced some level of hum an effect .Ideally more than one reference site is used.Five to ten reference si tes should b e sampled

    for studies that include several s treams over arange of habita ts .

    Rando mly se lec ted s i te s are chosen com plete lyat random, w ithout regard to the level of hum andisturbance. In most cases, random sites aregrouped, or s tra t ified, according to cer ta infactors such as stream order , land use , orecoregion. Random site se lection provides anunbiased a ssessment of the range of condit ionspresent within a study area. (Note: InOregon, the EPA Research Lab in

    Corvallis can provide a list of randomlyselected sites for specific projects.

    Contact Phil Larson at 541-754-4362.)

    O nce potentia l s i tes have been identif ied, the actuallocations where data wil l be collec ted need to beidentified. Except for random sites, wh ich arepicked independent of other factors, sam ple si tes

    should be representa t ive of the larger s tudy area .Physical and geographic chara cter istics l ikevegeta t ion, soils , geology, land use , gra dient ,r ipar ian character ist ics , and substra te type need tobe considered to assure that sam ple si tes arerepresenta t ive of the larger popula tion. Forexam ple , sample si tes should not be directlydownstream from anom alies such as culver ts ,br idges, roads, landslides, or waterfa l ls unless theseare the condit ions that the monitor ing program isevaluating.

    Reference and study streams shou ld be in the sameecoregion or ecologically similar area (w atershed orbasin) and be w ithin an acceptable range of e levation, gradient , and stream order (G allant , e t a l198 9) . Similar s treams in the same ecoregion

    wou ld be expected to have similar water chemistryand ha bita t condit ions, and support s imilarbiological commu nities. Differences between wellchosen reference and study si tes should be due tohum an or natura l disturbance and not due to natura ldif ferences between the stream s.

    Locating m inimally impacted reference streams inthe sam e ecoregion can sometimes prove dif ficult ,especia l ly a t the lower e levation sections of s treams. In cases where unimpaired reference sites

    are not available , one shou ld se lect the leastimpaired areas possible . Genera lly, impacted andreference site selection is done in three stages:

    Off ice Reconnaissance : using maps, aer ia lphotos, published reports , and other m ater ia ls ,the monitor ing area is s tudied and l ikelystreams are identif ied.

    Consul t the Exper ts : federal and sta te resourcemana gement agency personnel are veryknowledgeable of the na tura l character ist icsand hum an impacts in the areas theyadminister . They can a lso provide informationon work planned for the future in the basinsbeing considered for s tudy, such a s proposedtimber sa les or s tream improvement work.Local f isher ies biologists are a par t icular lygood resource .

    Fie ld Reconnaissance : the stream s identif ied inthe previous two steps are visi ted and visually

  • 8/2/2019 Wq Mon Guide

    21/159

    Selecting Sites 3 - 5 Water Quality Monitoring Guidebook

    Version 2.0

    surveyed to ver ify the representa t ion andsimilar i ty of the streams and to se lect specificstream reaches for sampling.

    H o w M a n y S i te s P e r S tr e a m ?

    Th e location and number of s i tes per s treamdepends on the ob jectives of the study, the type of impacts , and the resources available . G enerally,program designs are of three types:

    1 ) Paired s tream approa ch , with several s i tes perstream. A study stream is paired with a nearbyunimpacted (or l eas t impacted) referencestream w here several s i tes are a lso se lected.

    2 ) U p s t r e a m / d o wn st re a m a p p r o a c h , with severalsi tes a long a single stream. Selected sitesupstream of some disturbance, with the best

    available condit ions, are used as the referencesites. Sites are then se lected within and/ordownstream from the area of concern.

    3 ) Ecoregion approach . A number of leastimpacted reference si tes within a singlephysiographic type or ecoregion are se lected todetermine the natura l reference condit ion. Anumb er of s i tes of concern are then se lectedwithin the same or a s imilar ecoregion.

    W hichever approach is used, i t is important tosample enough si tes to determine the inherentvar iabil i ty within and between dif ferent s i tes ,because w ater quali ty parameters vary in bothspace and t ime. Ga ther ing additional data collec tedby other agencies or groups can improve theeffectiveness of monitoring to detect differencesbetween si tes . Th e collec tion and analysis methods

    used by other s tudies need to be comparable ,however .

    R e f e r e n c e s

    Dissmeyer , G .E . 1994 . Evaluat ing the

    e f fec tiveness o f fores t Bes t M anagem ent Prac t ice sin mee t ing wa ter qual i ty goals or s tandards .M iscel laneous Publ ica t ion 1520 . USD A Fores tService: Atlanta , GA.

    G allant , A.L . , T.R. W hitt ier , D.P. Larsen, J .M.Om ern ik , R.M . Hughes . 198 9 . Regiona l iza t ion a s aTool for Managing Environmental Resources.USEPA Resea rch Labora tory . EPA/600/3-89-060 .Corva l l is , OR .

    Holaday , S .A. 1992 . S u m m e r ti m e wa t e r tempera ture t rends in S team boat Creek Ba s in ,

    U m p q u a Na t i o n a l F o r es t . M S Thes is . OregonState Universi ty: Corvall is , OR .

    Plotnikoff, R.W. 199 2. Timber/Fish/Wildli feb ioassessment p i lo t pro jec t . Washington Dept. of Ecology, Environmental Investigations andLabora tory Se rv ices : Olympia , WA .

    Stednick, J .D. 1991. W ild land w ater qual i tysamp l ing and an aly s is . Academ ic Press, Inc . : N ewY o r k , N Y .

    NonPoint Source Solutions, 1999. O r e g o n

    W a t h e rs h e d A s s e s s m e n t M a n u a l . GovernorsW ate r shed Enhancement Board : Sa lem, OR

    .

  • 8/2/2019 Wq Mon Guide

    22/159

    Data Quality 4 - 1 Water Quality Monitoring Guidebook

    Version 2.0

    C h a p t e r 4

    D a t a Q u a l ity

    B a c k g r o u n d

    Th e goal of data gather ing is to produce data of aknown q uali ty which is adequa te for the intendeduse . Environmental monitor ing often requires largeinvestments of resources. Inst i tut ing techniqueswh ich protect that investment and insure that thedata is valuab le to other users is important .

    Th e methods used to e l iminate flaws and errorsbefore they compromise the qu ali ty of the datacollec ted are generally referred to as quali tyassurance (see next page) . To insure that the dataare credible , procedures must be docum ented,regular evaluations of precision and accuracyshould be condu cted, and regular , independentaudits should a lso be conducted.

    1 0 S t e p s T o Q u a li ty D a t a

    Proper planning is the key to producing high qua li tydata . The ten steps descr ibed below are usefulwh ether a project wil l sample two si tes on a smallcreek or 200 si tes in a s ta tewide mon itor ingnetwork.

    1 . D e f in e t h e go a ls a n d o b je c ti ve s o f th e p r oj ec t.W hy is the project needed? W hat question isbeing addressed? How w ill the data be used?W ho wi l l use the da ta?

    2 . Co l le c t b a c k gr o u nd in fo r ma ti o n a b o u t t h eproject area .

    3 . Re f in e th e p ro j ec t g o a ls b a s ed o n t h ebackground information gathered.

    4 . D e si gn th e p ro je cts sam pling, analytica l , anddata requirements. Th is is the what , how,when , and where of sampling.

    5 . W r it e a n imp l eme n ta t io n p la n t h at d es c ri b eswh en tasks wil l be completed and who willcomplete them.

    6 . W r it e a d r a ft p ro je c t p la n th a t in c lu d e ssampling methods and project objectives.

    7 . G e t fe e db a c k on th e d ra f t p l an fr o m ot h erprofessionals such as sta te ag ency monitor ingstaff.

    8 . Re v is e th e p ro je c t p la n b a s ed o n r e vi ewcomments.

    9 . I mp le me nt mo n it or in g w o r k as d e sc r ib e d in t h ef inal monitor ing plan.

    10. E valuate and ref ine the project over time asknowledge is acqu ired dur ing the project.

    K e y D a t a Q u a l it y C o n c e p t s

    Qu al i ty a ssurance (QA ) and qu a l ity con tro l (QC)are key components of any m onitor ing program.Th ey are def ined as:

    Qu a l i ty A ssuranceTh e overall management system of a projectincluding the organiza tion, planning, data

    collec tion, quali ty control (QC ), documentation,evaluation, and reporting activi t ies . Q A providesthe information needed to determine the data squa li ty and w hether i t meets the projectsrequirements.

    Quali ty ControlTh e routine technical a c tivi ties intended pr imarilyto control errors. Since errors can occur in ei therthe f ie ld, the laboratory, or in the off ice , QC mustbe par t of each of these activi t ies .

    As par t of QA /QC planning, cer ta in data quali tyobjectives need to be def ined. Th ese re la te to th e

    prec is ion , accuracy , represen ta t ion , com ple teness ,a nd comparabi l i ty of the data .

    PrecisionPrecision refers to the amou nt of agreement amongrepeated measu rements of the same parameter . Todetermine precision, duplicate samples

    mus t be

  • 8/2/2019 Wq Mon Guide

    23/159

    Data Quality 4 - 2 Water Quality Monitoring Guidebook

    Version 2.0

    collected a t a number of sample si tes . As anexam ple , volunteers may w ish to collec t oneduplicate sample per tr ip or duplicate samples for10% of the tota l samples collec ted, whichever isgreater . Du plicate samples should be collec tedduring each sampling tr ip. The actual number of duplicates depends on the var iab il i ty of the data a ndhow precise the data mu st be to est imate the actualwa te r qua l i ty (EPA 1996) .

    AccuracyAccura cy measures h ow close the results are to atrue or expected value . Th is is normallydetermined by measu r ing a standard or referencesample of a known amount and compar ing how fa rthe results a t the m onitor ing si te are f rom thereference value .

    Representa t ionTo w hat extent do the f ie ld samples actua llyrepresent the true environmental condit ion(s) orpopulation(s) a t the t ime a sample w as collec ted?Representa t ion is largely determined by theselection of the sample si tes . D o these si tesaccurate ly ref lec t (or represent) the condit ions of the waterbody b eing studied?

    CompletenessTh e comparison between the am ount of valid, orusab le , data or iginally planned for collec tion,

    versus the am ount ac tually collec ted.Comparabil i tyTh e degree to which dif ferent methods and data se tsagree or are similar . For instance, the W inklert i tra tion method for dissolved oxygen (a method formeasu r ing the concentra t ion of dissolved oxygen inwa ter . See Chapter 7) and a polarographic probe (adifferent method for mea sur ing dissolved oxygen)may not provide highly comparab le data . This ispar t icular ly important to determine wh en using datafrom other s tudies.

    Th e level of accuracy and precision will not be thesame for each parameter measu red, and may not bethe same for each project . Precision and accuracywill depend on the study o bjectives ( i .e . howprecise and accurate the data must be to answer thequestions of concern) , the am ount of moneyavailable for equipment purchases and dataanalysis , and the level of tra ining of the people

    collecting samples. Th e or iginal data quali tyobjectives may not be met in a m onitor ing projectbecause funding can b e cut ( reducing the level of analysis) , the equipm ent fa i ls , or project personneldon t perform as expected. I f this occurs i t iscr i t ica l to repor t the da ta qu ali ty level a t ta ined andexpla in w hy.

    D a t a Q u a li ty M a t r ix

    D etermining the level of accuracy and precisiondesired a t the projects beginning is important .Ta ble 4-1 has b een developed to help determine thedata qua li ty objectives. The tab le identif ies threedata qu ali ty levels for s ix comm only collec tedwa ter qua li ty parameters. Th e purpose of the waterqua li ty data m atr ix is to help collec tors se lect thelevel of data qu ali ty that meets their ob jectives,exper ience, level of exper t ise , and budget. D ataqua li ty levels depend on the methods used and theQA /QC pro toco l fo llowed.

    Level ALevel A is the highest level of data quali ty. I t canbe used to assess compliance with w ater quali tystandards, permitt ing requirements, or otherregula tory activi ties .

    Level B

    Level B is the next highest level . I t is typicallyeasier and less expensive to collec t. Level B datacan be used as an ea r ly warning of potentia lproblems or for screening information.

    Level CLevel C is the lowest data qua li ty level and isnormally the easiest to collec t. Becau se of its loweraccuracy and precision, Level C data is best usedfor educational purposes.

    N ot a l l f ie ld parameters wil l need to be a t Level A ,

    or even Level B, data quali ty. A pr incipal decisionfor data collec tors is to decide how the data w il l beused .

    D epending on the data collec tion objectives,equipment a vailable , collec tor tra ining andadherence to Q A/QC procedures , da ta q ua l i tylevels may vary for dif ferent parameters. Th eprocedures and instruments descr ibed in the

  • 8/2/2019 Wq Mon Guide

    24/159

    Data Quality 4 - 3 Water Quality Monitoring Guidebook

    Version 2.0

    specif ic protocol chap ters are generally designed tomeet Level A data q uali ty with appropria teQA /QC. But , r emember wha t the da ta wi l l be usedfor and determine wha t is the appropria te dataqua li ty level .

    References

    U S E P A . 1 9 9 6 . The vo lun teer moni tor s guide toqual i ty assurance pro jec t p lans . E P A 8 4 1 - B- 9 6 -003 . U.S. Environmental Protection Agency,Off ice of Wetlands, Oceans, and Watersheds:W ashing ton , D .C. Chapte r 2 .

  • 8/2/2019 Wq Mon Guide

    25/159

    Data Quality 4 -4 Wate

    Version 2.0

    Tab le 4-1. W ater quality param eters by data quality level. Data qu ality level depends on a com bination of quality control and m ethod selection.

    D A T A Q U A L I T Y M A T R I XW ater Qual i ty P arameters by Data Qu al ity LevelData Quali ty Level depends on a combination of quali ty control and method selection.

    DataQ ualit y

    Leve lQ uality

    Assurance Plan

    W aterTemperature

    M ethods PH M ethods

    DissolvedO x y g e n

    M ethodsTurbidityM ethods

    Conductivi tyM ethods

    AQAPP a pprove d

    QA cri ter ia met .

    Thermometer orda ta logger .

    Accuracy checkedwi th NIST s tandard.

    A=+/-0.5 CP=+/-1.0 C

    Calibrated pH

    Electrode

    A=+/-0.2

    P=+/ -0.3

    Winkler Titrat ionor ca libratedOxyge n M e t er

    A=+/-0.3mg/1

    P=+/ -0.5

    Mephlomet r icTurbidi ty Meter

    A=+/-5% of s td.value.

    P=+/ -5%

    Meter . Temp era turecorrec tion to 25 C.

    A= + / -7% o f

    std. value.

    P=+/ -2%

    BMe e t s DE Q Da t aAcceptance Criteria

    Thermometer ordatalogger onNIST accuracy

    check.

    A=+/-2.0 C

    P=+/-1.0 C

    Any method w i th:

    A=+/-0.5

    P=+/ -0.5

    Winkler Titrat ionor ca libratedOxyge n M e t er

    A=+/-1 mg/1

    P=+/ -1 mg/ l

    Any method w i th:

    A=+/-30%

    P=+/-30%

    Meter .

    Tempera turecorrec tion to 25 C.

    A=+/-10%

    Of s td. Value .

    P=+/ -5%

    C

    Meets

    DE Q Da t a Ac c e p ta nc eCriteria

    Un-calibrated

    thermometer

    Any m ethod + / - 1

    pH uni t

    Any method

    +/ -> 1 mg/1

    Observations clear,

    muddy, e tc .

    Meter wi thout

    routine calibration.

    NO TE: In Method s bo xes, A = Accuracy and P = Precision

  • 8/2/2019 Wq Mon Guide

    26/159

    Data Storage and Analysis 5 - 1 Water Quality Monitoring Guidebook

    Version 2.0

    Chapter 5

    D a t a S t o r a g e A n d A n a l y sis

    Ch apte r 4 em phas ized the im por tance o f insur ingda ta qua l i ty . I f the s t eps desc r ibed in Ch ap te r 4 havebeen t aken to ach ieve the des i red l eve l o f da taqua l i ty , then the m e thod of s tor ing and ana lyz ingtha t da ta i s equa l ly im por tan t . Da ta p rope r ly sto redand ana lyzed i s e s s en t i a l i f the goa l i s to ga the rc red ib le da ta fo r use by vo lun tee rs , landow ners an dagency pe rsonne l fo r m oni to r ing , m ana gem en t o rregulatory purposes

    Further , the level of precis ion and accuracy des ired

    (see Tab le 4 -1 , Ch ap te r 4 ) wi l l in f luence the ab i l i tyto de tec t m ean in gfu l d i ffe rences in the da ta . F orexam ple , i f a ca l ibra ted the rm om ete r i s used intem pera tu re m on i to r ing w i th a p rec is ion o f 1degree , then i t wi l l no t be u se fu l in de tec tingtem pera tu re chan ges o f 0 . 5 d egree ( the c r i t er i a fo rLevel A accuracy). Da ta collectors , therefore , needto be aware o f the l eve l o f da ta qu a l i ty they wan t toach ieve a s they deve lop the i r m oni to r ing p lan ,purchase o r acqu i re equ ipm ent , and ana lyze the da ta .

    Da ta shou ld be s to red and backed up on bo th thecom pu te r ha rd d r ive and d i sks . Da ta f i l es shou ld beclearly labeled for quick ident if icat ion of what thefi le contains .

    W ha t bas ic da ta shou ld be inc luded in f i l es wi l l va rydepending on the wa te r qua l i ty pa ram ete r . Ingene ra l , inc lude the s am pl ing po in t nam e andnum ber , l a ti tude and long i tude o f the s i t e , st reamnam e , and when the da ta was co l lec ted by da te ,m onth and yea r . At tem p t ing to rem em ber thepa r t i cu la rs abou t how da ta was co l l ec ted m onth s

    la ter can be d iff icul t ; therefore , enter the da ta as soonas pos s ib le . S om e of the equ ipm ent used in thefo l lowing pro toco ls ( t em pera tu re m oni to r ing p robes )m ay actual ly create data f i les . I t is importan t tom ake sure tha t the da te s and t im es recorded in thosefi les are correct .

    Data Analys is

    M aking gen e ra l i zed com m ents abou t da ta ana lysi s isdiff icul t because such an alyses wil l vary great lydepending on the pa r t i cu la r ques t ion(s ) a sked andwh a t pa ram ete rs a re m easured . Di f fe ren t l evel s o f ana lys i s can be app ropr ia te fo r m os t pa ram ete rs .

    G r a p h i c a l T e c h n i q u e sGraph ing da ta i s ve ry usefu l and im p or tan t fo rund e rs tand in g the cha rac te r is t i cs o f the "da ta s e t "( i . e . the tota l am oun t of data col lected for a part icular

    m oni to r ing s i t e o r p ro jec t ) and iden t i fy ing anypoten t i a l re la t ionsh ips . Exam ples inc lude ba r cha r t s ,XY graphs , f requency d i s t r ibu t ions , o r p ie cha r t s .

    F or exam ple , by g raph in g s t ream tem p era tu re versusd i s tance f rom a d iv ide , an un de rs tand ing o f bas int rends can deve lop . By graph ing s t ream tem pera tu reve rsus tim e , an un de rs tand ing o f when the h ighes tt em pera tu res occur red can be ga ined . Th i s a l soprov ides a m ean s to check the da ta fo r accuracy .

    Descript ive S ta t is t ics

    Th ese are the very bas ic sta t is t ics that describe a dataset (for m ore inform ation on s ta t is t ical an alys is , referto the m on i to ring m entors l is t ed on page 7 inCh apte r 2 ) . Com m only repor ted st a t i st i c s a re :m e d i a n , a v e ra g e , m a x i m u m , m i n i m u m , a n d s t a n d a r ddev ia t ion . By graph ing the average p lus and m inusthe s t anda rd dev ia t ion , da ta co l l ec to rs beg in tound ers tand the d i s t r ibu t ion o f the i r da ta .

    S ta t i s ti ca l M e thodsTh e p resen ta t ion o f da ta in a va l id s c ien t if i c m ann errequ i re s tha t a s t a tem en t o f the in ves t iga to r s

    conf idence in tha t da ta be inc luded . S ta t i st i ca lm e thods a re the too l s used to show wha t l eve ls o f conf idence , o r the am ount o f e r ro r , inves tiga to rs havein the da ta . A n um ber o f s t a t is t i ca l m e thods o rm ode l s a re ava i lab le fo r ana lyz ing d a ta .However , i t i s c r it i ca l to un de rs tand the a s sum pt ionsof these m ode l s p r io r to us ing them . F or exam ple ,m any na tu ra l re source da ta s et s m ay no t be norm a l ly

  • 8/2/2019 Wq Mon Guide

    27/159

    Data Storage and Analysis 5 - 2 Water Quality Monitoring Guidebook

    Version 2.0

    dis tr ibuted ( i . e . the se ts don t r e f lec t a norm a l bel lshaped curve on a g raph) an d the re fore s t anda rdana ly t i ca l m e thods m ay re su l t in an a lyses tha t a ref l awed . Th ese p roblem s can o f ten be addressed byloga r i thm ic o r power t rans form a t ions o f the da ta .Non -pa ram et r i c m e thods a re a l so ava i l ab le (Hi rsch e ta l . 1992) . S om e s ta t i s ti ca l ana lyses inc lude :AN OV A, m ul t ip le and l inea r regress ion ,m ul t iva ria te ana lyses , and cor re la t ion an a lyses .S om e use r - f r iend ly sof tware packages a re ava i l ab leto a id s ta t is t ical analyses . W ithout famil iari ty ortra ining in s ta t is t ical analys is , however, help indeve lop ing s ta t i s ti ca l m ode l s w i l l be needed .Con tac t one o f the reg iona l m oni to r ing coord ina to rsl i s ted on p age 7 in Ch ap te r 2 fo r fu r the r a s s i s t ance .

    W ate r Qua l i ty Cr i t e r iaOregon wa te r qua l i ty c ri t e ri a a re p rov ided on the w ebat . Th ese c r i te r i a m ay be inte rm s o f a s even-day m oving ave rage o f the da i ly

    m a x i m u m o r m i n i m u m t e m p e r a tu r e s. S p e c ia lcond i t ions m ay a l so be recognized wh ich na tu ra l lycause wa te r qua l i ty to exceed the s tanda rds . F orexam ple ex t rem e low s t ream f lows or p ro longedwarm pe r iods can cause s t ream s to exceed s ta tetem pera tu re s t anda rds . I t i s use fu l to ana lyze theda ta co l l ec ted and com pa re the re su l ts to the wa te rqua l i ty cri ter ia .

    Deposit ing Data

    Th e OP S W M oni to r ing Team i s curren t ly exp lor ingoptions for s torage of the monitoring data col lectedfor the OP S W . S om e of the a t t ached p ro toco l scon ta in exam ple da ta shee t s . Th ese shee t s p rovide atem pla te fo r o rgan iz ing the da ta co l l ec ted byvolun tee rs in to a fo rm a t com p a t ib le wi th the O P S Wdatabase . In gene ra l , som e im por tan t com p onentsinc lude :

    Globa l P os i t ion ing Da ta P o in t o r l a t i tude an dlong i tude

    Date of data col lect ion S t r ea m n a m e Respons ib le pa r ty Project object ive Site descript ion M oni to r ing ques t ion P aram ete rs m easured M a x i m u m s , m i n i m u m s , a v e ra g e s

    Th ese p ro toco l s wi l l conform to therecom m enda t ions fo r da ta s to rage tha t a re be ingdeve loped and wi l l , in the fu tu re , p rov ide gu ide l inesfor transpor t ing and de l ive ring the da ta to the O P S Wdatabase . At a m in im um , gu ide lines fo r the da tas to rage fo rm a t wi l l be developed . Th ose wish ing fo radd i t iona l in fo rm a t ion on p rogres s wi th d a ta s to ragei s sues shou ld con tac t Ke l ly Moore wi th the O regon

    Depar tm ent o f F i sh and W i ld l ife (541-737-762 3)

    References

    Hirsch , R . M . , He l se l , D . R . , Col in , T . A. , and Gi l roy ,E.J . 1992. S ta t is t ical analys is of hydrologic data . InH ar dwood o f hydr o logy . [ E d . ] M a i d m e n t , D . R .McGraw-Ha l l , Inc . Chap te r 17

    .

  • 8/2/2019 Wq Mon Guide

    28/159

    Stream Temperature Protocol 6 - 1 Water Quality Monitoring Guidebook

    Version 2.0

    Chapter 6

    S t r ea m T e m p e r a tu r e P r o t o c o l

    Background

    Water temperature is a key factor affect ing thegrowth and surv iva l o f a l l aqua t i c o rgan i sm s . Th ee f fec t o f s tream tem pera tu re on f i sh , am phib ians ,macroinvertebrates , e tc . varies between speciesand wi th in the l i fe cyc le o f a g iven spec ie s(Arm our 1991; Besch ta e t a l . 1987 ; B jornn an dRe ise r 1991; Lan tz 1971; DEQ 199 5) . P re fer redtem pera tu re ranges fo r m a jor fi sh spec ie s and the i rpa r t i cu la r l ife s tages a re shown in T ab le 6 -1 .

    Inc reases in s t ream tem pera tu re cause an in c reasein an o rgan i sm s m e tabo l ic ra te (Warren 1971) . I f enough food i s ava i l ab le , g rowth ra te s can a c tua l lyinc rease wi th som e inc rease in t em pera tu re . F orsa lm onids , t em pera tu re ranges o f 40-66 F suppor thea l thy g rowth . Outs ide th i s t em pera tu re range ,s a lm on and t rou t gene ra l ly don t g row in s i ze , andex t rem e tem pera tu res can be le tha l . Resea rch hasfound th a t e l eva ted s t ream tem pera tu res o f t enresul t in increased competi t ion for a l imited foodsupply , wi th young s a lm onids fo rced in to h ab i t a t

    areas wh ere they are eas ier prey (Reeves , Everes tand H a l l 1987) . As food ava i lab i l i ty goes down ,so does the g rowth ra te . In add i t ion , e l eva teds t ream tem pera tu res inc rease the r i sk o f disease-re la ted morta l i ty .

    As s t ream tem p era tu res inc rease , the am ount o f d i s so lved oxygen (DO ) 3avai lable to aquat ic biotadec reases . As a re su l t , even i f food i s abundan t a th ighe r t em pera tu res , dec reases in D O m aymetabolical ly s t ress sa lmonids , further increas ingtheir suscept ibi l i ty to disease .

    Wh en tem pera tu res reach s t res s fu l l eve l s , pocke t sof cool water provide refugia for f ish an dam p hib ian spec ie s tha t a re s ens i t ive to h igh s t reamtem pera tu re . Cool wa te r re fug ia can sus ta in

    popu lat ions of sens i t ive species (Sedel l e t a l . 1990 ).Cool wa te r hab i t a t can be sus ta ined in deep poo l s ,co ld sp r ings , a reas o f g roundwa te r in f low, and a tthe junct ion o f cooler t r ibutary s t reams.

    S t ream tem pera tu re has been heav i ly re sea rcheda n d m o n i t or e d ( D E Q 1 9 9 6 ; D i s s m e y er 1 9 9 4 ) .S tudies have inves t igated the effects of landm an agem ent on s t ream tem pera tu re , deve lopedm ode ls to p red ic t s tream tem pera tu re , andevaluated th e effects of e levated tem perature on

    aqua t i c b io ta . Wh a t fo llows i s a de ta il eddesc r ip t ion o f how to m oni to r s t ream tem pera tu reat mult iple scales . Pleas e r e fe r to pr ev iouschap


Recommended