+ All Categories
Home > Documents > Www.mvsystemsinc.com NHA conference May3-6, 2010 The Potential of Using a-SiC:H as the...

Www.mvsystemsinc.com NHA conference May3-6, 2010 The Potential of Using a-SiC:H as the...

Date post: 13-Jan-2016
Category:
Upload: mavis-hamilton
View: 221 times
Download: 0 times
Share this document with a friend
17
www.mvsystemsinc.com NHA conference May3-6, 2010 The Potential of Using a-SiC:H as the Photoelectrode for Water Splitting Feng Zhu a , Jian Hu a , Ilvydas Matulionis a , Josh Gallon a , Todd Deutsch b , Nicolas Gaillard c , Eric Miller c and Arun Madan a a. MVSystems, Inc., Golden, CO. USA b. National Renewable Energy Laboratory, Golden, CO, USA. c: Hawaii Natural Energy Institute, University of Hawaii at Manoa, HI, USA Supported by the U.S. Department of Energy Program # DE-FC36- 07GO17105
Transcript
Page 1: Www.mvsystemsinc.com NHA conference May3-6, 2010 The Potential of Using a-SiC:H as the Photoelectrode for Water Splitting Feng Zhu a, Jian Hu a, Ilvydas.

www.mvsystemsinc.com NHA conference May3-6, 2010

The Potential of Using a-SiC:H as the Photoelectrode for Water Splitting

Feng Zhua, Jian Hua, Ilvydas Matulionisa, Josh Gallona,

Todd Deutschb, Nicolas Gaillardc, Eric Millerc and Arun Madana

a. MVSystems, Inc., Golden, CO. USA

b. National Renewable Energy Laboratory, Golden, CO, USA.

c: Hawaii Natural Energy Institute, University of Hawaii at Manoa, HI, USA

Supported by the U.S. Department of Energy Program # DE-FC36-07GO17105

Page 2: Www.mvsystemsinc.com NHA conference May3-6, 2010 The Potential of Using a-SiC:H as the Photoelectrode for Water Splitting Feng Zhu a, Jian Hu a, Ilvydas.

MV

Sys

tem

s, I

nc.

Gol

den,

Col

orad

o, U

SA Focus of this talk

PEC - photoelectrochemicala-SiC – hydrogenated amorphous silicon carbide hybrid device- a-SiC integrated with a-Si/a-Si tandem solar cellSTH- solar-to-hydrogen

Introduction

A-SiC:H photoelectrode PEC characteristics

The challenges of a-SiC:H for water splitting

---Corrosion resistance in aqueous electrolyte

---The band-edge of the a-SiC:H

---Charge carrier extraction at the a-SiC:H/electrolyte interface

Pathway towards STH conversion efficiency>10%

Conclusion

Page 3: Www.mvsystemsinc.com NHA conference May3-6, 2010 The Potential of Using a-SiC:H as the Photoelectrode for Water Splitting Feng Zhu a, Jian Hu a, Ilvydas.

Hydrogen production by conventional methods Greenhouse gases

PEC water splitting: Use electricity from sunlight

Why hydrogen production by PEC ?

Goals*:

* R. Garland et al, DOE Hydrogen Production Review Meeting, Arlington, VA, June 12, 2008.

MV

Sys

tem

s, I

nc.

Gol

den,

Col

orad

o, U

SA

Page 4: Www.mvsystemsinc.com NHA conference May3-6, 2010 The Potential of Using a-SiC:H as the Photoelectrode for Water Splitting Feng Zhu a, Jian Hu a, Ilvydas.

MV

Sys

tem

s, I

nc.

Gol

den,

Col

orad

o, U

SA

Advantages of a-SiC:H*Lower Eg (band gap) allows more photocurrent

*Eg 1.9eV-2.3eV with varying carbon incorporation

*Uses the same deposition technique as the a-Si tandem junction, i.g. PECVD

Why amorphous SiC photoelectrode ?

Previously, 3.1% Solar-to-Hydrogen (STH) efficiency achieved in WO3+a-Si tandem PEC hybrid devices (from load-line analysis by HNEI) *

HER catalystStainless steel foil

a-Si nip/nip tandem solar cellsITO

WO3

light

electrolyte

a-Si/a-Si tandem solar cell 0

2

4

6

8

10

0.0 0.5 1.0 1.5 2.0

Voltage (V)

Cur

rent

(mA

/cm

2)

0

2

4

6

8

10

12

STH

effi

cien

cy (%

)

a-Si/a-Si tandem

a-Si/a-Si tandem, filtered by WO3 film

WO3 film

integrated HPE performance level

* MVS publication in Proc. SPIE, Vol. 6340, (2006)63400K.

Page 5: Www.mvsystemsinc.com NHA conference May3-6, 2010 The Potential of Using a-SiC:H as the Photoelectrode for Water Splitting Feng Zhu a, Jian Hu a, Ilvydas.

Deposition system –cluster tool system M

VS

yste

ms,

Inc

.

G

olde

n, C

olor

ado,

US

A

RF power: 10-20 W

Excitation frequency: 13.56 MHz

Pressure: 300-550 mTorrr

SiH4 flow rate: 20 sccm

CH4 flow rate: 0-20 sccm

H2 flow rate 0-100 sccm

Substrate temperature 200°C

Sputtering chamberZnO, ITO, Al, Mo…..

PECVD chambers

LoadLock

Main deposition parameters:

All a-SiC:H films, photoelectrodes, solar cells and the PEC hybrid devices were fabricated in the cluster tool PECVD/Sputtering System, designed and manufactured by MVSystems, Inc.

www.mvsystemsinc.com

Page 6: Www.mvsystemsinc.com NHA conference May3-6, 2010 The Potential of Using a-SiC:H as the Photoelectrode for Water Splitting Feng Zhu a, Jian Hu a, Ilvydas.

a-SiC material and its pin Solar Cell M

VS

yste

ms,

Inc

.

G

olde

n, C

olor

ado,

US

A

Device configuration and performance:

a-SiC(i) (~300 nm, Eg~ 2 eV)

a-Si(n+)

a-SiC(p+)SnO2 (Asahi U-type)

Ag

Glass

Light

For devices with thickness of ~ 100 nm, Jsc ~ 8.45 mA/cm2 achieved

0

2

4

6

8

10

12

14

16

0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1

V (V)

J (m

A/cm

2 )

J sc=13. 34mA/ cm2Voc=0. 91VFF=0. 61effi . =7. 35%

As CH4 flow increases, the bandgap, Eg, increases

1.95

2

2.05

2.1

2.15

2.2

2.25

0 0.1 0.2 0.3 0.4 0.5 0.6

CH4/(CH4+SiH4)

Eg (

eV)

without H2

with H2

Eg vs. CH4/(CH4+SiH4)

* F. Zhu, J. Hu, I. Matulionis, Todd Deutsch, Nicolas Gaillard, A. Kunrath, E. Miller and A. Madan, "Amorphous Silicon Carbide Photoelectrode For Hydrogen Production Directly From Water Using Sunlight" Philosophic Magazine, 89:28,( 2009) 2723-2739

Page 7: Www.mvsystemsinc.com NHA conference May3-6, 2010 The Potential of Using a-SiC:H as the Photoelectrode for Water Splitting Feng Zhu a, Jian Hu a, Ilvydas.

0

1

2

3

4

5

6

7

8

9

0.0 0.5 1.0 1.5 2.0

Voltage (V)

Cu

rre

nt

de

ns

ity

(m

A/c

m2 )

Performance of a-Si tandem device

Current vs. Voltage

Configuration of a hybrid PEC cell

a-SiC(i), ~100nm

SnO2Glass

a-SiC(p)

a-Si p-i-n(top cell)

a-Si p-i-n(bottom cell)

a-SiC(p)

a-Si(n)

a-SiC(p)

a-Si(n)

a-Si(i), 150nm

a-SiC p-i

a-Si(i), 500nm

SN Jsc Voc FF Eff. (mA/cm2) (V) (%)

#A 6.795 1.6 0.717 7.79 #B 8.70 1.66 0.67 9.62

#A

#BComparison of PV performance

#A -used in the first hybrid PEC cell.• #B- improved device. Shall incorporate into the hybrid PEC device.

A-Si tandem solar cell

MV

Sys

tem

s, I

nc.

Gol

den,

Col

orad

o, U

SA

Page 8: Www.mvsystemsinc.com NHA conference May3-6, 2010 The Potential of Using a-SiC:H as the Photoelectrode for Water Splitting Feng Zhu a, Jian Hu a, Ilvydas.

Main Features of a-SiC p/i Photoelectrode: Behaves like a p-type photoelectrode

Saturated photocurrent: up to 8 mA/cm2

Flatband voltage: +0.26V (vs Ag/AgCl)

The flatband voltage of the a-SiC p/i photoelectrode is above the water oxidation half-reaction potential which means external voltage is required to initiate water splitting.

Flatband voltage Vfb vs. pH for an a-SiC p/i photoelectrode and a hybrid PEC device

a-SiC(p) (20 nm)

Glass

a-SiC(i) (200nm, 2.0eV)

textured SnO2

light

a-SiC p/i photoelectrode

The challenges of a-SiC:H for water splitting -the band-edge M

VS

yste

ms,

Inc

.

G

olde

n, C

olor

ado,

US

A

[ Data measured by NREL and HENI]

Page 9: Www.mvsystemsinc.com NHA conference May3-6, 2010 The Potential of Using a-SiC:H as the Photoelectrode for Water Splitting Feng Zhu a, Jian Hu a, Ilvydas.

• Vfb determined by the illuminated open-circuit voltage (IOCP).

• For the p-type photoelectrode, Vfb needs to be below H2O/O2

redox potential for water splitting.

• In the hybrid PEC device, the Vfb shifts by ~+1.6V or +0.97V

below H2O/O2 half-reaction potential at pH2

Flatband potential vs. pH

[ Data measured by NREL and HENI]

MV

Sys

tem

s, I

nc.

Gol

den,

Col

orad

o, U

SA

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5-1 4 9 14

pH

V v

s. A

g/A

gCl

hydrogen

oxygen

a-SiC p-i

hybriddevice

textured SnO2

hybrid PEC cell

a-SiC (i), 100nm

Glass

a-SiC(p)

a-Si p-i-n(top cell)

a-Si p-i-n(bottom cell)

a-SiC(p)

a-Si(n)

a-SiC(p)

a-Si(n)

a-Si (i), 150nm

a-SiC p-i

a-Si (i), 500nm

light

The challenges of a-SiC:H for water splitting -the band-edge

Page 10: Www.mvsystemsinc.com NHA conference May3-6, 2010 The Potential of Using a-SiC:H as the Photoelectrode for Water Splitting Feng Zhu a, Jian Hu a, Ilvydas.

-7

-6

-5

-4

-3

-2

-1

0

-2 -1. 8 -1. 6 -1. 4 -1. 2 -1 -0. 8 -0. 6 -0. 4 -0. 2 0 0. 2potenti al (Vs. Ag/ AgCl )

phot

o cu

rrent

den

sit

y(mA

/cm

2)

a- Si C photoel ect rodehybr i d devi ce

MV

Sys

tem

s, I

nc.

Gol

den,

Col

orad

o, U

SA

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

Potential (v)

Cu

rre

nt

(mA

/cm

2 )

a-SiC photoelectrode

hybrid device

Photocurrent is low

charge carrier extraction problem at a-SiC/electrolyte interface

a-SiC(p) (20 nm)

Glass

a-SiC(i) (200nm, 2.0eV)

textured SnO2

light

textured SnO2

hybrid PEC cell

a-SiC (i), 100nm

Glass

a-SiC(p)

a-Si p-i-n(top cell)

a-Si p-i-n(bottom cell)

a-SiC(p)

a-Si(n)

a-SiC(p)

a-Si(n)

a-Si (i), 150nm

a-SiC p-i

a-Si (i), 500nm

light

The challenges of a-SiC:H for water splitting - Charge carrier extraction

3-electrode setup 2-electrode setup

0.33 mA/cm2

Page 11: Www.mvsystemsinc.com NHA conference May3-6, 2010 The Potential of Using a-SiC:H as the Photoelectrode for Water Splitting Feng Zhu a, Jian Hu a, Ilvydas.

After HF etch for 30s, photocurrent increases and its onset shift anodically Photocurrent degrades and reverts to its initial value when the a-SiC photoelectrode is exposed to the air XPS measurement also verify this, please see the paper published in 2009*

Effect of surface SiOx on photocurrent M

VS

yste

ms,

Inc

.

G

olde

n, C

olor

ado,

US

A

Effects of SiOx on a-SiC photoelectrode

-8

-7

-6

-5

-4

-3

-2

-1

0

1

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5

Potential (V-Ag/AgCl)

Cu

rren

t (m

A/c

m2)

pre - HF dip

post - HF dip

67hr later (in air)

* HF etch time: 30 sec

[ Data measured by NREL]

* F. Zhu, J. Hu, I. Matulionis, Todd Deutsch, Nicolas Gaillard, A. Kunrath, E. Miller and A. Madan, "Amorphous Silicon Carbide Photoelectrode For Hydrogen Production Directly From Water Using Sunlight" Philosophic Magazine, 89:28,( 2009) 2723-2739

Page 12: Www.mvsystemsinc.com NHA conference May3-6, 2010 The Potential of Using a-SiC:H as the Photoelectrode for Water Splitting Feng Zhu a, Jian Hu a, Ilvydas.

Test conditions:

Sample tested: hybrid PEC cell with ZnO/Ag back reflector Setup: 2-Electrode Counter electrode: RuO2

Electrolyte: buffer pH2 HF dip: 5% HF for 30 sec

Textured SnO2 coated with silver and ZnO

1.3 mA/cm2 achieved by removal of silicon oxide from a-SiC with HF etch.

This current density corresponds to 1.6% solar-to-hydrogen efficiency

[ Data measured by HNEI ]

-4.0

-3.0

-2.0

-1.0

0.0

-2.0 -1.5 -1.0 -0.5 0.0

No HF etch, Eg = 2.06 eVNo HF etch, Eg = 1.98 eVAfter HF etch, Eg = 2.06 eVAfter HF etch, Eg = 1.98 eV

Potential (V)

Cu

rre

nt

(m

A/c

m2 )

two-electrode test

[ Data measured by HNEI ]

textured SnO2

hybrid PEC cell

a-SiC (i), 100nm

Glass

a-SiC(p)

a-Si p-i-n(top cell)

a-Si p-i-n(bottom cell)

a-SiC(p)

a-Si(n)

a-SiC(p)

a-Si(n)

a-Si (i), 150nm

a-SiC p-i

a-Si (i), 500nm

light

MV

Sys

tem

s, I

nc.

Gol

den,

Col

orad

o, U

SA

Effect of surface SiOx on photocurrent of the hybrid PEC device

Page 13: Www.mvsystemsinc.com NHA conference May3-6, 2010 The Potential of Using a-SiC:H as the Photoelectrode for Water Splitting Feng Zhu a, Jian Hu a, Ilvydas.

MV

Sys

tem

s, I

nc.

Gol

den,

Col

orad

o, U

SA

Comparison with a Solid-State Configuration

a-SiC (i), 100nm

SnO2Glass

a-SiC(p)

a-Si p-i-n(top cell)

a-Si p-i-n(bottom cell)

a-SiC(p)

a-Si(n)

a-SiC(p)

a-Si(n)

a-Si (i), 150nm

a-SiC p-i

a-Si (i), 500nm

a-SiC (i), 100nm

Glass

a-Si (i), 150nm

a-Si (i), 500nm

ITOExposed to electrolyte

-4

-3

-2

-1

0

-1.5 -1.0 -0.5 0.0

Potential (V)

Ph

oto

cu

rre

nt

(m

A/c

m2)

two-electrode test

1.3 mA/cm2

0

1

2

3

4

5

6

0 1 2

Cu

rre

nt

(mA

/cm2 )

Voltage (V)

glass/SnO2/p-i-n/p-i-n/p/a-SiC/ITO

Jsc>5.0 mA/cm2

light

light

The solid state version (right) shows the STH efficiency of hybrid PEC cell should be >6% Low current in hybrid PEC cell (left), indicating the charge carrier extraction problem at the a-SiC/electrolyte interface Surface modification is underway to improve the interface (The progress will be reported in SPIE conference @ San Diego, August, 2010 )

Page 14: Www.mvsystemsinc.com NHA conference May3-6, 2010 The Potential of Using a-SiC:H as the Photoelectrode for Water Splitting Feng Zhu a, Jian Hu a, Ilvydas.

Test conditions: Sample tested: hybrid PEC cell Counter electrode: Pt Electrolyte: buffer pH2 (sulphamic acid solution with added potassium biphthalate) Current bias: 1.6 mA/cm2

Current vs. potential (before and after test)

Before testing

After 200-hr testing

H2 production throughout the test No degradation during durability/corrosion test for 200 hours (So far)

[ Data measured by NREL ]

MV

Sys

tem

s, I

nc.

Gol

den,

Col

orad

o, U

SA

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

-2 -1 0 1 2

Potential (V vs. Ag/AgCl)

Ph

oto

curr

ent

(mA

/cm

2)

Initial

148 hrs

172 hrs

200 hrs

three-electrode test

textured SnO2

hybrid PEC cell

a-SiC (i), 100nm

Glass

a-SiC(p)

a-Si p-i-n(top cell)

a-Si p-i-n(bottom cell)

a-SiC(p)

a-Si(n)

a-SiC(p)

a-Si(n)

a-Si (i), 150nm

a-SiC p-i

a-Si (i), 500nm

light

The challenges of a-SiC for water splitting –corrosion resistance

Page 15: Www.mvsystemsinc.com NHA conference May3-6, 2010 The Potential of Using a-SiC:H as the Photoelectrode for Water Splitting Feng Zhu a, Jian Hu a, Ilvydas.

Road map towards STH efficiency > 10% M

VS

yste

ms,

Inc

.

G

olde

n, C

olor

ado,

US

A

Expected photocurrent (Jph) ~8.2 mA/cm2. Solar-to-hydrogen (STH) efficiency: ~10.08%

PEC (a-SiC:H) PV cellSTH (%)Eg Jph (mA/cm2) configuration

Jph after filtered by a-SiC:H

(mA/cm2)

2 8.55 a-si/a-Si 5.5 6.77

2.3 8.2 nc-Si/a-Si 8.35 10.08

a-Si/a-Si

a-Si/nc-SiSolar-to-hydrogen conversion efficiency:

n)irradiatiosolar 1.5 AM(for 23.1area collection over thesunlight in theenergy

device PEC ain producedhydrogen in energy chemical phJ

Page 16: Www.mvsystemsinc.com NHA conference May3-6, 2010 The Potential of Using a-SiC:H as the Photoelectrode for Water Splitting Feng Zhu a, Jian Hu a, Ilvydas.

Summary M

VS

yste

ms,

Inc

.

G

olde

n, C

olor

ado,

US

A

Photocurrent of the hybrid PEC device has been improved from 0.33 to ~1.3 mA/cm2, nearly STH of 1.6%

The hybrid PEC cell exhibits excellent durability in pH2 electrolyte for up to ~200 hours (so far tested).

In a solid state version, the device has achieved a current density of > 5 mA/cm2 (possible STH efficiency >6%).

Surface modification is being underway to improve charge carrier extraction problem at the a-SiC/electrolyte interface

The simulation has shown the pathway toward STH>10%

Page 17: Www.mvsystemsinc.com NHA conference May3-6, 2010 The Potential of Using a-SiC:H as the Photoelectrode for Water Splitting Feng Zhu a, Jian Hu a, Ilvydas.

And thanks Ed Valentich for assistance in sample preparation.

MV

Sys

tem

s, I

nc.

Gol

den,

Col

orad

o, U

SA


Recommended