+ All Categories
Home > Documents > Www.wmi.Badw.de Teaching Lecturenotes SLTTP II TTP2013 Kap4

Www.wmi.Badw.de Teaching Lecturenotes SLTTP II TTP2013 Kap4

Date post: 25-Nov-2015
Category:
Upload: surendra-singh
View: 25 times
Download: 4 times
Share this document with a friend
Description:
renewable sourcesolar sun wind flow inside of the book their is bhoot which will kill you no body save you please be aware of this book it is not a book it is presentation i was kidding tell me about your self how the things are going on all are wright keep it up go and achieve your goal do not waste yor time wake up man and go solar sun wind flow inside of the book their is bhoot which will kill you no body save you please be aware of this book it is not a book it is presentation i was kidding tell me about your self it is presentation i was kidding tell me about your self how the things are going on all are wright keep it up go and achieve your goal do not waste yor time wake up man and go solar sun wind flow inside of the book their is bhoot which will kill you no body save you please be aware of this book it is not a book it is presentation i was kidding tell me about your self renewable sourcesolar sun wind flow inside of the book their is bhoot which will kill you no body save you please be aware of this book it is not a book it is presentation i was kidding tell me about your self how the things are going on all are wright keep it up go and achieve your goal do not waste yor time wake up man and go solar sun wind flow inside of the book their is bhoot which will kill you no body save you please be aware of this book it is not a book it is presentation i was kidding tell me about your self it is presentation i was kidding tell me about your self how the things are going on all are wright keep it up go and achieve your goal do not waste yor time wake up man and go solar sun wind flow inside of the book their is bhoot which will kill you no body save you please be aware of this book it is not a book it is presentation i was kidding tell me about your self
Popular Tags:
144
Chapter IV Cryogenic Techniques: Generation and Measurement of Low Temperatures
Transcript
  • Chapter IV

    Cryogenic Techniques: Generation and Measurement of

    Low Temperatures

  • Chapt. IV - 2

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Chapter IV: Cryogenic Techniques

    Contents: IV.1 Generation of Low Temperatures IV.1.1 Introduction IV.1.2 Expansion Machine IV.1.3 Regenerative Machine IV.1.4 Joule-Thomson Cooling IV.1.5 Summary IV.1.6 Evaporation Cooling IV.1.7 Dilution Cooling IV.1.8 Pomeranchuk Cooling IV.1.9 Adiabatic Demagnetization

    IV.2 Thermometry IV.2.1 Introduction IV.2.2 Primary Thermometers IV.2.3 Secondary Thermometers

  • Chapt. IV - 3

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Literature: 1. Tieftemperaturphysik

    Enss, Hunklinger Springer (2000)

    2. Matter and Methods at Low Temperatures F. Pobell Springer, 2nd edition (1996)

    3. Experimental Low-Temperature Physics Anthony Kent American Institute of Physics (1993)

    4. Cryogenic Systems Randall F. Barron Oxford University Press, Oxford (1985)

    Chapter IV: Cryogenic Techniques

  • Chapt. IV - 4

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

    background temperature in universe

    (2.73 K)

    lowest temperature accessible in solids

    (few K)

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    101

    102

    103

    104

    105

    106

    107

    108

    109

    tem

    per

    atu

    re (

    K)

    center of hottest stars

    center of the sun, nuclear energies

    electronic energies, chemical bonding

    surface of sun, highest boiling temperatures

    organic life

    liquid air

    liquid 4He universe

    superfluid 3He

    lowest temperatures of condensed matter

    elec

    tro

    nic

    m

    ag

    net

    ism

    nu

    clea

    r-

    ma

    gn

    etis

    m

    sup

    erco

    nd

    uct

    ivit

    y

  • Chapt. IV - 5

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    experimental setup according to Tauno Knuuttila (2000)

    lowest temperature: about 100 pK

    by demagnetization of Rhodium nuclei (temperature of nuclear spins)

    PhD Thesis,

    Helsinki University of Technology (Espoo, Finland)

    problem: spin temperature cannot be transferred to lattice of solid

    low temperature record for nuclear spin system:

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

  • Chapt. IV - 6

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Generation of low temperatures by using cryo-liquids:

    19th century: liquefaction of various gases by pressure except for permanent gases (O2, H2, He)

    1877: liquefaction of O2 by thermal expansion (L. Cailletet, C.R. Acad. Sci. Paris 85, 1213 (1877); R. Pictet, C.R. Acad. Sci. Paris 85, 1214 (1877)) 1884: liquefaction of H2 (precooling with liquid O2) (K. Olszewski, Ann. Phys. u. Chem. 31, 58 (1887)) 1898: significant amounts of lH2 for physical experiments (J. Dewar, Proc. R. Inst. Gt. Br. 15, 815 (1898)) 1908: liquefaction of last permanent gas He by Kamerlingh Onnes (H. Kammerlingh Onnes, Leiden Commun. 105, Proc. Roy. Acad. Sci. Amsterdam 11, 168 (1908)) 1922: Kammerlingh Onnes reaches T < 1K (H. Kammerlingh Onnes, Leiden Commun. 159, Trans. Faraday Soc. 18 (1922)) 1926: adiabatic demagnetization of electron spins in paramagnetic salts by Debye and independently (P. Debye, Ann. Phys. 81, 1154 (1926) 1927: by Giauque (W.F. Giauque, J. Am. Chem. Soc. 49, 1864 (1927) since 1950th: 3He available 3He cryostat 3He-4He dilution refrigerator

    Heike Kammerlingh Onnes

    (1853 1926) Nobelpreis fr Physik: 1913

    Sir James Dewar, (1842-1923)

    Peter J. Debye 1884 - 1966

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

  • Chapt. IV - 7

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Carl Paul Gottfried von Linde * 11. Juni 1842 in Berndorf, Oberfranken

    16. November 1934 in Munich

    Low Temperature Technology in Germany

    1868 offer of chair at the Polytechnische Schule Mnchen (now TUM)

    1873 development of cooling machine allowing the temperature stabilization in beer brewing

    21. 6. 1879 foundation of Gesellschaft fr Lindes Eismaschinen AG together with two beer brewers and three other co-founders

    1892 - 1910 re-establishment of professorship

    12.5.1903 patent application: Lindesches Gegenstrom- verfahren liquefaction of oxygen (-182C = 90 K)

    1861 study at Polytechnikum Zurich, teachers: Rudolf Clausius, Gustav Zeuner und Franz Reuleaux

  • Chapt. IV - 9

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Year

    low

    te

    mp

    era

    ture

    s

    ult

    ra-l

    ow

    te

    mp

    era

    ture

    s

    paramagnetic refrigeration

    nuclear demagnetization

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

  • Chapt. IV - 10

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    temperature range

    refrigeration technique available since

    typical

    Tmin

    record

    Tmin

    Kelvin universe 4He evaporation 3He evaporation

    1908

    1950

    1.3 K

    0.3 K

    2.73 K

    0.7 K

    0.25 K

    Millikelvin 3He-4He dilution

    Pomeranchuk cooling

    electron spin demagnetization

    1965

    1965

    1934

    10 mK

    3 mK

    3 mK

    2 mK

    2 mK

    1 mK

    Microkelvin nuclear spin demagnetization 1956 50 K 100 pK

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

  • Chapt. IV - 11

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    cooling techniques:

    expansion of an ideal gas

    expansion machine

    regenerative machine

    work against outside world

    expansion of a real gas

    Joule Thomson cooler

    work against internal interactions

    evaporation of a real gas:

    work against internal interactions

    dilution cooling (3He/4He)

    work against internal interactions

    adiabatic demagnetization (electronic/nuclear moments)

    work against magnetic ordering

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

  • Chapt. IV - 12

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Liquefaction of gases three useful methods:

    1. direct liquefaction by isothermal compression

    2. letting the gas perform work against external forces at the expense of

    its internal energy

    cooling and eventual liquefaction

    3. making the gas perform work against its own internal forces by Joule-

    Kelvin or Joule-Thomson expansion

    cooling and eventual liquefaction

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

  • Chapt. IV - 13

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    direct liquefaction of gases by isothermal compression starting temperature must be smaller than critical temperature Tc

    ammonia (NH3) 406

    O2 154.5

    N2 126

    H2 33.2 4He 5.2 3He 3.32

    critical temperatures Tc in K of selected liquid cryogens

    melting curve

    sublimation curve

    critical point

    triple point

    solid

    liquid

    gas

    T

    p

    Tc

    boiling curve pc

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

  • Chapt. IV - 14

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    @ 1 bar

    Cryogenic Liquids

    Ttr , ptr

    solid liquid

    gas

    T

    p

    Tc

    1 at Tc , pc

    Tm , pm Tb , pb

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

  • Chapt. IV - 15

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    cryogen boiling point [K]

    liquefaction latent heat [kJ/I]

    inversion temp. [K]

    oxygen 90.2 1877: Cailletet and Pictet 240 762

    nitrogen 77.3 1883: Wroblewski and Olszewski

    160 625

    hydrogen 20.4 1898: Dewar 30 203

    4Helium 4.2 1908: Onnes 2.6 43.2

    3Helium 3.2 0.5 -

    liquid oxygen and hydrogen have potential hazards

    liquid nitrogen and 4He are the most widely used cryogens

    liquid 3He is very expensive

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

    direct liquefaction of gases by expansion (Joule-Thomson-Effect) starting temperature must be smaller than inversion temperature

  • Chapt. IV - 16

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    gas molecules are reflected at the moving piston-surface:

    incoming: laboratory system: piston system: outgoing: piston system:

    laboratory system: + = 2 =

    i.e.: = 2 molecule is slower, i.e. colder

    liquefaction of gases by performance of external work

    average momentum transfer per time to piston = force, force distance = work

    external work at the expense of internal energy cooling

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

  • Chapt. IV - 17

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    efficiency: Carnot process: technologically difficult to realize better: gas circulation, compressor and expansion machine are spatially separated

    Carnot process: - counterclockwise: heat pump (conversion of mechanical work into heat) - clockwise: heat engine (conversion of heat into mechanical work)

    pV diagram: expansion cooling: adiabats ( = , = 0

    =

    > 1)

    heat exchange: isotherms ( = , = 0)

    work per cycle:

    = =

    warmT

    T

    Q

    W

    thermodynamic definition of temperature

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

    V

    p

    Q12

    Q34

    dQ = 0 (adiabatic)

    T1 = const (isothermic)

    T2 = const dQ = 0

    W23

    W41

    1

    2

    4

    3

  • Chapt. IV - 18

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.2 Expansion Machine

    medium: He gas

    Brayton method

    e.g. liquefaction of air:

    - condensation on cold head

    - distillation in separation columns

    N2 (77.4 K) cooling

    Ar (87.3 K) inert gas

    O2 (90.2 K) welding

    temperature reduction:

    = / (= 5/3 for He)

    expansion from 100 bar to 1 bar

    results in T2 = 50 K

    T2 = 8 K can be reached in a 2 stage cycle

    (should not cause

    significant resistance

    for flowing gas e.g. concentric tubes)

    efficiency:

  • Chapt. IV - 19

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    heat pumps: heating and refrigerating machines

    - heat pump: heat is generated by mechanical work

    - efficiency:

    W

    Q TT h

    11

    work performed

    at heat generated

    - ideal efficiency for reversible Carnot process:

    11

    21

    1

    TT

    Th

    C

    C (increases with decreasing temperature difference T1 T2)

    - refrigerating machine: removing heat (generating cold) by mechanical work

    01work performed

    at heat removed

    21

    22

    TT

    Th

    TTk CC

    V

    p Q12

    Q34

    dQ = 0

    T1 = const

    T2 = const dQ = 0

    W23

    W41 1

    2

    4

    3

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

    (decreases with increasing temperature difference T1 T2)

  • Chapt. IV - 20

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Wikimedia Commons

    IV.1 Generation of Low Temperatures IV.1.1 Introduction

    Schematic diagram of a heat pump's vapor-compression refrigeration cycle: 1) condenser, 2) expansion valve, 3) evaporator, 4) compressor.

    e.g. air conditioning e.g. heating of swimming pool

  • Chapt. IV - 21

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    realizations of expansion machines:

    piston-cylinder machine

    similar to automobile engine

    crankshaft, camshaft, valve

    brake on turbine axis

    controls rotational speed,

    annihilates performed work,

    use of gas bearings

    IV.1 Generation of Low Temperatures IV.1.2 Expansion Machine

    cooling turbine commercially relevant

    higher efficiency for larger throughput

    principle:

  • Chapt. IV - 22

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    turbine cooler

    (Sulzer machine)

    turbine wheel

    and nozzle ring

    IV.1 Generation of Low Temperatures IV.1.2 Expansion Machine

    (Source: Linde Cryogenics Ltd.)

  • Chapt. IV - 23

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    conclusions:

    expansion machines are technologically simple

    multi-stage arrangements for lower temperatures

    almost down to 4.2 K

    but:

    efficiency only acceptable for cooling turbines

    no direct liquefaction of gas (mechanical problems)

    liquefaction by Joule-Thomson stage

    for small-scale facilities:

    regenerative machines better suited

    IV.1 Generation of Low Temperatures IV.1.2 Expansion Machine

  • Chapt. IV - 24

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.3 Regenerative Machines

    regenerator replaces heat exchanger

    column with staple of fine

    metal meshes (Cu, Pb)

    low flow resistance high heat capacity low longitudinal heat conductivity

    cold gained in step 2 3 has to be stored and provided in step 4 1

    alternating gas flow:

    cold gas upward

    cooling of meshes

    warm gas downward

    cooling of gas

    used in Stirling process

    V

    p Q12

    Q34

    V = const

    T1 = const

    T2 = const V = const

    Q23

    Q41 1

    2

    4

    3

    Stirling process (heat engine):

  • Chapt. IV - 25

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Stirling machine: (heat engine)

    - periodic expansion and compression of gas along two isotherms and two isochors

    - 1 2: isothermal expansion, Q12 is added - 2 3: isochoric cooling, Q23 is removed - 3 4: isothermal compression, Q34 is removed - 4 1: isochoric warming, Q41 is added

    - for isochoric steps there is no mechanical work = =

    - goal: intermediate storage of Q23 in regenerator to be able to add it again in step 4 1 use of two pistons with phase shift V

    p Q12

    Q34

    V = const

    T1 = const

    T2 = const V = const

    Q23

    Q41 1

    2

    4

    3

    IV.1 Generation of Low Temperatures IV.1.3 Regenerative Machines

    3 4 4 1 1 2 2 3

    T2

    T1

  • Chapt. IV - 26

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    (beta) Stirling machine:

    IV.1 Generation of Low Temperatures IV.1.3 Regenerative Machines

    Power piston (dark grey) has

    compressed the gas, the displacer piston (light grey) has moved so that most of the gas is

    adjacent to the hot heat exchanger

    The heated gas increases in

    pressure and pushes the power

    piston to the farthest limit of the

    power stroke.

    The displacer piston now moves,

    shunting the gas to the cold end of the

    cylinder.

    The cooled gas is now compressed by

    the flywheel momentum. This takes less energy, since when it is

    cooled its pressure dropped.

  • Chapt. IV - 27

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    (alpha) Stirling machine:

    IV.1 Generation of Low Temperatures IV.1.3 Regenerative Machines

  • Chapt. IV - 30

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    conclusions (Stirling machine):

    advantages:

    high efficiency

    well-suited for small systems, especially small coolers

    cryocooler

    not realizable with turbines

    disadvantages:

    mechanically complicated

    piston (compressor) at low temperature

    more simple:

    Gifford-McMahon machine

    but: lower efficiency

    IV.1 Generation of Low Temperatures IV.1.3 Regenerative Machines

  • Chapt. IV - 31

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Gifford-McMahon machine: uses compressor with switching valve instead of piston

    1. warm compression: 2 1 2. isochoric cooling: 1 4 3. expansion in cylinder: 4 3 4. isochoric regeneration: 3 2 5. warm compression: 2 1

    IV.1 Generation of Low Temperatures IV.1.3 Regenerative Machines

    pressure wave from valve

    hot

    cold

    regenerator

    switching valve

    cycle:

    V

    p Q12

    Q34

    V = const

    T1 = const

    T2 = const V = const

    Q23

    Q41 1

    2

    4

    3

  • Chapt. IV - 32

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Gifford-McMahon cycle:

    IV.1 Generation of Low Temperatures IV.1.3 Regenerative Machines

  • Chapt. IV - 33

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3) the pulse tube refrigerator (PTR) or pulse tube cryocooler is based on operation

    principle of Stirling cooler PTR is made without moving parts in the low temperature part (in contrast with

    other cryocoolers, e.g. Stirling cryocooler and Gifford-McMahon cooler) compact design possible suitable for a wide variety of applications minimum temperature about 2.5 K (with 4He) and 1.3 K (with 3He)

    Pulse Tube Refrigerator

    IV.1 Generation of Low Temperatures IV.1.3 Regenerative Machines

    applications: industrial applications such as semiconductor fabrication (e.g. cryopumps) cooling of infrared sensors cooling of astronomical detectors (e.g. Atacama Cosmology Telescope or the QUBIC

    experiment (an interferometer for cosmology studies) precoolers of dilution refrigerators

    Kurt Uhlig (WMI), Dry dilution refrigerator with pulse-tube precooling, Cryogenics 44, (2004), pp. 5357

    suggested to be used to liquefy oxygen on Mars

  • Chapt. IV - 34

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.3 Regenerative Machines

    Pulse Tube Refrigerator Stirling Cooler

    regenerator regenerator

    2-1

    1-4

    4-3

    displacer piston

    work piston

    second (displacer) piston is replaced by pulse tube (gas piston)

    3-2

    motion of gas volume element equivalent to motion of displacer piston

    90 phase shift between motion of displacer piston and work piston realized by buffer volume

    90 phase shift required for finite heat transport

    buffer volume

    acoustic impedance

    coldest spot between regenerator and pulse tube

    regenerator

    regenerator

    regenerator

    regenerator

    regenerator

    regenerator

    Q34

    Q12

    work piston

  • Chapt. IV - 36

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Qc

    QH

    Qc

    QH

    Qc: removed heat, QH: generated heat

    Pulse Tube Refrigerator Stirling Cooler

    IV.1 Generation of Low Temperatures IV.1.3 Regenerative Machines

    almost sinusoidal motion, phase difference of 90

  • Chapt. IV - 38

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    principle

    Pulse Tube Refrigerator (realizations)

    commercially available

    pulse tube refrigerator

    with GM drive

    0.5 W @ 4.2 K Tmin = 2.3 K (2-stage)

    www.cryomech.com

    IV.1 Generation of Low Temperatures IV.1.3 Regenerative Machines

  • Chapt. IV - 39

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    pulse tube refrigerator for studies of liquefying oxygen on

    Mars (580 mm total length)

    IV.1 Generation of Low Temperatures IV.1.3 Regenerative Machines

  • Chapt. IV - 40

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    conclusion (pulse tube refrigerator):

    presently very active development

    no moving parts at low temperatures

    long endurance

    mobile base stations and satellite applications

    (e.g. for superconductive microwave filters)

    almost no vibrations

    efficiency lower than for displacer

    only one simpler method:

    Joule-Thomson cooling

    IV.1 Generation of Low Temperatures IV.1.3 Regenerative Machines

  • Chapt. IV - 41

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    William Thomson (Lord Kelvin) Born: 26 June 1824, Belfast, Northern Ireland Died: 17 December 1907, Netherhall, Largs Ayrshire, Scotland

  • Chapt. IV - 43

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    principle:

    gas performs work against its

    own internal attractive forces

    working medium/gas (V1) flows

    through impedance and

    expands to V2

    1122

    0

    0

    1122

    2

    1

    VpVpdVpdVpV

    V

    WQU

    12 UU

    111222 VpUVpU

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    1st law of thermodynamics:

    = 0 (adiabatic)

    this means: process with constant enthapy: .constpVUH

    - for ideal gas: p1V1 = p2V2 and hence U1 = U2 resp. T1 = T2 no cooling !!

  • Chapt. IV - 44

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    weak long-range attraction: tends to keep molecules closer together, same effect as additional compression of the gas. a is a measure of the long-range attraction strong short-range repulsion: molecules are rigid: p as soon as the molecules touch each other. b ( 43/3): excluded volume per particle Van der Waals equation:

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    Epot(r)

    short-distance repulsion

    long-distance attraction

    -3

    -2

    -1

    0

    1

    2

    3

    4

    1.5 2.0 2.5 3.0 3.5 4.0

    distance

    En

    erg

    y

    r

    real gas: transformation of gas into liquid on decreasing T and (or) increasing p due to work against attractive interaction between the molecules

    2V

    appeff

    bVVeff expansion (decrease of pressure): low pressure: attraction costs work cooling of gas high pressure: repulsion provides work heating of gas RTbV

    V

    ap m

    m

    2

  • Chapt. IV - 45

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    interaction potential: Epot

    r

    repulsive attractive

    p

    repulsive attractive

    U (p,T)

    T = const.

    minimum

    with

  • Chapt. IV - 46

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    0

    p

    p

    HT

    T

    HH

    Tp

    more detailed analysis of Joule-Thomson process (isenthalpic expansion):

    pp

    HTCC

    T

    H

    T

    pp

    p

    JT

    HTpp

    T

    p

    H

    C

    1

    Vp

    ST

    p

    HpVSTH

    TT

    pTT

    V

    p

    S

    V

    T

    VT

    Cp

    H

    Cp

    T

    ppTpH

    JT

    11

    Joule-Thomson coefficient

    with

    with

    > 0: cooling on expansion

    < 0: heating on expansion

  • Chapt. IV - 47

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    ideal gas: 0

    JT

    p T

    V

    p

    R

    T

    VRTpV

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    0 .2

    5

    2

    3),(

    T

    JTBBBp

    HconstTNkTNkTNkpVUpTH

    equipartition theorem for monoatomic gas

    ideal gas law

    areas of H = const.

    lines of intersection with H = const.

    @ T = const

  • Chapt. IV - 48

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    real gas: RTbVV

    ap m

    m

    2

    at low densities: we use approximation and obtain bVV

    ap ,

    2

    pT

    RTpbV

    apV ...,

    2

    2,

    V

    ap

    R

    T

    VR

    T

    V

    V

    a

    T

    Vp

    ppp

    b

    RT

    a

    Cp

    T

    PH

    JT 21

    JT > 0 for T < 2a/bR cooling on expansion

    JT < 0 for T > 2a/bR heating on expansion inversion temperature:

    bR

    aTinv

    2

    .),(2

    5),( constTpUTNkpVUpTH B

    V

    T

    VT

    Cp

    H

    Cp

    T

    ppTpH

    JT

    11

    insert into

  • Chapt. IV - 49

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    areas of H = const.

    lines of intersection with H = const.

    inversion curve

  • Chapt. IV - 50

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    Joule-Thomson coefficient (without approx.):

    22

    121

    )1)(2(

    VbVRTaC

    bVbRTa

    p

    JT

    large volume (p >> a/V2, V >> b) :

    b

    RT

    a

    CPJT 2

    1

    inversion curve: points where JT = 0

    vdW gas: (2a/RT)(1-b/V)2 = b

    inversion temperature Tinv: 2

    12

    V

    b

    bR

    aTinv

    equation of state gives Tinv(p,T)

    maximum inversion temperature: bR

    aTinv

    2

    maximum inversion

    temperature

  • Chapt. IV - 51

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    experimental data for N2:

    H

    JTp

    T

    slope of isenthalps

    repulsion

    attraction

  • Chapt. IV - 52

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    gas maximum inversion temperature [K]

    Helium-3 (23)

    Helium-4 45

    Hydrogen 205

    Neon 250

    Nitrogen 621

    Air 603

    Carbon monoxide 652

    Argon 794

    Oxygen 761

    Methane 939

    Carbon dioxide 1500

    Ammonia 1994

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    vdW gas can be liquefied only for T < Tinv !!!

  • Chapt. IV - 53

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    closed cycle cooling:

    gas is cooled by JT-expansion until liquid drops out the impedance

    Carl von Linde (1842 1934)

    Linde-process

    (Source: PTB Braunschweig)

    patent application by Carl von Linde on May 12, 1903 (liquefaction of oxygen)

  • Chapt. IV - 54

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    Lindesche Gasverflssigungsanlage (1895)

  • Chapt. IV - 55

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Professor Dr. Carl Paul Gottfried von Linde (* 11. Juni 1842 in Berndorf, Oberfranken; 16. November 1934 in Mnchen) war ein deutscher Ingenieur, Erfinder und Grnder eines heute internationalen Konzerns, der Linde AG. Linde begann 1861 ein Studium am Polytechnikum Zrich, wo Rudolf Clausius, Gustav Zeuner und Franz Reuleaux seine Lehrer waren. 1864 beendete er sein Studium. Reuleaux vermittelte ihm eine Lehrstelle in der Baumwollfabrik Kottern in Berlin, die er im selben Jahr antrat. Es war aber nur kurze Zeit, bevor er nach Mnchen zog, um als Konstrukteur bei der Lokomotivenfabrik Krauss zu arbeiten. 1866 heiratete er Helen Grimm: aus der 53-jhrigen Ehe folgten sechs Kinder. 1868 folgte er einem Ruf der Polytechnischen Schule Mnchen, wo er zunchst - mit erst 26 Jahren - auerordentlicher Professor, 1872 dann ordentlicher Professor fr Maschinenbau wurde. Am Polytechnikum richtete Linde ein Maschinenlabor ein, an dem unter anderem Rudolf Diesel ausgebildet wurde. 1871 verffentlichte Linde einen Aufsatz ber verbesserte Kltetechnikverfahren. Viele Brauereien interessierten sich dafr, und bald versorgte Linde sie mit den neuen Maschinen, an denen er stndig arbeitete. Linde schuf wesentliche Grundlagen der modernen Kltetechnik. 1871 konzipierte er eine mit Methylether arbeitende Kltemaschine, die er in der Maschinenfabrik Augsburg (heute MAN AG) herstellen lie. Die zweite, 1876 folgende Generation von Khlmaschinen arbeitete mit Ammoniak. Das Prinzip der Abkhlung von Gas, das vorher mechanische Arbeit geleistet hatte, war beiden gemeinsam. Ein Preisausschreiben fr eine Khlanlage zum Auskristallisieren von Paraffin war 1873 fr den Hochschullehrer der Anreiz zum Bau einer Khlmaschine, die beim Bierbrauen die Grung bei konstanter Temperatur zulie. Brauereien in ganz Europa (so Dreher in Triest, die Mainzer Actien-Bierbrauerei, Spaten in Mnchen, Heineken in den Niederlanden, Carlsberg in Dnemark) interessierten sich prompt fr die neue Kltetechnik. Am 21. Juni 1879 gab der Erfinder sein Lehramt auf und rief mit zwei Brauern und drei anderen Grndern die "Gesellschaft fr Lindes Eismaschinen AG" ins Leben (heute Linde AG). Nach relativ kurzer Zeit war das Unternehmen in Europa fhrend auf kltetechnischem Gebiet, auch begnstigt durch einen milden Winter 1883/1884. Es kam deshalb zu einer Knappheit bei Natureis, das zum Khlen des Gerstensaftes in Bierkellern eingesetzt wurde. Bisherige Vorbehalte der Brauer gegen das Kunsteis schmolzen dahin, Khlmaschinen waren pltzlich gefragt und Linde lieferte umgehend. Khlhuser fr Lebensmittel und mehrere Eiswerke lie Linde nach und nach sogar selbst bauen. Doch auch auf Eislaufbahnen, in Molkereien und bei der Verflssigung von Chlor und Kohlensure war sein Verfahren gefragt. Die Firma florierte, 1890 zog sich Linde aus dem operativen Geschft in den Aufsichtsrat seiner Aktiengesellschaft zurck. In den Jahren 1892 bis 1910 nahm er seine Professur wieder auf. Auf der Grundlage der Arbeiten von James Prescott Joule, Sir William Thomson (Lord Kelvin of Largs) und der Einfhrung des Gegenstromverfahrens konnte Linde 1895 erstmals grere Mengen Luft verflssigen (Linde-Verfahren). Damit schuf er die Mglichkeiten fr physikalische Tieftemperaturuntersuchungen und zur Trennung der Luftbestandteile durch fraktionierte Destillation. 1901 folgte die Errichtung einer Anlage zur Gewinnung von Sauerstoff und (ab 1903) Stickstoff. Linde war Mitglied wissenschaftlicher und Ingenieurvereinigungen, unter anderem gehrte er dem Kuratorium der Physikalisch-Technischen Reichsanstalt und der Bayerischen Akademie der Wissenschaften an. Er wurde vom bayerischen Knig Ludwig II in den nicht erblichen Adelsstand erhoben. Linde war 1916 der erste Preistrger des Siemens-Rings. Ab 1910 zog sich Linde als Direktor seiner inzwischen ungeheuer erfolgreichen Aktiengesellschaft zurck und reichte sie an seinen Shne Friedrich und Richard weiter. Die Weltwirtschaftskrise von 1929 versetzte der Linde AG einen starken Schlag; das Unternehmen erholte sich aber, und die Gewinne fingen schon wieder an zu steigen, bevor Linde 1934 im Alter von 92 Jahren starb.

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

  • Chapt. IV - 56

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.4 Joule-Thomson Cooling

    schematics of a Helium liquefier

  • Chapt. IV - 57

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.5 Summary

  • Chapt. IV - 58

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.5 Summary

  • Chapt. IV - 59

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    specification for cryocooler: 1 Watt of cooling @ 80 K, rejecting heat at 300 K 10 year life 230 K to 340 K survival temperature survival of launch vibration (non-operating) low exported vibration high efficiency no maintenance possible oil-free

    Northrop Grumman's HEC cryocooler

    IV.1 Generation of Low Temperatures IV.1.5 Summary

    Stirling cycle miniature cryocooler: - lightweight cooler, ideal for cooling of sensors and other electronics when low power consumption is important - mean time before failure of 24,000 hours - cooling capacity of 1 W @ 80 K - power consumption of only 55 W.

    Sumitomo Heavy Industries

  • Chapt. IV - 60

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

  • Chapt. IV - 61

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

    everyday experience: sweating, wind direction, cooling of coffee,

    moisten finger, evaporation cooling

    microscopically:

    evaporation: work required to overcome binding forces

    only the fastest molecules will do it

    high-energy particles are lost

    liquid cools down

  • Chapt. IV - 62

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

    limit of evaporation cooling: kBT becomes too small compared to Hvap

    (heat of evaporation)

    Hvap should be small to reach large cooling power at low temperatures

    numbers: about 1 K can be reached with 4He, about 0.3 K with 3He

    boiling point can be calculated by using the Clausius-Clapeyron equation, if heat of vaporization and the vapor pressure of the liquid at a certain temperature is known

  • Chapt. IV - 63

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

    Clausius-Clapeyron equation:

    Hvap: molar latent heat [J/mole]

    approximate expression using pV = RT (ideal gas):

    integration yields (assuming that Hvap is constant over the considered T range):

    90 J/mole

    for 4He

    normal boiling temperature: pressure above liquid

    boiling temperature at p0

    (boiling point corresponds to the temperature at which the vapor pressure of the liquid equals the surrounding environmental pressure)

  • Chapt. IV - 64

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

  • Chapt. IV - 65

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

    www.mallister.com/graphics/vapor3.jpg

  • Chapt. IV - 67

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    liquid 4He (c.f. chapter II)

    boson

    liquid down to 0 K (@ 1 atm)

    superfluid 4Helium at 2.17 K

    Bose condensation: macroscopic number of atoms in ground state

    very low viscosity

    very high heat conduction

    strange thermomechanical effects

    creeping on vertical surfaces

    vortex core with radius 0.8 @ 0.6K

    explained by a two-fluid model

    density 125 kg/m3

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

  • Chapt. IV - 68

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Liquid Helium cryostats:

    LHe has small latent heat

    good thermal insulation by vacuum

    LHe container of poor thermal conductivity, glass or stainless steel

    thermal radiation shield at liquid Nitrogen temperature to reduce black-body radiation

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

    bath cryostat - sample is immersed in the LHe

    gas flow cryostat - sample is located in cold He gas

  • Chapt. IV - 69

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    LHe

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

    Liquid Helium container

    vacuum radiation shields

    narrow neck to minimize - heating by radiation - heating by thermal conduction

    typical losses

    - 1 l of LHe / day

  • Chapt. IV - 70

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

    He-bath cryostat

  • Chapt. IV - 71

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

    He-gas flow cryostat

  • Chapt. IV - 72

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    no liquid Nitrogen required radiation shield cooled by cold helium return gas

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

    He-gas flow cryostat (II)

  • Chapt. IV - 73

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3) reducing the vapour pressure over

    bath of 4Helium

    temperature down to 1.2 K at pumping speed of 10 m3/h

    Hvap: molar latent heat [J/mole]

    NAEbinding: 90 J/mole for 4He

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

    Liquid 4He temperature < 4.2 K Clausius-Clapeyron equation:

    cooling power:

    RT

    HpHnQ

    vapvapgas

    exp

    rate of atoms going to gas phase up to 10 mW cooling power @ 1.2K

  • Chapt. IV - 75

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Liquid 3Helium (c.f. chapter II):

    fermion

    superfluid at 2.5mK

    formation of weakly bound fermions: Cooper pairs

    density 59 kg/m3

    higher vapour pressure than 4He due to smaller latent heat: Hvap = 40 J/mole cooling power 80mW @ 1.2K and 10 m

    3/h pumping speed

    0.3 K by pumping 3He vapour

    some cm3

    0.1mW cooling power @ 0.3K

    3He obtained by nuclear reactions

    extremely expensive

    1 liter of 3He gas costs about US $5.000 (2012)

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

  • Chapt. IV - 76

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.6 Evaporation Cooling

    Liquid 3He cryostat

    4He

    3He 0.3 K

    4He pump

    3He pump

    3He backflow

    4He impedance 4He bath 4.2 K

    vacuum

    condensation of backflowing 3He gas

    latent heat of 3He: Hvap = 40 J/mole as compared to 90 J/mole for 4He larger cooling power

    80mW @ 1.2 K for 3He as compared to 10mW @ 1.2 K for 4He

    minimum temperature: 300 mK (cooling power 0.1 mW)

    1.2K

    flow restriction for condensed 3He

    RT

    HpHnQ

    vapvapgas

    exp

  • Chapt. IV - 77

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.7 Dilution Cooling

    makes use of miscibility gap of 3He/4He mixtures (compare section I.6)

    revision of some facts on 3He/4He mixtures cf. chapter I.6

  • Chapt. IV - 79

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    bonding:

    >1

    2 + complete miscibility (e.g. water and alcohol)

    1

    2 + > phase separation (e.g. water and petrol)

    A A A B B B

    VAA VAB VBB

    critical point

    miscibility gap

    increasing mixing with increasing T:

    F = U TS min

    binding energy

    thermal motion

    optimization of binding energy complete phase separation @ T = 0

    minimization of free energy

    IV.1 Generation of Low Temperatures IV.1.7 Dilution Cooling revision of I.6

  • Chapt. IV - 80

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    binding energy of 3He in 3He (V33) and 4He (V34):

    (i) 3He in 3He: binding energy is given by the latent heat of evaporation L3:

    binding energy for single 3He atom: 3, = 3

    =3,

    3, = chemical potential of pure (concentrated) liquid

    (ii) single 3He atom in liquid 4He:

    binding energy for single 3He atom: 3,(3 0) =3, 30

    3, = chemical potential of dilute phase 3, 0 > 3, or vice versa ? 3He has smaller mass larger zero point fluctuations occupies larger volume binding of 3He is larger in 4He than in 3He due to larger density of 4He |3, 0 | > |3,|

    corresponds to case >1

    2 + complete miscibility expected,

    why miscibility only up to 6.5% ??

    IV.1 Generation of Low Temperatures IV.1.7 Dilution Cooling revision of I.6

  • Chapt. IV - 81

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Questions:

    why cant we dissolve more than 6.5% of 3He in 4He at T = 0 ? two effects: (i) 3He forms degenerate Fermi liquid increases with 3 for 3 > 6.5%, the Fermi energy exceeds the gain in binding energy

    (ii) 3, 3 > 3,(3 = 0) effective attraction between two He atoms (magnetic and volume effect)

    why dont we have a complete phase separation into 3He and 4He at T = 0 ? results in finite disorder, violation of 3. law of thermodynamic ? no: we have degenerate Fermi gas, ordering in k-space

    IV.1 Generation of Low Temperatures IV.1.7 Dilution Cooling revision of I.6

  • Chapt. IV - 82

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    x3

    0.065

    3,(0)

    3,

    +

    0 gaseous He

    pure liquid He

    He diluted in 4He

    = + =

    for 3 > 6.5%: + > , = = + =

    separation of pure He

    energy

    IV.1 Generation of Low Temperatures IV.1.7 Dilution Cooling revision of I.6

  • Chapt. IV - 83

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    for Fermi liquid: Cconcentrated < Cdiluted (x3 = 0.065) ( /,

    2/3)

    with we therefore obtain:

    Uconcentrated (T) < Udiluted (T) on transition across phase boundary: F U = const increase of U results in decrease of temperature !

    He/4He dilution refrigerator

    operation principle: remove He atoms from the dilute phase below Tk = 0.87 K

    transport of He atoms across phase boundary to maintain equilibrium concentration corresponds to evaporation of He from concentrated phase cools as the latent heat of evaporation is removed

    concentrated (lighter)

    diluted,6.5% (heavier)

    He

    U

    T

    Uconcentrated

    Udiluted

    He

    IV.1 Generation of Low Temperatures IV.1.7 Dilution Cooling revision of I.6

  • Chapt. IV - 84

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    assumption: one mole of He crosses boundary

    removed heat depends on enthalpy difference between concentrated and dilute phase

    cooling power

    since there is no volume change

    with and

    we obtain the entropy

    (standard expressions for Fermi liquid)

    IV.1 Generation of Low Temperatures IV.1.7 Dilution Cooling revision of I.6

  • Chapt. IV - 85

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.7 Dilution Cooling revision of I.6

    3He, concentrated

    3He, diluted

    Fermi sphere

    large 3He density large Fermi sphere high TF

    small 3He density small Fermi sphere low TF

    fraction of thermally excited 3He atoms increases ( T/TF) entropy increases going from concentrated to diluted phase removed heat: dQ = TdS

    thermally excited 3He atoms

    plausibility consideration kBT

    kBT

    Fermi sphere

  • Chapt. IV - 86

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    large cooling power requires large throuphput

    IV.1 Generation of Low Temperatures IV.1.7 Dilution Cooling

    23 84 TnQ

    > 90% 3He

    3He pump

    from 1.2 K 3He condenser

    heat exchangers < 1% 3He

    still ( 0.7 K)

    flow impedance

    concentrated phase

    dilute phase

    6.5% 3He

    100% 3He

    heater to allow for effective pumping of 3He

    mixing chamber ( 0.01 K)

    dilute phase

    concentrated phase

    pumping of 3He generates osmotic pressure 3He flows from mixing chamber to still only possible if 3He atoms cross phase boundary cooling

    minimum temperature: 1.5 mK

  • Chapt. IV - 87

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    numbers: vapor pressure of 3He at 0.7 K: 0.0828 mbar = 8.28 Pa @ 300 K we obtain:

    large 3He pump is required

    what is the required pumping speed ??

    we assume that 3He is an ideal gas (R = 8.31 J / mole K)

    IV.1 Generation of Low Temperatures IV.1.7 Dilution Cooling

    example: desired cooling power: 10-5 W still temperature: 0.7 K mixing chamber temperature: 10 mK

    s /mole 0012.0)10(84

    1022

    5

    3

    n

    pRTnV /3

    l/s 360 s/m 0.363 28.8/30031.80012.0 3 V

    23 84 TnQ

    = 8.31 J/mole K

  • Chapt. IV - 88

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    mixing

    chamber

    heat

    exchangers

    still

    IV.1 Generation of Low Temperatures IV.1.7 Dilution Cooling

  • Chapt. IV - 89

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    JANIS Model JDR-500 Dilution Refrigerator

    IV.1 Generation of Low Temperatures IV.1.7 Dilution Cooling

  • Chapt. IV - 90

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    3He shows minimum in melting curve at T = 0.32 K (compare I.5.2) can be used for cooling of He Pomeranchuk effect

    Isaak Jakowlewitsch Pomeranschuk

    ( ; born: 20. Mai 1913 at Warschau;

    died: 14. Juli 1966 at Moscow)

    Russian physicist.

    IV.1 Generation of Low Temperatures IV.1.8 Pomeranchuk Cooling

    0.1 1 1010

    1

    102

    103

    104

    p (

    bar

    )

    T (K)

    phase diagram of 4He and 3He

    3He

    4He hcp

    bcc

    liquid

    hcp

    liquid

    bcc

    fcc

  • Chapt. IV - 91

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.8 Pomeranchuk Cooling

    F

    liquidsolidT

    TTRSSTnQ

    2-ln2) -(

    2

    3

    explanation: solid phase: atoms are ordered,

    spins are disordered and determine entropy: Ssolid = R ln2 at low T: antiparallel ordering of spins, S decreases towards zero liquid phase: atoms are spatially disordered, but ordering in k-space (Fermi liquid) entropy of Fermi liquid:

    Clausius-Clapeyron equation:

    always: Vsol < Vliq

    for T < 0.32 K: disorder larger in solid than in liquid phase !!

    S

    lnT

    R ln2

    0

    liquid

    solid

    320 mK

    cooling power:

  • Chapt. IV - 92

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.8 Pomeranchuk Cooling

    stamp stainless steel bellow

    liquid

    solid pressure cell

    precooling to T < Tmin

    adiabatic compression solidification and cooling lowest T: 1.5 mK limitation due to antiparallel

    spin ordering in solid 3He

    10-3

    10-2

    10-1

    100

    2.8

    2.9

    3.0

    3.1

    3.2

    3.3

    3.4

    p (

    MP

    a)

    10-3

    10-2

    10-1

    100

    0.0

    0.2

    0.4

    0.6

    0.8

    S /

    R

    T (K)

    liquid

    solid

    liquid

    solid

    Tmin

    ln 2

  • Chapt. IV - 93

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.9 Adiabatic demagnetization

    magnetic refrigeration: based on the magnetocaloric effect

    magnetocaloric effect: - magneto-thermodynamic phenomenon - reversible change in temperature is caused by exposing a material to a changing magnetic field - also known as adiabatic demagnetization

  • Chapt. IV - 94

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.9 Adiabatic demagnetization

    Adiabatic magnetization: - substance is placed in an insulated environment - increasing external magnetic field (+H) causes magnetic ordering reduction of magnetic entropy and heat capacity - overall energy is not lost and therefore total entropy is not reduced (T + Tad). Isomagnetic enthalpic transfer: - added heat is removed by coupling to heat sink (-Q) - magnetic field is held constant - after heat removal, magnetocaloric material and the coolant are separated (H = 0). Adiabatic demagnetization: - the substance is decoupled from heat sink no heat exchange with environment entropy stays constant - magnetic field is decreased, the thermal energy causes the magnetic moments to overcome the field, and thus the sample cools energy (and entropy) transfers from thermal entropy to magnetic entropy (disorder of the magnetic dipoles). Isomagnetic entropic transfer: - the magnetic field is held constant to prevent the material from heating up - the material is brought in thermal contact with the environment being refrigerated cooling effect - magnetic materials heats up (+Q)

    thermodynamic cycle:

  • Chapt. IV - 95

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    adiabatic

    =

    =

    experiment: use of copper: Bi = 3 T, Bf = 0.3 mT, Ti = 10 mK Tf 1K

    IV.1 Generation of Low Temperatures IV.1.9 Adiabatic demagnetization

    generation of temperatures below 1 mK

    dQ = TdS = dU dW = dU + pdV B dM dU B dM (for solid: pdV small)

    adiabatic cooling: dQ = 0 dU = B dM step1: magnetize sample with field B, work must be done on sample and

    heat is released to thermal bath at Ti step2: thermally isolated sample and remove magnetic field B, sample

    uses internal energy to demagnetize and temperature falls to Tf < Ti

  • Chapt. IV - 96

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.9 Adiabatic demagnetization

    more detailed discussion:

    which amount of heat Qspin can be absorbed by the spin systems ?

    i

    f

    i

    f

    T

    TB

    spinT

    Tspinspin dT

    T

    STdTCBQ )0(

    2

    2int

    2

    2

    22

    6

    )1()12ln(

    T

    BB

    k

    JJgJNkS

    B

    BB

    2int

    2

    2int

    2

    BB

    BBTT

    i

    f

    if

    remaining internal field due to finite magnetic interactions (should be as small as possible)

    (cooling capacity)

    entropy of spin system with spin quantum number J for gBB

  • Chapt. IV - 97

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.9 Adiabatic demagnetization

    Ti Tf

    Bf = 0 Bi = 5T en

    tro

    py

    S

    1

    2

    1 switch on magnetic field at constant Ti (coupling to heat sink)

    2 switch off magnetic field for thermally isolated sample cooling to Tf

    i

    f

    i

    f

    T

    TB

    spinT

    Tspinspin dT

    T

    STdTCBQ )0(

    )12ln( JNkB

    0 0

    medium

    heat sink

    heat switch

    T

  • Chapt. IV - 98

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.9 Adiabatic demagnetization

    paramagnetic salts: e.g MAS = MnSO4 (NH4)2SO4 6H2O cooling of electron spins material with large entropy S/R but large Bint lowest temperatures Tf 100 mK large cooling capacity

    e.g CMN = 2Ce(NO3)3 2Mg(NO3)2 24H2O cooling of electron spins material with small entropy S/R but small Bint lowest temperatures Tf 2 mK small cooling capacity nuclear demagnetization: e.g 63Cu (L = 3/2) or 65Cu (L = 3/2) (Bint 0.3 mT, Ti 10 mK, Bi 3 T) cooling of nuclear spins Tf (Bf = 0) 1 K problem: transfer of spin temperature to lattice long spin-lattice relaxation time other materials: 141PrNi5 (L=5/2),

    195Pt (L=1/2)

  • Chapt. IV - 99

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    spin-lattice coupling cools the lattice

    metals: 1000 s (hyperfine interaction: t = CKorringa/Te, Korringa relation) non-metals: hours to several days

    spin-lattice coupling: spin temperature increases and lattice temperature decreases

    in thermal equilibrium

    calculation of equilibrium temperature for copper: (Bint 0.3 mT, Ti 10 mK, Bi 3 T)

    Teq = 1.03 K

    lowest reported experimental temperature

    demagnetization of Pt: Teq = 2 K (F. Pobell et al., (1996))

    0 nT

    T

    nucleare

    T

    T

    electron dTcdTceq

    f

    eq

    i

    IV.1 Generation of Low Temperatures IV.1.9 Adiabatic demagnetization

  • Chapt. IV - 100

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.9 Adiabatic demagnetization

    R. Gloss et al.,

    J. Low Temp. Phys. 73, 101 (1988)

    Cu demagnetization stage (length: 525 mm, diameter: 78 mm)

  • Chapt. IV - 101

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    K facility of PTB Berlin: Lattice temperatures measured on the 105-mol-copper stage of the Berlin microkelvin facility with Pt-NMR. The achieved minimal temperature was 23.3 K. The red line depicts the calculated course of temperature for the thermodynamically optimized demagnetization function. heat leak: below 1.5 nW.

    IV.1 Generation of Low Temperatures IV.1.9 Adiabatic demagnetization

  • Chapt. IV - 102

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Cryogen-free Two Stage Adiabatic Demagnetization Refrigerator from Janis

    A cryogen-free two stage adiabatic demagnetization refrigerator using a 4 K pulse tube cryocooler. Gallium Gadolinium Garnet (GGG) and Ferric Ammonium Alum (FAA) paramagnetic pills were used for the first and second stage of the ADR, with Kevlar string supports for each stage. The FAA stage reaches a base temperature below 50 mK, and remains below 100 mK for more than two days.

    IV.1 Generation of Low Temperatures IV.1.9 Adiabatic demagnetization

  • Chapt. IV - 104

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.1 Generation of Low Temperatures IV.1.9 Adiabatic demagnetization

    Continuous Adiabatic Demagnetization Refrigerator (CADR) under development at NASAs Goddard Space Flight Center - CADR to cool from below 5K to 35 mK - advantage: no stored cryogens maximizing the lifetime/mass ratio for the instrument

  • Chapt. IV - 105

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Contents: IV.1 Generation of Low Temperatures IV.1.1 Introduction IV.1.2 Expansion Machine IV.1.3 Regenerative Machine IV.1.4 Joule-Thomson Cooling IV.1.5 Summary IV.1.6 Evaporation Cooling IV.1.7 Dilution Cooling IV.1.8 Pomeranchuk Cooling IV.1.9 Adiabatic Demagnetization

    IV.2 Thermometry IV.2.1 Introduction IV.2.2 Primary Thermometers IV.2.3 Secondary Thermometers

  • Chapt. IV - 106

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.2 Thermometry IV.2.1 Introduction

    temperature and temperature scales

    temperature of a system in thermodynamic equilibrium: defined as the relation between the amount of heat Q incident on the system during an infinitesimal quasi-static transformation, and the variation S of its entropy during this transformation: for reversible Carnot process (dS = 0):

    S

    QT

    T

    Q0

    Kelvin scale Celsius scale (1742)

    see http://www.its-90.com

    Lord Kelvin (1854): there is an absolute zero of temperature scale T0 = 0 K = - 273.15C 1 K = 1C

  • Chapt. IV - 107

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    William Thomson (Lord Kelvin)

    http://br.geocities.com/saladefisica3/fotos/kelvin.gif

    Lord Kelvin by Hubert von Herkomer

    Born 26 June 1824(1824-06-26) Belfast, Co. Antrim, Ireland

    Died 17 December 1907 (aged 83)[1] Largs, Ayrshire, Scotland [1]

    Residence Cambridge, England Glasgow, Scotland

    Nationality United Kingdom of Great Britain and Ireland

    Institutions University of Glasgow

    Alma mater Glasgow University Peterhouse, Cambridge

    A variety of physical phenomena and concepts with which Thomson is associated are named Kelvin: Kelvin material Kelvin water dropper Kelvin wave Kelvin-Helmholtz instability Kelvin-Helmholtz mechanism Kelvin-Helmholtz luminosity The SI unit of temperature, kelvin Kelvin transform in potential theory Kelvin's circulation theorem Kelvin-bridge (also known as Thomson-bridge)

    IV.2 Thermometry IV.2.1 Introduction

  • Chapt. IV - 108

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    SI temperature scale - the SI temperature scale is the Kelvin scale. It defines the triple point of water as the numerical value of 273.16, i.e., 273.16 K. The unit of temperature in this scale is the Kelvin (K).

    Celsius scale: the Celsius scale has units of C (degrees Celsius) with the size of the unit equal to 1 Kelvin.

    T(C) = T(K) 273.15

    agreement of bureaus of standards:

    ITS-90 temperature scale for T > 0.65 K (Comit International des Poids et Messures 1990) - the ITS-90 is defined by 17 fixed points and 4 defining instruments. It spans a temperature range from 0.65 K to 10 000 K. For cryogenic purposes the three defining instruments are helium vapor pressure thermometry, gas thermometry, and platinum resistance thermometry.

    PLTS-2000 for lower T (Provisonal Low Temperature Scale, melting curve of 3He ) - the PLTS-2000 is defined by a polynomial, relating the melting pressure of 3He to temperature from the range 0.9 mK to 1 K. The pressure to temperature relationship

    is based on primary thermometers such as Johnson noise and nuclear orientation.

    IV.2 Thermometry IV.2.1 Introduction

  • Chapt. IV - 109

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    The Water Triple Point The triple point of water is the most important defining thermometric fixed point used in the calibration of thermometers to the International Temperature Scale of 1990 (ITS-90). It is the sole realizable defining fixed point common to the Kelvin Thermodynamic Temperature Scale (KTTS) and the ITS-90; the assigned value on these scales is 273.16 K (0.01C)

    solid

    liquid

    gaseous

    critical point

    triple point

    (0.01C, 603 Pa)

    273.15 K

    (374C, 21800 kPa)

    273.16 K

    IV.2 Thermometry IV.2.1 Introduction

  • Chapt. IV - 110

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Defining Fixed Points of the ITS-90

    Number Temperature Substance a State b Wr (T90)

    T90/K t90/C

    1 3 to 5 -270.15 to -268.15 He V

    2 13.8033 -259.3467 e-H2 T 0.001 190 07

    3 ~17 ~-256.15 e-H2 (or He) V (or G)

    4 ~20.3 -252.85 e-H2 (or He) V (or G)

    5 24.5561 -248.5939 Ne T 0.008 449 74

    6 54.3584 -218.7916 O2 T 0.091 718 04

    7 83.8058 -189.3442 Ar T 0.215 859 75

    8 234.3156 -38.8344 Hg T 0.844 142 11

    9 273.16 0.01 H20 T 1.000 000 00

    10 302.9146 29.7646 Ga M 1.118 138 89

    11 429.7485 156.5985 In F 1.609 801 85

    12 505.078 231.928 Sn F 1.892 797 68

    13 692.677 419.527 Zn F 2.568 917 30

    14 933.473 660.323 Al F 3.376 008 60

    15 1234.93 961.78 Ag F 4.286 420 53

    16 1337.33 1064.18 Au F

    17 1357.77 1084.62 Cu F

    a All substances except 3He are of natural isotopic composition, e-H2 is hydrogen at the equilibrium concentration of the ortho- and para-molecular forms. b V: vapour pressure point; T: Triple Point (temperature at which the solid, liquid and vapour phases are in equilibrium); G: gas thermometer point; M,F melting point, freezing point (temperature, at a pressure of 101 325 Pa, at which the solid and liquid phases are in equilibrium)

    see http://www.its-90.com

    IV.2 Thermometry IV.2.1 Introduction

  • Chapt. IV - 111

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    temperature measurement

    definition of temperature via reversible Carnot process is not well suited for establishing useful measuring methods

    in practice: use of fixpoints and interpolation polynoms

    primary thermometers: measured quantity is related directly to temperature (in a theoretically predictably way) no calibration is required

    secondary thermometers: measured quantity varies with temperature in a reproducible way must be calibrated using a primary thermometer

    requirements for temperature measurement: good thermal contact between thermometer and sample low self-heating fast response to temperature changes

    IV.2 Thermometry IV.2.1 Introduction

  • Chapt. IV - 112

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    T(K)

    typical temperature range of some thermometers

    IV.2 Thermometry IV.2.1 Introduction

  • Chapt. IV - 113

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    most common thermometers for 1K < T < 300K

    gas thermometer: p = p(T) Helium gas ideal gas down to 10K:

    vapour pressure thermometer: Tliquid = f(pvapor) pressure of 10 Pa corresponds to 0.4K for 3He

    thermocouples: Vth = Vth(T)

    resistance thermometry: R = R(T) 1K - 300K semiconductors (e.g. Ge doped with Arsenic has 100-500 /K @ 4.2K,

    self-heating around 10A) p-n junction diode (problem with high bias current self heating)

    capacitance thermometry: C = C(T) based on temperature change of dielectric properties virtually no magnetic field-induced errors

    noise thermometer: S = S(T) Johnson noise in resistor: SV = 4kBTR like gas thermometer, but with electrons with SQUID measurements: 0.1% @ 1K

    IV.2 Thermometry IV.2.1 Introduction

  • Chapt. IV - 114

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3) 1mK T 1K:

    magnetic suceptibility thermometer

    T

    C

    B

    M 0Curies law:

    Cerium magnesium nitrate (CMN) useful from 1K - 10mK low temperature limit set by magnetic ordering at 1mK

    0 fmm mutual inductance between two coils:

    most common thermometers for T < 1K

    T < 1mK: Nuclear Magnetic Resonance (NMR) thermometer

    temperature dependence of spin relaxation platinum ideal choice for NMR thermometry

    M: magnetization B: applied magnetic field C: Curie constant

    resistance thermometers

    IV.2 Thermometry IV.2.1 Introduction

  • Chapt. IV - 115

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Contents: IV.1 Generation of Low Temperatures IV.1.1 Introduction IV.1.2 Expansion Machine IV.1.3 Regenerative Machine IV.1.4 Joule-Thomson Cooling IV.1.5 Summary IV.1.6 Evaporation Cooling IV.1.7 Dilution Cooling IV.1.8 Pomeranchuk Cooling IV.1.9 Adiabatic Demagnetization

    IV.2 Thermometry IV.2.1 Introduction IV.2.2 Primary Thermometers IV.2.3 Secondary Thermometers

  • Chapt. IV - 116

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.2 Thermometry IV.2.2 Primary Thermometers

    gas thermometers

    ideal gas would be a perfect thermometer:

    nRTpV measure pressure at constant volume

    32 )()()( TTdTTcpTbRTnpV

    virial coefficients (tabulated ITS-90 values)

    systematic errors: dead volumes thermal expansion of cell, elastic deformation of cell adsorption and desorption from walls mainly used in calibration laboratories !

    for real gases life is more complicated deviations from ideal behavior

  • Chapt. IV - 117

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    in practice, a set of secondary vapour pressure scales is used: ITS-90: with 3He and 4He: ITS defined down to 0.65 K

    vapour pressure thermometry

    Clausius-Clapeyron equation:

    for ideal gas (pV = RT):

    if Hvap(T) is known determine T of liquid (e.g. He) via measurement of He pressure above liquid

    TV

    TH

    TVV

    TL

    dT

    dp

    gas

    vap

    liquidgas

    )(

    )(

    )(

    dTTTH

    constpRvap

    2

    )(.ln

    i

    i

    iC

    BpAT

    )(ln (in principle no primary

    thermometer !!)

    limited T range

    IV.2 Thermometry IV.2.2 Primary Thermometers

  • Chapt. IV - 118

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    values of the constants for the helium vapour-pressure, and the temperature range for which each equation, identified by its set of constants, is valid (see http://www.its-90.com).

    3He

    0.65K to 3.2K

    4He 1.25K to 2.1768K

    4He 2.1768K to 5.0K

    A0 1.053 447 1.392 408 3.146 631

    A1 0.980 106 0.527 153 1.357 655

    A2 0.676 380 0.166 756 0.413 923

    A3 0.372 692 0.050 988 0.091 159

    A4 0.151 656 0.026 514 0.016 349

    A5 -0.002 263 0.001 975 0.001 826

    A6 0.006 596 -0.017 976 -0.004 325

    A7 0.088 966 0.005 409 -0.004 973

    A8 -0.004 770 0.013 259 0

    A9 -0.054 943 0 0

    B 7.3 5.6 10.3

    C 4.3 2.9 1.9

    IV.2 Thermometry IV.2.2 Primary Thermometers

  • Chapt. IV - 119

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    vapour pressure thermometry

    4He

    3He

    4He

    IV.2 Thermometry IV.2.2 Primary Thermometers

  • Chapt. IV - 120

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    www.mallister.com/graphics/vapor3.jpg

    IV.2 Thermometry IV.2.2 Primary Thermometers

  • Chapt. IV - 121

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    vapour pressure thermometry

    www.bm-industries.com

    IV.2 Thermometry IV.2.2 Primary Thermometers

  • Chapt. IV - 122

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    3He melting curve thermometry

    use of melting curve of 3He to define PLTS-2000 temperature scale down to 0.9 mK

    polynom for melting curve: coefficients given by PLTS-2000 also use of 4 fix points (minimum of melting curve, transition temperatures to A and B phase and afm order of nuclear spins in solid 3He)

    9

    3i

    i

    iTp

    IV.2 Thermometry IV.2.2 Primary Thermometers

  • Chapt. IV - 123

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    3He melting curve thermometry

    melting curve of 3He

    Source: R.L. Rusby et al. (2001)

    IV.2 Thermometry IV.2.2 Primary Thermometers

  • Chapt. IV - 124

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    noise thermometry

    Nyquist theorem:

    valid only in the low frequency limit f

  • Chapt. IV - 125

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    superconducting fix point thermometers

    based on the precise measurement of the transition temperatures of superconductors

    available from NIST at Boulder

    ITS-90 NIST fixpoint device

    IV.2 Thermometry IV.2.2 Primary Thermometers

  • Chapt. IV - 126

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Contents: IV.1 Generation of Low Temperatures IV.1.1 Introduction IV.1.2 Expansion Machine IV.1.3 Regenerative Machine IV.1.4 Joule-Thomson Cooling IV.1.5 Summary IV.1.6 Evaporation Cooling IV.1.7 Dilution Cooling IV.1.8 Pomeranchuk Cooling IV.1.9 Adiabatic Demagnetization

    IV.2 Thermometry IV.2.1 Introduction IV.2.2 Primary Thermometers IV.2.3 Secondary Thermometers

  • Chapt. IV - 127

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    IV.2 Thermometry IV.2.3 Secondary Thermometers

  • Chapt. IV - 128

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    resistance thermometers

    required: well established relation between resistance and temperature, sufficiently large dR/dT

    advantage: resistance easy to measure resistance thermometry very popular

    fact: temperature variation of resistance may have very different physical origin

    commonly used: Pt resistors (PT-100, PT-1000) RhFe resistors carbon resistors (Speer, Allen-Bradley) carbon glass resistors Ge resistors RuO2 resistors

    IV.2 Thermometry IV.2.3 Secondary Thermometers

  • Chapt. IV - 129

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    Platinum resistors

    Source: Lake Shore Cryotronics, Inc.

    The platinum resistance thermometer (PRT) is very widely used below 500 C as a thermometric sensor. There is a wide range of quality of PRT available, from the standard instrument (SPRT) of the ITS-90 to some industrial types (IPRT) that are accurate only to within a few tenths of a kelvin or, perhaps, even a kelvin or more. The major difference of the industrial type of fabrication from the standard type is not just the purity of platinum, but also the less strain-free mounting of the film or wire which is embedded (partially or totally) in a cement (glass or refractory). Furthermore, in most cases, the thermometer body is not hermetically sealed.

    IV.2 Thermometry IV.2.3 Secondary Thermometers

  • Chapt. IV - 130

    R. G

    ross

    an

    d A

    . Mar

    x ,

    Wal

    the

    r-M

    ei

    ne

    r-In

    stit

    ut

    (20

    04

    - 2

    01

    3)

    W(29.7646 C) 1.118 07 W(-38.8344 C) 0.844 235

    Platinum resistors

    ITS-90 requirement for Pt resistance thermometer (PRT)

    W(T90) = R(T90)/R(0.01 C)

    industrial PRT

    IV.2 Thermometry IV.2.3 Secondary Thermometers

    for 0 < T < 100C R = R0 (1 + a T) a = 3.85 10-3 / K

    allowed errors in C: classA: dT = (


Recommended