+ All Categories
Home > Documents > x! - nanoHUBWeek8HW...ECE606:##Spring#2013# # Purdue#University # # # Spring2013#...

x! - nanoHUBWeek8HW...ECE606:##Spring#2013# # Purdue#University # # # Spring2013#...

Date post: 18-Mar-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
14
ECE 606: Spring 2013 Purdue University ECE606 Spring 2013 1 SOLUTIONS: ECE 606 Homework Week 8 Mark Lundstrom Purdue University March 7, 2013 1) The doping profile for an ntype silicon wafer ( N D = 10 15 cm 3 ) with a heavily doped thin layer at the surface (surface concentration, N S = 10 20 cm 3 ) is sketched below. Answer the following questions. 1a) Assume approximate space charge neutrality ( nx () ! N D x () ) and equilibrium conditions and compute the position of the Fermi level with respect to the bottom of the conduction band at x = 0 and as x !" . Solution: n 0 x () = N C e E F ! E C ( ) k B T " N D x () E F ! E C x () = k B T ln N D x () N C " # $ $ % & ' ' N C = 3.23 ! 10 19 cm 3 E F ! E C 0 () = k B T ln N D 0 () N C " # $ $ % & ' ' E F E C 0 () = k B T ln 10 20 3.23 × 10 19 =+1.13k B T
Transcript
Page 1: x! - nanoHUBWeek8HW...ECE606:##Spring#2013# # Purdue#University # # # Spring2013# HW#Week#8SolutionsContinued# (x)! ex

ECE  606:    Spring  2013     Purdue  University    

ECE-­‐606     Spring  2013  1  

SOLUTIONS:    ECE  606  Homework    Week  8    Mark  Lundstrom  Purdue  University  March  7,  2013  

     1) The  doping  profile  for  an  n-­‐type  silicon  wafer  ( N D = 1015 cm-­‐3)  with  a  heavily  doped  

thin  layer  at  the  surface  (surface  concentration,   NS = 1020 cm-­‐3)  is  sketched  below.    Answer  the  following  questions.  

   

     1a)   Assume  approximate  space  charge  neutrality  ( n x( ) ! N D x( ) )  and  equilibrium  

conditions  and  compute  the  position  of  the  Fermi  level  with  respect  to  the  bottom  of  the  conduction  band  at   x = 0  and  as   x !" .    

 Solution:    

n0 x( ) = NCe EF !EC( ) kBT " N D x( )      

EF ! EC x( ) = kBT ln

N D x( )NC

"

#$$

%

&''     NC = 3.23!1019  cm-­‐3  

 

EF ! EC 0( ) = kBT ln

N D 0( )NC

"

#$$

%

&''  

EF − EC 0( ) = kBT ln 1020

3.23×1019

⎣⎢

⎦⎥ = +1.13kBT

   

   

Page 2: x! - nanoHUBWeek8HW...ECE606:##Spring#2013# # Purdue#University # # # Spring2013# HW#Week#8SolutionsContinued# (x)! ex

ECE  606:    Spring  2013     Purdue  University    

ECE-­‐606     Spring  2013  2  

HW  Week  8  Solutions  Continued  

EF ! EC x "#( ) = kBT ln

N D x "#( )NC

$

%&&

'

())  

  EF − EC x →∞( ) = kBT ln 1015

3.23×1019

⎣⎢

⎦⎥ = −10.4kBT

   

1b)    Using  the  above  information,  sketch   EC x( )  vs.  x.    Be  sure  to  include  the  Fermi  level.  

         

1c)   Sketch  the  electrostatic  potential  vs.  position.  

         

1d)   Sketch  the  electric  field  vs.  portion.  

       

Page 3: x! - nanoHUBWeek8HW...ECE606:##Spring#2013# # Purdue#University # # # Spring2013# HW#Week#8SolutionsContinued# (x)! ex

ECE  606:    Spring  2013     Purdue  University    

ECE-­‐606     Spring  2013  3  

HW  Week  8  Solutions  Continued    1e)   Derive  an  expression  for  the  position  dependent  electric  field,   E x( ) ,  in  terms  of  

the  position-­‐dependent  doping  density,   N D x( ) .    HINT:    Use  the  electron  current  equation  and  assume  equilibrium  conditions.  

 Solution:  

Jn = nqµnE + kBTµn

dndx

= 0    

E =

kBTq

1n

dndx

=kBTq

1N D x( )

dN D x( )dx

 

E =kBTq

!"#

$%&

1N D x( )

dN D x( )dx

 Another  way  is  to  begin  with  n0 ≈ ND = NCe

EF −EC( ) kBT  and  differentiate.    

2) A  silicon  diode  is  symmetrically  doped  at   N D = N A = 1015  cm-­‐3.    Answer  the  following  questions  assuming  room  temperature,  equilibrium  conditions,  and  the  depletion  approximation.    2a)    Compute   Vbi .  

Solution:    

Vbi =

kBTq

lnN AN D

ni2

!

"#$

%&= 0.026ln 1030

1020

!"#

$%&= 0.60  V  

 

Vbi = 0.60  

 2b)    Compute  

xn ,xp  and  W.  Solution:    

xn =

2! S"0

qN A

N D N A + N D( )Vbi

#

$%%

&

'((

1/2

= 0.625 µm    

 

xn = xp = 0.625 µm  (because  N  and  P  regions  are  symmetrical)  

W = xn + xp = 1.25 µm

 

Page 4: x! - nanoHUBWeek8HW...ECE606:##Spring#2013# # Purdue#University # # # Spring2013# HW#Week#8SolutionsContinued# (x)! ex

ECE  606:    Spring  2013     Purdue  University    

ECE-­‐606     Spring  2013  4  

 HW  Week  8  Solutions  Continued  

 2c)    Compute   V x = 0( )  and   E x = 0( ) .    

Solution:  By  symmetry:    

V 0( ) = Vbi

2= 0.30 V  or  use  

V x = 0( ) = qN A

2! S"0

xp2  

E x = 0( ) = qN A

! S"0

xp = 9.6#103

   

E 0( ) = !9.6"103 V/cm  

 2d)    Sketch   ! x( )  vs.  x.  

 Solution:  ρN = +qND = +1.6 ×10−4 C/cm3

 !P = "qNA = "1.6 #10"4 C/cm3

 

         3) Your  textbook  (Pierret,  SDF)  presents  the  “classic”  expressions  for  PN  junction  

electrostatics.    Simplify  these  expressions  for  a  “one-­‐sided”  P+N  junction  for  which  

N A >> N D .    Present  simplified  expressions  (when  possible)  for:    3a)      The  built-­‐in  potential,   Vbi ,  from  Pierret,  Eqn.  (5.10).  Solution:    

Vbi =kBTqln NDNA

ni2

!"#

$%&  no  simplification  possible  

 

Page 5: x! - nanoHUBWeek8HW...ECE606:##Spring#2013# # Purdue#University # # # Spring2013# HW#Week#8SolutionsContinued# (x)! ex

ECE  606:    Spring  2013     Purdue  University    

ECE-­‐606     Spring  2013  5  

 HW  Week  8  Solutions  Continued  

 3b)      The  total  depletion  layer  depth,   W ,  from  Pierret,  Eqn.  (5.31).    

Solution:    

W = 2! S"0q

NA + ND

NDNA

#$%

&'(Vbi

)

*+

,

-.

1/2

  NA >> N D   W = 2! S"0qND

Vbi#

$%

&

'(

1/2

 

 3c)      The  peak  electric  field,   E 0( ) ,  from  Pierret,  Eqn.  (5.19)  or  (5.21).    

Solution:  

E 0( ) = 2Vbi

W= 2qVbi

! s"0NDNA

NA + ND

#$%

&'(      

E 0( ) = 2qNDVbi

! s"0  

 3d)    The  electrostatic  potential,   V x( )  from  Pierret,  Eqn.  (5.28)    

Solution:  

V x( ) =Vbi !qND

2" S#0xn ! x( )2     V x( ) =Vbi −

qND

2κ Sε0W − x( )2  

Now  use  the  expression  for  W  above  to  find:    

V x( ) =Vbi 1− 1− x W( )2⎡⎣

⎤⎦  

 4) A  silicon  diode  is  asymmetrically  doped  at   N A = 1019  cm-­‐3  and   N D = 1015  cm-­‐3      Answer  

the  following  questions  assuming  room  temperature,  equilibrium  conditions,  and  the  depletion  approximation.  

 4a)    Compute   Vbi .  

 Solution:    

Vbi =

kBTq

lnN AN D

ni2

!

"#$

%&= 0.026ln 1025 '1019

1020

!"#

$%&= 0.84  V  

 

Vbi = 0.84  

 

Page 6: x! - nanoHUBWeek8HW...ECE606:##Spring#2013# # Purdue#University # # # Spring2013# HW#Week#8SolutionsContinued# (x)! ex

ECE  606:    Spring  2013     Purdue  University    

ECE-­‐606     Spring  2013  6  

 HW  Week  8  Solutions  Continued  

 4b)    Compute  

xn ,xp  and  W.  Solution:  

xp ! 0  

xn !W =

2" S#0

qN D

Vbi

$

%&

'

()

1/2

= 1.05 µm    

 

W = 1.05 µm  (depletion  region  mostly  on  the  N-­‐side,  the  lightly  doped  side)  

 4c)    Compute   V x = 0( )  and   E x = 0( ) .    

Solution:    

V 0( ) ! 0 V    

 

E 0( ) = qN D

! S"0

W = 1.6#104 V/cm  

E 0( ) = 1.6!104 V/cm  (plus  sign  assumes  N  region  is  on  the  left)  

 4d)    Sketch   ! x( )  vs.  x.  

Solution:    

   

The  charge  on  the  P-­‐side  is  essentially  a  delta  function  with  the  total  charge  in  C/cm2  

 equal  in  magnitude  and  opposite  in  sign  to  the  charge  on  the  N-­‐side.    

Page 7: x! - nanoHUBWeek8HW...ECE606:##Spring#2013# # Purdue#University # # # Spring2013# HW#Week#8SolutionsContinued# (x)! ex

ECE  606:    Spring  2013     Purdue  University    

ECE-­‐606     Spring  2013  7  

 HW  Week  8  Solutions  Continued  

 5)   Repeat  problem  4)  using  the  “exact”  solution  to  PN  junction  electrostatics.    

Solution:    

VN = + kBTqln ND

ni

⎛⎝⎜

⎞⎠⎟= 0.026 ln 1015

1010⎛⎝⎜

⎞⎠⎟= 0.30  

VP = ! kBTqln NA

ni

"#$

%&'= 0.026 ln 1019

1010"#$

%&'= !0.540  

Vbi =VN !VP = 0.84  V       Vbi = 0.84  

 

V 0( ) = CN !CP

aN ! aP  

aN = ND = 1015  aP = !NA = !1019    CN = aNVN ! 2ni kBT q( )cosh qVN kBT( )  CN = 1015 ! 0.30 " 2 !1010 0.026( )cosh 11.5( ) = 2.74 !1014    CP = aPVP ! 2ni kBT q( )cosh qVP kBT( )  CP = !1019( ) !0.54( )! 2 "1010 0.026( )cosh !20.7( ) = 5.15 "1018    

V 0( ) = CN !CP

aN ! aP= !0.518  

 V 0( )!VP = !0.54 ! 0.512 = 0.028 " kBT q  

 The  potential  drop  across  the  heavily  doped  side  is  about  kBT/q.    

E 0( ) = 2q ! S"0 ni kBT q( )eqV (0) kBT + ni kBT q( )e#qV (0) kBT # aNV (0)+CN( )1/2    Putting  in  numbers,  we  find:    

E 0( ) !1.7 "105 V/cm  V/cm  

 which  is  about  10X  the  electric  field  we  found  in  prob.  4.  

Page 8: x! - nanoHUBWeek8HW...ECE606:##Spring#2013# # Purdue#University # # # Spring2013# HW#Week#8SolutionsContinued# (x)! ex

ECE  606:    Spring  2013     Purdue  University    

ECE-­‐606     Spring  2013  8  

HW  Week  8  Solutions  Continued    

n0 0( ) = nieqV 0( ) kBT = 27  cm-­‐3  p0 0( ) = nie!qV 0( ) kBT = 0.37 "1017  cm-­‐3    ! 0"( ) = q p0 0( )" n0 0( ) + ND#$ %& = q 0.37 '1019 +1015#$ %& ( q 0.37 '1019#$ %&  

! 0"( ) # q 0.37 $1019%& '(  (depletion  approximation  would  give   ! 0"( ) # q 1015$% &' )  

 ! 0+( ) = q p0 0( )" n0 0( )" NA#$ %& = q 0.37 '1019 "1019#$ %&  

! 0+( ) = "q 0.63#1019$% &'  (depletion  approximation  would  give   ! 0+( ) " #q 1019$% &' )  

 

     6)   Semiconductor  devices  often  contain  “high-­‐low”  junctions  for  which  the  doping  density  

changes  magnitude,  but  not  sign.    The  example  below  shows  a  high-­‐low  step  junction.    Answer  the  questions  below.  

 

             

Page 9: x! - nanoHUBWeek8HW...ECE606:##Spring#2013# # Purdue#University # # # Spring2013# HW#Week#8SolutionsContinued# (x)! ex

ECE  606:    Spring  2013     Purdue  University    

ECE-­‐606     Spring  2013  9  

HW  Week  8  Solutions  Continued    

6a)  Sketch  an  energy  band  diagram  for  this  junction.    

       

6b)  Sketch   V x( )    

   

6c)    Sketch   E x( )    

       

Page 10: x! - nanoHUBWeek8HW...ECE606:##Spring#2013# # Purdue#University # # # Spring2013# HW#Week#8SolutionsContinued# (x)! ex

ECE  606:    Spring  2013     Purdue  University    

ECE-­‐606     Spring  2013  10  

HW  Week  8  Solutions  Continued    6d)    Sketch   ! x( )  vs.  x.  

     6e)    Name  the  charged  entities  responsible  for ! x( )  in  6d).    

Solution:  For  x  <  0,  the  charge  is  a  depletion  charge.    Mobile  electrons  leave  the  heavily  doped  side  of  the  junction  leaving  behind  a  concentration,  ND1,  of  ionized  donors.        For  x  >  0,  the  charge  is  due  to  the  additional  mobile  electrons  that  have  spilled  over  from  the  heavily  doped  side.    This  is  NOT  a  depletion  region.  

 6f)      Explain  why  the  depletion  approximation  cannot  be  used  for  this  problem.    

Solution:  Because,  as  explained  above,  there  is  a  depletion  region  on  only  ONE  side  of  the  junction.    We  could  use  the  depletion  approximation  there,  but  not  on  the  lightly  doped  side.  

 6g)    Calculate   Vbi  for  this  high-­‐low  junction  assuming  silicon  at  room  temperature.  

 Solution:  First,  consider  the  two  sides  of  the  junction  separately:  

n01 = NCe EF 1!EC( ) kBT     n02 = NCe EF 2!EC( ) kBT  

n01

n02

= e EF 1!EF 2( ) kBT  

The  built-­‐in  potential  develops  to  align  these  two  Fermi  levels:  

 

EF1 ! EF 2( ) = qVbi = kBT lnn01

n02

"

#$%

&'  

 

Vbi =kBTq

lnN D1

N D2

⎝⎜⎞

⎠⎟  

Page 11: x! - nanoHUBWeek8HW...ECE606:##Spring#2013# # Purdue#University # # # Spring2013# HW#Week#8SolutionsContinued# (x)! ex

ECE  606:    Spring  2013     Purdue  University    

ECE-­‐606     Spring  2013  11  

HW  Week  8  Solutions  Continued      7)   Consider  an  N+P  diode  with  the  length  of  the  quasi-­‐neutral  P-­‐region  being,  WP.    Answer  the  

following  questions  assuming  that  recombination  in  the  space-­‐charge  region  can  be  neglected.    7a)    Derive  a  general  expression  for   ID VA( )  valid  for  a  P  region  of  any  length,  WP.    

Solution:  In  HW7,  problem  12c,  we  solved  the  minority  carrier  diffusion  equation  for  a  region  of  any  length  and  found:    

!n x( )= !n 0( ) sinh WP " x( ) / Ln#$ %&sinh WP / Ln( )  

 Let  x  =  0  be  the  edge  of  the  neutral  P-­‐region.    The  electron  current  is:  

  Jn = +qDn

d!ndx x=0

= "qDn

Ln

!n 0( )cosh WP Ln( )sinh WP Ln( )    (minus  sign  means  that  the  electron  

current  is  flowing  in  the  minus  x  direction.    Since  this  is  a  one-­‐sided  junction,  and  we  are  ignoring  recombination  in  the  space-­‐charge  region,  this  is  the  total  diode  current,  ID.  Let’s  define  the  forward  biased  current  to  be  positive.      

 

ID = !AJn = qA

Dn

Ln

"n 0( )cosh WP Ln( )sinh WP Ln( )  

 Finally,  use  the  “Law  of  the  Junction”  for  the  boundary  condition:  

!n 0( ) = ni

2

N A

eqVA kBT "1( )    to  find:    

ID = qADn

Ln

ni2

N A

!

"#

$

%&

cosh WP Ln( )sinh WP Ln( ) eqVA kBT '1( )  

 7b)      Simplify  the  expression  derived  in  7a)  for  a  “long  diode”.    Explain  what  “long”  means  

(i.e.  WP  is  long  compared  to  what?)    

Solution:  A  “long  diode”  is  one  with  the  quasi-­‐neutral  region  is  much  longer  than  the  diffusion  length,   WP >> Ln .  

Page 12: x! - nanoHUBWeek8HW...ECE606:##Spring#2013# # Purdue#University # # # Spring2013# HW#Week#8SolutionsContinued# (x)! ex

ECE  606:    Spring  2013     Purdue  University    

ECE-­‐606     Spring  2013  12  

HW  Week  8  Solutions  Continued  

cosh x( )! ex

2    

sinh x( )! ex

2  and  we  find  

ID = qADn

Ln

ni2

N A

!

"#

$

%& eqVA kBT '1( )  

 7c)   Simplify  the  expression  derived  in  7a)  for  a  “short  diode”.    Explain  what  “short”  

means.    

Solution:  A  “short  diode”  is  one  with  the  quasi-­‐neutral  region  is  much  shorter  than  the  diffusion  length,   WP << Ln .  

cosh x( )!1     sinh x( )! x  and  we  find    

ID = qADn

WP

ni2

N A

!

"#

$

%& eqVA kBT '1( )  

 8)   Consider  a  P+N  diode  that  is  illuminated  with  light,  which  produces  a  uniform  generation,  GL,  

of  electron-­‐holes  pairs  per  cm3  per  second.    The  N-­‐region  is  long  compared  to  a  diffusion  length.    8a)   Consider  first  a  uniform,  infinitely  long  N-­‐type  semiconductor  with  a  uniform  

generation  rate  and  solve  for  the  steady-­‐state  excess  minority  carrier  density,   !p .    

Solution:  We  have  solved  this  problem  before,  in  HW7.    The  answer  is:    

!p = GL" p    

 8b)     Now  consider  the  illuminated  P+N  diode.    What  are  the  boundary  conditions  at  

!pn xn( )  and   !pn x "#( ) ?    Solution:  Assume  that  the  Law  of  the  Junction  still  applies.  

!pn xn( ) = ni

2

N D

eqVA kBT "1( )  

!pn x "#( ) = GL$ n    

Page 13: x! - nanoHUBWeek8HW...ECE606:##Spring#2013# # Purdue#University # # # Spring2013# HW#Week#8SolutionsContinued# (x)! ex

ECE  606:    Spring  2013     Purdue  University    

ECE-­‐606     Spring  2013  13  

HW  Week  8  Solutions  Continued    

8c)   Use  the  boundary  conditions  developed  in  8b),  neglect  recombination-­‐generation  in  the  SCR  and  in  the  P+  layer,  and  solve  for   ID VA( )  for  this  illuminated  diode.  

 Solution:    Having  solved  the  MDE  so  many  times,  we  can  see  that  the  solution  is:  

!p x( ) = Ae" x/ Lp +GL# p    This  satisfies  the  b.c.  for   x !"      

!p 0( ) = A+GL" p  

A = GL! p " #p 0( )  so  the  solution  is:  

!p x( ) = !p 0( )e" x/ Lp +GL# p 1" e" x/ Lp( )    The  current  is:    

J p = !qDp

d"pdx x=0

= qDp

Lp

"p 0( )! qDp

Lp

GL# p  

 Use  the  Law  of  the  Junction:  

J p = JD = qDpni

2

Lp N A

eqVA kBT( )! qDp

Lp

GL" p  

 Note  that  the  first  term  is  just  the  diode  current  in  the  dark,   JDARK  and  the  second  term  is  the  photo-­‐generated  current,  which  is  bias-­‐independent  and  what  we  measure  under  short  circuit  conditions.    

JD = JDARK VA( )! JSC  

JDARK VA( ) = q

Dpni2

Lp N A

eqVA kBT −1( )  

JSC = q

Dp

Lp

GL! p  

This  result  is  the  “classical”  way  of  describing  a  solar  cell  –  the  approach  is  called  “superposition”  –  we  add  the  dark  current  and  the  current  due  to  collection  of  photo-­‐generated  carriers.    Note  that  superposition  assumes  that  the  collected  photocurrent  is  independent  of  bias  and  that  the  Law  of  the  Junction  is  valid  under  illumination.      

Page 14: x! - nanoHUBWeek8HW...ECE606:##Spring#2013# # Purdue#University # # # Spring2013# HW#Week#8SolutionsContinued# (x)! ex

ECE  606:    Spring  2013     Purdue  University    

ECE-­‐606     Spring  2013  14  

HW  Week  8  Solutions  Continued    8d)   Sketch   ID VA( )  for   GL = 0 ,   GL = G0  and GL = 2G0 .    

     


Recommended