+ All Categories
Home > Documents > Xppaut Roscoff

Xppaut Roscoff

Date post: 13-Apr-2018
Category:
Upload: mathbiology
View: 252 times
Download: 1 times
Share this document with a friend
165
Introduction to XPPAUT Mathieu Desroches [email protected] Session A3: Mathematics for oscillations 24-25 July
Transcript

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 1/165

Introduction to XPPAUTMathieu [email protected]

Session A3: Mathematics for oscillations

24-25 July

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 2/165

Introduction to XPPAUT

‘XPP-’ ‘-AUT’...

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 3/165

Part I

(short) Introduction to

! (parametrised families of) ODEs! their Bifurcations

! direct simulation of ODEs

! numerical continuation study

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 4/165

Part I

(short) Introduction to

! (parametrised families of) ODEs! their Bifurcations

! direct simulation of ODEs

! numerical continuation study

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 5/165

Part I

(short) Introduction to

! (parametrised families of) ODEs! their Bifurcations

! direct simulation of ODEs

! numerical continuation study

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 6/165

Part I

(short) Introduction to

! (parametrised families of) ODEs! their Bifurcations

! direct simulation of ODEs

! numerical continuation study

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 7/165

Part I

(short) Introduction to

! (parametrised families of) ODEs! their Bifurcations

! direct simulation of ODEs

! numerical continuation study

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 8/165

• ODEs: variables, parameters, set of 1st order equations, ...

• Equilibria: set the Right-Hand-Side (RHS) to 0

• Stability: linearise and compute eig. of Jac. matrix. Different

topological type: (un)stable focus, (un)stable node, saddle ...

• Bifurcations: change a parameter and the type of the solution

changes (from eq. to periodic, from periodic to quasi-

per., ...) ... structural stability  is lost at bifurcation point.

• Example of (local) bifurcations: 

Theory

• eq. 2 eq. : fold (LP), pitchfork (BP), transcritical (BP)

• eq. 2 per. : Hopf (HB)

• per. 2 per. : fold of periodic orbits, period-doubling, torus

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 9/165

• ODEs: variables, parameters, set of 1st order equations, ...

• Equilibria: set the Right-Hand-Side (RHS) to 0

• Stability: linearise and compute eig. of Jac. matrix. Different

topological type: (un)stable focus, (un)stable node, saddle ...

• Bifurcations: change a parameter and the type of the solution

changes (from eq. to periodic, from periodic to quasi-

per., ...) ... structural stability  is lost at bifurcation point.

• Example of (local) bifurcations: 

Theory

• eq. 2 eq. : fold (LP), pitchfork (BP), transcritical (BP)

• eq. 2 per. : Hopf (HB)

• per. 2 per. : fold of periodic orbits, period-doubling, torus

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 10/165

• ODEs: variables, parameters, set of 1st order equations, ...

• Equilibria: set the Right-Hand-Side (RHS) to 0

• Stability: linearise and compute eig. of Jac. matrix. Different

topological type: (un)stable focus, (un)stable node, saddle ...

• Bifurcations: change a parameter and the type of the solution

changes (from eq. to periodic, from periodic to quasi-

per., ...) ... structural stability  is lost at bifurcation point.

• Example of (local) bifurcations: 

Theory

• eq. 2 eq. : fold (LP), pitchfork (BP), transcritical (BP)

• eq. 2 per. : Hopf (HB)

• per. 2 per. : fold of periodic orbits, period-doubling, torus

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 11/165

• ODEs: variables, parameters, set of 1st order equations, ...

• Equilibria: set the Right-Hand-Side (RHS) to 0

• Stability: linearise and compute eig. of Jac. matrix. Different

topological type: (un)stable focus, (un)stable node, saddle ...

• Bifurcations: change a parameter and the type of the solution

changes (from eq. to periodic, from periodic to quasi-

per., ...) ... structural stability  is lost at bifurcation point.

• Example of (local) bifurcations: 

Theory

• eq. 2 eq. : fold (LP), pitchfork (BP), transcritical (BP)

• eq. 2 per. : Hopf (HB)

• per. 2 per. : fold of periodic orbits, period-doubling, torus

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 12/165

• ODEs: variables, parameters, set of 1st order equations, ...

• Equilibria: set the Right-Hand-Side (RHS) to 0

• Stability: linearise and compute eig. of Jac. matrix. Different

topological type: (un)stable focus, (un)stable node, saddle ...

• Bifurcations: change a parameter and the type of the solution

changes (from eq. to periodic, from periodic to quasi-

per., ...) ... structural stability  is lost at bifurcation point.

• Example of (local) bifurcations: 

Theory

• eq. 2 eq. : fold (LP), pitchfork (BP), transcritical (BP)

• eq. 2 per. : Hopf (HB)

• per. 2 per. : fold of periodic orbits, period-doubling, torus

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 13/165

Starting with 1D systems

x (state) variables

parameters

x = f (x,α)

α

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 14/165

Starting with 1D systems

x (state) variables

parameters

x = f (x,α)

αEquilibria: find all such that f( , )=0x   x   (α is fixed!)

α

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 15/165

Starting with 1D systems

x (state) variables

parameters

Stability: sign of f ’( )x

x = f (x,α)

αEquilibria: find all such that f( , )=0x   x   (α is fixed!)

α

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 16/165

Starting with 1D systems

x (state) variables

parameters

Stability: sign of f ’( )x

f’( )<0: is stable

f’( )>0: is unstable

x   x

x   x

x = f (x,α)

αEquilibria: find all such that f( , )=0x   x   (α is fixed!)

α

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 17/165

1D systems ... let’s vary !

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 18/165

1D systems ... let’s vary !

•Nothing changes in terms of ‘behaviour’:

! structural stability 

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 19/165

1D systems ... let’s vary !

•Nothing changes in terms of ‘behaviour’:

! structural stability 

• Sudden change of stability when one varies !:

! bifurcation

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 20/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 21/165

Example 1: transcritical  bifurcation

" Equilibria :   x   = 0, x   =  α

x =  x(α− x)ODE :

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 22/165

Example 1: transcritical  bifurcation

" Equilibria :   x   = 0, x   =  α

" Stability :   f 0(x) =  α− 2x

x =  x(α− x)ODE :

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 23/165

Example 1: transcritical  bifurcation

" Equilibria :   x   = 0, x   =  α

" Stability :   f 0(x) =  α− 2x

0

(0) = α

, f 

0

) =−α

 

x =  x(α− x)ODE :

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 24/165

Example 1: transcritical  bifurcation

" Equilibria :   x   = 0, x   =  α

" Stability :   f 0(x) =  α− 2x

0

(0) = α

, f 

0

) =−α

 

SO 1) it depends on !

x =  x(α− x)ODE :

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 25/165

Example 1: transcritical  bifurcation

" Equilibria :   x   = 0, x   =  α

" Stability :   f 0(x) =  α− 2x

0

(0) = α

, f 

0

) =−α

 

SO 1) it depends on !

2) always opposite stability BUT at 0!

x =  x(α− x)ODE :

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 26/165

Bifurcation diagram

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 27/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 28/165

Bifurcation diagram

! = 0.4 > 0 x=! is stable & x=0 is unstable

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 29/165

Bifurcation diagram

! = 0 one eq. point, half stable, half unstable

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 30/165

Bifurcation diagram

! = 0 one eq. point, half stable, half unstable

! Transcritical bifurcation point

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 31/165

Example 2: fold  bifurcation

ODE :   x  =  α− x2

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 32/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 33/165

Example 2: fold  bifurcation

ODE :

" Equilibria :   x  = ±√ 

α   when   α  >  0

x  =  α− x2

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 34/165

Example 2: fold  bifurcation

ODE :

" Equilibria :   x  = ±√ 

α   when   α  >  0

x   = 0   when   α

  = 0

x  =  α− x2

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 35/165

Example 2: fold  bifurcation

ODE :

" Equilibria :   x  = ±√ 

α   when   α  >  0

x   = 0   when   α   = 0

when   α < 0no equilibrium

x  =  α− x2

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 36/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 37/165

Example 2: fold  bifurcation

ODE :

" Equilibria :

SO 1) it depends on !>0

x  = ±√ 

α   when   α  >  0

x   = 0   when   α   = 0

when   α < 0no equilibrium

x  =  α− x2

" Stability :   f 0(x) = −2x

f ld if i

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 38/165

Example 2: fold  bifurcation

ODE :

" Equilibria :

SO 1) it depends on !>0

2) always opposite stability BUT at 0!

x  = ±√ 

α   when   α  >  0

x   = 0   when   α   = 0

when   α < 0no equilibrium

x  =  α−x2

" Stability :   f 0(x) = −2x

Bif i di

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 39/165

Bifurcation diagram

x  =  α− x2

Bif i di

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 40/165

Bifurcation diagram

! = -0.5 < 0 no equilibrium point!

x  =  α− x2

Bif ti di

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 41/165

Bifurcation diagram

! = 0.3 > 0 x=

"! is stable & x=-

"! is unstable

x  =  α− x2

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 42/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 43/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 44/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 45/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 46/165

• IF there is an equilibrium point, it is either stable or unstable

• stable equilibrium: the system converges towards it as t#+#

• unstable equilibrium: the system converges towards it as t#-#

Summary: 1D systems ...

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 47/165

• IF there is an equilibrium point, it is either stable or unstable

• stable equilibrium: the system converges towards it as t#+#

• unstable equilibrium: the system converges towards it as t#-#

Summary: 1D systems ...

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 48/165

• IF there is an equilibrium point, it is either stable or unstable

• stable equilibrium: the system converges towards it as t#+#

• unstable equilibrium: the system converges towards it as t#-#

Summary: 1D systems ...

HoweverThe system is still nonlinear, so an exact

solution is unlikely  to exist!

Same for equilibria!

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 49/165

• IF there is an equilibrium point, it is either stable or unstable

• stable equilibrium: the system converges towards it as t#+#

• unstable equilibrium: the system converges towards it as t#-#

Summary: 1D systems ...

HoweverThe system is still nonlinear, so an exact

solution is unlikely  to exist!

Same for equilibria!

$ Need to be able to simulate the system ...

N i l i l i f ODE

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 50/165

Numerical simulation of ODEs

x = f (x,α) (1)

N i l i l i f ODE

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 51/165

Numerical simulation of ODEs

x = f (x,α) (1)

Idea   $ discretise time :

$ ‘march’ in time :

Compute numerically approximate sol. to (1)?

x(t0) =  x0 x(t1) =   ...?

t0 t1   = t0  + h, h  = “dt”

N i l i l ti f ODE

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 52/165

Numerical simulation of ODEs

x = f (x,α) (1)

Idea   $ discretise time :

$ ‘march’ in time :

Compute numerically approximate sol. to (1)?

x(t0) =  x0 x(t1) =   ...?

t0 t1   = t0  + h, h  = “dt”

Example 1: Euler scheme

$ Error:

uses the slope of f(x(t0)) at x(t0)

to approximate x(t1)

(Taylor)

x(t1) ≈ x(t0) + f (x(t0),α)h

O(h2)

N i l i l ti f ODE

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 53/165

Numerical simulation of ODEs

x = f (x,α) (1)

Example 1: Euler scheme

$ Error:

uses the slope of f(x(t0)) at x(t0)to approximate x(t1)

(Taylor)

x(t1) ≈ x(t0) + f (x(t0),α)h

O(h2)

Example 2: 2nd order Runge-Kutta scheme

$ Error: (Taylor)O(h3)

takes a half Euler step to the point (t0+0.5h, x(t0)+0.5k )

[see figure next]1

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 54/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 55/165

2D systems (nD n>2)

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 56/165

2D systems ... (nD, n>2)

vector of (state) variables

vector of parameters

x

α

x =  f (x,α)

Equilibria: find all such that f ( , )=0x∗

α∗

x∗ (α∗ is fixed!)

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 57/165

2D systems (nD n>2)

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 58/165

2D systems ... (nD, n>2)

vector of (state) variables

vector of parameters

x

α

x =  f (x,α)

Stability: Jacobian matrix  J   = ∂ f i

∂ xj∗

! stability depends on the eigenvalues of J

Equilibria: find all such that f ( , )=0x∗

α∗

x∗ (α∗ is fixed!)

2D systems : nullclines

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 59/165

2D systems : nullclines

x   =   f (x,y,α)y   =   g(x,y,α)

2D systems : nullclines

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 60/165

2D systems : nullclines

x   =   f (x,y,α)y   =   g(x,y,α)

Equilibria:(fix !=! )

0

f (x∗

, y∗

,α0) = 0 & g(x∗

, y∗

,α0) = 0

2D systems : nullclines

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 61/165

2D systems : nullclines

x   =   f (x,y,α)y   =   g(x,y,α)

Equilibria:(fix !=! )

0

f (x∗

, y∗

,α0) = 0 & g(x∗

, y∗

,α0) = 0

! Geometrically: 

{f (x,y,α0) = 0}∩{g(x,y,α0) = 0}

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 62/165

2D systems : nullclines

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 63/165

y

(example) FitzHugh-Nagumo

v   =   v−

v3

/3−

w + I y   =   ε(v + a − bw)

I   = 1.5ε   = 0.08

a   = 0.7

b   = 0.8

! f is cubic

! g is linear

2D systems : nullclines

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 64/165

y

(example) FitzHugh-Nagumo

v   =   v−

v3

/3−

w + I y   =   ε(v + a − bw)

I   = 1.5ε   = 0.08

a   = 0.7

b   = 0.8

! f is cubic

! g is linear

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 65/165

2D systems : nullclines

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 66/165

y

(example) FitzHugh-Nagumo

v   =   v−

v3

/3−

w + I y   =   ε(v + a − bw)

ε   = 0.08

a   = 0.7

I   = 0.4

b   = 1.8

! f is cubic

! g is linear

2D systems : nullclines

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 67/165

y

(example) FitzHugh-Nagumo

v   =   v−

v3

/3−

w + I y   =   ε(v + a − bw)

ε   = 0.08

a   = 0.7

I   = 0.4

b   = 1.8◦◦

3 eq.

! f is cubic

! g is linear

Linear a roximation: 2D case

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 68/165

Linear a roximation: 2D case

sourcesink  nodal sink  nodal source hyperbolic centre

C   •

•• •• ••

•Re

Im

Linear a roximation: 2D case

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 69/165

Linear a roximation: 2D case

sourcesink  nodal sink  nodal source hyperbolic centre

C   •

•• •• ••

- nonlinear dynamics -

Re

Im

Linear a roximation: 2D case

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 70/165

Linear a roximation: 2D case

sourcesink  nodal sink  nodal source hyperbolic centre

C   •

•• •• ••

focus

- nonlinear dynamics -

Re

Im

Linear a roximation: 2D case

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 71/165

Linear a roximation: 2D case

sourcesink  nodal sink  nodal source hyperbolic centre

C   •

•• •• ••

focus node

- nonlinear dynamics -

Re

Im

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 72/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 73/165

Linear a roximation: 2D case

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 74/165

Linear a roximation: 2D case

sourcesink  nodal sink  nodal source hyperbolic centre

C   •

•• •• ••

focus node saddle

- nonlinear dynamics -

(un)stable eigenspaces

! nonlinear equivalent: (un)stable manifolds

W s,u

Re

Im

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 75/165

Bifurcations

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 76/165

Bifurcations

•Transcritical, fold, ... : similar to 1D systems

Bifurcations

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 77/165

Bifurcations

•Transcritical, fold, ... : similar to 1D systems1D : Bifurcation when f’(x) goes through 02D : Bifurcation when an eigenvalue goes through 0

Bifurcations

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 78/165

Bifurcations

•Transcritical, fold, ... : similar to 1D systems

• Truly 2D effect : oscillatory dynamics 

(complex eigenvalues)

1D : Bifurcation when f’(x) goes through 02D : Bifurcation when an eigenvalue goes through 0

Bifurcations

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 79/165

Bifurcations

•Transcritical, fold, ... : similar to 1D systems

• Truly 2D effect : oscillatory dynamics 

(complex eigenvalues)

1 - ‘Damped’ nonlin. oscillations: focus eq.

2 - ‘Sustained’ nonlin. oscillations: limit cycle

1D : Bifurcation when f’(x) goes through 02D : Bifurcation when an eigenvalue goes through 0

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 80/165

Hopf bifurcation

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 81/165

stable focus

Hopf bifurcation

• 2D system : possibility for complex eig.

C

Re

Im

stable focus

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 82/165

Hopf bifurcation

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 83/165

unstable focus

Hopf bifurcation

• 2D system : possibility for complex eig.

C

Re

Im

! focus eq. destabilises when eigenvalues cross Im

stable focus

•   •

unstable focus

Hopf bifurcation

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 84/165

unstable focus

Hopf bifurcation

• 2D system : possibility for complex eig.

C

Re

Im

! focus eq. destabilises when eigenvalues cross Im

stable focus

•   •

unstable focus

a stable

limit cycleis created!

Hopf : bifurcation diagram

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 85/165

α

Measure of 

the solution

αH

Hopf : bifurcation diagram

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 86/165

α

Measure of 

the solution

αH

Before : stable equilibrium

Hopf : bifurcation diagram

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 87/165

α

Measure of 

the solution

αH

After : unstable equilibrium

Hopf : bifurcation diagram

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 88/165

α

Measure of 

the solution

αH

After : stable limit cycle

Hopf : bifurcation diagram

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 89/165

α

Measure of 

the solution

αH

After : stable limit cycle

Represented

in this diagram bymax. and min. values

Hopf : bifurcation diagram

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 90/165

α

Measure of 

the solution

αH

After : stable limit cycle

Represented

in this diagram bymax. and min. values

From stationary to periodic when varying !!

Hopf : bifurcation diagram

3D i li i

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 91/165

- 3D visualisation -

α

x

y

Transient dynamicsLong-term dynamics (attractors)

Numerical continuation : idea

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 92/165

 

• Goal is to compute families (branches) of solutions of

nonlinear equations of the form:

F(x) = 0,   F : Rn+1 → Rn

! under-determined system (one more unknowns than equations)

! away from singularities, solution set = 1-dim. manifold

embedded in (n+1)-dim. space

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 93/165

Parameter continuation

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 94/165

• Suppose we have one solution to the problem and wish to vary

one component to find a new solution ...

• In the I.F.T. holds at this point, then locally there is a branch

of solutions parameterised by $: (x($), $). 

F(x0) = 0,   x0  = (x0,λ0)  ∈ Rn × R

• Small change in the parameter $  new point that is not a

solution of the problem but close to one! 

x#

1   = (x0,λ0 +  δ s),

F(x#1 )   6= 0,

F(x#1 )     1

Parameter continuation

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 95/165

• SO initial guess for the new solution is

• New solution computed to a desired accuracy by using Newton’s method 

on the augmented problem 

• Note: additional equation is to ensure unique solution for Newton’s

method

x#1   = (x0,λ0 + δ s)

F(x) = 0,

λ−

(λ0 +  δλ) = 0

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 96/165

Problem at a fold !!

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 97/165

Keller’s pseudo-arclength continuation

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 98/165

• Problem at a fold: the “parameter” chosen to do the

continuation cannot parameterise the solution curve

• Solution: parameterise by something that do not have this problem

!Arclength s along the curve !

• The problem to be solved becomes F(x) = 0,

(λ−

λ0)λ0 + (x−

x0)x0−

δ s   = 0

Arclength measured along the tangent space !

Periodic orbit continuation

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 99/165

• We look for periodic solutions of the problem :

! We seek for solutions of period 1 i.e. such that :

x = F(x(t),λ)

x0 = T F(x(t),λ)

x(1) =  x(0)

! The true period T is now an additional parameter

• Note: the above equations do not uniquely specify x and T ...

... translation invariance !

! Necessity of a Phase condition

• Example: Poincaré orthogonality condition

• In practice: Integral phase condition

  Z   1

0

xk(t)∗x0k−1

dt = 0

(xk(0)− xk−1(0))∗x0k−1(0)) = 0

• Fix the interval of periodicity by the transformation t # t/T

such that :

Periodic orbit continuation

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 100/165

• We look for periodic solutions of the problem :

! We seek for solutions of period 1 i.e. such that :

x = F(x(t),λ)

x0 = T F(x(t),λ)

x(1) =  x(0)

! The true period T is now an additional parameter

• Note: the above equations do not uniquely specify x and T ...

... translation invariance !

! Necessity of a Phase condition

• Example: Poincaré orthogonality condition

• In practice: Integral phase condition

  Z   1

0

xk(t)∗x0k−1

dt = 0

(xk(0)− xk−1(0))∗x0k−1(0)) = 0

• Fix the interval of periodicity by the transformation t # t/T

such that :

Periodic orbit continuation

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 101/165

• ... we then solve a large G(X) = 0 augmented by the

arclength-continuation equation:

• Discretisation of the periodic orbits: using orthogonalcollocation (piecewise polynomials on mesh intervals)

! Solve exactly at mesh points (boundaries of mesh intervals)

Z   1

0

(xk(t)− xk−1(t))∗xk−1dt + (T k − T k−1) T k−1

+(λk − λk−1)λk−1 − δ s = 0

! Inside mesh intervals: well-chosen collocation points (good

convergence properties)

• Well-posedness: n+1 unknowns (n components of x and period T) 

for n+1 conditions ( periodicity + phase)

! varying 1 parameter will give a 1-parameter family of per. orbits

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 102/165

Part II: XPPAUT

- main features & capabilities -

Equation file: FitzHugh-Nagumo

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 103/165

Equation file: FitzHugh-Nagumo

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 104/165

Differential Equations

Equation file: FitzHugh-Nagumo

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 105/165

Parameters: initialisation

Equation file: FitzHugh-Nagumo

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 106/165

State variables: initial conditions

Equation file: FitzHugh-Nagumo

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 107/165

Numerical accuracy

XPP-part

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 108/165

• one ‘simple’ example: the FitzHugh-Nagumo equation ... let’s

learn how to use XPP on this example!

• Equation file: equations, parameters, initialisation, numericalaccuracy, ...

• launch it, run it ...

• accuracy: choose the scheme, set the time step, theintegration time, the tolerances, ...

• change: initial conditions, parameter(s) (sweep)

• equilibria: can integrate until transient has passed & get

approx. of equilibria / alternatively , use the in-built routine tofind eq. & assess stability & approximation of (un)stable mflds

• par. dependence: move par. & find ass. eq. manually ... find

interesting transitions like eq 2 per i.e. one has gone through

a Hopf bifurcation! ... Can do that more systematically!! 

XPP-part

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 109/165

• one ‘simple’ example: the FitzHugh-Nagumo equation ... let’s

learn how to use XPP on this example!

• Equation file: equations, parameters, initialisation, numericalaccuracy, ...

• launch it, run it ...

•accuracy: choose the scheme, set the time step, the

integration time, the tolerances, ...

• change: initial conditions, parameter(s) (sweep)

• equilibria: can integrate until transient has passed & get

approx. of equilibria / alternatively , use the in-built routine tofind eq. & assess stability & approximation of (un)stable mflds

• par. dependence: move par. & find ass. eq. manually ... find

interesting transitions like eq 2 per i.e. one has gone through

a Hopf bifurcation! ... Can do that more systematically!! 

XPP-part

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 110/165

• one ‘simple’ example: the FitzHugh-Nagumo equation ... let’s

learn how to use XPP on this example!

• Equation file: equations, parameters, initialisation, numericalaccuracy, ...

• launch it, run it ...

•accuracy: choose the scheme, set the time step, the

integration time, the tolerances, ...

• change: initial conditions, parameter(s) (sweep)

• equilibria: can integrate until transient has passed & get

approx. of equilibria / alternatively , use the in-built routine tofind eq. & assess stability & approximation of (un)stable mflds

• par. dependence: move par. & find ass. eq. manually ... find

interesting transitions like eq 2 per i.e. one has gone through

a Hopf bifurcation! ... Can do that more systematically!! 

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 111/165

XPP-part

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 112/165

• one ‘simple’ example: the FitzHugh-Nagumo equation ... let’s

learn how to use XPP on this example!

• Equation file: equations, parameters, initialisation, numericalaccuracy, ...

• launch it, run it ...

•accuracy: choose the scheme, set the time step, the

integration time, the tolerances, ...

• change: initial conditions, parameter(s) (sweep)

• equilibria: can integrate until transient has passed & get

approx. of equilibria / alternatively , use the in-built routine tofind eq. & assess stability & approximation of (un)stable mflds

• par. dependence: move par. & find ass. eq. manually ... find

interesting transitions like eq 2 per i.e. one has gone through

a Hopf bifurcation! ... Can do that more systematically!! 

XPP-part

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 113/165

• one ‘simple’ example: the FitzHugh-Nagumo equation ... let’s

learn how to use XPP on this example!

• Equation file: equations, parameters, initialisation, numericalaccuracy, ...

• launch it, run it ...

•accuracy: choose the scheme, set the time step, the

integration time, the tolerances, ...

• change: initial conditions, parameter(s) (sweep)

• equilibria: can integrate until transient has passed & get

approx. of equilibria / alternatively , use the in-built routine tofind eq. & assess stability & approximation of (un)stable mflds

• par. dependence: move par. & find ass. eq. manually ... find

interesting transitions like eq 2 per i.e. one has gone through

a Hopf bifurcation! ... Can do that more systematically!! 

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 114/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 115/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 116/165

Let’s launch it and try!

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 117/165

We’re now going to learn XPP

with the FitzHugh-Nagumoequation ...

AUT-part

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 118/165

• initialise: grab an equilibrium point

• launch AUTO: start the continuator ...

• set up: accuracy, problem type, cont. par., ...

• compute: 1-par. family of equilibria (branch)

• detect: possible bif. like fold (LP) or Hopf (HB) ...

• branch-switch at HB: extend the problem to compute the

emanating family of periodic orbits ...

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 119/165

Let’s launch it and try!

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 120/165

Let’s launch it and try!

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 121/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 122/165

FHN: 1-par. continuation results

b=1 8

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 123/165

! !"#$ !"$ !"%$ &−#

−&

!

&

#

b=1.8

v

•HB

HB

stable

unstable

stable

LP

LP

HO

HO

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 124/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 125/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 126/165

Part III: XPPAUT

- practice it yourself -

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 127/165

Hindmarsh-Rose equation file

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 128/165

D.E.

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 129/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 130/165

Hindmarsh-Rose equation file

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 131/165

D.E.

Par.

I.C.

Num.

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 132/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 133/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 134/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 135/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 136/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 137/165

Simulating the system for different values of I, youshould obtain time series that look like these ones

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 138/165

You should obtain a bifurcation

diagram that looks like this one

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 139/165

diagram that looks like this one

! " #$ %# %&

−%

−!'"(

!'(

#'"(

)

I

x••

HB

HB HB

HB

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 140/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 141/165

References

XPPAUT

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 142/165

% Bard Ermentrout (University of Pittsburgh, USA):

XPPAUT

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 143/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 144/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 145/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 146/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 147/165

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 148/165

References ...

ODEs & Bifurcations

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 149/165

ODEs & Bifurcations

(‘Tutorials’ & ‘Software’ sections)

http://www.bio.vu.nl/thb/research/project/globif/

(MathDoctorMitchell’s Channel)

References ...

ODEs & Bifurcations

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 150/165

ODEs & Bifurcations

(‘Tutorials’ & ‘Software’ sections)

http://www.bio.vu.nl/thb/research/project/globif/

(MathDoctorMitchell’s Channel)

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 151/165

Beyond XPPAUT!

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 152/165

Command-line AUTO: the ‘proper way’ to do continuation!

Beyond XPPAUT!

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 153/165

Command-line AUTO: the ‘proper way’ to do continuation!

! Allows to continue: equilibria, limit cyclesAND boundary-value problems

Beyond XPPAUT!

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 154/165

Command-line AUTO: the ‘proper way’ to do continuation!

! Allows to continue: equilibria, limit cyclesAND boundary-value problems

Other continuation packages: MatCont  Matlab based !CoCo

Beyond XPPAUT!

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 155/165

Command-line AUTO: the ‘proper way’ to do continuation!

! Allows to continue: equilibria, limit cyclesAND boundary-value problems

Other continuation packages: MatCont  Matlab based !

!! mostly for ODEs !!

CoCo

Beyond XPPAUT!

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 156/165

Command-line AUTO: the ‘proper way’ to do continuation!

! Allows to continue: equilibria, limit cyclesAND boundary-value problems

Other continuation packages: MatCont  Matlab based !

Beyond ODEs: 

!! mostly for ODEs !!

CoCo

Beyond XPPAUT!

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 157/165

Command-line AUTO: the ‘proper way’ to do continuation!

! Allows to continue: equilibria, limit cyclesAND boundary-value problems

Other continuation packages: MatCont  Matlab based !

Beyond ODEs: 

%codes exist for PDEs ( ) and DDEs ( )

!! mostly for ODEs !!

CoCo

LOCA Knut

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 158/165

References

AUTO - 07p

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 159/165

p

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 160/165

References

AUTO - 07p

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 161/165

% Eusebius Doedel (Concordia University, Montreal):

p

References

AUTO - 07p

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 164/165

Thanks for your attention!

7/27/2019 Xppaut Roscoff

http://slidepdf.com/reader/full/xppaut-roscoff 165/165

Thanks for your attention!

... questions?


Recommended