+ All Categories
Home > Documents > Yield (Engineering)

Yield (Engineering)

Date post: 13-Apr-2018
Category:
Upload: anoj-pahathkumbura
View: 222 times
Download: 0 times
Share this document with a friend

of 12

Transcript
  • 7/27/2019 Yield (Engineering)

    1/12

    Yield (engineering)From Wikipedia, the free encyclopedia

    [hide]

    V

    T

    E

    Mechanical failure modes

    Buckling

    Corrosion

    Corrosion fatigue

    Creep

    Fatigue

    Fouling

    Fracture

    Hydrogen embrittlement

    Impact

    Mechanical overload

    Stress corrosion cracking

    Thermal shock

    Wear

    Yielding

    A yield strengthor yield pointof a material is defined inengineeringandmaterials scienceasthestressat which a material begins todeform plastically.Prior to the yield point the material willdeformelasticallyand will return to its original shape when the applied stress is removed. Once theyield point is passed, some fraction of the deformation will be permanent and non-reversible.

    In the three-dimensional space of the principal stresses ( ), an infinite number of yieldpoints form together ayield surface.

    Knowledge of the yield point is vital when designing a component since it generally represents anupper limit to the load that can be applied. It is also important for the control of many materialsproduction techniques such asforging,rolling,orpressing.In structural engineering, this is a softfailure mode which does not normally causecatastrophic failureorultimate failureunless itacceleratesbuckling.

    Contents

    [hide]

    1 Definition

    2 Yield criterion

    o 2.1 Isotropic yield criteria

    o 2.2 Anisotropic yield criteria 3 Factors influencing yield strength

    o 3.1 Strengthening mechanisms

    3.1.1 Work hardening

    3.1.2 Solid solution strengthening

    3.1.3 Particle/Precipitate strengthening

    3.1.4 Grain boundary strengthening

    4 Testing

    5 Implications for structural engineering

    http://en.wikipedia.org/wiki/Yield_(engineering)http://en.wikipedia.org/wiki/Yield_(engineering)http://en.wikipedia.org/wiki/Yield_(engineering)http://en.wikipedia.org/wiki/Template:Mechanical_failure_modeshttp://en.wikipedia.org/wiki/Template:Mechanical_failure_modeshttp://en.wikipedia.org/wiki/Template_talk:Mechanical_failure_modeshttp://en.wikipedia.org/wiki/Template_talk:Mechanical_failure_modeshttp://en.wikipedia.org/w/index.php?title=Template:Mechanical_failure_modes&action=edithttp://en.wikipedia.org/w/index.php?title=Template:Mechanical_failure_modes&action=edithttp://en.wikipedia.org/wiki/Bucklinghttp://en.wikipedia.org/wiki/Bucklinghttp://en.wikipedia.org/wiki/Corrosionhttp://en.wikipedia.org/wiki/Corrosionhttp://en.wikipedia.org/wiki/Corrosion_fatiguehttp://en.wikipedia.org/wiki/Corrosion_fatiguehttp://en.wikipedia.org/wiki/Creep_(deformation)http://en.wikipedia.org/wiki/Creep_(deformation)http://en.wikipedia.org/wiki/Fatigue_(material)http://en.wikipedia.org/wiki/Fatigue_(material)http://en.wikipedia.org/wiki/Foulinghttp://en.wikipedia.org/wiki/Foulinghttp://en.wikipedia.org/wiki/Fracturehttp://en.wikipedia.org/wiki/Fracturehttp://en.wikipedia.org/wiki/Hydrogen_embrittlementhttp://en.wikipedia.org/wiki/Hydrogen_embrittlementhttp://en.wikipedia.org/wiki/Impact_(mechanics)http://en.wikipedia.org/wiki/Impact_(mechanics)http://en.wikipedia.org/wiki/Mechanical_overload_(engineering)http://en.wikipedia.org/wiki/Mechanical_overload_(engineering)http://en.wikipedia.org/wiki/Stress_corrosion_crackinghttp://en.wikipedia.org/wiki/Stress_corrosion_crackinghttp://en.wikipedia.org/wiki/Thermal_shockhttp://en.wikipedia.org/wiki/Thermal_shockhttp://en.wikipedia.org/wiki/Wearhttp://en.wikipedia.org/wiki/Wearhttp://en.wikipedia.org/wiki/Engineeringhttp://en.wikipedia.org/wiki/Engineeringhttp://en.wikipedia.org/wiki/Engineeringhttp://en.wikipedia.org/wiki/Materials_sciencehttp://en.wikipedia.org/wiki/Materials_sciencehttp://en.wikipedia.org/wiki/Materials_sciencehttp://en.wikipedia.org/wiki/Stress_(physics)http://en.wikipedia.org/wiki/Stress_(physics)http://en.wikipedia.org/wiki/Stress_(physics)http://en.wikipedia.org/wiki/Plasticity_(physics)http://en.wikipedia.org/wiki/Plasticity_(physics)http://en.wikipedia.org/wiki/Plasticity_(physics)http://en.wikipedia.org/wiki/Elasticity_(physics)http://en.wikipedia.org/wiki/Elasticity_(physics)http://en.wikipedia.org/wiki/Yield_surfacehttp://en.wikipedia.org/wiki/Yield_surfacehttp://en.wikipedia.org/wiki/Yield_surfacehttp://en.wikipedia.org/wiki/Forginghttp://en.wikipedia.org/wiki/Forginghttp://en.wikipedia.org/wiki/Forginghttp://en.wikipedia.org/wiki/Rolling_(metalworking)http://en.wikipedia.org/wiki/Rolling_(metalworking)http://en.wikipedia.org/wiki/Rolling_(metalworking)http://en.wikipedia.org/wiki/Machine_presshttp://en.wikipedia.org/wiki/Machine_presshttp://en.wikipedia.org/wiki/Machine_presshttp://en.wikipedia.org/wiki/Catastrophic_failurehttp://en.wikipedia.org/wiki/Catastrophic_failurehttp://en.wikipedia.org/wiki/Catastrophic_failurehttp://en.wikipedia.org/wiki/Ultimate_failurehttp://en.wikipedia.org/wiki/Ultimate_failurehttp://en.wikipedia.org/wiki/Ultimate_failurehttp://en.wikipedia.org/wiki/Bucklinghttp://en.wikipedia.org/wiki/Bucklinghttp://en.wikipedia.org/wiki/Bucklinghttp://en.wikipedia.org/wiki/Yield_(engineering)http://en.wikipedia.org/wiki/Yield_(engineering)http://en.wikipedia.org/wiki/Yield_(engineering)http://en.wikipedia.org/wiki/Yield_(engineering)#Definitionhttp://en.wikipedia.org/wiki/Yield_(engineering)#Definitionhttp://en.wikipedia.org/wiki/Yield_(engineering)#Yield_criterionhttp://en.wikipedia.org/wiki/Yield_(engineering)#Yield_criterionhttp://en.wikipedia.org/wiki/Yield_(engineering)#Isotropic_yield_criteriahttp://en.wikipedia.org/wiki/Yield_(engineering)#Isotropic_yield_criteriahttp://en.wikipedia.org/wiki/Yield_(engineering)#Anisotropic_yield_criteriahttp://en.wikipedia.org/wiki/Yield_(engineering)#Anisotropic_yield_criteriahttp://en.wikipedia.org/wiki/Yield_(engineering)#Factors_influencing_yield_strengthhttp://en.wikipedia.org/wiki/Yield_(engineering)#Factors_influencing_yield_strengthhttp://en.wikipedia.org/wiki/Yield_(engineering)#Strengthening_mechanismshttp://en.wikipedia.org/wiki/Yield_(engineering)#Strengthening_mechanismshttp://en.wikipedia.org/wiki/Yield_(engineering)#Work_hardeninghttp://en.wikipedia.org/wiki/Yield_(engineering)#Work_hardeninghttp://en.wikipedia.org/wiki/Yield_(engineering)#Solid_solution_strengtheninghttp://en.wikipedia.org/wiki/Yield_(engineering)#Solid_solution_strengtheninghttp://en.wikipedia.org/wiki/Yield_(engineering)#Particle.2FPrecipitate_strengtheninghttp://en.wikipedia.org/wiki/Yield_(engineering)#Particle.2FPrecipitate_strengtheninghttp://en.wikipedia.org/wiki/Yield_(engineering)#Grain_boundary_strengtheninghttp://en.wikipedia.org/wiki/Yield_(engineering)#Grain_boundary_strengtheninghttp://en.wikipedia.org/wiki/Yield_(engineering)#Testinghttp://en.wikipedia.org/wiki/Yield_(engineering)#Testinghttp://en.wikipedia.org/wiki/Yield_(engineering)#Implications_for_structural_engineeringhttp://en.wikipedia.org/wiki/Yield_(engineering)#Implications_for_structural_engineeringhttp://en.wikipedia.org/wiki/Yield_(engineering)#Implications_for_structural_engineeringhttp://en.wikipedia.org/wiki/Yield_(engineering)#Testinghttp://en.wikipedia.org/wiki/Yield_(engineering)#Grain_boundary_strengtheninghttp://en.wikipedia.org/wiki/Yield_(engineering)#Particle.2FPrecipitate_strengtheninghttp://en.wikipedia.org/wiki/Yield_(engineering)#Solid_solution_strengtheninghttp://en.wikipedia.org/wiki/Yield_(engineering)#Work_hardeninghttp://en.wikipedia.org/wiki/Yield_(engineering)#Strengthening_mechanismshttp://en.wikipedia.org/wiki/Yield_(engineering)#Factors_influencing_yield_strengthhttp://en.wikipedia.org/wiki/Yield_(engineering)#Anisotropic_yield_criteriahttp://en.wikipedia.org/wiki/Yield_(engineering)#Isotropic_yield_criteriahttp://en.wikipedia.org/wiki/Yield_(engineering)#Yield_criterionhttp://en.wikipedia.org/wiki/Yield_(engineering)#Definitionhttp://en.wikipedia.org/wiki/Yield_(engineering)http://en.wikipedia.org/wiki/Bucklinghttp://en.wikipedia.org/wiki/Ultimate_failurehttp://en.wikipedia.org/wiki/Catastrophic_failurehttp://en.wikipedia.org/wiki/Machine_presshttp://en.wikipedia.org/wiki/Rolling_(metalworking)http://en.wikipedia.org/wiki/Forginghttp://en.wikipedia.org/wiki/Yield_surfacehttp://en.wikipedia.org/wiki/Elasticity_(physics)http://en.wikipedia.org/wiki/Plasticity_(physics)http://en.wikipedia.org/wiki/Stress_(physics)http://en.wikipedia.org/wiki/Materials_sciencehttp://en.wikipedia.org/wiki/Engineeringhttp://en.wikipedia.org/wiki/Wearhttp://en.wikipedia.org/wiki/Thermal_shockhttp://en.wikipedia.org/wiki/Stress_corrosion_crackinghttp://en.wikipedia.org/wiki/Mechanical_overload_(engineering)http://en.wikipedia.org/wiki/Impact_(mechanics)http://en.wikipedia.org/wiki/Hydrogen_embrittlementhttp://en.wikipedia.org/wiki/Fracturehttp://en.wikipedia.org/wiki/Foulinghttp://en.wikipedia.org/wiki/Fatigue_(material)http://en.wikipedia.org/wiki/Creep_(deformation)http://en.wikipedia.org/wiki/Corrosion_fatiguehttp://en.wikipedia.org/wiki/Corrosionhttp://en.wikipedia.org/wiki/Bucklinghttp://en.wikipedia.org/w/index.php?title=Template:Mechanical_failure_modes&action=edithttp://en.wikipedia.org/wiki/Template_talk:Mechanical_failure_modeshttp://en.wikipedia.org/wiki/Template:Mechanical_failure_modeshttp://en.wikipedia.org/wiki/Yield_(engineering)
  • 7/27/2019 Yield (Engineering)

    2/12

    6 Typical yield and ultimate strengths

    7 See also

    8 References

    o 8.1 Notes

    o 8.2 Bibliography

    Definition[edit]

    Typical yield behavior for non-ferrous alloys.

    1: True elastic limit

    2: Proportionality limit

    3: Elastic limit

    4: Offset yield strength

    It is often difficult to precisely define yielding due to the wide variety ofstressstrain curvesexhibitedby real materials. In addition, there are several possible ways to define yielding :

    [1]

    True elastic limit

    The lowest stress at whichdislocationsmove. This definition is rarely used, sincedislocations move at very low stresses, and detecting such movement is very difficult.

    Proportionality limit

    Up to this amount of stress, stress is proportional to strain (Hooke's law), so the stress-straingraph is a straight line, and the gradient will be equal to theelastic modulusof the material.

    Elastic limit (yield strength)

    Beyond the elastic limit, permanent deformation will occur. The lowest stress at whichpermanent deformation can be measured. This requires a manual load-unload procedure,and the accuracy is critically dependent on equipment and operator skill. Forelastomers,

    such asrubber,the elastic limit is much larger than the proportionality limit. Also, precisestrain measurements have shown that plastic strain begins at low stresses.

    [2][3]

    Yield point

    The point in the stress-strain curve at which the curve levels off and plastic deformationbegins to occur.

    [4]

    Offset yield point (proof stress)

    When a yield point is not easily defined based on the shape of the stress-strain curvean offset yield pointis arbitrarily defined. The value for this is commonly set at 0.1 or 0.2%

    http://en.wikipedia.org/wiki/Yield_(engineering)#Typical_yield_and_ultimate_strengthshttp://en.wikipedia.org/wiki/Yield_(engineering)#Typical_yield_and_ultimate_strengthshttp://en.wikipedia.org/wiki/Yield_(engineering)#See_alsohttp://en.wikipedia.org/wiki/Yield_(engineering)#See_alsohttp://en.wikipedia.org/wiki/Yield_(engineering)#Referenceshttp://en.wikipedia.org/wiki/Yield_(engineering)#Referenceshttp://en.wikipedia.org/wiki/Yield_(engineering)#Noteshttp://en.wikipedia.org/wiki/Yield_(engineering)#Noteshttp://en.wikipedia.org/wiki/Yield_(engineering)#Bibliographyhttp://en.wikipedia.org/wiki/Yield_(engineering)#Bibliographyhttp://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=1http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=1http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=1http://en.wikipedia.org/wiki/Stress%E2%80%93strain_curvehttp://en.wikipedia.org/wiki/Stress%E2%80%93strain_curvehttp://en.wikipedia.org/wiki/Stress%E2%80%93strain_curvehttp://en.wikipedia.org/wiki/Stress%E2%80%93strain_curvehttp://en.wikipedia.org/wiki/Stress%E2%80%93strain_curvehttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-dieter-1http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-dieter-1http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-dieter-1http://en.wikipedia.org/wiki/Dislocationhttp://en.wikipedia.org/wiki/Dislocationhttp://en.wikipedia.org/wiki/Dislocationhttp://en.wikipedia.org/wiki/Hooke%27s_lawhttp://en.wikipedia.org/wiki/Hooke%27s_lawhttp://en.wikipedia.org/wiki/Hooke%27s_lawhttp://en.wikipedia.org/wiki/Elastic_modulushttp://en.wikipedia.org/wiki/Elastic_modulushttp://en.wikipedia.org/wiki/Elastic_modulushttp://en.wikipedia.org/wiki/Elastomerhttp://en.wikipedia.org/wiki/Elastomerhttp://en.wikipedia.org/wiki/Elastomerhttp://en.wikipedia.org/wiki/Rubberhttp://en.wikipedia.org/wiki/Rubberhttp://en.wikipedia.org/wiki/Rubberhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-2http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-2http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-2http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-4http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-4http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-4http://en.wikipedia.org/wiki/File:Metal_yield.svghttp://en.wikipedia.org/wiki/File:Metal_yield.svghttp://en.wikipedia.org/wiki/File:Metal_yield.svghttp://en.wikipedia.org/wiki/File:Metal_yield.svghttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-4http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-2http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-2http://en.wikipedia.org/wiki/Rubberhttp://en.wikipedia.org/wiki/Elastomerhttp://en.wikipedia.org/wiki/Elastic_modulushttp://en.wikipedia.org/wiki/Hooke%27s_lawhttp://en.wikipedia.org/wiki/Dislocationhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-dieter-1http://en.wikipedia.org/wiki/Stress%E2%80%93strain_curvehttp://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=1http://en.wikipedia.org/wiki/Yield_(engineering)#Bibliographyhttp://en.wikipedia.org/wiki/Yield_(engineering)#Noteshttp://en.wikipedia.org/wiki/Yield_(engineering)#Referenceshttp://en.wikipedia.org/wiki/Yield_(engineering)#See_alsohttp://en.wikipedia.org/wiki/Yield_(engineering)#Typical_yield_and_ultimate_strengths
  • 7/27/2019 Yield (Engineering)

    3/12

    strain.[5]

    The offset value is given as a subscript, e.g., Rp0.2=310 MPa.[citation needed]

    Highstrength steel and aluminum alloys do not exhibit a yield point, so this offset yield point isused on these materials.

    [5]

    Upper yield point and lower yield point

    Some metals, such asmild steel,reach an upper yield point before dropping rapidly to alower yield point. The material response is linear up until the upper yield point, but the lower

    yield point is used in structural engineering as a conservative value. If a metal is onlystressed to the upper yield point, and beyond,Lders bandscan develop.[6]

    Yield criterion[edit]

    This section does notciteanyreferences or sources.Please

    help improve this section byadding citations to reliable sources.

    Unsourced material may be challenged andremoved.(June 2013)

    A yield criterion, often expressed as yield surface, or yield locus, is a hypothesis concerning the limit

    of elasticity under any combination of stresses. There are two interpretations of yield criterion: one is

    purely mathematical in taking a statistical approach while other models attempt to provide a

    justification based on established physical principles. Since stress and strain aretensorqualities

    they can be described on the basis of three principal directions, in the case of stress these are

    denoted by , , and .

    The following represent the most common yield criterion as applied to an isotropic material (uniform

    properties in all directions). Other equations have been proposed or are used in specialist situations.

    Isotropic yield criteria[edit]

    Maximum Principal Stress Theoryby W.J.M Rankine(1850). Yield occurs when the largest

    principal stress exceeds the uniaxial tensile yield strength. Although this criterion allows for a quick

    and easy comparison with experimental data it is rarely suitable for design purposes. This theory

    gives good predictions for brittle materials.

    Maximum Principal Strain Theoryby St.Venant. Yield occurs when the maximum

    principalstrainreaches the strain corresponding to the yield point during a simple tensile test. In

    terms of the principal stresses this is determined by the equation:

    Maximum Shear Stress TheoryAlso known as theTresca yield criterion,after the

    French scientistHenri Tresca.This assumes that yield occurs when the shear

    stress exceeds the shear yield strength :

    http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-ross59-5http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-ross59-5http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-ross59-5http://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-ross59-5http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-ross59-5http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-ross59-5http://en.wikipedia.org/wiki/Mild_steelhttp://en.wikipedia.org/wiki/Mild_steelhttp://en.wikipedia.org/wiki/Mild_steelhttp://en.wikipedia.org/wiki/L%C3%BCders_bandhttp://en.wikipedia.org/wiki/L%C3%BCders_bandhttp://en.wikipedia.org/wiki/L%C3%BCders_bandhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-6http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-6http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-6http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=2http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=2http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=2http://en.wikipedia.org/wiki/Wikipedia:Citing_sourceshttp://en.wikipedia.org/wiki/Wikipedia:Citing_sourceshttp://en.wikipedia.org/wiki/Wikipedia:Citing_sourceshttp://en.wikipedia.org/wiki/Wikipedia:Verifiabilityhttp://en.wikipedia.org/wiki/Wikipedia:Verifiabilityhttp://en.wikipedia.org/wiki/Wikipedia:Verifiabilityhttp://en.wikipedia.org/wiki/Help:Introduction_to_referencing/1http://en.wikipedia.org/wiki/Help:Introduction_to_referencing/1http://en.wikipedia.org/wiki/Help:Introduction_to_referencing/1http://en.wikipedia.org/wiki/Wikipedia:Verifiability#Burden_of_evidencehttp://en.wikipedia.org/wiki/Wikipedia:Verifiability#Burden_of_evidencehttp://en.wikipedia.org/wiki/Wikipedia:Verifiability#Burden_of_evidencehttp://en.wikipedia.org/wiki/Tensorhttp://en.wikipedia.org/wiki/Tensorhttp://en.wikipedia.org/wiki/Tensorhttp://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=3http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=3http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=3http://en.wikipedia.org/wiki/Strain_(materials_science)http://en.wikipedia.org/wiki/Strain_(materials_science)http://en.wikipedia.org/wiki/Strain_(materials_science)http://en.wikipedia.org/wiki/Tresca_yield_criterionhttp://en.wikipedia.org/wiki/Tresca_yield_criterionhttp://en.wikipedia.org/wiki/Tresca_yield_criterionhttp://en.wikipedia.org/wiki/Henri_Trescahttp://en.wikipedia.org/wiki/Henri_Trescahttp://en.wikipedia.org/wiki/Henri_Trescahttp://en.wikipedia.org/wiki/File:Question_book-new.svghttp://en.wikipedia.org/wiki/File:Question_book-new.svghttp://en.wikipedia.org/wiki/File:Question_book-new.svghttp://en.wikipedia.org/wiki/File:Question_book-new.svghttp://en.wikipedia.org/wiki/File:Question_book-new.svghttp://en.wikipedia.org/wiki/File:Question_book-new.svghttp://en.wikipedia.org/wiki/File:Question_book-new.svghttp://en.wikipedia.org/wiki/File:Question_book-new.svghttp://en.wikipedia.org/wiki/Henri_Trescahttp://en.wikipedia.org/wiki/Tresca_yield_criterionhttp://en.wikipedia.org/wiki/Strain_(materials_science)http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=3http://en.wikipedia.org/wiki/Tensorhttp://en.wikipedia.org/wiki/Wikipedia:Verifiability#Burden_of_evidencehttp://en.wikipedia.org/wiki/Help:Introduction_to_referencing/1http://en.wikipedia.org/wiki/Wikipedia:Verifiabilityhttp://en.wikipedia.org/wiki/Wikipedia:Citing_sourceshttp://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=2http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-6http://en.wikipedia.org/wiki/L%C3%BCders_bandhttp://en.wikipedia.org/wiki/Mild_steelhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-ross59-5http://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-ross59-5
  • 7/27/2019 Yield (Engineering)

    4/12

    Total Strain Energy TheoryThis theory assumes that the stored energy associated

    with elastic deformation at the point of yield is independent of the specific stress tensor.

    Thus yield occurs when the strain energy per unit volume is greater than the strainenergy at the elastic limit in simple tension. For a 3-dimensional stress state this is given

    by:

    Distortion Energy TheoryThis theory proposes that the total strain energy can

    be separated into two components: the volumetric(hydrostatic)strain energy and

    the shape(distortion orshear)strain energy. It is proposed that yield occurs when

    the distortion component exceeds that at the yield point for a simple tensile test.

    This theory is also known as thevon Mises yield criterion.

    Based on a different theoretical underpinning this expression is also referred to

    as octahedral shear stress theory.[citation needed]

    Other commonly used isotropic yield criteria are the

    Mohr-Coulomb yield criterion

    Drucker-Prager yield criterion

    Bresler-Pister yield criterion

    Willam-Warnke yield criterion

    Theyield surfacescorresponding to these criteria have a range of forms. However,

    most isotropic yield criteria correspond toconvexyield surfaces.

    Anisotropic yield criteria[edit]

    When a metal is subjected to large plastic deformations the grain sizes and

    orientations change in the direction of deformation. As a result the plastic yield

    behavior of the material shows directional dependency. Under such circumstances,

    the isotropic yield criteria such as the von Mises yield criterion are unable to predict

    the yield behavior accurately. Several anisotropic yield criteria have been developed

    to deal with such situations. Some of the more popular anisotropic yield criteria are:

    Hill's quadratic yield criterion.

    Generalized Hill yield criterion.

    Hosford yield criterion.

    http://en.wikipedia.org/wiki/Hydrostatichttp://en.wikipedia.org/wiki/Hydrostatichttp://en.wikipedia.org/wiki/Hydrostatichttp://en.wikipedia.org/wiki/Shearing_(physics)http://en.wikipedia.org/wiki/Shearing_(physics)http://en.wikipedia.org/wiki/Shearing_(physics)http://en.wikipedia.org/wiki/Von_Mises_yield_criterionhttp://en.wikipedia.org/wiki/Von_Mises_yield_criterionhttp://en.wikipedia.org/wiki/Von_Mises_yield_criterionhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Mohr-Coulomb_theoryhttp://en.wikipedia.org/wiki/Mohr-Coulomb_theoryhttp://en.wikipedia.org/wiki/Drucker_Pragerhttp://en.wikipedia.org/wiki/Drucker_Pragerhttp://en.wikipedia.org/wiki/Bresler_Pister_yield_criterionhttp://en.wikipedia.org/wiki/Bresler_Pister_yield_criterionhttp://en.wikipedia.org/wiki/Willam-Warnke_yield_criterionhttp://en.wikipedia.org/wiki/Willam-Warnke_yield_criterionhttp://en.wikipedia.org/wiki/Yield_surfacehttp://en.wikipedia.org/wiki/Yield_surfacehttp://en.wikipedia.org/wiki/Yield_surfacehttp://en.wikipedia.org/wiki/Convex_polytopehttp://en.wikipedia.org/wiki/Convex_polytopehttp://en.wikipedia.org/wiki/Convex_polytopehttp://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=4http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=4http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=4http://en.wikipedia.org/wiki/Hill_yield_criteriahttp://en.wikipedia.org/wiki/Hill_yield_criteriahttp://en.wikipedia.org/wiki/Hill_yield_criteriahttp://en.wikipedia.org/wiki/Hill_yield_criteriahttp://en.wikipedia.org/wiki/Hosford_yield_criterionhttp://en.wikipedia.org/wiki/Hosford_yield_criterionhttp://en.wikipedia.org/wiki/Hosford_yield_criterionhttp://en.wikipedia.org/wiki/Hill_yield_criteriahttp://en.wikipedia.org/wiki/Hill_yield_criteriahttp://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=4http://en.wikipedia.org/wiki/Convex_polytopehttp://en.wikipedia.org/wiki/Yield_surfacehttp://en.wikipedia.org/wiki/Willam-Warnke_yield_criterionhttp://en.wikipedia.org/wiki/Bresler_Pister_yield_criterionhttp://en.wikipedia.org/wiki/Drucker_Pragerhttp://en.wikipedia.org/wiki/Mohr-Coulomb_theoryhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Von_Mises_yield_criterionhttp://en.wikipedia.org/wiki/Shearing_(physics)http://en.wikipedia.org/wiki/Hydrostatic
  • 7/27/2019 Yield (Engineering)

    5/12

    Factors influencing yield strength[edit]

    This section does notciteanyreferences or

    sources.Please help improve this section

    byadding citations to reliable sources.

    Unsourced material may be challenged

    andremoved.(June 2013)

    The stress at which yield occurs is dependent on both the rate of deformation (strain

    rate) and, more significantly, the temperature at which the deformation occurs. In

    general, the yield strength increases with strain rate and decreases with

    temperature. When the latter is not the case, the material is said to exhibityield

    strength anomaly,which is typical forsuperalloysand leads to their use in

    applications requiring high strength at high temperatures.

    Early work by Alder and Philips in 1954 found that the relationship between yield

    stress and strain rate (at constant temperature) was best described by a power law

    relationship of the form

    where C is a constant and m is the strain rate sensitivity. The latter generally

    increases with temperature, and materials where m reaches a value greater

    than ~0.5 tend to exhibitsuper plastic behaviour.m can be found from a log-log

    plot of yield stress at a fixed plastic strain versus the strain rate.[7]

    Later, more complex equations were proposed that simultaneously dealt

    with both temperature and strain rate:

    where and A are constants and Z is the temperature-compensated

    strain-rateoften described by theZener-Hollomon parameter:

    where QHWis the activation energy for hot deformation and T is the

    absolute temperature.

    http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=5http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=5http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=5http://en.wikipedia.org/wiki/Wikipedia:Citing_sourceshttp://en.wikipedia.org/wiki/Wikipedia:Citing_sourceshttp://en.wikipedia.org/wiki/Wikipedia:Citing_sourceshttp://en.wikipedia.org/wiki/Wikipedia:Verifiabilityhttp://en.wikipedia.org/wiki/Wikipedia:Verifiabilityhttp://en.wikipedia.org/wiki/Wikipedia:Verifiabilityhttp://en.wikipedia.org/wiki/Wikipedia:Verifiabilityhttp://en.wikipedia.org/wiki/Help:Introduction_to_referencing/1http://en.wikipedia.org/wiki/Help:Introduction_to_referencing/1http://en.wikipedia.org/wiki/Help:Introduction_to_referencing/1http://en.wikipedia.org/wiki/Wikipedia:Verifiability#Burden_of_evidencehttp://en.wikipedia.org/wiki/Wikipedia:Verifiability#Burden_of_evidencehttp://en.wikipedia.org/wiki/Wikipedia:Verifiability#Burden_of_evidencehttp://en.wikipedia.org/wiki/Yield_strength_anomalyhttp://en.wikipedia.org/wiki/Yield_strength_anomalyhttp://en.wikipedia.org/wiki/Yield_strength_anomalyhttp://en.wikipedia.org/wiki/Yield_strength_anomalyhttp://en.wikipedia.org/wiki/Superalloyshttp://en.wikipedia.org/wiki/Superalloyshttp://en.wikipedia.org/wiki/Superalloyshttp://en.wikipedia.org/w/index.php?title=Super_plastic_behaviour&action=edit&redlink=1http://en.wikipedia.org/w/index.php?title=Super_plastic_behaviour&action=edit&redlink=1http://en.wikipedia.org/w/index.php?title=Super_plastic_behaviour&action=edit&redlink=1http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-7http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-7http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-7http://en.wikipedia.org/wiki/Zener-Hollomon_parameterhttp://en.wikipedia.org/wiki/Zener-Hollomon_parameterhttp://en.wikipedia.org/wiki/Zener-Hollomon_parameterhttp://en.wikipedia.org/wiki/File:Question_book-new.svghttp://en.wikipedia.org/wiki/File:Question_book-new.svghttp://en.wikipedia.org/wiki/File:Question_book-new.svghttp://en.wikipedia.org/wiki/File:Question_book-new.svghttp://en.wikipedia.org/wiki/File:Question_book-new.svghttp://en.wikipedia.org/wiki/Zener-Hollomon_parameterhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-7http://en.wikipedia.org/w/index.php?title=Super_plastic_behaviour&action=edit&redlink=1http://en.wikipedia.org/wiki/Superalloyshttp://en.wikipedia.org/wiki/Yield_strength_anomalyhttp://en.wikipedia.org/wiki/Yield_strength_anomalyhttp://en.wikipedia.org/wiki/Wikipedia:Verifiability#Burden_of_evidencehttp://en.wikipedia.org/wiki/Help:Introduction_to_referencing/1http://en.wikipedia.org/wiki/Wikipedia:Verifiabilityhttp://en.wikipedia.org/wiki/Wikipedia:Verifiabilityhttp://en.wikipedia.org/wiki/Wikipedia:Citing_sourceshttp://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=5
  • 7/27/2019 Yield (Engineering)

    6/12

    Strengthening mechanisms[edit]

    There are several ways in which crystalline and amorphous

    materials can be engineered to increase their yield strength. By

    altering dislocation density, impurity levels, grain size (in crystalline

    materials), the yield strength of the material can be fine tuned. This

    occurs typically by introducing defects such as impurities

    dislocations in the material. To move this defect (plastically

    deforming or yielding the material), a larger stress must be applied.

    This thus causes a higher yield stress in the material. While many

    material properties depend only on the composition of the bulk

    material, yield strength is extremely sensitive to the materials

    processing as well for this reason.

    These mechanisms for crystalline materials include

    Work hardening

    Solid solution strengthening

    Precipitation strengthening

    Grain boundary strengthening

    Work hardening[edit]

    Where deforming the material will introducedislocations,which

    increases their density in the material. This increases the yield

    strength of the material, since now more stress must be applied to

    move these dislocations through a crystal lattice. Dislocations can

    also interact with each other, becoming entangled.

    The governing formula for this mechanism is:

    where is the yield stress, G is the shear elastic modulus, b

    is the magnitude of theBurgers vector,and is the dislocation

    density.

    Sol id solut ion strengthening[edit]

    Byalloyingthe material, impurity atoms in low concentrations

    will occupy a lattice position directly below a dislocation, such

    as directly below an extra half plane defect. This relieves a

    tensile strain directly below the dislocation by filling that empty

    lattice space with the impurity atom.

    http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=6http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=6http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=6http://en.wikipedia.org/wiki/Work_hardeninghttp://en.wikipedia.org/wiki/Work_hardeninghttp://en.wikipedia.org/wiki/Solid_solution_strengtheninghttp://en.wikipedia.org/wiki/Solid_solution_strengtheninghttp://en.wikipedia.org/wiki/Precipitation_strengtheninghttp://en.wikipedia.org/wiki/Precipitation_strengtheninghttp://en.wikipedia.org/wiki/Grain_boundary_strengtheninghttp://en.wikipedia.org/wiki/Grain_boundary_strengtheninghttp://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=7http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=7http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=7http://en.wikipedia.org/wiki/Dislocationhttp://en.wikipedia.org/wiki/Dislocationhttp://en.wikipedia.org/wiki/Dislocationhttp://en.wikipedia.org/wiki/Burgers_vectorhttp://en.wikipedia.org/wiki/Burgers_vectorhttp://en.wikipedia.org/wiki/Burgers_vectorhttp://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=8http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=8http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=8http://en.wikipedia.org/wiki/Alloyhttp://en.wikipedia.org/wiki/Alloyhttp://en.wikipedia.org/wiki/Alloyhttp://en.wikipedia.org/wiki/Alloyhttp://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=8http://en.wikipedia.org/wiki/Burgers_vectorhttp://en.wikipedia.org/wiki/Dislocationhttp://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=7http://en.wikipedia.org/wiki/Grain_boundary_strengtheninghttp://en.wikipedia.org/wiki/Precipitation_strengtheninghttp://en.wikipedia.org/wiki/Solid_solution_strengtheninghttp://en.wikipedia.org/wiki/Work_hardeninghttp://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=6
  • 7/27/2019 Yield (Engineering)

    7/12

    The relationship of this mechanism goes as:

    where is theshear stress,related to the yield stress, G

    and b are the same as in the above example, C_s is the

    concentration of solute and is the strain induced in the

    lattice due to adding the impurity.

    Particle/Precipitate streng thening[edit]

    Where the presence of a secondary phase will increase

    yield strength by blocking the motion of dislocations within

    the crystal. A line defect that, while moving through the

    matrix, will be forced against a small particle or precipitate

    of the material. Dislocations can move through this particleeither by shearing the particle, or by a process known as

    bowing or ringing, in which a new ring of dislocations is

    created around the particle.

    The shearing formula goes as:

    and the bowing/ringing formula:

    In these formulas, is the particle

    radius, is the surface tension between

    the matrix and the particle, is the distance

    between the particles.

    Grain bou ndary strengthening[edit]

    Where a buildup of dislocations at a grain boundary causes

    a repulsive force between dislocations. As grain size

    decreases, the surface area to volume ratio of the grain

    increases, allowing more buildup of dislocations at the

    grain edge. Since it requires a lot of energy to move

    dislocations to another grain, these dislocations build up

    along the boundary, and increase the yield stress of the

    http://en.wikipedia.org/wiki/Shear_stresshttp://en.wikipedia.org/wiki/Shear_stresshttp://en.wikipedia.org/wiki/Shear_stresshttp://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=9http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=9http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=9http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=10http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=10http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=10http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=10http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=9http://en.wikipedia.org/wiki/Shear_stress
  • 7/27/2019 Yield (Engineering)

    8/12

    material. Also known as Hall-Petch strengthening, this type

    of strengthening is governed by the formula:

    whereis the stress required to move dislocations,

    k is a material constant, and

    d is the grain size.

    Testing[edit]

    Yield strength testing involves taking a

    small sample with a fixed cross-section

    area, and then pulling it with a controlled,

    gradually increasing force until the sample

    changes shape or breaks. Longitudinal

    and/or transverse strain is recorded using

    mechanical or optical extensometers.

    Indentation hardnesscorrelates linearly

    with tensile strength for most

    steels.[8]

    Hardness testing can therefore

    be an economical substitute for tensile

    testing, as well as providing local

    variations in yield strength due to e.g.

    welding or forming operations.

    Implications forstructuralengineering[edit]

    Yielded structures have a lower stiffness,

    leading to increased deflections and

    decreased buckling strength. The structurewill be permanently deformed when the

    load is removed, and may have residual

    stresses. Engineering metals display strain

    hardening, which implies that the yield

    stress is increased after unloading from a

    yield state. Highly optimized structures,

    http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=11http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=11http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=11http://en.wikipedia.org/wiki/Indentation_hardnesshttp://en.wikipedia.org/wiki/Indentation_hardnesshttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-8http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-8http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-8http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=12http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=12http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=12http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=12http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-8http://en.wikipedia.org/wiki/Indentation_hardnesshttp://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=11
  • 7/27/2019 Yield (Engineering)

    9/12

    such as airplane beams and components,

    rely on yielding as a fail-safe failure mode.

    No safety factor is therefore needed when

    comparing limit loads (the highest loads

    expected during normal operation) to yieldcriteria.

    [citation needed]

    Typical yield and ultimate strengths[edit]

    Note: many of the values depend on manufacturing process and purity/composition.

    Material

    Yield

    strength

    (MPa)

    Ultimate

    strength

    (MPa)

    Density

    (g/cm)

    free breaking

    length

    (km)

    ASTMA36 steel 250 400 7.85 3.2

    Steel, API 5L X65[9]

    448 531 7.85 5.8

    Steel, high strength alloy ASTMA514 690 760 7.85 9.0

    Steel, prestressing strands 1650 1860 7.85 21.6

    Piano wire 22002482[10]

    7.8 28.7

    Carbon Fiber(CF, CFK) 5650[11]

    1.75

    High density polyethylene(HDPE) 2633 37 0.95 2.8

    Polypropylene 1243 19.780 0.91 1.3

    http://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/wiki/Wikipedia:Citation_neededhttp://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=13http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=13http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=13http://en.wikipedia.org/wiki/Free_breaking_lengthhttp://en.wikipedia.org/wiki/Free_breaking_lengthhttp://en.wikipedia.org/wiki/Free_breaking_lengthhttp://en.wikipedia.org/wiki/A36_steelhttp://en.wikipedia.org/wiki/A36_steelhttp://en.wikipedia.org/wiki/A36_steelhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-9http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-9http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-9http://en.wikipedia.org/wiki/A514_steelhttp://en.wikipedia.org/wiki/A514_steelhttp://en.wikipedia.org/wiki/A514_steelhttp://en.wikipedia.org/wiki/Piano_wirehttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-10http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-10http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-10http://en.wikipedia.org/wiki/Carbon_Fiberhttp://en.wikipedia.org/wiki/Carbon_Fiberhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-11http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-11http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-11http://en.wikipedia.org/wiki/High_density_polyethylenehttp://en.wikipedia.org/wiki/High_density_polyethylenehttp://en.wikipedia.org/wiki/Polypropylenehttp://en.wikipedia.org/wiki/Polypropylenehttp://en.wikipedia.org/wiki/High_density_polyethylenehttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-11http://en.wikipedia.org/wiki/Carbon_Fiberhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-10http://en.wikipedia.org/wiki/Piano_wirehttp://en.wikipedia.org/wiki/A514_steelhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-9http://en.wikipedia.org/wiki/A36_steelhttp://en.wikipedia.org/wiki/Free_breaking_lengthhttp://en.wikipedia.org/wiki/Free_breaking_lengthhttp://en.wikipedia.org/wiki/Free_breaking_lengthhttp://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=13http://en.wikipedia.org/wiki/Wikipedia:Citation_needed
  • 7/27/2019 Yield (Engineering)

    10/12

    Material

    Yield

    strength

    (MPa)

    Ultimate

    strength

    (MPa)

    Density

    (g/cm)

    free breaking

    length

    (km)

    Stainless steelAISI 302Cold-rolled 520 860

    Cast iron4.5% C, ASTM A-48[12]

    * 172 7.20 2.4

    Titanium alloy(6% Al, 4% V) 830 900 4.51 18.8

    Aluminium alloy2014-T6 400 455 2.7 15.1

    Copper99.9% Cu 70 220 8.92 0.8

    Cupronickel10% Ni, 1.6% Fe, 1%

    Mn, balance Cu130 350 8.94 1.4

    Brass approx. 200+ 550 5.3 3.8

    Spider silk 1150 (??) 1400 1.31 109

    Silkwormsilk 500 25

    Aramid(KevlarorTwaron) 3620 1.44 256.3

    UHMWPE[13][14] 20 35[15] 0.97 400

    http://en.wikipedia.org/wiki/Free_breaking_lengthhttp://en.wikipedia.org/wiki/Free_breaking_lengthhttp://en.wikipedia.org/wiki/Free_breaking_lengthhttp://en.wikipedia.org/wiki/Stainless_steelhttp://en.wikipedia.org/wiki/Stainless_steelhttp://en.wikipedia.org/wiki/Cast_ironhttp://en.wikipedia.org/wiki/Cast_ironhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-12http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-12http://en.wikipedia.org/wiki/Titanium_alloyhttp://en.wikipedia.org/wiki/Titanium_alloyhttp://en.wikipedia.org/wiki/Aluminium_alloyhttp://en.wikipedia.org/wiki/Aluminium_alloyhttp://en.wikipedia.org/wiki/Copperhttp://en.wikipedia.org/wiki/Copperhttp://en.wikipedia.org/wiki/Cupronickelhttp://en.wikipedia.org/wiki/Cupronickelhttp://en.wikipedia.org/wiki/Brasshttp://en.wikipedia.org/wiki/Spider_silkhttp://en.wikipedia.org/wiki/Spider_silkhttp://en.wikipedia.org/wiki/Silkwormhttp://en.wikipedia.org/wiki/Silkwormhttp://en.wikipedia.org/wiki/Aramidhttp://en.wikipedia.org/wiki/Aramidhttp://en.wikipedia.org/wiki/Kevlarhttp://en.wikipedia.org/wiki/Kevlarhttp://en.wikipedia.org/wiki/Kevlarhttp://en.wikipedia.org/wiki/Twaronhttp://en.wikipedia.org/wiki/Twaronhttp://en.wikipedia.org/wiki/Twaronhttp://en.wikipedia.org/wiki/Ultra_high_molecular_weight_polyethylenehttp://en.wikipedia.org/wiki/Ultra_high_molecular_weight_polyethylenehttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-14http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-14http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-15http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-15http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-15http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-15http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-14http://en.wikipedia.org/wiki/Ultra_high_molecular_weight_polyethylenehttp://en.wikipedia.org/wiki/Ultra_high_molecular_weight_polyethylenehttp://en.wikipedia.org/wiki/Twaronhttp://en.wikipedia.org/wiki/Kevlarhttp://en.wikipedia.org/wiki/Aramidhttp://en.wikipedia.org/wiki/Silkwormhttp://en.wikipedia.org/wiki/Spider_silkhttp://en.wikipedia.org/wiki/Brasshttp://en.wikipedia.org/wiki/Cupronickelhttp://en.wikipedia.org/wiki/Copperhttp://en.wikipedia.org/wiki/Aluminium_alloyhttp://en.wikipedia.org/wiki/Titanium_alloyhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-12http://en.wikipedia.org/wiki/Cast_ironhttp://en.wikipedia.org/wiki/Stainless_steelhttp://en.wikipedia.org/wiki/Free_breaking_lengthhttp://en.wikipedia.org/wiki/Free_breaking_lengthhttp://en.wikipedia.org/wiki/Free_breaking_length
  • 7/27/2019 Yield (Engineering)

    11/12

    Material

    Yield

    strength

    (MPa)

    Ultimate

    strength

    (MPa)

    Density

    (g/cm)

    free breaking

    length

    (km)

    Bone(limb) 104121 130 3

    Nylon,type 6/6 45 75 2

    *Grey cast iron does not have a well defined yield strength because the stress-strain relationship is

    atypical. The yield strength can vary from 65 to 80% of the tensile strength.[16]

    Elements in the annealed state[17]

    Young's modulus

    (GPa)

    Proof or yield stress

    (MPa)

    Ultimate Tensile Strength

    (MPa)

    Aluminium 70 1520 4050

    Copper 130 33 210

    Iron 211 80100 350

    Nickel 170 1435 140195

    Silicon 107 50009000

    Tantalum 186 180 200

    http://en.wikipedia.org/wiki/Free_breaking_lengthhttp://en.wikipedia.org/wiki/Free_breaking_lengthhttp://en.wikipedia.org/wiki/Free_breaking_lengthhttp://en.wikipedia.org/wiki/Bonehttp://en.wikipedia.org/wiki/Bonehttp://en.wikipedia.org/wiki/Nylonhttp://en.wikipedia.org/wiki/Nylonhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-16http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-16http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-16http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-17http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-17http://en.wikipedia.org/wiki/Aluminiumhttp://en.wikipedia.org/wiki/Copperhttp://en.wikipedia.org/wiki/Ironhttp://en.wikipedia.org/wiki/Ironhttp://en.wikipedia.org/wiki/Nickelhttp://en.wikipedia.org/wiki/Siliconhttp://en.wikipedia.org/wiki/Tantalumhttp://en.wikipedia.org/wiki/Tantalumhttp://en.wikipedia.org/wiki/Siliconhttp://en.wikipedia.org/wiki/Nickelhttp://en.wikipedia.org/wiki/Ironhttp://en.wikipedia.org/wiki/Copperhttp://en.wikipedia.org/wiki/Aluminiumhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-17http://en.wikipedia.org/wiki/Yield_(engineering)#cite_note-16http://en.wikipedia.org/wiki/Nylonhttp://en.wikipedia.org/wiki/Bonehttp://en.wikipedia.org/wiki/Free_breaking_lengthhttp://en.wikipedia.org/wiki/Free_breaking_lengthhttp://en.wikipedia.org/wiki/Free_breaking_length
  • 7/27/2019 Yield (Engineering)

    12/12

    Tin 47 914 15200

    Titanium 120 100225 240370

    Tungsten 411 550 550620

    References[edit]Notes[edit]

    1. Jump up^G. Dieter, Mechanical Metallurgy, McGraw-Hill, 19862. Jump up^Flinn, Richard A.; Trojan, Paul K. (1975). Engineering Materials and their

    Applications. Boston: Houghton Mifflin Company. p. 61.ISBN0-395-18916-0.

    3. Jump up^Kumagai, Naoichi; Sadao Sasajima, Hidebumi Ito (15 February 1978)."Long-termCreep of Rocks: Results with Large Specimens Obtained in about 20 Years and Those withSmall Specimens in about 3 Years".Journal of the Society of Materials Science (Japan)(JapanEnergy Society) 27(293): 157161. Retrieved 2008-06-16.

    4. Jump up^Ross 1999,p. 56.

    5. ^Jump up to:abRoss 1999,p. 59.

    6. Jump up^Degarmo, p. 377.

    7. Jump up^Dynamic Behavior of a Rare-Earth-Containing Mg Alloy, WE43B-T5, Plate withComparison to Conventional Alloy, AM30-F , Sean Agnew, Wilburn Whittington, AndrewOppedal, Haitham El Kadiri, Matthew Shaeffer, K. T. Ramesh, Jishnu Bhattacharyya, Rick

    Delorme, Bruce Davis , Volume 66, Issue 2 / February, 20148. Jump up^Correlation of Yield Strength and Tensile Strength with Hardness for Steels , E.J.

    Pavlina and C.J. Van Tyne, Journal of Materials Engineering and Performance, Volume 17,Number 6 / December, 2008

    9. Jump up^ussteel.com

    10. Jump up^Don Stackhouse @ DJ Aerotech

    11. Jump up^complore.com

    12. Jump up^Beer, Johnston & Dewolf 2001,p. 746.

    13. Jump up^Technical Product Data Sheets UHMWPE

    14. Jump up^unitex-deutschland.eu

    15. Jump up^matweb.com

    16. Jump up^Avallone et al. 2006,p. 635.

    17. Jump up^A.M. Howatson, P.G. Lund and J.D. Todd, "Engineering Tables and Data", p. 41.18. http://en.wikipedia.org/wiki/Yield_(engineering)

    http://en.wikipedia.org/wiki/Tinhttp://en.wikipedia.org/wiki/Titaniumhttp://en.wikipedia.org/wiki/Tungstenhttp://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=15http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=15http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=15http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=16http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=16http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=16http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-dieter_1-0http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-dieter_1-0http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-2http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-2http://en.wikipedia.org/wiki/International_Standard_Book_Numberhttp://en.wikipedia.org/wiki/International_Standard_Book_Numberhttp://en.wikipedia.org/wiki/Special:BookSources/0-395-18916-0http://en.wikipedia.org/wiki/Special:BookSources/0-395-18916-0http://en.wikipedia.org/wiki/Special:BookSources/0-395-18916-0http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-3http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-3http://translate.google.com/translate?hl=en&sl=ja&u=http://ci.nii.ac.jp/naid/110002299397/&sa=X&oi=translate&resnum=4&ct=result&prev=/search%3Fq%3DIto%2BHidebumi%26hl%3Denhttp://translate.google.com/translate?hl=en&sl=ja&u=http://ci.nii.ac.jp/naid/110002299397/&sa=X&oi=translate&resnum=4&ct=result&prev=/search%3Fq%3DIto%2BHidebumi%26hl%3Denhttp://translate.google.com/translate?hl=en&sl=ja&u=http://ci.nii.ac.jp/naid/110002299397/&sa=X&oi=translate&resnum=4&ct=result&prev=/search%3Fq%3DIto%2BHidebumi%26hl%3Denhttp://translate.google.com/translate?hl=en&sl=ja&u=http://ci.nii.ac.jp/naid/110002299397/&sa=X&oi=translate&resnum=4&ct=result&prev=/search%3Fq%3DIto%2BHidebumi%26hl%3Denhttp://translate.google.com/translate?hl=en&sl=ja&u=http://ci.nii.ac.jp/naid/110002299397/&sa=X&oi=translate&resnum=4&ct=result&prev=/search%3Fq%3DIto%2BHidebumi%26hl%3Denhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-4http://en.wikipedia.org/wiki/Yield_(engineering)#CITEREFRoss1999http://en.wikipedia.org/wiki/Yield_(engineering)#CITEREFRoss1999http://en.wikipedia.org/wiki/Yield_(engineering)#CITEREFRoss1999http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-ross59_5-0http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-ross59_5-0http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-ross59_5-0http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-ross59_5-1http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-ross59_5-1http://en.wikipedia.org/wiki/Yield_(engineering)#CITEREFRoss1999http://en.wikipedia.org/wiki/Yield_(engineering)#CITEREFRoss1999http://en.wikipedia.org/wiki/Yield_(engineering)#CITEREFRoss1999http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-6http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-6http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-7http://link.springer.com/article/10.1007/s11837-013-0830-xhttp://link.springer.com/article/10.1007/s11837-013-0830-xhttp://link.springer.com/article/10.1007/s11837-013-0830-xhttp://link.springer.com/article/10.1007/s11837-013-0830-xhttp://link.springer.com/article/10.1007/s11837-013-0830-xhttp://link.springer.com/article/10.1007/s11837-013-0830-xhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-8http://www.springerlink.com/content/q86642448t84g267/http://www.springerlink.com/content/q86642448t84g267/http://www.springerlink.com/content/q86642448t84g267/http://www.springerlink.com/content/q86642448t84g267/http://www.springerlink.com/content/q86642448t84g267/http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-9http://www.ussteel.com/corp/tubular/linepipe-seamless.asphttp://www.ussteel.com/corp/tubular/linepipe-seamless.asphttp://www.ussteel.com/corp/tubular/linepipe-seamless.asphttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-10http://www.djaerotech.com/dj_askjd/dj_questions/musicwire.htmlhttp://www.djaerotech.com/dj_askjd/dj_questions/musicwire.htmlhttp://www.djaerotech.com/dj_askjd/dj_questions/musicwire.htmlhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-11http://www.complore.com/properties-materials-tensile-strengthhttp://www.complore.com/properties-materials-tensile-strengthhttp://www.complore.com/properties-materials-tensile-strengthhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-12http://en.wikipedia.org/wiki/Yield_(engineering)#CITEREFBeerJohnstonDewolf2001http://en.wikipedia.org/wiki/Yield_(engineering)#CITEREFBeerJohnstonDewolf2001http://en.wikipedia.org/wiki/Yield_(engineering)#CITEREFBeerJohnstonDewolf2001http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-13http://www.plastic-products.com/spec11.htmhttp://www.plastic-products.com/spec11.htmhttp://www.plastic-products.com/spec11.htmhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-14http://www.unitex-deutschland.eu/pdf/download/Dyneema-Version-web-db.pdfhttp://www.unitex-deutschland.eu/pdf/download/Dyneema-Version-web-db.pdfhttp://www.unitex-deutschland.eu/pdf/download/Dyneema-Version-web-db.pdfhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-15http://matweb.com/search/DataSheet.aspx?MatGUID=f9470672aa5549cb9c7b157677d02062&ckck=1http://matweb.com/search/DataSheet.aspx?MatGUID=f9470672aa5549cb9c7b157677d02062&ckck=1http://matweb.com/search/DataSheet.aspx?MatGUID=f9470672aa5549cb9c7b157677d02062&ckck=1http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-16http://en.wikipedia.org/wiki/Yield_(engineering)#CITEREFAvalloneBaumeisterSadeghMarks2006http://en.wikipedia.org/wiki/Yield_(engineering)#CITEREFAvalloneBaumeisterSadeghMarks2006http://en.wikipedia.org/wiki/Yield_(engineering)#CITEREFAvalloneBaumeisterSadeghMarks2006http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-17http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-17http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-17http://en.wikipedia.org/wiki/Yield_(engineering)#CITEREFAvalloneBaumeisterSadeghMarks2006http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-16http://matweb.com/search/DataSheet.aspx?MatGUID=f9470672aa5549cb9c7b157677d02062&ckck=1http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-15http://www.unitex-deutschland.eu/pdf/download/Dyneema-Version-web-db.pdfhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-14http://www.plastic-products.com/spec11.htmhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-13http://en.wikipedia.org/wiki/Yield_(engineering)#CITEREFBeerJohnstonDewolf2001http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-12http://www.complore.com/properties-materials-tensile-strengthhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-11http://www.djaerotech.com/dj_askjd/dj_questions/musicwire.htmlhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-10http://www.ussteel.com/corp/tubular/linepipe-seamless.asphttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-9http://www.springerlink.com/content/q86642448t84g267/http://www.springerlink.com/content/q86642448t84g267/http://www.springerlink.com/content/q86642448t84g267/http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-8http://link.springer.com/article/10.1007/s11837-013-0830-xhttp://link.springer.com/article/10.1007/s11837-013-0830-xhttp://link.springer.com/article/10.1007/s11837-013-0830-xhttp://link.springer.com/article/10.1007/s11837-013-0830-xhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-7http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-6http://en.wikipedia.org/wiki/Yield_(engineering)#CITEREFRoss1999http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-ross59_5-1http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-ross59_5-0http://en.wikipedia.org/wiki/Yield_(engineering)#CITEREFRoss1999http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-4http://translate.google.com/translate?hl=en&sl=ja&u=http://ci.nii.ac.jp/naid/110002299397/&sa=X&oi=translate&resnum=4&ct=result&prev=/search%3Fq%3DIto%2BHidebumi%26hl%3Denhttp://translate.google.com/translate?hl=en&sl=ja&u=http://ci.nii.ac.jp/naid/110002299397/&sa=X&oi=translate&resnum=4&ct=result&prev=/search%3Fq%3DIto%2BHidebumi%26hl%3Denhttp://translate.google.com/translate?hl=en&sl=ja&u=http://ci.nii.ac.jp/naid/110002299397/&sa=X&oi=translate&resnum=4&ct=result&prev=/search%3Fq%3DIto%2BHidebumi%26hl%3Denhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-3http://en.wikipedia.org/wiki/Special:BookSources/0-395-18916-0http://en.wikipedia.org/wiki/International_Standard_Book_Numberhttp://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-2http://en.wikipedia.org/wiki/Yield_(engineering)#cite_ref-dieter_1-0http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=16http://en.wikipedia.org/w/index.php?title=Yield_(engineering)&action=edit&section=15http://en.wikipedia.org/wiki/Tungstenhttp://en.wikipedia.org/wiki/Titaniumhttp://en.wikipedia.org/wiki/Tin

Recommended