+ All Categories
Home > Documents > Z’ VBF at the LHC - Physics and Astronomy at...

Z’ VBF at the LHC - Physics and Astronomy at...

Date post: 05-Feb-2018
Category:
Upload: lykiet
View: 214 times
Download: 0 times
Share this document with a friend
16
Z’ VBF at the LHC Peisi Huang Texas A&M University Nov 23, 2016 1
Transcript
Page 1: Z’ VBF at the LHC - Physics and Astronomy at TAMUpeople.physics.tamu.edu/kamon/research/talk/2016/161123_EXO... · tot m 2 Z0) (3) (Z0! WW)= ... SSM and Z 0 y resonances are also

Z’VBFattheLHC

PeisiHuangTexasA&MUniversity

Nov23,2016

1

Page 2: Z’ VBF at the LHC - Physics and Astronomy at TAMUpeople.physics.tamu.edu/kamon/research/talk/2016/161123_EXO... · tot m 2 Z0) (3) (Z0! WW)= ... SSM and Z 0 y resonances are also

Z’

• ArethereanynewgaugebosonsbeyondtheonesassociatedwiththeSU(3)×SU(2)×U(1)gaugegroup?• Inmanybeyondstandardmodeltheories,newgaugebosonsarepredicted• simplestway,includeasecondU(1)group.newgaugebosonZ’• Z’mixeswiththeZboson,Z’WWcoupling~sinφ• Z’alsocouplestofermions,

�(W

+W

� ! Z

0) (1)

LW+W�|pp(s) (2)

�(W

+W

� ! Z

0 ! W

+W

�) =

16⇡

3

m

2Z0

m

2Z0 � 4m

2W

(�(Z

0 ! WW ))

2

((sWW �m

2Z0)

2+ �

2totm

2Z0)

(3)

�(Z

0 ! WW ) =

g

4cos

2✓w

192⇡

m

5Z0

m

4W

(4)

�(Z

0 ! ff) =

5

8

↵m

2Z0

cos

2✓w

(5)

�(W

+W

� ! Z

0) ' �(W

+W

� ! Z

0 ! W

+W

�) (6)

dF (x,k) =(E + E

0+ !)

2

(64⇡

3EE

0!)

h|M |2i(2p · k �m

2W )

2|p|dxkdkd� (7)

M = u(p

0)�"(gV + gA�5)u(p) (8)

dF (x)dx =

1

12⇡

2(g

2V+g

2A){1+

(1� x)

2

x

)Log(p

2+(1�x)m

2W )

1

(1� x)m

2W

+

(1� x)p

2

x(p

2+ (1� x)m

2W )

}dx

(9)

dL

d⌧

|qq/WW =

Z 1

f(q/W )(x)f(⌧/x)

dx

x

(10)

dL

d⌧

|pp/WW =

Z 1

d⌧

0

0

Z 01

dx

x

fi(x)fj(⌧

0

x

)

dL

d⇠

|qq/WW (11)

� =

Z 1

m2Z0/s

d⌧

dL

d⌧

|pp/WW�WW�>Z0(12)

�pp!WWjj!Z0jj = 5.3pb (13)

�pp!WWjj!Z0jj = 6.8pb (14)

�pp!WWjj!Hjj = 62fb (15)

(

mZ0

mW

)

8(16)

�WW�>H =

↵⇡

2

sin

2✓w

m

2H

m

2W s

(17)

(

mH

mW

)

2(18)

dL

d⌧

|qq/V lV l = (

g

2V + g

2A

4⇡

2)

2 1

[(1 + ⌧)Log(1/⌧) + 2(⌧ � 1)] (19)

dL

d⌧

|qq/V TV T = (

g

2V + g

2A

8⇡

2)

2 1

Log(

s

m

2W

)

2[(2 + ⌧)

2Log(1/⌧)� 2(1� ⌧)(3 + ⌧)] (20)

� = 7.8 pb (21)

L =

X

f

zfgZZ0µ¯

f�

µf (22)

1

fermioncharges coupling 2

Page 3: Z’ VBF at the LHC - Physics and Astronomy at TAMUpeople.physics.tamu.edu/kamon/research/talk/2016/161123_EXO... · tot m 2 Z0) (3) (Z0! WW)= ... SSM and Z 0 y resonances are also

currentLHCZ’searches

• qq ->Z’->l+l-

5.2 Limits 9

M [GeV]500 1000 1500 2000 2500 3000 3500

] ZΒ.σ

] Z' /

[Β.σ[

7−10

6−10

5−10

(LOx1.3)ψZ' (LOx1.3)SSMZ'

Obs. 95% CL limit, width = 0.0%Obs. 95% CL limit, width = 0.6%Obs. 95% CL limit, width = 3.0%Exp. 95% CL limit, width = 0.0%Exp. 95% CL limit, width = 0.6%Exp. 95% CL limit, width = 3.0%

CMSCMSdielectron

(13 TeV)-12.7 fb

M [GeV]500 1000 1500 2000 2500 3000 3500

] ZΒ.σ

] Z' /

[Β.σ[

7−10

6−10

5−10

(LOx1.3)ψZ' (LOx1.3)SSMZ'

Obs. 95% CL limit, width = 0.0%Obs. 95% CL limit, width = 0.6%Obs. 95% CL limit, width = 3.0%Exp. 95% CL limit, width = 0.0%Exp. 95% CL limit, width = 0.6%Exp. 95% CL limit, width = 3.0%

CMSCMSdimuon

(13 TeV)-12.9 fb

Figure 3: The 95% CL upper limits on the product of production cross section and branchingfraction for a spin-1 resonance for widths equal to 0, 0.6, and 3.0% of the resonance mass,relative to the product of production cross section and branching fraction for a Z boson, for the(left) dielectron and (right) dimuon channels in the 13 TeV data. Theoretical predictions for thespin-1 Z0

SSM and Z0y resonances are also shown.

The cross section as a function of mass is calculated at LO using the PYTHIA 8.2 program withthe NNPDF2.3 PDFs. As the limits in this Letter are obtained on the on-shell cross section andthe PYTHIA event generator includes off-shell effects, the cross section is calculated in a masswindow of ±5%

ps centred on the resonance mass, following the advice of Ref. [31]. To account

for NLO effects, the cross sections are multiplied by a K-factor of 1.3 for Z0 models and 1.6for RS graviton models [33], with the K-factor for Z0 models obtained by comparing POWHEGand PYTHIA cross sections for SM Drell–Yan production. These same comments apply for thetheoretical predictions shown in Figs. 2–6. For the Z0

SSM and Z0y bosons, we obtain lower mass

limits of 3.37 and 2.82 TeV, respectively. The lower mass limit obtained for the RS graviton is1.46 (3.11) TeV for a coupling parameter of 0.01 (0.10).

M [GeV]500 1000 1500 2000 2500 3000 3500

] ZΒ.σ

] Z' /

[Β.σ[

7−10

6−10

5−10

Observed 95% CL limit

Expected 95% CL limit, median

Expected 95% CL limit, 1 s.d.

Expected 95% CL limit, 2 s.d.

(LOx1.3)ΨZ'

(LOx1.3)SSMZ'

CMS Observed 95% CL limit

Expected 95% CL limit, median

Expected 95% CL limit, 1 s.d.

Expected 95% CL limit, 2 s.d.

(LOx1.3)ΨZ'

(LOx1.3)SSMZ'

CMSµµee +

)µµ (13 TeV, -1 (13 TeV, ee) + 2.9 fb-12.7 fb

M [GeV]500 1000 1500 2000 2500 3000 3500

] ZΒ.σ

] Z' /

[Β.σ[

7−10

6−10

5−10

(LOx1.3)ψZ' (LOx1.3)SSMZ'

Obs. 95% CL limit, width = 0.0%Obs. 95% CL limit, width = 0.6%Obs. 95% CL limit, width = 3.0%Exp. 95% CL limit, width = 0.0%Exp. 95% CL limit, width = 0.6%Exp. 95% CL limit, width = 3.0%

CMSCMSµµee +

)µµ (13 TeV, -1 (13 TeV, ee) + 2.9 fb-12.7 fb

Figure 4: The 95% CL upper limits on the product of production cross section and branchingfraction for a spin-1 resonance, relative to the product of production cross section and branch-ing fraction for a Z boson, for the combined dielectron and dimuon channels in the 13 TeVdata, (left) for a resonance width equal to 0.6% of the resonance mass and (right) for resonancewidths equal to 0, 0.6, and 3.0% of the resonance mass. The shaded bands correspond to the 68and 95% quantiles for the expected limits. Theoretical predictions for the spin-1 Z0

SSM and Z0y

resonances are also shown.

L =

X

f

zfgZZ0µ¯f�µf (22)

E6 ! SO(10)⌦ U(1) (23)

2

L =

X

f

zfgZZ0µ¯f�µf (22)

E6 ! SO(10)⌦ U(1) (23)

! SU(5)⌦ U(1)� ⌦ U(1) (24)

2

sequentialSM:Z’hasSMZcouplings.easytocomparenotgaugeinvariant

OnlysensitivetoZ’ff couplings3

Page 4: Z’ VBF at the LHC - Physics and Astronomy at TAMUpeople.physics.tamu.edu/kamon/research/talk/2016/161123_EXO... · tot m 2 Z0) (3) (Z0! WW)= ... SSM and Z 0 y resonances are also

VBF• VBFissensitivetoZ’WWcoupling.• VBFprocesshasdistinctivekinematics-- easytosuppressbackgrounds• energeticjetsintheforwarddirection,becauseofthet-channelkinematics• largerapidityseparationandlargeinvariantmassofthetwojets

L =!f

zfgZZ′µfγ

µf (22)

E6 → SO(10)⊗ U(1)ψ (23)

→ SU(5)⊗ U(1)χ ⊗ U(1)ψ (24)

q

q

W

W

Z ′

2

4

Page 5: Z’ VBF at the LHC - Physics and Astronomy at TAMUpeople.physics.tamu.edu/kamon/research/talk/2016/161123_EXO... · tot m 2 Z0) (3) (Z0! WW)= ... SSM and Z 0 y resonances are also

VBFZ’crosssection

Fora1TeV Z’,assumingitscouplingtoapairofWisthesameasaZboson,

MadGraph

�(W

+W

� ! Z

0) (1)

L

W

+W

�|pp(s) (2)

�(W

+W

� ! Z

0 ! W

+W

�) =

16⇡

3

m

2Z

0

m

2Z

0 � 4m

2W

(�(Z

0 ! WW ))

2

((s

WW

�m

2Z

0)2+ �

2tot

m

2Z

0)(3)

�(Z

0 ! WW ) =

g

4cos

2✓

w

192⇡

m

5Z

0

m

4W

(4)

�(Z

0 ! ff) =

5

8

↵m

2Z

0

cos

2✓

w

(5)

�(W

+W

� ! Z

0) ' �(W

+W

� ! Z

0 ! W

+W

�) (6)

dF (x,k) =(E + E

0+ !)

2

(64⇡

3EE

0!)

h|M |2i(2p · k �m

2W

)

2|p|dxkdkd� (7)

M = u(p

0)�"(gV + g

A

�5)u(p) (8)

dF (x)dx =

1

12⇡

2(g

2V

+g

2A

){1+(1� x)

2

x

)Log(p

2+(1�x)m

2W

)

1

(1� x)m

2W

+

(1� x)p

2

x(p

2+ (1� x)m

2W

)

}dx

(9)

dL

d⌧

|qq/WW

=

Z 1

f(q/W )(x)f(⌧/x)

dx

x

(10)

dL

d⌧

|pp/WW

=

Z 1

d⌧

0

0

Z 01

dx

x

f

i

(x)f

j

(

0

x

)

dL

d⇠

|qq/WW (11)

� =

Z 1

m

2Z0/s

d⌧

dL

d⌧

|pp/WW

WW�>Z

0(12)

pp!WWjj!Z

0jj

= 5.3pb (13)

pp!WWjj!Z

0jj

= 6.8pb (14)

1

VerydifferentfromaheavyHiggs

MadGraph

fullNNLOcalculation,VBFNNLO

Bothhaveweakcoupling,whyZ’crosssectionsomuchlarger?

�(W

+W

� ! Z

0) (1)

LW+W�|pp(s) (2)

�(W

+W

� ! Z

0 ! W

+W

�) =

16⇡

3

m

2Z0

m

2Z0 � 4m

2W

(�(Z

0 ! WW ))

2

((sWW �m

2Z0)

2+ �

2totm

2Z0)

(3)

�(Z

0 ! WW ) =

g

4cos

2✓w

192⇡

m

5Z0

m

4W

(4)

�(Z

0 ! ff) =

5

8

↵m

2Z0

cos

2✓w

(5)

�(W

+W

� ! Z

0) ' �(W

+W

� ! Z

0 ! W

+W

�) (6)

dF (x,k) =(E + E

0+ !)

2

(64⇡

3EE

0!)

h|M |2i(2p · k �m

2W )

2|p|dxkdkd� (7)

M = u(p

0)�"(gV + gA�5)u(p) (8)

dF (x)dx =

1

12⇡

2(g

2V+g

2A){1+

(1� x)

2

x

)Log(p

2+(1�x)m

2W )

1

(1� x)m

2W

+

(1� x)p

2

x(p

2+ (1� x)m

2W )

}dx

(9)

dL

d⌧

|qq/WW =

Z 1

f(q/W )(x)f(⌧/x)

dx

x

(10)

dL

d⌧

|pp/WW =

Z 1

d⌧

0

0

Z 01

dx

x

fi(x)fj(⌧

0

x

)

dL

d⇠

|qq/WW (11)

� =

Z 1

m2Z0/s

d⌧

dL

d⌧

|pp/WW�WW�>Z0(12)

�pp!WWjj!Z0jj = 5.3pb (13)

�pp!WWjj!Z0jj = 6.8pb (14)

�pp!WWjj!Hjj = 62fb (15)

1

�(W+W� ! Z 0) (1)

LW+W�|pp(s) (2)

�(W+W� ! Z 0 ! W+W�) =

16⇡

3

m2Z0

m2Z0 � 4m2

W

(�(Z 0 ! WW ))

2

((sWW �m2Z0)

2+ �

2totm

2Z0)

(3)

�(Z 0 ! WW ) =

g4 cos2 ✓w192⇡

m5Z0

m4W

(4)

�(Z 0 ! ff) =5

8

↵m2Z0

cos

2 ✓w(5)

�(W+W� ! Z 0) ' �(W+W� ! Z 0 ! W+W�

) (6)

dF (x,k) =(E + E 0

+ !)2

(64⇡3EE 0!)

h|M |2i(2p · k �m2

W )

2|p|dxkdkd� (7)

M = u(p0)�"(gV + gA�5)u(p) (8)

dF (x)dx =

1

12⇡2(g2V+g2A){1+

(1� x)2

x)Log(p2+(1�x)m2

W )

1

(1� x)m2W

+

(1� x)p2

x(p2 + (1� x)m2W )

}dx

(9)

dL

d⌧|qq/WW =

Z 1

f(q/W )(x)f(⌧/x)dx

x(10)

dL

d⌧|pp/WW =

Z 1

d⌧ 0

⌧ 0

Z 01

dx

xfi(x)fj(

⌧ 0

x)

dL

d⇠|qq/WW (11)

� =

Z 1

m2Z0/s

d⌧dL

d⌧|pp/WW�WW�>Z0

(12)

�pp!WWjj!Z0jj = 5.3pb (13)

�pp!WWjj!Z0jj = 6.8pb (14)

�pp!WWjj!Hjj = 87fb (15)

(

mZ0

mW

)

8(16)

�WW�>H =

↵⇡2

sin

2 ✓w

m2H

m2W s

(17)

(

mH

mW

)

2(18)

dL

d⌧|qq/V lV l = (

g2V + g2A4⇡2

)

2 1

⌧[(1 + ⌧)Log(1/⌧) + 2(⌧ � 1)] (19)

dL

d⌧|qq/V TV T = (

g2V + g2A8⇡2

)

2 1

⌧Log(

s

m2W

)

2[(2 + ⌧)2Log(1/⌧)� 2(1� ⌧)(3 + ⌧)] (20)

� = 7.8 pb (21)

1

5

Page 6: Z’ VBF at the LHC - Physics and Astronomy at TAMUpeople.physics.tamu.edu/kamon/research/talk/2016/161123_EXO... · tot m 2 Z0) (3) (Z0! WW)= ... SSM and Z 0 y resonances are also

Zprime VBFcrosssection,effectiveWapproximation

• AttheLHC,√s>>mW,onecanconsidertheinitialbeamsofquarksas

sourceswhichemitWs.ThenWinteracttoproducenewstates.Or

equivalently,givingWs structurefunction.(Kane,Repko,andRolnick,

1984.Dawson1985)

• WhenusingtheeffectiveWapproximation,

• Firstcalculate

• ThencalculatetheWluminosity

�(W+W� ! Z 0) (1)

LW+W�|pp(s) (2)

1

�(W+W� ! Z 0) (1)

LW+W�|pp(s) (2)

1

6

Page 7: Z’ VBF at the LHC - Physics and Astronomy at TAMUpeople.physics.tamu.edu/kamon/research/talk/2016/161123_EXO... · tot m 2 Z0) (3) (Z0! WW)= ... SSM and Z 0 y resonances are also

�(W+W� ! Z 0) (1)

LW+W�|pp(s) (2)

1

�(W+W� ! Z 0) (1)

LW

+W

�|pp(s) (2)

� =

16⇡

3

m2Z

0

m2Z

0 � 4m2W

(�(Z 0 ! WW ))

2

(sWW

� �

2tot

m2Z

0)(3)

�(Z 0 ! WW ) =

g4 cos2 ✓w

sin

2 �

192⇡

m5Z

0

m4W

(4)

�(Z 0 ! ff) =5

8

↵m2Z

0

cos

2 ✓w

(5)

1

DuttaandNandi,1993

largeenhancementfactorforheavyZ’

AssumeZ’WWcouplingisthesameasZWW

�(W+W� ! Z 0) (1)

LW

+W

�|pp(s) (2)

�(W+W� ! Z 0 ! W+W�) =

16⇡

3

m2Z

0

m2Z

0 � 4m2W

(�(Z 0 ! WW ))

2

((sWW

�m2Z

0)2+ �

2tot

m2Z

0)(3)

�(Z 0 ! WW ) =

g4 cos2 ✓w

192⇡

m5Z

0

m4W

(4)

�(Z 0 ! ff) =5

8

↵m2Z

0

cos

2 ✓w

(5)

1

Small,comparedtoZ’->WW

�(W+W� ! Z 0) (1)

LW

+W

�|pp(s) (2)

�(W+W� ! Z 0 ! W+W�) =

16⇡

3

m2Z

0

m2Z

0 � 4m2W

(�(Z 0 ! WW ))

2

((sWW

�m2Z

0)2+ �

2tot

m2Z

0)(3)

�(Z 0 ! WW ) =

g4 cos2 ✓w

192⇡

m5Z

0

m4W

(4)

�(Z 0 ! ff) =5

8

↵m2Z

0

cos

2 ✓w

(5)

�(W+W� ! Z 0) ' �(W+W� ! Z 0 ! W+W�

) (6)

1

Rizzo,1995

�(W+W� ! Z 0) (1)

LW+W�|pp(s) (2)

�(W+W� ! Z 0 ! W+W�) =

16⇡

3

m2Z0

m2Z0 � 4m2

W

(�(Z 0 ! WW ))

2

((sWW �m2Z0)

2+ �

2totm

2Z0)

(3)

�(Z 0 ! WW ) =

g2 cos2 ✓w192⇡

m5Z0

m4W

(4)

�(Z 0 ! ff) =5

8

↵m2Z0

cos

2 ✓w(5)

�(W+W� ! Z 0) ' �(W+W� ! Z 0 ! W+W�

) (6)

dF (x,k) =(E + E 0

+ !)2

(64⇡3EE 0!)

h|M |2i(2p · k �m2

W )

2|p|dxkdkd� (7)

M = u(p0)�"(gV + gA�5)u(p) (8)

dF (x)dx =

1

12⇡2(g2V+g2A){1+

(1� x)2

x)Log(p2+(1�x)m2

W )

1

(1� x)m2W

+

(1� x)p2

x(p2 + (1� x)m2W )

}dx

(9)

dL

d⌧|qq/WW =

Z 1

f(q/W )(x)f(⌧/x)dx

x(10)

dL

d⌧|pp/WW =

Z 1

d⌧ 0

⌧ 0

Z 01

dx

xfi(x)fj(

⌧ 0

x)

dL

d⇠|qq/WW (11)

� =

Z 1

m2Z0/s

d⌧dL

d⌧|pp/WW�WW�>Z0

(12)

�pp!WWjj!Z0jj = 5.3pb (13)

�pp!WWjj!Z0jj = 6.8pb (14)

�pp!WWjj!Hjj = 87fb (15)

(

mZ0

mW

)

8(16)

�WW�>H =

↵⇡2

sin

2 ✓w

m2H

m2W s

(17)

(

mH

mW

)

2(18)

dL

d⌧|qq/V lV l = (

g2V + g2A4⇡2

)

2 1

⌧[(1 + ⌧)Log(1/⌧) + 2(⌧ � 1)] (19)

dL

d⌧|qq/V TV T = (

g2V + g2A8⇡2

)

2 1

⌧Log(

s

m2W

)

2[(2 + ⌧)2Log(1/⌧)� 2(1� ⌧)(3 + ⌧)] (20)

� = 7.8 pb (21)

1

7

Page 8: Z’ VBF at the LHC - Physics and Astronomy at TAMUpeople.physics.tamu.edu/kamon/research/talk/2016/161123_EXO... · tot m 2 Z0) (3) (Z0! WW)= ... SSM and Z 0 y resonances are also

EffectiveWapproximationDistributionofaWinsideaquarkisgivenby

�(W

+W

� ! Z

0) (1)

L

W

+W

�|pp(s) (2)

�(W

+W

� ! Z

0 ! W

+W

�) =

16⇡

3

m

2Z

0

m

2Z

0 � 4m

2W

(�(Z

0 ! WW ))

2

((s

WW

�m

2Z

0)2+ �

2tot

m

2Z

0)(3)

�(Z

0 ! WW ) =

g

4cos

2✓

w

192⇡

m

5Z

0

m

4W

(4)

�(Z

0 ! ff) =

5

8

↵m

2Z

0

cos

2✓

w

(5)

�(W

+W

� ! Z

0) ' �(W

+W

� ! Z

0 ! W

+W

�) (6)

dF (x,k) =(E + E

0+ !)

2

(64⇡

3EE

0!)

h|M |2i(2p · k �m

2W

)

2|p|dxkdkd� (7)

M = u(p

0)�"(gV + g

A

�5)u(p) (8)

dF (x)dx =

1

12⇡

2(g

2V

+g

2A

)((1+

(1� x)

2

x

)Log(p

2+(1�x)m

2W

)

1

(1� x)m

2W

+

(1� x)p

2

x(p

2+ (1� x)m

2W

)

)dx

(9)

1

averageoverinitialquarkspins,andthepolarizationsofWs

�(W

+W

� ! Z

0) (1)

L

W

+W

�|pp(s) (2)

�(W

+W

� ! Z

0 ! W

+W

�) =

16⇡

3

m

2Z

0

m

2Z

0 � 4m

2W

(�(Z

0 ! WW ))

2

((s

WW

�m

2Z

0)2+ �

2tot

m

2Z

0)(3)

�(Z

0 ! WW ) =

g

4cos

2✓

w

192⇡

m

5Z

0

m

4W

(4)

�(Z

0 ! ff) =

5

8

↵m

2Z

0

cos

2✓

w

(5)

�(W

+W

� ! Z

0) ' �(W

+W

� ! Z

0 ! W

+W

�) (6)

dF (x,k) =(E + E

0+ !)

2

(64⇡

3EE

0!)

h|M |2i(2p · k �m

2W

)

2|p|dxkdkd� (7)

M = u(p

0)�"(gV + g

A

�5)u(p) (8)

dF (x)dx =

1

12⇡

2(g

2V

+g

2A

)((1+

(1� x)

2

x

)Log(p

2+(1�x)m

2W

)

1

(1� x)m

2W

+

(1� x)p

2

x(p

2+ (1� x)m

2W

)

)dx

(9)

1

�(W

+W

� ! Z

0) (1)

L

W

+W

�|pp(s) (2)

�(W

+W

� ! Z

0 ! W

+W

�) =

16⇡

3

m

2Z

0

m

2Z

0 � 4m

2W

(�(Z

0 ! WW ))

2

((s

WW

�m

2Z

0)2+ �

2tot

m

2Z

0)(3)

�(Z

0 ! WW ) =

g

4cos

2✓

w

192⇡

m

5Z

0

m

4W

(4)

�(Z

0 ! ff) =

5

8

↵m

2Z

0

cos

2✓

w

(5)

�(W

+W

� ! Z

0) ' �(W

+W

� ! Z

0 ! W

+W

�) (6)

dF (x,k) =(E + E

0+ !)

2

(64⇡

3EE

0!)

h|M |2i(2p · k �m

2W

)

2|p|dxkdkd� (7)

M = u(p

0)�"(gV + g

A

�5)u(p) (8)

dF (x)dx =

1

12⇡

2(g

2V

+g

2A

){1+(1� x)

2

x

)Log(p

2+(1�x)m

2W

)

1

(1� x)m

2W

+

(1� x)p

2

x(p

2+ (1� x)m

2W

)

}dx

(9)

1

Kane,Repko,andRolnick,1984.Dawson1985

transverse Longitudinal 8

Page 9: Z’ VBF at the LHC - Physics and Astronomy at TAMUpeople.physics.tamu.edu/kamon/research/talk/2016/161123_EXO... · tot m 2 Z0) (3) (Z0! WW)= ... SSM and Z 0 y resonances are also

EffectiveWapproximationWWluminosityinatwo-quarksystem

�(W

+W

� ! Z

0) (1)

L

W

+W

�|pp(s) (2)

�(W

+W

� ! Z

0 ! W

+W

�) =

16⇡

3

m

2Z

0

m

2Z

0 � 4m

2W

(�(Z

0 ! WW ))

2

((s

WW

�m

2Z

0)2+ �

2tot

m

2Z

0)(3)

�(Z

0 ! WW ) =

g

4cos

2✓

w

192⇡

m

5Z

0

m

4W

(4)

�(Z

0 ! ff) =

5

8

↵m

2Z

0

cos

2✓

w

(5)

�(W

+W

� ! Z

0) ' �(W

+W

� ! Z

0 ! W

+W

�) (6)

dF (x,k) =(E + E

0+ !)

2

(64⇡

3EE

0!)

h|M |2i(2p · k �m

2W

)

2|p|dxkdkd� (7)

M = u(p

0)�"(gV + g

A

�5)u(p) (8)

dF (x)dx =

1

12⇡

2(g

2V

+g

2A

){1+(1� x)

2

x

)Log(p

2+(1�x)m

2W

)

1

(1� x)m

2W

+

(1� x)p

2

x(p

2+ (1� x)m

2W

)

}dx

(9)

dL

d⌧

|qq/WW

=

Z 1

f(q/W )(x)f(⌧/x)

dx

x

(10)

dL

d⌧

|pp/WW

=

Z 1

d⌧

0

0

Z 01

dx

x

f

i

(x)f

j

(

0

x

)

dL

d⇠

|qq/WW (11)

� =

Z 2

m

2Z0/s

d⌧

dL

d⌧

|pp/WW

WW�>Z

0(12)

1

WWluminosityinaproton-protonsystem

�(W

+W

� ! Z

0) (1)

L

W

+W

�|pp(s) (2)

�(W

+W

� ! Z

0 ! W

+W

�) =

16⇡

3

m

2Z

0

m

2Z

0 � 4m

2W

(�(Z

0 ! WW ))

2

((s

WW

�m

2Z

0)2+ �

2tot

m

2Z

0)(3)

�(Z

0 ! WW ) =

g

4cos

2✓

w

192⇡

m

5Z

0

m

4W

(4)

�(Z

0 ! ff) =

5

8

↵m

2Z

0

cos

2✓

w

(5)

�(W

+W

� ! Z

0) ' �(W

+W

� ! Z

0 ! W

+W

�) (6)

dF (x,k) =(E + E

0+ !)

2

(64⇡

3EE

0!)

h|M |2i(2p · k �m

2W

)

2|p|dxkdkd� (7)

M = u(p

0)�"(gV + g

A

�5)u(p) (8)

dF (x)dx =

1

12⇡

2(g

2V

+g

2A

){1+(1� x)

2

x

)Log(p

2+(1�x)m

2W

)

1

(1� x)m

2W

+

(1� x)p

2

x(p

2+ (1� x)m

2W

)

}dx

(9)

dL

d⌧

|qq/WW

=

Z 1

f(q/W )(x)f(⌧/x)

dx

x

(10)

dL

d⌧

|pp/WW

=

Z 1

d⌧

0

0

Z 01

dx

x

f

i

(x)f

j

(

0

x

)

dL

d⇠

|qq/WW (11)

� =

Z 2

m

2Z0/s

d⌧

dL

d⌧

|pp/WW

WW�>Z

0(12)

1

Z’productioncrosssectionthroughVBF

�(W

+W

� ! Z

0) (1)

L

W

+W

�|pp(s) (2)

�(W

+W

� ! Z

0 ! W

+W

�) =

16⇡

3

m

2Z

0

m

2Z

0 � 4m

2W

(�(Z

0 ! WW ))

2

((s

WW

�m

2Z

0)2+ �

2tot

m

2Z

0)(3)

�(Z

0 ! WW ) =

g

4cos

2✓

w

192⇡

m

5Z

0

m

4W

(4)

�(Z

0 ! ff) =

5

8

↵m

2Z

0

cos

2✓

w

(5)

�(W

+W

� ! Z

0) ' �(W

+W

� ! Z

0 ! W

+W

�) (6)

dF (x,k) =(E + E

0+ !)

2

(64⇡

3EE

0!)

h|M |2i(2p · k �m

2W

)

2|p|dxkdkd� (7)

M = u(p

0)�"(gV + g

A

�5)u(p) (8)

dF (x)dx =

1

12⇡

2(g

2V

+g

2A

){1+(1� x)

2

x

)Log(p

2+(1�x)m

2W

)

1

(1� x)m

2W

+

(1� x)p

2

x(p

2+ (1� x)m

2W

)

}dx

(9)

dL

d⌧

|qq/WW

=

Z 1

f(q/W )(x)f(⌧/x)

dx

x

(10)

dL

d⌧

|pp/WW

=

Z 1

d⌧

0

0

Z 01

dx

x

f

i

(x)f

j

(

0

x

)

dL

d⇠

|qq/WW (11)

� =

Z 1

m

2Z0/s

d⌧

dL

d⌧

|pp/WW

WW�>Z

0(12)

1

9

Page 10: Z’ VBF at the LHC - Physics and Astronomy at TAMUpeople.physics.tamu.edu/kamon/research/talk/2016/161123_EXO... · tot m 2 Z0) (3) (Z0! WW)= ... SSM and Z 0 y resonances are also

VBFZ’vsHiggsFortheHiggs,onlylongitudinalmodecontributes

�(W

+W

� ! Z

0) (1)

LW+W�|pp(s) (2)

�(W

+W

� ! Z

0 ! W

+W

�) =

16⇡

3

m

2Z0

m

2Z0 � 4m

2W

(�(Z

0 ! WW ))

2

((sWW �m

2Z0)

2+ �

2totm

2Z0)

(3)

�(Z

0 ! WW ) =

g

4cos

2✓w

192⇡

m

5Z0

m

4W

(4)

�(Z

0 ! ff) =

5

8

↵m

2Z0

cos

2✓w

(5)

�(W

+W

� ! Z

0) ' �(W

+W

� ! Z

0 ! W

+W

�) (6)

dF (x,k) =(E + E

0+ !)

2

(64⇡

3EE

0!)

h|M |2i(2p · k �m

2W )

2|p|dxkdkd� (7)

M = u(p

0)�"(gV + gA�5)u(p) (8)

dF (x)dx =

1

12⇡

2(g

2V+g

2A){1+

(1� x)

2

x

)Log(p

2+(1�x)m

2W )

1

(1� x)m

2W

+

(1� x)p

2

x(p

2+ (1� x)m

2W )

}dx

(9)

dL

d⌧

|qq/WW =

Z 1

f(q/W )(x)f(⌧/x)

dx

x

(10)

dL

d⌧

|pp/WW =

Z 1

d⌧

0

0

Z 01

dx

x

fi(x)fj(⌧

0

x

)

dL

d⇠

|qq/WW (11)

� =

Z 1

m2Z0/s

d⌧

dL

d⌧

|pp/WW�WW�>Z0(12)

�pp!WWjj!Z0jj = 5.3pb (13)

�pp!WWjj!Z0jj = 6.8pb (14)

�pp!WWjj!Hjj = 62fb (15)

(

mZ0

mW

)

8(16)

�WW�>H =

↵⇡

2

sin

2✓w

m

2H

m

2W s

(17)

(

mH

mW

)

2(18)

dL

d⌧

|qq/V lV l = (

g

2V + g

2A

4⇡

2)

2 1

[(1 + ⌧)Log(1/⌧) + 2(⌧ � 1)] (19)

dL

d⌧

|qq/V TV T = (

g

2V + g

2A

8⇡

2)

2 1

Log(

s

m

2W

)

2[(2 + ⌧)

2Log(1/⌧)� 2(1� ⌧)(3 + ⌧)] (20)

1

ForaZ’,transversemode,longitudinalmode,andtransverse-longitudinalmodecontribute.Thetransversemodedominates.

�(W

+W

� ! Z

0) (1)

LW+W�|pp(s) (2)

�(W

+W

� ! Z

0 ! W

+W

�) =

16⇡

3

m

2Z0

m

2Z0 � 4m

2W

(�(Z

0 ! WW ))

2

((sWW �m

2Z0)

2+ �

2totm

2Z0)

(3)

�(Z

0 ! WW ) =

g

4cos

2✓w

192⇡

m

5Z0

m

4W

(4)

�(Z

0 ! ff) =

5

8

↵m

2Z0

cos

2✓w

(5)

�(W

+W

� ! Z

0) ' �(W

+W

� ! Z

0 ! W

+W

�) (6)

dF (x,k) =(E + E

0+ !)

2

(64⇡

3EE

0!)

h|M |2i(2p · k �m

2W )

2|p|dxkdkd� (7)

M = u(p

0)�"(gV + gA�5)u(p) (8)

dF (x)dx =

1

12⇡

2(g

2V+g

2A){1+

(1� x)

2

x

)Log(p

2+(1�x)m

2W )

1

(1� x)m

2W

+

(1� x)p

2

x(p

2+ (1� x)m

2W )

}dx

(9)

dL

d⌧

|qq/WW =

Z 1

f(q/W )(x)f(⌧/x)

dx

x

(10)

dL

d⌧

|pp/WW =

Z 1

d⌧

0

0

Z 01

dx

x

fi(x)fj(⌧

0

x

)

dL

d⇠

|qq/WW (11)

� =

Z 1

m2Z0/s

d⌧

dL

d⌧

|pp/WW�WW�>Z0(12)

�pp!WWjj!Z0jj = 5.3pb (13)

�pp!WWjj!Z0jj = 6.8pb (14)

�pp!WWjj!Hjj = 62fb (15)

(

mZ0

mW

)

8(16)

�WW�>H =

↵⇡

2

sin

2✓w

m

2H

m

2W s

(17)

(

mH

mW

)

2(18)

dL

d⌧

|qq/V lV l = (

g

2V + g

2A

4⇡

2)

2 1

[(1 + ⌧)Log(1/⌧) + 2(⌧ � 1)] (19)

dL

d⌧

|qq/V TV T = (

g

2V + g

2A

8⇡

2)

2 1

Log(

s

m

2W

)

2[(2 + ⌧)

2Log(1/⌧)� 2(1� ⌧)(3 + ⌧)] (20)

1

LargeenhancementfactorwhentheZ’isheavy

10

Page 11: Z’ VBF at the LHC - Physics and Astronomy at TAMUpeople.physics.tamu.edu/kamon/research/talk/2016/161123_EXO... · tot m 2 Z0) (3) (Z0! WW)= ... SSM and Z 0 y resonances are also

VBFZ’crosssection

Fora1TeV Z’,assumingitscouplingtoapairofWisthesameasaZboson

�(W

+W

� ! Z

0) (1)

L

W

+W

�|pp(s) (2)

�(W

+W

� ! Z

0 ! W

+W

�) =

16⇡

3

m

2Z

0

m

2Z

0 � 4m

2W

(�(Z

0 ! WW ))

2

((s

WW

�m

2Z

0)2+ �

2tot

m

2Z

0)(3)

�(Z

0 ! WW ) =

g

4cos

2✓

w

192⇡

m

5Z

0

m

4W

(4)

�(Z

0 ! ff) =

5

8

↵m

2Z

0

cos

2✓

w

(5)

�(W

+W

� ! Z

0) ' �(W

+W

� ! Z

0 ! W

+W

�) (6)

dF (x,k) =(E + E

0+ !)

2

(64⇡

3EE

0!)

h|M |2i(2p · k �m

2W

)

2|p|dxkdkd� (7)

M = u(p

0)�"(gV + g

A

�5)u(p) (8)

dF (x)dx =

1

12⇡

2(g

2V

+g

2A

){1+(1� x)

2

x

)Log(p

2+(1�x)m

2W

)

1

(1� x)m

2W

+

(1� x)p

2

x(p

2+ (1� x)m

2W

)

}dx

(9)

dL

d⌧

|qq/WW

=

Z 1

f(q/W )(x)f(⌧/x)

dx

x

(10)

dL

d⌧

|pp/WW

=

Z 1

d⌧

0

0

Z 01

dx

x

f

i

(x)f

j

(

0

x

)

dL

d⇠

|qq/WW (11)

� =

Z 1

m

2Z0/s

d⌧

dL

d⌧

|pp/WW

WW�>Z

0(12)

pp!WWjj!Z

0jj

= 5.3pb (13)

1

UsingeffectiveWapproximation,

Fora1TeV heavyHiggs

UsingeffectiveWapproximation,

�(W

+W

� ! Z

0) (1)

LW+W�|pp(s) (2)

�(W

+W

� ! Z

0 ! W

+W

�) =

16⇡

3

m

2Z0

m

2Z0 � 4m

2W

(�(Z

0 ! WW ))

2

((sWW �m

2Z0)

2+ �

2totm

2Z0)

(3)

�(Z

0 ! WW ) =

g

4cos

2✓w

192⇡

m

5Z0

m

4W

(4)

�(Z

0 ! ff) =

5

8

↵m

2Z0

cos

2✓w

(5)

�(W

+W

� ! Z

0) ' �(W

+W

� ! Z

0 ! W

+W

�) (6)

dF (x,k) =(E + E

0+ !)

2

(64⇡

3EE

0!)

h|M |2i(2p · k �m

2W )

2|p|dxkdkd� (7)

M = u(p

0)�"(gV + gA�5)u(p) (8)

dF (x)dx =

1

12⇡

2(g

2V+g

2A){1+

(1� x)

2

x

)Log(p

2+(1�x)m

2W )

1

(1� x)m

2W

+

(1� x)p

2

x(p

2+ (1� x)m

2W )

}dx

(9)

dL

d⌧

|qq/WW =

Z 1

f(q/W )(x)f(⌧/x)

dx

x

(10)

dL

d⌧

|pp/WW =

Z 1

d⌧

0

0

Z 01

dx

x

fi(x)fj(⌧

0

x

)

dL

d⇠

|qq/WW (11)

� =

Z 1

m2Z0/s

d⌧

dL

d⌧

|pp/WW�WW�>Z0(12)

�pp!WWjj!Z0jj = 5.3pb (13)

�pp!WWjj!Z0jj = 6.8pb (14)

�pp!WWjj!Hjj = 50fb (15)

1

CorrectionsofeffectiveWapproximationareO(mW2/mZ’

2),andO(mZ’2/s)

InmodelswhereZ’WWisgeneratedthroughZ-Z’mixing,thecrosssectionscalesas~gWWZ’

2 ~sin2 θZ-Z

11

Page 12: Z’ VBF at the LHC - Physics and Astronomy at TAMUpeople.physics.tamu.edu/kamon/research/talk/2016/161123_EXO... · tot m 2 Z0) (3) (Z0! WW)= ... SSM and Z 0 y resonances are also

ConstraintsonZ-Z’mixing

• AZ’mixeswithSMZdistortstheZproperties.• StrongconstraintsfromLEP,frome+e- ->ffmeasurements.• Incanonicalmodels,VBFZ’crosssectionissmall,notthemostsensitivechannel.• Incaseofdiscovery(fromDrell-Yanprocess),VBFisimportanttoestablishmodels,andcouplings.

4 Paul Langacker

-0.004 -0.002 0 0.002 0.0040

1

2

3

4

5

6

x

0.6 0.2

CDFD0LEP 2

MZ’ [TeV]

sin θzz’

0.4 00.81

-0.004 -0.002 0 0.002 0.0040

1

2

3

4

5

6

x

CDF

MZ’ [TeV]

Z ψ

sin θzz’

00.50.751 0.25

D0LEP 2

Figure 2. Experimental constraints on the mass and mixing angle for the Z� and Z , from [17]. Thesolid lines show the regions allowed by precision electroweak data at 95% C.L. assuming Higgs doubletsand singlets, while the dashed regions allow arbitrary Higgs. The labeled curves assume specific ratios ofHiggs doublet VEVs.

and a variety of laboratory and collider experi-ments [61,62,63,64,65,66,67,68,69,70,71,72,73].

4. The LHC

4.1. discoveryThe LHC should ultimately have a discov-

ery reach for Z 0s with electroweak-strength cou-plings to u, d, e, and µ up to MZ0 ⇠ 4 � 5TeV [29,30,32,37]. This is based on decays into`+`� where ` = e or µ, and assumes

ps = 14

TeV and LI =RLdt = 100 fb�1. The reach for

a number of models is shown for various energiesand integrated luminosities in Figure 3. A recentdetailed study emphasized the Z 0 discovery po-tential in early LHC running at lower energy andluminosity for couplings to B � L and Y [74].

The cross section for pp ! ff (or pp ! ff)for a specific final fermion f is just

�fZ0 ⌘ �Z0Bf = Nf/LI , (18)

where Bf = �f/�Z0 is the branching ratio intoff , �Z0 =

R d�Z0dy dy, and Nf is the number of

produced ff pairs for integrated luminosity LI .For given couplings to the SM particles, �f

Z0 andtherefore the discovery reach depend on the to-tal width �Z0 . For example, in the E

6

mod-els �Z0/MZ0 can vary from ⇠ 0.01 � 0.05 de-pending on whether the important open channelsinclude light (compared to MZ0) superpartnersand exotics in addition to the SM fermions [32].The consequences for the discovery reaches at theTevatron and LHC are illustrated in Figure 4,where it is seen, e.g., that the LHC reach can

ArbitraryHiggs

SpecificratiosofHiggsvevsLangacker,200912

Page 13: Z’ VBF at the LHC - Physics and Astronomy at TAMUpeople.physics.tamu.edu/kamon/research/talk/2016/161123_EXO... · tot m 2 Z0) (3) (Z0! WW)= ... SSM and Z 0 y resonances are also

fermiophobic Z’

• Allconstraints(directsearches,electroweakprecisions)arestronglyweakenedforfermiophobic models,wherethereisnodirectcouplingofZ’toSMfermions.(TheconstraintsarealsoweakforleptophobicZ’,orZ’doesnotcoupletofirstgenerationleptons)• Oneexample,considerahiddenU(1),whichcanonlycoupletoSMthroughamixedanomaly.ThegaugeanomalyiscancelledbyGreen-Schwarzmechanism. Kumar,Rajaraman andWells,2007.

• Infermiophobic models,Z’canonlybeproducedthroughVBF.• possibledecaymodes,Z’->WW,ZZ,Z𝛾

13

Page 14: Z’ VBF at the LHC - Physics and Astronomy at TAMUpeople.physics.tamu.edu/kamon/research/talk/2016/161123_EXO... · tot m 2 Z0) (3) (Z0! WW)= ... SSM and Z 0 y resonances are also

fermiophobic Z’

0.01

0.1

1

10

100

1000

10000

500 600 700 800 900 1000

MX (GeV)

(pp

X) (

fb)

1000 GeV

500 GeV

250 GeV

150 GeV

100 GeV

Figure 2: Plot of σ(pp → X) at√

spp = 14 TeV LHC as a function of MX for variousΛX . The dashed line corresponds to the cross-section required for detection at LHC in theX → ZZ → 4l decay channel using the standard leptonic and jet cuts associated with thisgold-plated vector boson fusion channel, discussed in text.

In our analysis we integrate over the phase space of pp → X → ZZ → 4l events to

determine the total kinematic and geometric acceptance rate of these cuts. This is defined

to be the fraction of pp → X → ZZ → 4l events that satisfy the imposed jet and leptonic

kinematic and geometric cuts. The results are plotted in fig. 1, which shows that about

5% − 10% of the signal events passes these cuts in the interesting range of X boson mass.

For the background, after imposing these cuts, one finds that in the mass range of interest

(MX ∼ 500 − 1000 GeV), less than one background event survives in each 50 GeV bin with

100 fb−1 of integrated luminosity [13]. Detection of this process can therefore be achieved

with 10 signal events in a 50 GeV bin centered on MZZ .

In fig. 2 we plot the total cross section σ(pp → X) at the LHC as a function of the X

boson mass, MX . The various solid lines in the plot correspond to different choices of ΛX .

The dashed line in fig. 2 shows the required pp → X production cross-section in order to

find a 10 event signal in a 50 GeV bin centered on MZZ in 100 fb−1 in the 4l channel. For

MX in the range 500 − 1000 GeV, discovery can be made if ΛX ∼ 100 − 150 GeV.

For any viable model, the fermion which run in the loop must be massive (to avoid the

appearance of SM chiral exotics). This implies that U(1)X gauge symmetry must be broken

[8]. The symmetry breaking effects may provide additional signals for the U(1)X gauge

11

• Z’->ZZ->4l

• crosssectioncanbesizable

• worthstudyingotherchannels

Kumar,Rajaraman andWells,2007. 14

Page 15: Z’ VBF at the LHC - Physics and Astronomy at TAMUpeople.physics.tamu.edu/kamon/research/talk/2016/161123_EXO... · tot m 2 Z0) (3) (Z0! WW)= ... SSM and Z 0 y resonances are also

Z’->WW

15Preliminary,A.Gurrola

Thisyeardata,exclude~1.4- 1.6TeVLongterm,excludeupto3TeV

Page 16: Z’ VBF at the LHC - Physics and Astronomy at TAMUpeople.physics.tamu.edu/kamon/research/talk/2016/161123_EXO... · tot m 2 Z0) (3) (Z0! WW)= ... SSM and Z 0 y resonances are also

Conclusion

• AnewgaugebosonispredictedinmanybeyondStandardModeltheories.• CurrentLHCsearchesarefocusedonDrell-Yanmode.• Forcanonicalmodels(E6,B-L),VBFprocessisimportantforestablishingmodels.• Forfermiophobic models(andbaryophobic models),Z’canonlybeproducedthroughVBF,anddecaytotwobosons(notapairofphotons).• withthisyearsdataatCMS(~40-1fb),emu canexcludeup to~1.6TeV.Similarly,mumu canexcludeupto~1.4TeV.with thisyear'sdata.• Longterm-->exclusionscanbecloserto3TeV.

16


Recommended