+ All Categories
Home > Documents > Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2...

Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2...

Date post: 16-Apr-2015
Category:
Upload: internet
View: 104 times
Download: 1 times
Share this document with a friend
Popular Tags:
26
Transcript
Page 1: Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2 / 3 11.
Page 2: Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2 / 3 11.

Z

Y

X

[0 1 0]

[1 0 1]

Page 3: Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2 / 3 11.

ax

y

z

b

c

For cubic: a = b = c = ao

[00

1]

[210]

[100]

[111]

[120]

]001[

]332[

]021[

1½0

-2/311

Page 4: Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2 / 3 11.
Page 5: Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2 / 3 11.

Miller Indices

lc

ha

kb

Page 6: Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2 / 3 11.

Miller Indices

Page 7: Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2 / 3 11.

Z

X

Y

(100)

Z

X

Y

(110)

Z

X

Y

(111)

Page 8: Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2 / 3 11.

FAMÍLIA DE PLANOS {110}É paralelo à um eixo

Page 9: Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2 / 3 11.

FAMÍLIA DE PLANOS {111}Intercepta os 3 eixos

Page 10: Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2 / 3 11.

Directions & Miller Indices in Hexagonal Structures

a2

a1

a3

c

a2

a1

a3

c

[011]

[UVW] or [uvtw] (hkil) or (hk·l)

[210]

(0001)

( )0011( )0121

( )1110

wW

tvV

tuU

=

−=

−=ikh −=+

Page 11: Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2 / 3 11.

Diamond Lattice

(100) (110)

Page 12: Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2 / 3 11.

Diamond Lattice

(111)

Page 13: Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2 / 3 11.

Spacing of Planes

dhkl =a

h2 + k2 + l2

1

d 2=

h2 + k2 + l2

a2Cubic:

dhkl =a

h2 + k2 + l2a2

c2

⎛⎝⎜

⎞⎠⎟

Tetragonal: 1

d 2=

h2 + k2

a2 +l2

c2

1

d 2=43

h2 +hk+ k2

a2

⎝⎜⎞

⎠⎟+

l2

c2

Cubic:

Tetragonal:

Hexagonal:

1

d 2=

h2 + k2 + l2( )sin2α + 2 hk+ kl +hl( ) cos2α −cosα( )a2 1−3cos2α + 2cos3α( )

Rhombohedral:

Page 14: Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2 / 3 11.

Spacing of Planes1

d 2=

h2

a2 +k2

b2 +l2

c2

1

d 2=

1sin2 β

h2

a2 +k2 sin2 β

b2 +l2

c2 −2hl cosβ

ac⎛

⎝⎜⎞

⎠⎟

1

d 2=

1V2 S11h

2 + S22k2 + S33l

2 + 2S12hk+ 2S23kl + 2S13hl( )

Orthorhombic:

Monoclinic:

Triclinic:

V =volume of the unit cell =abc 1−cos2α −cos2 β −cos2 γ + 2cosα cosβ cosγ

S11 =b2c2 sin2α

β= 22222 sincaS

S33 =a2b2 sin2 γ

S12 =abc2 cosα cosβ −cosγ( )

S23 =a2bc cosβ cosγ −cosα( )

S13 =ab2c cosγ cosα −cosβ( )

Page 15: Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2 / 3 11.

Reciprocal LatticeUnit cell: b1, b2, b3

Reciprocal lattice unit cell: b1*, b2

*, b3* defined by:

b1* =

2πV

b2 ×b3( ) =2π b2 ×b3( )b1 ⋅b2 ×b3

b2* =

2πV

b3 ×b1( ) =2π b3 ×b1( )b1 ⋅b2 ×b3

b3* =

2πV

b1 ×b2( ) =2π b1 ×b2( )b1 ⋅b2 ×b3

b1

b2

b3*

A

B CP

Ob3

* =2π ⋅b1 ×b2

V

=2π ⋅area of parallelogram OACB( )

area of parallelogram OACB( ) height of cell( )

=2πOP

=2πd001

b3

Page 16: Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2 / 3 11.

Reciprocal LatticeLike the real-space lattice, the reciprocal space lattice also has a translation vector, Kl:

K =hb1* + kb2

* + lb3*

Where the length of R·K is equal to:

R ⋅K =2π n1h+n2k+n3l( ) =2πN

The magnitude of the translation vector has the following relationship:

d

K

LatticePlaneR

R'R''

d =2πK

Page 17: Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2 / 3 11.

Angles and Inner Planar Spacingis to (hkl) plane. Therefore, the angle between (h1k1l1) and (h2k2l2) planes is the angle between the Kh1k1l1

and Kh2k2l2 vectors.

α=? cosabbaRecall the dot product: cosφ=K h1k1l1

⋅K h2k2 l2

Kh1k1l1Kh2k2 l2

Khkl ⋅K hkl = hb1* + kb2

* + lb3*( )⋅hb1

* + kb2* + lb3

*( )

=hhb1* ⋅b1

* +hkb1* ⋅b2

* +hlb1* ⋅b3

*

+ khb2* ⋅b1

* + kkb2 ⋅b2* + klb2

* ⋅b3*

+ lhb3* ⋅b1

* + lkb3* ⋅b2

* + llb3* ⋅b3

*

Khkl2 =

2π( )2

dhkl2 =h2 b1

*( )2+ k2 b2

*( )2+ l2 b3

*( )2+ 2hkb1

*b2* cosγ* + 2klb2

*b3* cosα * + 2lhb3

*b1* cosβ *

Angles between reciprocallattice vectors.

K =hb1* + kb2

* + lb3*

Page 18: Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2 / 3 11.

Two Dimensional Lattice

Possible choices of primitive cell for a single 2D Bravais lattice.

Wigner-Seitz

Page 19: Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2 / 3 11.

First Brillouin ZoneIf these lattice points now represent reciprocal lattice points, then the first Brillouin zone is just the Wigner-Seitz cell of the reciprocal lattice.

b1*

b2*

Page 20: Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2 / 3 11.

DETERMINAÇÃO DA ESTRUTURA CRISTALINA POR DIFRAÇÃO DE

RAIO X

Page 21: Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2 / 3 11.

DIFRAÇÃO DE RAIOS XLEI DE BRAGG

n= 2 dhkl.sen

É comprimento de onda

N é um número inteiro de ondas

d é a distância interplanar

O ângulo de incidência

dhkl= a(h2+k2+l2)1/2

Válido para sistema cúbico

Page 22: Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2 / 3 11.

DISTÂNCIA INTERPLANAR (dhkl)

• É uma função dos índices de Miller e do parâmetro de rede

dhkl= a

(h2+k2+l2)1/2

Page 23: Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2 / 3 11.

TÉCNICAS DE DIFRAÇÃO

• Técnica do pó:É bastante comum, o material a ser analisado

encontra-se na forma de pó (partículas finas orientadas ao acaso) que são expostas à radiação x monocromática. O grande número de partículas com orientação diferente assegura que a lei de Bragg seja satisfeita para alguns planos cristalográficos

Page 24: Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2 / 3 11.

O DIFRATOMÊTRO DE RAIOS X

• T= fonte de raio X

• S= amostra

• C= detector

• O= eixo no qual a amostra e o detector giram

Detector

Fonte

Amostra

Page 25: Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2 / 3 11.

DIFRATOGRAMA

Page 26: Z Y X [0 1 0] [1 0 1] a x y z b c For cubic: a = b = c = a o [001] [210] [100] [111] [120] 1½0 - 2 / 3 11.

Recommended