+ All Categories
Home > Documents > ZHAO SFseminarweb (1)

ZHAO SFseminarweb (1)

Date post: 04-Apr-2018
Category:
Upload: hilarion31
View: 219 times
Download: 0 times
Share this document with a friend

of 48

Transcript
  • 7/30/2019 ZHAO SFseminarweb (1)

    1/48

    High Performance Technologies for

    Ethanol Production from Sweet Potato

    Chengdu Institute of Biology, Chinese Academy

    of Sciences, Chengdu 610041,China

    EmailEmail

    [email protected]@cib.ac.cn

    Zhao Hai

  • 7/30/2019 ZHAO SFseminarweb (1)

    2/48

    z 3E Principle

    Energy

    Environment

    Economy

    z Mode of Fuel Ethanol in ExistenceCorn Fuel Ethanol (American Mode)

    Sugarcane Fuel Ethanol (Brazil Mode)

    Cassava Fuel Ethanol (Thailand Mode)

    Chinese Mode of Fuel Ethanol :3E+ Food Supplies Security

    Mode of Chinese Fuel Ethanol Production

  • 7/30/2019 ZHAO SFseminarweb (1)

    3/48

    Feedstocks for bio-ethanol production

    Cellulosic materialsCellulosic materials

    Woody fiber grasses

    Canna edulis Ker sweet potatosweet potato cassava

    Sugar cropsSugar crops

    Sugar beets sugar cane sweet sorghum

    No grainNo grain

    starch cropsstarch crops

    Corn wheat

    GrainsGrains

    http://www.acclaimimages.com/usepolicy.html
  • 7/30/2019 ZHAO SFseminarweb (1)

    4/48

    Why we use sweet potato to produce bio-ethanol?

    99Hig h q u a n t i t y o f en er g y o u t p u tHig h q u an t i t y o f en e r g y o u t p u t

    H al l an d Sm i t t l e. 1 9 9 3 . I n d u s t r i al - t y p e sw e et p o t a t o e s: Ar enew ab le ener gy r esou r ce fo r Geor g ia . UGA Res. Rpt . 42 9.

    Feed s t o ck Ga l / A c r eWheat 340

    Corn 400

    Sweet Sorghum 600Sweetpotato 640

    Sugarcane 650

    Sugar Beets 700Switchgrass 1000Miscanthus 1250

    Po t en t ia l Et h an o l Y ie ld s

    Difficult tobe utilized

  • 7/30/2019 ZHAO SFseminarweb (1)

    5/48

    Growth

    period(month)

    Root yield

    kg/mu

    Starch

    content(%)

    Starch

    yield(kg/mu)

    Ethanol

    yield(kg/mu

    Yearly ethanol

    yieldkg/Year/mu

    Sweet

    potato 5

    Average 1500 20% 300 150 360

    High 3000 25% 750 375 900

    Cassava 10

    Average 1500 22% 330 165 198

    High 3000 28% 740 370 444

    Corn(CK) 3

    Average 328 64% 210 105 420

    High 500 64% 320 160 640

    99High speed o f ener gy ou t pu tH igh speed o f ene rg y ou t pu t

  • 7/30/2019 ZHAO SFseminarweb (1)

    6/48

  • 7/30/2019 ZHAO SFseminarweb (1)

    7/48

    99Be easy t o b e u t i l i zedBe easy t o b e u t i l i zed

    Sweet potatoFuel

    Ethanol

  • 7/30/2019 ZHAO SFseminarweb (1)

    8/48

    The issue of fuel ethanol production fromsweet potato

    99Sw eet p o t a t o i s a k i n d o f sm al l f ar m er co r p sSw eet p o t a t o i s a k i n d o f sm al l f ar m er co r p s - - -- - - I tI t

    i s d i f f i cu l t t o be used as indu st r ia l f eeds tockis d i f f i cu l t t o be used as indu st r ia l f eeds tockMain usageMain usage

    Feedstuff(50Feedstuff(50))

    Decomposition(30Decomposition(30))

    Seed (10%)Seed (10%)

    Commercial usage(10%)Commercial usage(10%) 10% Seed

    10%commercialusage

    50feedstuff

    30Decomposition

  • 7/30/2019 ZHAO SFseminarweb (1)

    9/48

    99High v i scosi t y o f sw eet po t a toH igh v i scosi t y o f sw eet po t a to

    Low efficiency of heat exchangers

    Low efficiency of enzyme kinetics

    Impact on the escape of CO2

    Inhibit the activity of strain

  • 7/30/2019 ZHAO SFseminarweb (1)

    10/48

    99Low ethanol content, high energy consumptionLow ethanol content, high energy consumptionin existing production technologiesin existing production technologies

    Ratio Between Material and Water 11

    Ethanolconcentration

    (% v/v)

    Fermentation

    (h)

    Fermentationefficiency

    (%)

    Corn

    (American) 15 50

    90

    Sugar Cane

    (Brazil) 8-9 10 90

    Sweet Potato 5-6 60 88

    More energy and water consumption

  • 7/30/2019 ZHAO SFseminarweb (1)

    11/48

    Our work

    Sw eet p o t a t o M ic roo rgan i sm s

    Energy-savingReactor

    Fe rm e n t a t i o n

    techno logy

    Very highgravity

    fermentation

    RapidFermentation

    Ethanoltolerance

    Temperature

    tolerance

    Pressuretolerance

    Mechanisms

    of Tolerance

    Demonstrationproject

    +

    Viscosity ReductionTechnology

  • 7/30/2019 ZHAO SFseminarweb (1)

    12/48

    Breeding of Stress Tolerance Yeast Strain

    Objective: To carry out the very high gravity fermentation

    Ethanol tolerance yeast

    Very High GravityFermentationVHG

    Reduce waterconsumption

    Reduce energyconsumption

    Reducewastewater

    Improve productivity

    of equipments

    Avoid pollution

    by other bacteria

  • 7/30/2019 ZHAO SFseminarweb (1)

    13/48

    8 ethanol tolerant strains of

    yeast were obtained . With Y1

    or Y5,more than 18% of

    ethanol was produced within60h,and the fermentation

    efficiency was 92%.

    The charac te r i s t i c hy d r o l ys i s

    enzym es m ap o f t h e st r a i ns

    Ethano lt o le rance s t r a in

    Ord ina rys t ra i n

    0

    2

    4

    6

    810

    12

    14

    16

    18

    20

    0 20 40 60 80

    Fermentation time (h)

    RG

    C

    %(

    w/v)

    E

    thanolconcentration%(v/v)

    Changes of RGC

    Changes of ethanol concentration

  • 7/30/2019 ZHAO SFseminarweb (1)

    14/48

    Differential gene expressionDifferential gene expressionPartialPartial

    Gene ex pr ess ion o ft he yeast i n t he

    cour se o f ve ry h ighg r a v i t y f er m en t a t i on

  • 7/30/2019 ZHAO SFseminarweb (1)

    15/48

    PathwayName Total PathwayName Total

    Glycolysis / Gluconeogenesis 19 One carbon pool by folate 9

    Purine metabolism 40 Terpenoid biosynthesis 4

    Peptidoglycan biosynthesis 1 Ubiquinone biosynthesis 3

    Pantothenate and CoA biosynthesis 5 Glycan structures - biosynthesis 2 7

    Two-component system - Organism-specific 1 Valine, leucine and isoleucine degradation 8

    Pyrimidine metabolism 26 Limonene and pinene degradation 6

    Thiamine metabolism 1 Valine, leucine and isoleucine biosynthesis 10

    Alanine and aspartate metabolism 11 Phosphatidylinositol signaling system 13

    Glutamate metabolism 11 Bile acid biosynthesis 9

    Aminoacyl-tRNA biosynthesis 23 Lysine biosynthesis 9

    Ribosome 61 DNA polymerase 10

    Main pathway involved in very high gravity ofethanol fermentation of Saccharomyces cerevisiae

  • 7/30/2019 ZHAO SFseminarweb (1)

    16/48

    Gene folder change in glycolysis

    GeneFolder change

    ADH2 0.16

    ADH4 0.19

    ALD3 0.50

    ALD4 0.29

    ALD5 0.40

    ALD6 0.14

    FBP1 0.10

    PYK2 0.17

    PDA1 0.41

    PDB1 0.43

    PDC5 0.34

    PDC6 0.23

    LAT1 0.43

    HXK1 0.49

    HXK2 0.50

    ACS2 0.09

    GAL10 6.25GPM2 2.45

    PGM1 3.59

  • 7/30/2019 ZHAO SFseminarweb (1)

    17/48

    Gene Folder change

    IDI1 0.32

    ERG8 0.28

    ERG1 0.22

    ERG9 0.49

    ERG7 0.09

    MVD1 0.20

    HMG1 0.44

    HMG2 0.29

    ERG20 0.20

    ERG12 0.38

    Gene folder change in steriod synthesis

  • 7/30/2019 ZHAO SFseminarweb (1)

    18/48

    Genes folder change involved in heat shock protein

    of Saccharomyces cerevisiae

    -10

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    HSP26 FES1 SSA2 SSA4 HSP78 SSA3 HCH1 AHA1 HSC82 HSP82 SIS1 HSP10 SSE1 STI1 HSP42 YDJ1 ZIM17 SSZ1 SSB1 SSB2

    Gene

    Foldercha

    nge

  • 7/30/2019 ZHAO SFseminarweb (1)

    19/48

    Objec t i ve To reduce water consumption in cooling

    To maintain sustaining production in summer

    To reduce pollution by other microorganisms which

    could not be tolerant to temperature

    To relieve the inconsistency between the fermentation

    temperature of the yeast and process temperature of

    cellulase or amyloglucosidase in the Simultaneous

    saccharification and fermentation (SSF)

    Temperature tolerance yeast

  • 7/30/2019 ZHAO SFseminarweb (1)

    20/48

    There were some similar mechanisms for yeast to tolerance high

    concentration of ethanol and high temperature

    High

    concentration of

    ethanol

    High

    temperature

    Increase of hsp protein + +

    Increase of H+-ATPase protein in the membrane + +

    Decrease of unsaturated fatty acid + +

    Increase of trehalose + +

    Increase of steriod + +

    Partial references:Z.H.Liu. Appl Microbiol Biotechnol.(2007)77:901-908

    Agustn Aranda. Arch Microbiol (2002) 177 :304312

    Peter W.FEMS Microbiology Letters . ( 1995) 134 :121 127

    Research st r a t eg ic

  • 7/30/2019 ZHAO SFseminarweb (1)

    21/48

    Temperature tolerance strains were screened

    from ethanol tolerance strains after heat

    shock treatment. Taking into account of

    ethanol concentration, fermentation time and

    fermentation efficiency, a strain of yeast

    could ferment at 40 normally. 13% of

    ethanol could be produced within 33h, and

    the fermentation efficiency was 92%

    Sugar concentration(%,w/v)

    Fermentationtime(h)

    Fermentationtime(h)

    Ethanol concentration(%,w/v)

    Fermentationtime(h)

    OD value

  • 7/30/2019 ZHAO SFseminarweb (1)

    22/48

    Act i v i t y o f k eyendoenzym es o f t he

    yeast i n t he cou r se o fet h a n o l f er m en t at i o n

    at 4 0

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    0 10 20 30 40 (h)

    6-

    (U/g

    )

    30

    40

    42

    G-6-PD(U/g)

    Fermentationtime(h)

    0

    0. 5

    1

    1. 5

    2

    2. 5

    3

    0 10 20 30 40 (h)

    ATP

    U/

    30

    40

    42

    ATPase(U/g)

    Fermentation

    time(h)

    0

    10

    20

    30

    40

    50

    0 10 20 30 40 (h)

    (U/g) 30

    40

    42

    ADH(U/g)

    Fermentationtime(h)

  • 7/30/2019 ZHAO SFseminarweb (1)

    23/48

    PathwayName Total

    Cell cycle 37

    Purine metabolism 35

    Pyrimidine metabolism 23

    Ribosome 20

    MAPK signaling pathway 19

    Glycine, serine and threonine metabolism 18

    Pyruvate metabolism 17

    Glycerophospholipid metabolism 16

    Phosphatidylinositol signaling system 15

    Butanoate metabolism 14

    Benzoate degradation via CoA ligation 14

    Glycolysis / Gluconeogenesis 14

    Citrate cycle (TCA cycle) 13

    Starch and sucrose metabolism 13

    Arginine and proline metabolism 13

    Inositol phosphate metabolism 13

    Glycerolipid metabolism 13

    Tryptophan metabolism 12

    Aminoacyl-tRNA biosynthesis 12

    Alanine and aspartate metabolism 12

    Gene ex pr ess ion o ft he yeast i n t he

    cour se o f et hano lf er m en t a t i o n at 4 0

    Main pathway involved in ethanol fermentation at 40

    Gene ex pr ess ion o ft he yeast i n e t hano lf er m en t a t i o n at 4 0

  • 7/30/2019 ZHAO SFseminarweb (1)

    24/48

    Gene Folder change

    PGM1 18.27

    ENO2 7.62

    GAL10 6.28

    GPM2 4.91

    ALD5 3.73

    PDC1 0.41

    PDB1 0.40

    ADH4 0.40

    ALD4 0.34

    PDC5 0.33

    ALD6 0.25

    ACS2 0.19

    FBP1 0.15

    PYK2 0.10

    Gene Folder change

    HSP26 21.90

    SSA3 10.35

    SSA4 8.38

    SSA2 4.61

    HSP104 3.00

    HSP42 2.83

    Genes folder change involved inheat shock proteinof Saccharomyces cerevisiae

    Gene folder change in glycolysis

  • 7/30/2019 ZHAO SFseminarweb (1)

    25/48

    Pressure tolerance strain

    The more bigger fermentation scale, the lessmanufacture cost

    High pressure coursed by high fermentation

    mash could do damage to the strains

    High co2 pressure may result in lowerfermentation parameters in scale-up

    compared with lab scale

  • 7/30/2019 ZHAO SFseminarweb (1)

    26/48

    The strain we screened could

    produce 9% of ethanol within

    24h under the co2 pressure of

    0.3Mpa,and the fermentation

    efficiency was above 90%

    React o r f o r e t hano l f e rm en t a t i onunder h i gh p ressu re

    Ethanol(%,w/w)

    Sugar(%,w

    /w)

    Fermentationtime(h)

    Fermentationtime(h)

  • 7/30/2019 ZHAO SFseminarweb (1)

    27/48

    Act i v i t y o f k ey endoenzym es o f t he yeast

    0

    1

    2

    3

    4

    5

    6

    10 15 20 25 30 h

    0.1 Mp

    0.2 Mp0.3 Mp

    0.4 Mp

    0

    5

    10

    15

    20

    25

    30

    6 12 18 24 30 (h)

    ADHU

    /

    0. 1 Mpa

    0. 2 Mpa

    0. 3 Mpa

    0. 4 Mpa

    0

    0.2

    0.4

    0.6

    0.8

    11.2

    1.4

    1.6

    1.8

    6 12 18 24 30(h)

    6-

    U/

    0. 1 Mp

    0. 2 Mp

    0. 3 Mp

    0. 4 Mp

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    0 10 20 30 40 (h)

    ATP

    U

    /

    0. 1 Mp

    0. 2 Mp

    0. 3 Mp

    0. 4 Mp

    G-6PD(U/g)

    A

    DH(U/g)

    A

    TPase(U/g)

    Hex

    okinase(U/g)

    Time(h) Time(h)

    Time(h)Time(h)

  • 7/30/2019 ZHAO SFseminarweb (1)

    28/48

    Gene ex pr ess ion o ft he yeast i n t he

    cour se o f et hano lf er m en t a t i on a t

    0 .2mPa

    Main pathway involved in ethanol fermentation at 0.2mPa

    Pathway Name Total

    Ribosome 98

    Cell cycle 32

    Purine metabolism 26

    Pyrimidine metabolism 18

    Glycine, serine and threonine metabolism 17

    Glutamate metabolism 15

    MAPK signaling pathway 14

    Starch and sucrose metabolism 14

    Oxidative phosphorylation 13

    Selenoamino acid metabolism 12

    Glycolysis / Gluconeogenesis 11

    Glycerophospholipid metabolism 11

    DNA polymerase 11

    Pyruvate metabolism 10

    Lysine degradation 10

    Sulfur metabolism 10

  • 7/30/2019 ZHAO SFseminarweb (1)

    29/48

    Gene Folder change

    HSP26 33.76

    SSA2 3.38HSP32 4.40

    HSP30 3.07

    HSP78 2.94

    SSA4 2.87

    HCH1 2.32

    HSP82 2.20

    HSP42 2.22

    SIS1 2.03

    Genes folder change involved inheat shock protein

    of Saccharomyces cerevisiae

    Gene folder change in glycolysis

    ALD5 3.27

    PGM1 1.83

    ALD3 0.40

    CDC19 0.39

    PDC5 0.33

    PGK1 0.30

    PDC6 0.29

    FBP1 0.13

    ADH4 0.13

    ENO2 0.09

    ACS2 0.08

    Vi it d ti t h l

  • 7/30/2019 ZHAO SFseminarweb (1)

    30/48

    Viscosity reduction technology

    Sweet potato and canna edulis ker are non-Newtonian fluid, the

    viscosity of which are more than 10104 mPa.S, while the

    viscosity of ordinary fermentation culture are below 100 mPa.SThe excessive addition of water can be useful to reduce mash

    viscosity, however, the concentration of fermentable sugars in

    fermentor is also decreased by the dilution, and more energy is

    required for water evaporation.

  • 7/30/2019 ZHAO SFseminarweb (1)

    31/48

    Changes of polysaccharide and glucosidic

    bond in sweet potato under the function of

    viscosity reduction technology

    To un ders t and

    t h e h i g hv iscos i t ym ech a n i sm o fsw eet p o t a t o b yso l id -phasemo n co lo n i can t i b od y f o r

    ca r b o n h yd r a t e

  • 7/30/2019 ZHAO SFseminarweb (1)

    32/48

  • 7/30/2019 ZHAO SFseminarweb (1)

    33/48

    Fermentation technologies

    To enhance ethanol concentration, reduce energy consumption,

    decrease fermentation time and then reduce the production cost ofethanol

    Objective

  • 7/30/2019 ZHAO SFseminarweb (1)

    34/48

    Rap id e t hano l f erm en t a t i on t echn o logy f r om f r esh sw eetp o t a t o

    Objec t i ve To use the feedstock in

    harvest season as soon as

    possible

    To avoid rot because ofoverstocking of sweet potato

    To improve the productivity

    of unit equipment

    Overs t ocked sw eet po t a t o

  • 7/30/2019 ZHAO SFseminarweb (1)

    35/48

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    0 3 6 9 12 15 18 21 24 27 30 Time (h)

    Reducing

    sugras

    concentration(g/kg)

    0

    20

    40

    60

    80

    100

    Ethanolcon

    centration

    (g/kg)

    18% 20% 22% 24%

    18% 20% 22% 24%

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    0 3 6 9 12 15 18 21 24 27 30 33

    Time (h)

    Reducingsugar(g/kg)

    0

    20

    40

    60

    80

    100

    120

    Ethanol(g/kg)

    1:1 sugar 2:1 sugar 3:1 sugar 5:1 sugar

    1:1 ethanol 2:1 ethanol 3:1 ethanol 5:1 ethanol

    With the screened yeast anddeveloped fermentation

    technique,12.35% of ethanol

    was produced within 24h, the

    fermentation efficiency was

    92%and the ethanol

    productivity was 4.06 g/kg/h

    With the screened z.mobilis and

    developed fermentation

    technique,12.06% of ethanolwas produced within 21h,the

    fermentation efficiency was

    94%and the ethanol

    productivity was 4.53 g/kg/h

    Rapid ethanolfermentation of yeast

    Rapid ethanol fermentationof z.mobilis

  • 7/30/2019 ZHAO SFseminarweb (1)

    36/48

    Very h i gh g r av i t y e t h ano l f e rm en t a t i on t echn o logy f o r f r eshsw eet p o t a t o

    Initial sugar

    concentration(w/g kg-1)270 300 330

    Fermentation time

    h28 39 48

    Ethanol

    concentration(w/g kg-1)132.86 146.30 151.19

    Fermentation

    efficiency(t)91.44 90.42 84.15

    Ethanol productivity(g

    kg-1 h-1)4.75 3.75 3.15

    Reducing sugars(w/g kg-

    1)5.64 6.82 20.68

    Total reducing

    sugars(w/g kg-1)15.19 18.38 31.53

    Viscosity(mPa s) 1074.75 1798.25 3033.15

    0

    50

    100

    150

    200

    0 3 6 9 12 15 18 21 24 27 28

    Time( /h)

    Concent

    ration(w

    /g

    kg-

    1)

    0

    1

    2

    3

    4

    5

    6

    pH

    pH

    Value

    pH

    10L scale fermentation

    A fermentation stimulant was developed to improve the activity of the

    strain. Under optimal condition,16.84% of ethanol was produced within

    30h,ethanol fermentation efficiency was 91.44%,and the ethanol productivity

    was4.74 g kg-1 h-1

  • 7/30/2019 ZHAO SFseminarweb (1)

    37/48

    Demonstration project was carried out

    in 10 thousand ton scale production line

    of ethanol production factory at Sichuan

    province.

    Compared with existed fermentation

    technique, fermentation time reduced

    from more than 60 hours to less than 30

    hours, ethanol concentration increased

    from 5%-6%(v/v) to 12.41%(v/v), and

    fermentation efficiency enhanced from

    88% to more than 90% in average.

    Technique integration and demonstration project

  • 7/30/2019 ZHAO SFseminarweb (1)

    38/48

    Batch 1 2 3 4 5 6 7 8

    Ratio of sweet

    potato to water11.1 31 3.681 41 4.51 31 31 41

    Viscosity of

    sweet potato

    with water

    15676 21231 29876 33164 41154 11206 21929 30758

    Viscosity of

    processedsweet potato

    (mPa.S)

    1108 1868 1654 1213 1384 1804 1453 1856

    Ethanol

    concentration

    (%,v/v)

    4.48 8.99 9.9 12.41 11.87 11.15 10.58 9.91

    Time(h) 60 20 20 29 27 21 23 22

    Final viscosity

    (mPa.S) 40 914 406 340 473 1138 603 635

    Reducing

    sugars(%)0.23 0.52 0.23 0.67 0.45 0.53 0.5 0.65

  • 7/30/2019 ZHAO SFseminarweb (1)

    39/48

    0

    24

    6

    8

    10

    12

    14

    16

    0 2 4 6 8 10 12 14 16 18 20

    (h)

    (%)

    0

    200

    400

    600

    800

    1000

    1200

    (mPa.S

    )

    0

    3

    6

    9

    12

    15

    0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 29

    h

    %

    0

    200

    400

    600

    800

    1000

    1200

    1400

    mPa.S

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    0 2 4 6 8 10 12 14 16 18 20 22 24 26 27

    h

    %

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    mP

    a.S

    0

    5

    10

    15

    20

    0 2 4 6 8 10 12 14 16 18 20 21

    (h)

    %

    0

    500

    1000

    1500

    2000

    mP

    a.S

    (%)

    (%)

    (mPa.S)

    Sugars

    Ethanol

    viscosity

    0

    2

    4

    6

    8

    10

    12

    14

    16

    0 2 4 6 8 10 12 14 16 18 20

    (h)

    (%)

    0

    200

    400

    600

    800

    1000

    1200

    (mPa.S

    )

    Sugars

    Ethanol

    viscosity

    Sugars

    Ethanol

    viscosity

    Sugars

    Ethanol

    viscosity

    Sugars

    Ethanol

    viscosity

    Time(h) Time(h)

    Time(h)Time(h)

    The third batch

    The fourth batch

    The fifth batchThe sixth batch

    Concen

    tration(%)

    Concentratio

    n(%)

    Concentration(%)

    Concentration(%)

    Viscosity(mP

    a.s)

    Viscosity(mP

    a.s)

    Viscosity(mPa.s)

    Viscosity(mPa.s)

    Viscosity(mPa.s)

  • 7/30/2019 ZHAO SFseminarweb (1)

    40/48

    0

    2

    4

    6

    8

    10

    12

    14

    0 2 4 6 8 1012141618202223

    h

    %

    0

    200

    400

    600

    800

    1000

    1200

    1400

    mPa.S

    (%)

    (%)

    (mPa.S)

    0

    2

    4

    6

    8

    10

    12

    14

    16

    0 2 4 6 8 10 12 14 16 18 20 22

    h

    %

    0

    500

    1000

    1500

    2000

    mPa.S

    (%)

    (%)

    (mPa.S)

    Sugars

    Ethanol

    viscosity

    Sugars

    Ethanol

    viscosity

    Concentration(%

    )

    Concentration(%

    )

    Viscosity(mPa.s)

    Viscosity(mPa.s)

    The seventh batch

    The eighth batch

  • 7/30/2019 ZHAO SFseminarweb (1)

    41/48

    Ratio ofRatio of

    sweetsweet

    potatopotato

    to waterto water

    ViscosityViscosity

    reductionreduction

    FermentatFermentat

    ion timeion time

    EthanolEthanol

    concentraconcentra

    tiontion

    FermeFerme

    ntationntation

    efficienefficien

    cycy

    PresentPresent

    technologtechnolog

    iesies11 11

    By addingBy adding

    excessiveexcessive

    waterwater>60h>60h 55--6%(v/v)6%(v/v) 10000mPa.s

    toto

    90%

    Comparison between present technologies and theseComparison between present technologies and these

    technologiestechnologies

    The advantage of our technologies

    less water was needed to be

    added to the sweet potato mash,

    and 70% of water could be

    saved.

    ethanol concentration was

    increased from 5-6% to

    12%.Thus 40% of energy for

    water evaporation was saved,

    and wastewater could be

    reduced from 16t to 9t.

    the COD in the wastewater was

    partially removed and reduced

    from 64200mg/L to 41200 mg/L.

  • 7/30/2019 ZHAO SFseminarweb (1)

    42/48

    Technological breakthroughTechnological breakthrough

    andandAchievementsAchievements

    Fou r t echn o log ica l b r eak t h r ough o f

  • 7/30/2019 ZHAO SFseminarweb (1)

    43/48

    Fou r t echn o log ica l b r eak t h r ough o fn o n - g r a i n e t h an o l p r o d u c t i o n

    HighHigh--efficient strains ofefficient strains of

    ethanol fermentationethanol fermentation

    Selective breeding out high-concentration fermentation strains ofwithstand pressure and temperatureresistance, which haveindustrialization value.

    HighHigh--efficient fermentationefficient fermentation

    of high viscosity materialsof high viscosity materials

    Reducing viscosity of fermentedmash , raising material-water ratio,which can cut down 70% waterconsumption.

    HighHigh--concentration ethanolconcentration ethanol

    fermentation of fresh sweetfermentation of fresh sweet

    potatopotato

    Improving ethanol concentration,(from 5 to 12%)reducing energy cost,steam consume of ethanol distillation

    can cut down and discharge of wastewater can cut down 40% at least.

    Rapid ethanol fermentationRapid ethanol fermentation

    ofof fresh sweet potatofresh sweet potato

    Fermentation time will be shortenfrom 60h to 30h . It can enhanceethanol production capacity of unitequipment at least 1 times higher.

    P

  • 7/30/2019 ZHAO SFseminarweb (1)

    44/48

    Paten ts

    Patents

  • 7/30/2019 ZHAO SFseminarweb (1)

    45/48

    Joint Research Project of Chinese Academy of Sciences Ethanol production

    from Canna edulis Ker

    Knowledge Innovation Program of The Chinese Academy of SciencesHot-

    tolerance strain for ethanol production

    Key Technologies R & D of Sichuan Province Key technology of ethanol

    production from sweet potato

    Key Technologies R & D of Sichuan ProvinceKey biotechnology of ethanolproduction

    Program of Development and Reform Commission of Sichuan Province

    Establishment of the exclusive evaluation system of sweet potato for ethanol

    production

    Ou r w o r k w as m ai n ly su p p or t ed b y t h ef o l l ow i n g p r o j ect s

    Acknowledgements

  • 7/30/2019 ZHAO SFseminarweb (1)

    46/48

    National Key Technologies R & DEnergy-saving preservation technology

    for sweet potato and ethanol production

    National Key Technologies R & DEthanol production from Canna edulis

    Ker and sweet potato at the scale of 5000ton of ethanol per year

    National High Technology Research and Development Program of China

    (863 Program) High efficiency transformation techniques of Lignocellulose

    International Cooperative Program of Sichuan ProvinceRelative

    Characteristics of Sweet Potato for Bio-ethanol Production

    National Key Technologies R & DKey technology of ethanol production

    from sweet potato

    National Key Technologies R & DBreeding of sweet potato for ethanol

    production

  • 7/30/2019 ZHAO SFseminarweb (1)

    47/48

    National Key Technologies R & DSustaining supply of sweet potato for

    ethanol prodcution

    National High Technology Research and Development Program of China (863

    Program) Rapid ethanol production from sweet potato with high viscosity

    The earmarked fund for Modern

    Agro-industry Technology Research

    System Energy utilization of sweet

    potato

  • 7/30/2019 ZHAO SFseminarweb (1)

    48/48

    Thanks for your attention !


Recommended