+ All Categories
Home > Documents > ZurichOpenRepositoryand Archive Year: 2016

ZurichOpenRepositoryand Archive Year: 2016

Date post: 18-Dec-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
19
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2016 The dynamics of insurance prices Henriet, Dominique ; Klimenko, Nataliya ; Rochet, Jean-Charles Abstract: We develop a continuous-time general-equilibrium model to rationalise the dynamics of in- surance prices in a competitive insurance market with fnancial frictions. Insurance companies choose underwriting and fnancing policies to maximise shareholder value. The equilibrium price dynamics are explicit, which allows simple numerical simulations and generates testable implications. In particular, we fnd that the equilibrium price of insurance is (weakly) predictable and the insurance sector always realises positive expected profts. Moreover, rather than true cycles, insurance prices exhibit asymmetric reversals caused by the refection of the aggregate capacity process at the dividend and recapitalisation boundaries. DOI: https://doi.org/10.1057/grir.2015.5 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-130214 Journal Article Accepted Version Originally published at: Henriet, Dominique; Klimenko, Nataliya; Rochet, Jean-Charles (2016). The dynamics of insurance prices. The Geneva Risk and Insurance Review, 41(1):2-18. DOI: https://doi.org/10.1057/grir.2015.5
Transcript

Zurich Open Repository andArchiveUniversity of ZurichMain LibraryStrickhofstrasse 39CH-8057 Zurichwww.zora.uzh.ch

Year: 2016

The dynamics of insurance prices

Henriet, Dominique ; Klimenko, Nataliya ; Rochet, Jean-Charles

Abstract: We develop a continuous-time general-equilibrium model to rationalise the dynamics of in-surance prices in a competitive insurance market with financial frictions. Insurance companies chooseunderwriting and financing policies to maximise shareholder value. The equilibrium price dynamics areexplicit, which allows simple numerical simulations and generates testable implications. In particular,we find that the equilibrium price of insurance is (weakly) predictable and the insurance sector alwaysrealises positive expected profits. Moreover, rather than true cycles, insurance prices exhibit asymmetricreversals caused by the reflection of the aggregate capacity process at the dividend and recapitalisationboundaries.

DOI: https://doi.org/10.1057/grir.2015.5

Posted at the Zurich Open Repository and Archive, University of ZurichZORA URL: https://doi.org/10.5167/uzh-130214Journal ArticleAccepted Version

Originally published at:Henriet, Dominique; Klimenko, Nataliya; Rochet, Jean-Charles (2016). The dynamics of insurance prices.The Geneva Risk and Insurance Review, 41(1):2-18.DOI: https://doi.org/10.1057/grir.2015.5

②♥♠s ♦ ♥sr♥ Prs

♦♠♥q ♥rt t② ♠♥♦ ♥rs ♦t

♦ ♥tr rs r réér ♦♦tr rs r♥ ♠

♦♠♥q♥rt♥tr♠rsr❯♥rst② ♦ ❩r Ptt♥strss ❩r t③r♥ ♠ ♥t②♠♥♦③

❯♥rst② ♦ ❩r ♥ Ptt♥strss ❩r t③r♥ ♠

♥rsr♦t③

strt

❲ ♦♣ ♦♥t♥♦st♠ ♥rqr♠ ♠♦ t♦ rt♦♥③ t ②♥♠s ♦ ♥sr

♥ ♣rs ♥ ♦♠♣tt ♥sr♥ ♠rt t ♥♥ rt♦♥s ♥sr♥ ♦♠♣♥s ♦♦s

♥rrt♥ ♥ ♥♥♥ ♣♦s t♦ ♠①♠③ sr♦r qr♠ ♣r ②♥♠s

s ①♣t ♦s s♠♣ ♥♠r s♠t♦♥s ♥ ♥rts tst ♠♣t♦♥s ♥ ♣rt

r ♥ tt t qr♠ ♣r ♦ ♥sr♥ s ② ♣rt ♥ t ♥sr♥ st♦r

②s r③s ♣♦st ①♣t ♣r♦ts ♦r♦r rtr t♥ tr ②s ♥sr♥ ♣rs ①t

s②♠♠tr rrss s ② t rt♦♥ ♦ t rt ♣t② ♣r♦ss t t ♥ ♥

r♣t③t♦♥ ♦♥rs

♥tr♦t♦♥

♣♥♦♠♥♦♥ ♦ ♥rrt♥ ②s ♣♣rs t♦ ♣r♦♠♥♥t tr ♦ t ♥sr♥

♥str② ♥sr♥ ♣r♠♠s ♥ ♣r♦ts rs ♥ r ♠rts ♣ss ♥ ♥ s♦t ♠rts

♣ss t s♦♠ rrt② ♦r t♠ ♥ s♦t ♠rts ♣rs ♥ ♣r♦ts r ♦ ♥ ♥sr♥

♣t② s rs ♥ r ♠rts ♣rs ♥ ♣r♦ts r ♥sr♥ ♣t② s rstrt

♥ ♣♦② ♥t♦♥s ♦r ♥♦♥ r♥s r rq♥t r ♠rts ♥ ♣♣r r② s♥② ♥

t② r ♦t♥ rrr t♦ s t② rss s ♦r ♥st♥ t♥ ♥ ♥ ♣r♠♠

r♥s ♥r② tr♣ ♦r s♦② rs♥ ♥ t ♥①t

r sts t ①st♥ ♦ s ♥rrt♥ ②s ♥ ♣r♦♣rt②t② ♥sr♥

♦r t③r♥ t ❯ ♣♥ ♥ ❲st r♠♥② ♦r ♣r♦ ♦ ②rs ❯s♥

t♦rrss ♠♦s ♦ ♦rr s ♥s ②s ♦r t ❯ ❲st r♠♥ ♥ ss ♠rts

rs ♠♦st s♣t♦♥s ♦r ♣♥ ♦ ♥♦t r ②s ♥ t s♠ ② r ♥ tr

s♦ ♠♣r ♥ ♦ ♥ ♥rrt♥ ② ♥ ♣r♦♣rt②t② ♥sr♥ ♦r r♥

❲ t♥ rt♥ ♦②r ♦r ♦♥♥ ♦② ♥ r♥ç♦s tr Ptr ❩ ♥ P♦rs♦r ♣ ♦♠♠♥ts t② ♠♥♦ ♥ ♥rs ♦t rt② ♥♦ ♥♥ s♣♣♦rt r♦♠ tss ♥♥ ♥sttt ♥ r♦♣♥ sr ♦♥ ♥r t r♦♣♥ ❯♥♦♥s ♥t r♠♦r Pr♦r♠P r♥t r♠♥t

Pr♣r♥t s♠tt t♦ ♥ s ♥ ♥sr♥ ♥r②

r♠♥② ♥ t③r♥ ♥ ♦r t r♦♣♥ r♥sr♥ ♥str② t♥ ♥

♦r ♠♦r r♥t st② ② ♦②r qr ♥ ❱♥ ♦r♥ sts ♦t ♦♥ t rt②

♦ ②s r r♠♥t s tt st♥r st♠t♦♥ t♥qs ♦rstt t ♦♦ ♦

♥ ② s ♦ t ♥♦♥ ♥rt② ♦ t ♥ t♥ ♣r♠trs ♥ t

♦ t ♣r♦ ② ♦♥ tt t ♦sr ♥rrt♥ tt♦♥s ♥♥♦t ♦♥sr s

tr② ②

r♦♠ t♦rt ♣rs♣t t s r t♦ ①♣♥ ②s ② t ♦♥♥t♦♥ ♦r♥

t♦ ♥sr♥ ♣r♠♠s s♦ ♥♦r♠t♦♥② ♥t ♣rt♦rs ♦ t ♣rs♥t ♦

♣♦② ♠s ♥ ①♣♥ss ♦r s rtr ♦r♥t t♦rs ♥rrt♥ ②s ♦♠ r②

r♦♠ ♥sttt♦♥ s ♥ r♣♦rt♥ ♣rts ♥ s♦♠ s♥s t② r rtts ss♥t②

t♦ ♦♥t♥ rs ♥♦r♠t♦♥ ②s ♦r rt♦r② rts s ♠♠♥s ♥ tr

♠♠♥♥♥t ♥ ❲ss ♦r ♥ ❲♦♥ ♥

② ♦♥trst ♣t② ♦♥str♥t t♦rs sst tt r rt♦♥s ♦♥ ♣t ♠rts ♥ t

s ♦ ♥rrt♥ ②s ② ♠♥ t ♥str②s ♣t② t♠♣♦rr② ♣♥♥t ♦♥ s♦rttr♠

♣r♦ts ♥ ♦sss ♦r♥ t♦ ts ♣♣r♦ ② ♥s ♥ ♥srrs r♠t② r

♣t② tr r ♦sss tt ♣t tr rsrs tr s♦♠ t♠ rsrs r rst♦r

♥ ♣t② ♥rss ♥ t t ♥rs ♥ ♥rrt♥ ♣t② ♥rss ♦♠♣tt♦♥

♥ tr♥ rs ♣r♠♠s ♦♥ ❲♥ ♥srrs ♥r rt♦♥ ♥ ♣t t♦ ♥①♣t

♦sss t② r rt♥t t♦ ss ♥ qt② t♦ ss♥ ♦sts s ♠♣s tt s♦s

t♦ ♥srrs ♣t t t ♣r ♥ q♥tt② ♦ ♥sr♥ s♣♣ ♥ t s♦rt r♥ ♥ s

♦♥t①t ♣rs r ♥♦t r② ♣r♦ t ♦♥② rt ♣st ♦sss r♦♠ tt ♣♦♥t ♦ ②

s t♠ ♣s t♦ r♦r ♣t②

♥ ts ♣♣r ♣r♦♣♦s ② ②♥♠ ♠♦ tt r♦♥s rtr ♦r♥t ♥

♣t② ♦♥str♥t t♦rs ♥ ♦r ♠♦ ♥srrs r ♠①♠③rs ♥ ♦♠♣tt ♦r

t② ♥♥ ♠rt t rt♦♥s ♥ tt ss♥ ♥ qt② s ♦st② ♥str② ♣t②

rt q rsrs tr♠♥s t ②♥♠s ♦ ♥s r♣t③t♦♥s ♥ ♣r♠♠s

♥sr♥ ♦♠♣♥s strt ♥s ♥ t st♦r ♣t② s ♥ t ①♣t ♣r♦ts

r ♦ ②♠♠tr② r♣t③t♦♥s t ♣ ♥ ♣t② ♦♠s t♦♦ s♠ rt♦♥

♣r♦♣rt② ♦ t ♣t② ♣r♦ss t t♦ ♦♥rs ss ♦st♦♥s tt t♦ qs②

♣ttr♥ qr♠ ♣r ♦ ♥sr♥ s rs♥ ♥t♦♥ ♦ t ♥str② ♣t② ♥

ts ♠①♠♠ s ♥rs♥ t t ♠♥t ♦ t ♥♥ rt♦♥s

♥ ♥trst♥ ♣rt♦♥ ♥rt ② ♦r ♠♦ s tt ♥rrt♥ ②s ♥ ♥r

s②♠♠tr ❲ ♠sr t r rt♦♥ ♦ t s♦t ♠rt ♣s ② t ①♣t t♠ t

ts ♦r t ♣r ♦ ♥sr♥ t♦ r ts ♠♥♠♠ strt♥ t ts ♠①♠♠ ♥

♥♦t♦♥ tt ①tr♥ qt② ♥♥♥ s ♠♦r ♦st② t♥ ♥♥♥ rt♥ r♥♥s s sss ♥❲♥tr ♥ t ♠♣r s r♦♥ ♥ s ♥ ♥ ♦ t ♠♣♦rt♥t ♦sts ♦ rs♥ ①tr♥♣t ♦r t ♣r♦♣rt②st② ♥srrs

s♠r s♦♥ t r rt♦♥ ♦ t r ♠rt ♣s s ♣♣r♦①♠t ② t ①♣t

t♠ t ts ♦r t ♣r ♦ ♥sr♥ t♦ r♦r r♦♠ ts ♠♥♠♠ ♣ t♦ ts ♠①♠♠

♦♥sst♥t t ♠♣r ♥ r♣♦rt ♥ r ♦r ♥♠r ♥②ss s♦s tt t s♦t

♠rt ♣s sts ♦♥r ♥ ①♣tt♦♥ t♥ t r ♠rt ♣s ♦r♦r ts r♥

tr♥s ♦t t♦ ♠♦r ♣r♦♥♦♥ ♥ t stt② ♦ t ♠♥ ♦r ♥sr♥ s

r ♥sr♥ ♣r ♥①

2000 2002 2004 2006 2008 2010 2012100

110

120

130

140

150

160

170

Years

Insura

nce

price

in

de

x

♦ts ts r r♣♦rts t ♣ttr♥ ♦ t ♥sr♥ ♣r ♥① t r♦♠ ♦♥ ♦ ♥sr♥ ♥ts ♥ r♦rs s s♦♥ ♥ tt t s♦t ♠rt ♣s ♥♥ ♣rs sts ♦♥r t♥ t r ♠rt ♣srs♥ ♣rs

r ♣♣r s rt t♦ t rr trtr tt tt♠♣ts t♦ ♥ t ♠r♥ ♦ ②s t♦

♥s ♥ ♥srrs ♥t ♦rt trt ♥ ♦♦♠ ♦♣ t♦ s♠♣ ♠♦s

♦♥ ts ♥ ② r② ♦♥ ♣rt qr♠ ♣♣r♦ r t sts ♦ ♥sr♥ s♣♣②

rs ①♣♥ t ♥rrt♥ ② ♣♦st♦♥ ♦ t s♣♣② r s t ② ♥srrs ♥t

♦rt ♥ t ♦r♠ ♦ ♥srr ①♣tt♦♥s ①♣♥s t t♠♥ ♥ ♥t ♦ t ♣r ♣s

♥ rr♥t♦♥ ♣r♦♣♦s ♠♦ ♦ ♥sr♥ s♣♣② t ♣t② ♦♥str♥ts ♥

♥♦♥♦s t rs ♥str② ♠♥ s ♥st t rs♣t t♦ ♣r ♥ ♣t t ♣r

♥rs ♦♦♥ ♥t s♦ t♦ ♣t ♦ rr ♥ st ♣r♦r♠ ♥

♠♣r ♦♠♣rs♦♥ ♦ s① tr♥t ♠♦s ♦ ♥sr♥ ♣r♥ s♥ t t♥ ♥

② ♥ tt t ♣t② ♦♥str♥t ♠♦ s ♦♥sst♥t t t ♦t ♥ t ♦♥ ♥

s♦rt tr♠ r♦♥ s♦ ♣r♦s ♠♣r s♣♣♦rt ♦r t ♣r♠r② ♣rt♦♥s ♦ ♣t②

♦♥str♥t t♦rs ♦ ♣r♦♣rt②st② ♥sr♥ ②s

♦sst rt ♣♣r s ❲♥tr ♦ ♦♣s srt t♠ ♠♦ s♠r t♦ ♦rs

♠② ♥ ❲♥tr ♥srrs ♠t qt② ♣t s♦ s t♦ r ♦t t ♥ t♦

t♦ ♠t ♣♦②♦rs ♠s s tr ♠♣s ♥ ♣rs♦♣♥ s♦rtr♥ s♣♣② r ♦s

♣♦st♦♥ s tr♠♥ ② t ♦ ♣t ♥ t♦♣ ♦ ts ♦st r♥t t♥ ♥tr♥ ♥

①tr♥ s♦rs ♦ ♣t ♣r♥ts ♥♥ ♣t r♦♠ q② st♥ ♥sr ♥

rs s t ♦ss ♦ ♦♥ ♦r t ♣r♦t② tt s ♦♠♠♦♥ t♦ ♥srs t s ts

r♥♦♠ s ♥ ♦r ♠♦ t stt r s t t♦t ♥t t ♦ t ♥sr♥ ♦♠♣♥s ♥

t rt♦♥ ①♣tt♦♥ qr♠ s rtr③ ② t ♦♥t ②♥♠s ♦ ♥sr♥ ♣rs ♥

♠rtt♦♦♦ ♦♥s q rt♦ ♦r ♥ ♦♥trst t♦ ♦r ♠♦ t rrs rtr③t♦♥

♦ t qr♠ ②♥♠s ♥ ❲♥tr ♦s ♥♦t ♦ ①♣t s♦t♦♥s ❲♥tr s♦s

tr♦ s♠t♦♥ ♠t♦s tt t qr♠ ♣r s rr t♥ t ①♣t ♦ss ♥ s

♥t② ♦rrt t ♣t②

r ♠♦ ♥ s♥ s ♦♥t♥♦s t♠ rs♦♥ ♦ ❲♥tr ❲ ♥rt♥ t ♠♥

♣rt♦♥s ♦♥sst♥t t t♦s ♦t♥ ♥ srt t♠ t ♦s t ①♣t rtr③t♦♥

♦ qr♠ ②♥♠s ❲ strt t ♥t ♦ s♥ t ♦♥t♥♦st♠ ♣♣r♦ ②

♥②s♥ t ② ♣r♦♣rts ♦ ♣r tt♦♥s

rst ♦ t ♣♣r s ♦r♥③ s ♦♦s t♦♥ ♣rs♥ts t ♠♦ t♦♥ r

tr③s t ♦♠♣tt qr♠ t♦♥ sts t ②♥♠s ♦ ♥sr♥ ♣rs t♦♥

♦♥s

❲ ♦♥sr ♦♠♣tt ♥sr♥ ♠rt tt ♦♥ssts ♦ ♦♥t♥♠ ♦ ♥sr♥ ♦♠♣♥s

♦r♥ ♥sr♥ t♦ ♥s ♦ ♣rt② ♦rrt rss s s tr rss

♥ts s♦♥t t tr t ♦♥st♥t rt r ♠t ♦ss Lt ♥rr ② ♥

♣ t♦ t t s s tt

dLt = ℓdt+ σ0dBt,

r ℓ ♥♦ts ①♣t ♦sss ♣r ♥t ♦ t♠ σ0 s ♥ ①♣♦sr ♣r♠tr ♥ Bt s st♥r

r♦♥♥ ♠♦t♦♥ ♥ ♦♥ t ♣r♦t② s♣(Ω,F,P

)tt ♥rts t trt♦♥ F =

Ft, t ≥

0 ❲ ss♠ tt Bt s t s♠ ♦r ♥s ♣rt ♦rrt♦♥ t♥ rss

♥sr♥ ♦♥trts r s♦rttr♠ ♥ t ♠rt ♣r ♦ ♥sr♥ ♣r ♥t ♦ t♠ s

πt = ℓ+ σ0pt,

r pt s rs ♦♥ t♦r ♦r s♠♣t② tr♦♦t t ♣♣r rr t♦ pt s t♦ t

♣r ♦ ♥sr♥ ♠♥ ♦r ♥sr♥ s ①♦♥♦s② ♥ ② ♥t♦♥ D(p) s tt

D′(.) < 0

♥ ♥sr♥ ♦♥trts ♥ ♥♥ts♠ ♥t ♥srrs ♥♦ ♦♥tr♠ ts

s t ♥ st ♦ ♥sr♥ ♦♠♣♥② s ♦♥② ♦♥ t♠ ♦♥ s qt② et ♦♥ t

t② s ♥ q rsrs ♦♥ t sst s t et = mt r♦r mt Mt ♦♥ rt

♥ s♠t♥♦s② s t ♦♠ ♦ ♥ rs♣t② rt rsrs ♦r s

♦s②♥rt ♣rt ♦ ♥ rs s ♥t s♥ t ♥ ♠♥t ② rst♦♥

t ♦♦ ♦ qt② ♦r ♥ ♥sr♥ ♦♠♣♥② rs♣t② t ♥tr ♥sr♥ ♥str② ♥

♥ ♥♥ts♠ ♣r♦ (t, t + dt) ♥ ♥ ♥srr ♦♣rt♥ t s xt ♥rts r♥♥s

xt(πtdt− dLt) tt ♥ strt s ♥s ♦r ♥ rt♥ ♥ rsrs ♦r♦r ♥sr

♥ ♦♠♣♥s ♥ ♥rs t ♦ rsrs ② rs♥ ♥ qt② ♥ts ♣r♦♣♦rt♦♥

♦st γ

②♥♠s ♦ rsrs mt ♦ ♥ ♥sr♥ ♦♠♣♥② ♦♣rt♥ t s xt t t♠ t s ♥

dmt = σ0xt (ptdt− dBt) + dit − dδt,

r dδt ≥ 0 ♥ dit ≥ 0 ♥♦t rs♣t② t ♥s ♥ t ♠t ♥ ♥ r♣

t③t♦♥ ♠♦♥ts ♥ t ♦r ♠♦ ♥ s ♥r qr♠ rs♦♥ ♦ t ss

r♥ t♦r② ♠♦ ♥ ts r♦♥♥ rs♦♥ s ♥ rr r rsrs ②♥♠s s

♥ ②

dmt = µdt− σ0dBt − dδt.

♠♥ r♥ ♦r ♣rt♥s t♦ t t tt ♥ ♦r stt♥ ♣rs ♥ q♥tts r

♥♦♥♦s ♥ ♥sr♥ ♦♠♣♥s t ♣♦sst② t♦ r♣t③

Pr♦ tt t qr♠ t s♣♣② ♦ ♥sr♥ ♦♥trts qs t ♠♥ t ②♥♠s

♦ rt rsrs ♣t② ♦ t ♥tr ♥sr♥ st♦r sts②

dMt = σ0D(pt) (ptdt− dBt) + dIt − d∆t,

r d∆t ≥ 0 ♥ dIt ≥ 0 ♥♦t rs♣t② t ♥s ♥ t rt ♠t ♥

♥ r♣t③t♦♥ ♠♦♥ts

♥ ♦r ♠♦ ♦s ♦♥ r♦♥ stt♦♥r② qr♠ ♥ t ♥sr♥ ♣r s

tr♠♥st ♥t♦♥ ♦ t rt ♦ rsrs ♥ t ♥sr♥ st♦r pt = p(Mt) ♦

♦r♠② ♥ t qr♠ t J = [0, 1] ♥♦t t st ♦ ♥sr♥ ♦♠♣♥s ♦

s ♥① ② j ∈ J

♥t♦♥ stt♦♥r② r♦♥ ♦♠♣tt qr♠ ♦♥ssts ♦ ♥ rt rsrs ♣r♦

ss Mt ♣r ♦ ♥sr♥ p(M) ♥ ♥sr♥ s♣♣② ♥t♦♥s xj(M), j ∈ J tt r ♦♠♣t

t ♥srrs ♣r♦t ♠①♠③t♦♥ ♥ t ♠rt r♥ ♦♥t♦♥∫

Jxj(M)dj = D[p(M)]

♥ t ♦♦♥ st♦♥ sts t ①st♥ ♦ ♥q stt♦♥r② r♦♥ qr♠

♥ st② ts ♠♥ ♣r♦♣rts

♦r♥ t♦ r♦♥ ♥ s ♦r ①♠♣ t rt ♦sts ♦ qt② sss r♥ r♦♠ t♦ % ♦ t ss

❲ ss♠ tt rsrs r♥ ♥♦ ♥trst

qr♠

♥sr♥ ♦♠♣♥② ts t ♣r ♦ ♥sr♥ p(Mt) ♥ t ②♥♠s ♦ Mt s ♥

♥ ♦♦ss t s ♦ ♦♣rt♦♥ xt ≥ 0 ♥ dδt ≥ 0 ♥ r♣t③t♦♥ dit ≥ 0 ♣♦s s♦

s t♦ ♠①♠③ sr♦r

v(m,M) = maxxt≥0,dδt≥0,dit≥0

E

[ ∫ +∞

0e−rt dδt − (1 + γ) dit

]

,

r mt ♦♦s ♥ Mt ♦♦s

♦t tt t ♦t ♥t♦♥ ♥ t stt qt♦♥ r ♦♠♦♥♦s ♥ (m,x, dδ, di)

♠♣②♥ tt t ♥t♦♥ s ♥r ♥ t ♥ ♦ rsrs

v(m,M) = mu(M),

r u(M) s t ♠rtt♦♦♦ ♦ t ♥sr♥ ♦♠♣♥② s t s♠ ♦r t ♥tr

♥sr♥ st♦r

♥ t ♦ ♣r♦♣rt② ♦ t ♥t♦♥ ♦♥ ♥ s② s♦ tt t ♠♥ qt♦♥

♦rrs♣♦♥♥ t♦ sr♦r ♠①♠③t♦♥ ♥ rtt♥ s ♦♦s

ru(M) = maxx≥0,dδ≥0,di≥0

[

xσ0

p(M)u(M) + σ0D[p(M)]u′(M)

+ σ0D(p)p(M)u′(M) +σ20D

2[p(M)]

2u′′(M)

+dδ

m

1− u(M)

− di

m

1 + γ − u(M)]

,

r t tr♠ ♥ t t♥ s s t ①♣t rtr♥ r♦♠ ♦♥ ♦♥ ♥t ♦ qt② ♥ t

♥sr♥ ♦♠♣♥② t rst tr♠ ♥ t rt♥ s ♥ r② rts ♣trs t ♠♣t ♦

♥ rs ①♣♦sr t s♦♥ ♥ t tr tr♠s ♥ t rt♥ s rt t ♠♣t

s ② t ♥s ♥ t rt ♣t② ♦ t ♥sr♥ st♦r ♥ t st t♦ tr♠s

♣tr rs♣t② t ♠♣t ♦ t ♣②♦t ♥ r♣t③t♦♥ ♣♦s

♦♥sr rst t ♦♣t♠ ♥ ♥ r♣t③t♦♥ ♣♦s ①♠③♥ t rs♣t t♦

dδ ≥ 0 ♥ di ≥ 0 ♠♣s str♦♥ ♦♥t♦♥s ♦♥ u(.)

u(M) ≥ 1,

♦t tt u (M) ♥ ♥tr♣rt s t ♠rt ♦ ♦♥ ♦r ♦ ♥t ♦rt ♦♦ ♥ t ♥sr♥st♦r ♥ t♦t ♣t② s M t r♣rs♥ts t ♥sr♥ ♥♦ ♦ ♦♥s q rt♦ s ♥ ❲♥tr

t dδ > 0 ♦♥② ♥ u(M) = 1 ♥

u(M) ≤ 1 + γ,

t di > 0 ♦♥② ♥ u(M) = 1 + γ

s s♦ ♦ t ♠rtt♦♦♦ rt♦ ♦ t ♥sr♥ st♦r s rs♥ ♥t♦♥ ♦

ts rt ♣t② u′(M) < 0 s ♠♣s tt rt ♣t② M rs t♥ t♦

rt♥ ♦♥rs ♥ s ♥ ♠♥② s♦♥ ♠♦s ♥ t t ♦♣t♠ qt② ♠♥

♠♥t t ♦♣t♠ ♥ ♥ r♣t③t♦♥ ♣♦s ♥ ♦r ♠♦ r ♦ s♦ rrr

t②♣ ♥ ♣rtr ♥s r strt ♥ t ♥sr♥ st♦r s s♥t② ♣t③ s♦

tt rt rsrs r rt M s tt t ♠rtt♦♦♦ ♦ t ♥srrs

qt② s t♦ 1

u(M) = 1.

② ♦♥trst r♣t③t♦♥s t ♣ ♥ t ♥sr♥ st♦r s ♥r♣t③ ♥ r

srs t♦ rt M < M s tt t ♠r♥ ♦ ♦♥ ♦♥ sr ♥ t

♥sr♥ ♦♠♣♥② qs t ♠r♥ ♦st ♦ ss♥ ♥ sr

u(M) = 1 + γ.

❲ tr♥ ♥♦ t♦ t ♦♣t♠ ♦ ♦ t s ♦ ♦♣rt♦♥ ♦ ♥ ♥srr ①♠③t♦♥ t

rs♣t t♦ xt ♠♣s tt ♥ ♥tr♦r s♦t♦♥ ①sts ♥ ♦♥② t ♠rtt♦♦♦ u(M)

♥ t ♣r p(M) sts②

p(M) = −u′(M)

u(M)σ0D[p(M)].

❯♥r t ♦ qt② t tr♠ ♥ x ♥ss r♦♠ t ♠♥ qt♦♥ ♥ ♦♥ t ♥tr

(M,M) r rt ♣t② ♦s s♦② t♦ rt♥ r♥♥s t ttr tr♥s♦r♠s

t♦

ru(M) = σ0D(p)p(M)u′(M) +σ20D

2[p(M)]

2u′′(M), M ∈ (M,M).

♥ t ♦ qt♦♥ ② u(M) ♥ s♥ qt♦♥ t♦ r♣ t tr♠ u′(M)u(M) ♦♥

♦t♥s

r + p2(M) =σ20D

2[p(M)]

2

u′′(M)

u(M).

s ♦♥ s t ♣r ♦ ♥sr♥ p(M) stss qt♦♥s t sr♦rs ♦ ♥

♥sr♥ ♦♠♣♥② r ♥r♥t t rs♣t t♦ tr s ♦ ♦♣rt♦♥ s③ ♦ t ♥sr♥

♥♥ ♥ r② ♦t ♥ ❱♥ ♦t♦♥ ♥ ♥ ❲♥ ♥t ♦♥t①t ♦ tr ♠♦s r♦s ♣♣t♦♥s ♦ t ♦♣t♠ qt② ♠♥♠♥t r sss ♥ ♠

st♦r tr♦r ♥tr② tr♠♥ ② t ♠♥ s

♥♠♥t② qt♦♥s st♠ r♦♠ t s♥ ♦ rtr ♦♣♣♦rt♥ts ♥ ♣r

t ♦♠♣tt♦♥ ♥ t ♥sr♥ ♠rt ♦ s ts rs♦rt t♦ t ♥♦♥rtr r♠♥ts

♦♥sr t t♦t ♠rt t♦t ♣t③t♦♥ ♦ t ♥sr♥ st♦r t t♠ t

Wt ≡ u (Mt)Mt.

rtr r ♦♥t♦♥ ♠♣s

E [dWt] = rWtdt,

♦r q♥t②

E [u (Mt + dMt)Mt] + E [u (Mt + dMt) dMt]− u (Mt)Mt = ru (Mt)Mtdt.

♥ t ♦ ♠♦t♦♥ ♦ Mt t s♦♥ tr♠ ♥ t ♦ qt♦♥ ♥ rrtt♥ s

♦♦s

E[u (Mt + dMt) dMt] =

u (Mt) p (Mt) dt− E

[

u (Mt + dMt) dBt

]

σ0D [p(Mt)] ,

r t tr♠ ♥ t rt♥ s s t ①♣t ♠rt ♦ t ♣r♦t ♠r♥ ♥rt

② ♥sr♥ tt② Prt ♦♠♣tt♦♥ ♦♥ t ♥sr♥ ♠rt ♠♣s tt ts ♠rt

s ③r♦

u (Mt) p (Mt) dt = E

[

u (Mt + dMt) dBt

]

.

♦♠♣t♥ t ①♣tt♦♥ ♥ t rt♥ s ♦ s♥ t t tt E [dMtdBt] =

−σ0D[p(M)]dt ②s qt♦♥ ♦r♦r ♦♠♥♥ ♥ s t♦

E [du (Mt)] = ru (Mt) dt,

② s♥ tôs ♠♠ ♥ qt♦♥ ♥ rrtt♥ s

♦ tr♠♥ t qr♠ ♥sr♥ ♣r ♥♦t tt qt♦♥ ♥ rrtt♥ s ♦♦s

u′(M)

u(M)= − p(M)

σ0D[p(M)].

r♥tt♥ t ♦ qt♦♥ ②s

u′′(M)

u(M)−[u′(M)

u(M)

]2= −p′(M)

[ 1

σ0D[p(M)]− p(M)D′[p(M)]

σ0D2[p(M)]

]

.

♥srt♥ u′′(M)u(M) r♦♠ t ♦ qt♦♥ ♥t♦ ②s

2(r + p2(M)) = p2(M)− σ0p′(M)

(

D[p(M)]− pD′[p(M)])

,

t♠t② s t♦ rst♦rr r♥t qt♦♥ tr♠♥♥ t qr♠ ♣r

p′(M) = − 1

σ0

2r + p2(M)

D[p(M)]− p(M)D′[p(M)].

♥ ttD′(.) < 0 t s ♠♠t t♦ s r♦♠ t ♦ qt♦♥ tt t ♣r ♦ ♥sr♥ s

♥rs② rt t♦ t rt ♣t② ♦ t ♥sr♥ st♦r ♦r♦r ♣♣②♥ tôs ♠♠

t♦ pt = p(Mt) ♥ ♦t♥ ♥ ①♣t rtr③t♦♥ ♦ t ♥sr♥ ♣r ♣r♦ss ♥

dpt = σ0D[p(Mt)]

(

pt(Mt)p′(Mt) +

σ0D[p(Mt)]

2p′′(Mt)

)

︸ ︷︷ ︸

µ(pt)

dt−σ0D[p(Mt)]p′(Mt)

︸ ︷︷ ︸

σ(pt)

dBt.

s♠♣ ♦♠♣tt♦♥ ♠♠t② ②s t ①♣rss♦♥ ♦ t ♥sr♥ ♣r ♦tt②

σ(p) =2r + p2

1 + ε1(p),

r ε1(p) s t stt② ♦ t ♠♥ ♦r ♥sr♥

ε1(p) ≡ −pD′(p)

D(p).

r♦r qt♦♥ ♥ rrtt♥ s ♦♦s

p′(M) = − σ[p(M)]

σ0D[p(M)],

♠♦♥strts tt t ♥s ♥ t qr♠ ♥sr♥ ♣r r ♠♥② r♥ ② t

♥♦♥♦s ♦tt②

rtr♠♦r s♠♣②♥ t ①♣rss♦♥ ♦ t rt ♦ t ♥sr♥ ♣r♠♠ ②s

µ(p) = σ(p)

[(2r + p2)ε1(p)ε2(p)

2p(1 + ε1(p))2− pε1(p)

1 + ε1(p)

]

,

r

ε2(p) ≡ −pD′′(p)

D′(p).

♦ ♦♠♣t t rtr③t♦♥ ♦ t ♦♠♣tt qr♠ t V (M) ≡ Mu(M) ♥♦t

t ♠rt ♦ t ♥tr ♥sr♥ ♥str② s♥ ♦ rtr ♦♣♣♦rt♥ts t t

rt♥ ♦♥rs M ♥ M ♠♣s tt

V ′(M) ≡ u(M) +Mu′(M) = 1,

V ′(M) ≡ u(M) +Mu′(M) = 1 + γ.

♦tr t qt♦♥s ♥ ts rs♣t② ♠♣s t♦ ♦♥t♦♥s u′(M) = 0 ♥

M = 0 ♥srt♥ u′(M) = 0 ♥t♦ qt♦♥ t s s② t♦ s tt ♥ t ♥sr♥ ♥str②

♦♣rts t t ♠①♠♠ ♦ rsrs t ♦♥ t♦r ♥ss p ≡ p(M) = 0 ♥

p′(M) < 0 ts ♠♣s tt p(M) > 0 ♦r M > 0 ♥ tr♦r u′(M) < 0 s s ♦♥tr

♦r ♦♦♥ ♣r♦♣♦st♦♥ s♠♠r③s ♦r rsts

Pr♦♣♦st♦♥ r ①sts ♥q stt♦♥r② r♦♥ qr♠ ♥ rt rsrs

♥ t ♥sr♥ st♦r ♦ ♦r♥ t♦

dMt = σ0D[p(Mt)] (p(Mt)dt− dBt) , Mt ∈ (0,M).

♥sr♥ ♣r ♥t♦♥ p(M) stss t r♥t qt♦♥

p′(M) = − σ[p(M)]

σ0D[p(M)],

t t ♦♥r② ♦♥t♦♥ p(0) = p r p s♦s

∫ p

0

p

σ(p)dp = ln(1 + γ).

Pr♦♦ ♦ Pr♦♣♦st♦♥ ❲ r② sts tt ♥② qr♠ ♣r ♥t♦♥ p(M)

♠st sts② t rst♦rr r♥t qt♦♥ ❯♥q♥ss ♦ t qr♠ rst

r♦♠ t ②♣st③ t♦r♠ ♦♥ t ♦♥r② p(0) = p s tr♠♥ ♥ p(M)

s ♥♦♥ ♥t♦♥ u(M) ♥ ♦♠♣t ② s♦♥

u′(M)

u(M)= − p(M)

σ0D[p(M)],

②s

u(M) = u(M)exp(∫ M

M

p(s)

σ0D[p(s)]ds)

.

s ♣r♦♣rt② ♦ ♦r ♠♦ ♠♣s tt ♥sr♥ ♦♠♣♥s ②s ♥rt ♥♦♥♥t ①♣t ♣r♦ts ♥♣rt ♦r ♦♥ t♦rs ♥ ♥t s ♥srrs ♥ tr ♦sss ♦♠♣♠♥tr② ♥♥♠rt tts

♥ u(M) = 1 ♥ u(0) = 1 + γ ts ♠♣s

∫ M

0

p(s)

σ0D[p(s)]ds = ln(1 + γ).

♥② ♥♥ t r ♦ ♥trt♦♥ ♥ t ♦ qt♦♥ t♦ p(s) = p ②s

♦t tt ♥ t ♦♠♣tt qr♠ ♥sr♥ ♦♠♣♥s r♣t③ ♦♥② ♥ r♥♥♥

♦t ♦ rsrs t t s♠ t♠ t trt ♦ rt rsrs ♥ t ♥sr♥ ♥str②

♥ s② ♦♠♣t ♦r♥ t♦

M =

∫ p

0

σ0D(p)

σ(p)dp.

t s ♠♠t t♦ s r♦♠ qt♦♥s ♥ tt ♦t t ♠①♠♠ ♦ ♥sr♥

♣r p ♥ t trt ♦ rsrs M ♥rs t t ♥♥♥ ♦st γ s tr ♦ t

♦♠♣tt qr♠ ♠r♥ ♥ ♦r ♠♦ ssts tt t ♠♥t ♦ ♥rrt♥ ②s

♦sr ♥ ♣rt ♠t ♥tr♥s② rt t♦ t ♠♥t ♦ ♥♥ rt♦♥s ②

♥sr♥ ♦♠♣♥s

②♥♠s ♦ ♥sr♥ ♣rs

♥ ts st♦♥ st② t ②♥♠s ♦ t qr♠ ♣r ♦ ♥sr♥ s ♣rt ② ♦r

♠♦ ♦r ♦♥♥♥ s t ♦♦♥ s♣t♦♥ ♦ t ♠♥ ♦r ♥sr♥

D(p) = (α− p)β ,

r β > 0 ♥ α > 0 Pr♠tr α ♥ ♥tr♣rt s t ♣r ♦ ♠♥ ♦r

♥sr♥ ♥ss ♦t α ♥ β t t stt② ♦ ♠♥ ♦r ♥sr♥ ♦r ♣rs②

ε1(p) =βp

α− p, ε2(p) =

(β − 1)p

α− p.

♥srt♥ ε1(p) ♥ ε2(p) ♥t♦ t ♥r ♦r♠s ♦ σ(p) ♥ µ(p) ♦t♥ t♦ s♠♣

①♣rss♦♥s tt rtr s t♦ strt t ②♥♠s ♦ t qr♠ ♣r

σ(p) =(α− p)

(p2 + 2r

)

p(α+ (β − 1)p),

µ(p) = σ(p)βp

[(β − 1)(2r − p2)− 2αp

2(α+ (β − 1)p)2

]

.

♥ rrs♦♥

t s s② t♦ s r♦♠ ①♣rss♦♥ tt t s♥ ♦ t ♥sr♥ ♣r rt s tr♠♥ ②

t s♥ ♦ t ♣♦②♥♦♠

h(p) ≡ (β − 1)(2r − p2)− 2αp.

t ♥ s♦♥ tt ♦r α >√2r ♥ β > 1 t qt♦♥ h(p) = 0 s ♥q r♦♦t p∗ ♦♥

t ♥tr (0, α) s tt µ(p) > 0 ♦♥ (0, p∗) ♥ µ(p) < 0 ♦♥ (p∗, α) s ♠♣s tt t

♣r ♣r♦ss pt ①ts ♠♥ rrs♦♥ ♦r t ♠♣♦rt♥t t♦ ♥♦t tt ts ♠♥ rrs♦♥

♣r♦♣rt② ♠♥sts ts ♦♥② ♥ t ♥♥♥ ♦st γ s s♥t② ♥ r tt t

♠①♠♠ ♦ ♥sr♥ ♣r p s ♥ ♥rs♥ ♥t♦♥ ♦ γ t p = 0 ♥ γ = 0 s

♥ γ s ♦ p∗ > p ♥ µ(p) > 0 ♦r p ∈ (0, p)

♦r♦r ts ♠♥rrs♦♥ ♣r♦♣rt② s ♥♦t r② str♦♥ ♥ ♦r ♠♦st ♣r♠tr ♦♠

♥t♦♥s |µ(p)| tr♥s ♦t t♦ r② s♠ s ♦♠♣r t♦ σ(p) s t t ♥ t ♥tr ♣♥s ♥

r ♠♥ tr ♦ t ②♥♠s ♦ t ♣r ♣r♦ss pt s ts rt♦♥ t t ♦♥rs

♦ t ♥tr (0, p) ♥s t ♣r rrss

Pr rrss

rt♦♥ ♣r♦♣rt② ♦ t rt rsr ♣r♦ss ♥ ♦r ♠♦ ♥s rrss ♦ t

♣r ♦ ♥sr♥ ♠♣r ♦r s s♦♥ tt t ♥sr♥ ♠rt tr♥ts s♦t ♠rt

♣ss rtr③ ② ♥ ♣r♠♠s t♦tr t ♥ ①♣♥s♦♥ ♦ ♥srrs ♣ts ♥

r ♠rt ♣ss rtr③ ② rs♥ ♣r♠♠s t♦tr t ♦♥trt♦♥ ♦ ♥srrs

♣ts

r ♠♦ ♥ s t♦ ♦♠♣t t ①♣t rt♦♥ ♦ ♣s ♦ t ♥rrt♥ ②

② s♥ t ②♥♠s ♦ t ♣r ♦ ♥sr♥ ♥ ♥ qt♦♥ ♥ ♣rtr t ①♣t

rt♦♥ ♦ t s♦t ♠rt ♣s ♥ ♥sr♥ ♣rs ♥ ♠sr s t ①♣t

t♠ ♥ ♦r t ♣r♦ss pt t♦ r 0 strt♥ r♦♠ t stt p ♥ s♠r s♦♥ t

①♣t rt♦♥ ♦ t r ♠rt ♣s rs♥ ♥sr♥ ♣rs ♥ ♠sr ② t

①♣t t♠ tt t ♣r♦ss pt ♥s t♦ r t stt p strt♥ r♦♠ 0

♦ ♦r♠③ ts t Ts(p) ♥♦t t ①♣t t♠ tt t ♣r ♣r♦ss pt ts ♥ ♦rr t♦

r ♥② stt p ≤ p strt♥ r♦♠ t stt p ♥ t Th(p) t ①♣t t♠ t ts t♦ r

t stt p strt♥ r♦♠ ♥② p ≤ p ❲ rr t♦ T s ≡ Ts(0) s t r rt♦♥ ♦ t s♦t

♠rt ♣s ♥ t♦ T h ≡ Th(0) s t r rt♦♥ ♦ t r ♠rt ♣s

Pr♦♣♦st♦♥ r rt♦♥ ♦ t s♦t ♠rt ♣s ♥ ♦♠♣t s T s ≡ Ts(0)

r ♥t♦♥ Ts(p) stss

1− µ(p)T ′s(p)−

σ2(p)

2T ′′s (p) = 0,

t r ♦ t trtr ♦♥ ♥rrt♥ ②s ♥ ♦♥ ♥ rr♥t♦♥ t

t t ♦♥r② ♦♥t♦♥s Ts(p) = 0 ♥ T ′s(p) = 0

r rt♦♥ ♦ t r ♠rt ♣s ♥ ♦♠♣t s T h ≡ Th(0) r ♥t♦♥

Th(p) stss

1 + µ(p)T ′h(p) +

σ2(p)

2T ′′h (p) = 0,

t t ♦♥r② ♦♥t♦♥s Th(p) = 0 ♥ T ′h(0) = 0

Pr♦♦ ♦ Pr♦♣♦st♦♥ ♦ r t t gp0(p) ♥♦t t ①♣t t♠ tt s

♥ t♦ r s♦♠ stt p0 strt♥ r♦♠ ♥② p ≥ p0 r p0 ≤ p ≤ p ♥ Ts(p0) =

Ts(p) + gp0(p) ♥ ts Ts(p) = Ts(p0) − gp0(p) ② t ②♥♠♥ t♦r♠ ♥t♦♥ gp0(p)

♠st sts② t

1 + µ(p)g′p0(p) +σ2(p)

2g′′p0(p) = 0.

❯s♥ t t tt g′p0(p) = −T ′s(p) ♥ g′′p0(p) = −T ′′

s (p) ♦♥ ♦t♥s ♦♥r②

♦♥t♦♥ Ts(p) = 0 rts t t tt t p t t♠ t♦ r p s ③r♦ rs t ♦♥r②

♦♥t♦♥ T ′s(p) = 0 ♠rs t♦ t rt♦♥ ♦ t ♣r ♦ ♥sr♥ t p s♠ r

♠♥ts ♣♣② t♦ sts t ♦♥r② ♦♥t♦♥s ♦r t ♥t♦♥ Th(p) t♦ t ②♥♠♥

t♦r♠ ♣♣s rt②

t♥ s ♥ t ♥tr ♣♥s ♦ r r♣♦rt rs♣t② t s ♦ T s ♥

T h s ♥t♦♥s ♦ ♣r♠tr α ♦r t♦ r♥t s ♦ β rt♥ s ♣♥ ♦ r

r♣♦rts t ♦rrs♣♦♥♥ r♥ T s − T h

s ♥♠r rsts r② s♦ tt ♦r ♣r♠tr ♦♠♥t♦♥s ♠♣②♥ r s

tt② ♦ ♠♥ ♦r ♥sr♥ r β ♥ ♦r α t ②s ♠r♥ ♥ ♦r ♠♦

r s②♠♠tr ♥ t s♦t ♠rt ♣s t♥s t♦ sst♥t② ♦♥r t♥ t r ♠rt

♣s ♣♦t♥t ①♣♥t♦♥ ♦r ts tr rsts ♦♥ t ♦srt♦♥ tt ♥ t stt♥ t

♥ st ♠♥ ♦r ♥sr♥ t ♥♦♥♦s ♦tt② s ♠♦♥♦t♦♥② rs♥ ♥t♦♥ ♦

p ♥ t ♥♦♥♦s ♦tt② s ♦r ♥ t stts t r ♣r ♦ ♥sr♥ t s②st♠

t② ♥s ♠♦r t♠ t♦ ♠ ♦♥r ♠♦ rtr t♥ t♦ ♠ ♥ ♣r ♠♦ ♦r t

♣r♠tr ♦♠♥t♦♥s ♠♣②♥ ② ♥st ♠♥ ♦r ♥sr♥ t ♥♦♥♦s ♦tt②

♣ttr♥ s U s♣ ♥ t r♥ t♥ t r rt♦♥s ♦ t s♦t ♥ r ♠rt

♣ss s ♠♦st ♥

♦♥r♥ ♦r

♦ st② t ②♥♠s ♦ t ♣r ♦ ♥sr♥ ♥ t ♦♥ r♥ ♦♦ t ts r♦ ♥st②

♥t♦♥ tt rts t ♣r♦♣♦rt♦♥ ♦ t♠ tt t ♣r ♣r♦ss s♣♥s ♥ s stt ♥

t ♦♥ r♥ ♥ t ♣r ②♥♠s ♥ t ttr ♥ ♦♠♣t ② s♦♥ t ♦rr

r ♣tr

r r rt♦♥ ♦ s♦t ♥ r ♠rts

0.3 0.5 0.7 0.9α

5

10

15

Ts

α2.435

2.440

2.445

2.450

2.455

2.460

Th

α

5

10

15

Ts - Th

β = 3

β = 0.5

β = 3

β = 0.5

β = 3

β = 0.5

0.1 0.3 0.5 0.7 0.90.1 0.3 0.5 0.7 0.90.1

♦ts ts r r♣♦rts t r rt♦♥ ♦ t s♦t ♠rt ♣s T s t t ♣♥ t r rt♦♥ ♦ t r♠rt ♣s Th t ♥tr ♣♥ ♥ tr r♥ T s − Th t rt ♣♥ s ♥t♦♥s ♦ ♣r♠tr α ♦ ♥s♦rrs♣♦♥ t♦ β = 0.5 ♥ s ♥s rr t♦ β = 3 Pr♠tr ♦♠♥t♦♥s t r ♦r β ♥ ♦r r α

♦rrs♣♦♥ t♦ t st ♥st ♠♥ ♦r ♥sr♥ tr ♣r♠tr s r st s ♦♦s r = 0.04 σ0 = 0.05γ = 0.1

♦♠♦♦r♦ qt♦♥ t♠t② ②s

f(p) =C0

σ2(p)exp

(∫ p

0

2µ(s)

σ2(s)ds)

,

r t ♦♥st♥t C0 s s tt∫ p

0 f(p)dp = 1

rt ♣♥ ♥ r ♣ts t t②♣ ♣ttr♥ ♦ ts r♦ ♥st② s♦♥ tt

t ttr t♥s t♦ ♦♥♥trt ♥ t stts t t ♦ ♥♦♥♦s ♦tt② s ♣r♦♣rt②

♦ t r♦ ♥st② ♥t♦♥ s♦s tt t ♥t s♦s ♥rr ② ♥srrs ♠② ♥rt

♣rsst♥ s♦ tt t s②st♠ ♥ s♣♥ qt s♦♠ t♠ ♥ t stts t ♥sr♥ ♣rs

♥ ♦ ♥sr♥ ♣t② s ♥ t r♥t qr♠ ♠♦s t ♥♥ rt♦♥s s

r♥♥r♠r ♥ ♥♥♦ ♠♥♦ P ♥ ♦t ♣rsst♥ ♠rs s

♥tr ♦♥sq♥ ♦ t ♣t② st♠♥ts ♠♣♠♥t ② ♥sr♥ ♦♠♣♥s ♦♦♥

♣r♦t ♥ ♦sss ♥ ♣rtr ♥①♣t ♦sss r ♦♦ ② r s ♦ ♦♣rt♦♥s

♠♣②♥ tt t ♠② t ♦♥ t♠ ♦r ♥srrs t♦ rst♦r tr ♣t②

r rt ♦tt② ♥ r♦ ♥st② ♦ t ♥sr♥ ♣r

0.02 0.04 0.06 0.08 0.10p

-0.0008

-0.0006

-0.0004

-0.0002

0.0002

0.0004

μ(p)

0.02 0.04 0.06 0.08 0.10p

0.060

0.065

0.070

0.075

0.080

σ(p)

0.00 0.02 0.04 0.06 0.08 0.10p

7

8

9

10

11

f(p)

♦ts ts r ♣ts t t②♣ ♣ttr♥s ♦ t ♥sr♥ ♣r rt µ(p) t rt ♣♥ ♥sr♥ ♣r ♦tt② σ(p)t ♥tr ♣♥ ♥ t r♦ ♥st② ♦ t ♥sr♥ ♣r f(p) t rt ♣♥ ♦r α >

√2r ♥ β > 1 Pr♠tr

s r = 0.04 σ0 = 0.05 γ = 0.1 α = 0.5 ♥ β = 2

♦s

♦♥s♦♥

s ♣♣r ♣rs♥ts ♥r qr♠ rs♦♥ ♦ t ss r♥ t♦r② ♠♦ ♥ ♦♥t♥♦s

t♠ s st ♦r ①♠♣ ② rr ♥ ❲ ♠♦ ♦♠♣tt ♥sr♥ st♦r

tt ♦rs ♥sr♥ ♦♥trts t♦ ♣♦♣t♦♥ ♦ ♣♦t♥t ♥srs ♦♥r♦♥t t ♦rrt rss

r s ♥q ♦♠♣tt qr♠ ♥ ♣rs ♥ ♣ts r tr♠♥st ♥t♦♥s

♦ t ♦ rt rsrs ♥ t ♥sr♥ st♦r ♣r ②♥♠s ♥ ♦♠♣t

①♣t② tr t♥ r ②s ♥sr♥ ♣rs r rtr③ ② s②♠♠tr rrss

♠rt ①ts tr♥t♥ ♣r♦s r ♣r♠♠ ♥ ♣r♦tt② rs r ♠rts ♥

s♦t ♠rts r rt♦♥ ♦ r ♠rts s s♦rtr t♥ tt ♦ s♦t ♠rts ♣r♦

tt t stt② ♦ t ♠♥ ♦r ♥sr♥ s ♥♦t t♦♦ ♦

❲ s♦ ♥ tt ♥ t♦ t ♥sr♥ ♣r♠♠ s ② ♣rt tr r ♥♦

rtr ♦♣♣♦rt♥ts rs♦♥ s tt ♥st♦rs ♥♥♦t rt② s ♥sr♥ ♦♥trts t

♥ ♦♥② ② ♥ s t st♦s ♦ ♥sr♥ ♦♠♣♥s ♣rs ♦ ts st♦s r s♦♥t

♠rt♥s ♥ t♥ ♥ strt♦♥s ♥ r♣t③t♦♥s t ♥sr♥ ♣r♠♠s r

♥♦t ♠r② ①♣t ♣r♦ts r ♣♦st s♣t t ♣rt ♦♠♣tt♦♥ ♦♥ t ♥sr♥ ♠rt

s s s ♥ t ♣rs♥ ♦ ♥♥ rt♦♥s ♥ ♥ ♥ sr♦rs r rs ♥tr

♥sr♥ ♦♠♣♥s t♦ ♦♠♣♥st ♦r tr ①♣♦sr t♦ rt rss

♥tr ①t♥s♦♥ ♦ ♦r ♠♦ ♦ ♦ ♦r t ♥②ss ♦ t ♠♣t♦♥s ♦ rt♦r②

♠srs s s ♠♥♠♠ rsr rqr♠♥ts ♥♦tr ♣♦t♥t ♥ ♦ rsr ♦

t♦ ♦♥sr ♥ tr♥t ♠♦ s♣t♦♥ t P♦ss♦♥ rs s ttr st ♦r ♠♦♥

t tstr♦♣ ♥sr♥ ♠rt ♥② ♥trst♥ ♥ ♦ ♥qr② ♦ t♦ tst t ♠♦

♣rt♦♥ ♦♥ t s②♠♠tr② ♦ ♥rrt♥ ②s

r♥s

❬❪ ♦♦♠ ②s ♥ ♦t♦♥s sts Pr♦♣rt②st② t♦♥

❬❪ ♦t♦♥ P ♥ ♥ ❲♥ ❯♥ ♦r② ♦ ♦♥s q ♦r♣♦rt ♥st♠♥t

♥♥♥ ♥ s ♥♠♥t ♦r♥ ♦ ♥♥

❬❪ ♦②r qr ♥ ❱♥ ♦r♥ r ❯♥rrt♥ ②s ♥ ♦r

st ♦r♥ ♦ s ♥ ♥sr♥

❬❪ r♥♥r♠r ♥ ❨ ♥♥♦ r♦♦♥♦♠ ♦ t ♥♥ t♦r

♠r♥ ♦♥♦♠

❬❪ ♥ rr♥t♦♥ ♥sr♥ ♣♣② t ♣t② ♦♥str♥ts ♥ ♥♦♥♦s

♥s♦♥② s ♦r♥ ♦ s ♥ ❯♥rt♥t②

❬❪ ♥ ❲♦♥ ♥ ❯♥rrt♥ ②s ♥ s ♦r♥ ♦ s ♥ ♥sr♥

❬❪ ♦ rr ♥ P st Pr♦♣rt②t② ♥sr♥ ②

♦♠♣rs♦♥ ♦ tr♥t ♦s ♦tr♥ ♦♥♦♠ ♦r♥

❬❪ ♠♠♥s ♥ tr ♥ ♥tr♥t♦♥ ♥②ss ♦ ❯♥rrt♥ ②s ♥

Pr♦♣rt②t② ♥sr♥ ♦r♥ ♦ s ♥ ♥sr♥

❬❪ ♦rt② ♥ r♥ ♥sr♥ ②s ♥trst ts ♥ t ♣t②

♦♥str♥t ♦ ♦r♥ ♦ s♥ss

❬❪ r♦♦t ♥ P ♦♥♥ ♥ t Pr♥ ♦ ♥tr♠t ss ♦r② ♥

♣♣t♦♥ t♦ tstr♦♣ ♥sr♥ ❲♦r♥ P♣r

❬❪ ♥ Pttrs♦♥ ♥ ❲tt ❯♥rrt♥ ②s ♥ Pr♦♣rt②

♥ t② ♥sr♥ ♥ ♠♣r ♥②ss ♦ ♥str② ♥ ②♥ t ♦r♥ ♦ s

♥ ♥sr♥

❬❪ rr ❯ ♥ ❲ ♣t♠ ♥s ♥②ss t r♦♥♥ ♦t♦♥

♦rt♠r♥ tr ♦r♥

❬❪ ♦s P r ♥ ♦rr qt♦♥s ♦r s♦♥ Pr♦sss ♥ ❲② ♥②

♦♣ ♦ ♣rt♦♥s sr ♥ ♥♠♥t ♥ t ② ♠s ♦r♥

♦s ♦① P♥r s♥♦ r② P r♦ ♥ ♦ ♠t ♦♦♥ ❲②

❬❪ r♦♥ Pr♦♣rt②st② ♥sr♥ ②s ♣t② ♦♥str♥ts ♥ ♠♣r

sts P ssrtt♦♥ ♣rt♠♥t ♦ ♦♥♦♠s ssstts ♥sttt ♦ ♥♦♦②

❬❪ r♦♥ ♣t② ♦♥str♥ts ♥ ②s ♥ Pr♦♣rt②st② ♥sr♥ rts

♦r♥ ♦ ♦♥♦♠s

❬❪ r♦♥ ♥ s ①tr♥ ♥♥♥ ♥ ♥sr♥ ②s ♥ ♦♥♦♠s ♦

Pr♦♣rt②st② ♥sr♥ t ② r♦r ♦ ❯♥rst② ♦ ♦

Prss

❬❪ rr♥t♦♥ s ♥ ❨ ♦♥ ♥sr♥ Pr ❱♦tt② ♥ ❯♥rrt♥

②s ♥ ♦rs ♦♥♥ ♥♦♦ ♦ ♥sr♥ r ♠ ♥

❬❪ ♥♥ ♥ r② ♣t♠③t♦♥ ♦ t ♦ ♦ ♥s ss♥ t

♠t r②s

❬❪ ♠♥♦ P ♥ ♦t ♣♣s ♦ ❲rt s ♦ t

①tr♠ ♥♥ rt♦♥s ❲♦r♥ P♣r ❯♥rst② ♦ ❩r

❬❪ ❲tt ♥ ♥♥ ♥ P r♦tt rt ♥ ♦t

s♦ rt ①♣tt♦♥s ♥ ♥♦♥♦s ♦♥♦♠ ①♣t♦♥ ♦ ♥sr♥ ②s ♥ t②

rss ♦r♥ ♦ s ♥ ♥sr♥

❬❪ ♠♠♥♥♥t ♥ ❲ss ♥tr♥t♦♥ ♥sr♥ ②s t♦♥ ①♣t

t♦♥s♥sttt♦♥ ♥tr♥t♦♥ ♦r♥ ♦ s ♥ ♥sr♥

❬❪ r ❯ tt♦♥ ❯♥rrt♥ ②s ♥ Pr♦♣rt②t② ♥sr♥ Prt

s♦♠ t♦r② ♥ ♠♣r rsts ♦r♥ ♦ s ♥♥

❬❪ r ❯ ♥ tr s♥ss ②s ♥ ♥sr♥ ♥ ♥sr♥ t

s ♦ r♥ r♠♥② ♥ t③r♥ ♦r♥ ♦ s ♥♥

❬❪ ♦t ♥ ❱♥ qt② ♥♠♥t ♥ ♦r♣♦rt ♠♥ ♦r

♥ ♥ ♥sr♥ ♦r♥ ♦ ♥♥ ♥tr♠t♦♥

❬❪ ♠ t♦st ♦♥tr♦ ♥ ♥sr♥ ♣r♥r ❨♦r

❬❪ r t♦st s ♦r ♥♥ ♣r♥r ❨♦r

❬❪ trt Pr♦t ②s ♥ Pr♦♣rt②t② ♥sr♥ ♥ ♦♥ sss

♥ ♥sr♥ ♠r♥ ♥sttt ♦r P ❯♥rrtrs r♥

❬❪ ❱♥③♥ t♠♥ t♦s ♥ Pr♦t ②s ♥ Pr♦♣rt② ♥ t② ♥sr

♥ ♦r♥ ♦ s ♥ ♥sr♥

❬❪ ❲ss ❯♥rrt♥ ②s ②♥tss ♥ rtr rt♦♥s ♦r♥ ♦

♥sr♥ sss

❬❪ ❲ss ♥ ♥ ❯ ♥sr♥ Prs ♥♥ t② ♥ ♦

♣t② ♦r♥ ♦ s ♥ ♥sr♥

❬❪ ❲♥tr t② rss ♥ t ②♥♠s ♦ ♦♠♣tt ♥sr♥ rts

❨ ♦r♥ ♦♥ t♦♥

❬❪ ❲♥tr ②♥♠s ♦ ♦♠♣tt ♥sr♥ rts ♦r♥ ♦ ♥♥

♥tr♠t♦♥


Recommended