+ All Categories
Home > Documents > 稳定同位素比质谱仪在食品安全上的 - Thermo Fisher

稳定同位素比质谱仪在食品安全上的 - Thermo Fisher

Date post: 22-Apr-2023
Category:
Upload: khangminh22
View: 0 times
Download: 0 times
Share this document with a friend
14
稳定同位素比质谱仪在食品安全上的 应用指南 蜂蜜掺假 葡萄酒产地溯源 果汁饮料真实性控制 肉品产地来源 油和脂肪 香料 有机食品 其它农副产品 食品安全 —— 真实性控制 —— 产地溯源
Transcript

稳定同位素比质谱仪在食品安全上的

应用指南

● 蜂蜜掺假 ● 葡萄酒产地溯源 ● 果汁饮料真实性控制

● 肉品产地来源 ● 油和脂肪 ● 香料

● 有机食品 ● 其它农副产品

食品安全 —— 真实性控制

—— 产地溯源

Delta V Advantage

1

GasBench™

(δ 13C, δ 2H, δ 18O, δ 15N)

δ 13C

δ 13C δ 18O δ 2H

δ 13C δ 15N δ 13C δ 18O

δ 13C δ 18O δ 2H

δ 13C

δ 13C

δ 13C

δ 13C

δ 13C

δ 13C

δ 13C δ 18O δ 2H

δ 13C δ 18O δ 2H

δ 13C δ 18O

δ 13C

δ 13C δ 15N

(δ 2H, δ 18O & δ 13C)

δ 18O δ 2H

δ 18O δ 2H

δ 18O δ 2H

δ 18O δ 2H

δ 13C

EA - IRMS

GC - IRMS

GB - IRMS

LC - IRMS

2

Thermo Scientific 稳定同位素比质谱仪 在食品安全上的部分应用报告题录

[Application Note: 30177] Detection of Honey Adulteration with FlashEA Elemental Analyzer and DELTA V Isotope Ratio Mass Spectrometer

Oliver Kracht, Andreas Hilkert, Thermo Fisher Scientific, Bremen, Germany

摘要 蜂蜜掺假通常是掺入廉价的甘蔗或玉米等C4植物糖浆,而大多数纯蜜来源于C3植物,利用C4和C3植物不同的光合途径引起的13C/12C同

位素比值的差异,可以准确地鉴定蜂蜜中是否掺入C4糖浆。使用一台元素分析仪连接一台气体同位素比质谱仪(EA-IRMS),通过分析蜂蜜

蛋白δ 13Cp与总体蜂蜜δ 13Ch的差值( Δ δ 13Cp-h ),判定是否掺假。这种方法对C4糖浆碳含量大于7%的掺假情况均能有效鉴别。

[Application Note: 30108] irm-LC/MS: Easy Referencing by Flow Injection 13C/12C Isotope Ratio Analysis

Dieter Juchelka, Andreas Hilkert, Michael Krummen, Thermo Fisher Scientific, Bremen, Germany

摘要 世界上第一个可以连接高效液相色谱与稳定同位素比质谱的接口——LC IsoLink,实现了溶液中各组分δ 13C的在线测定,确保了δ 13C 的

高精度和准确度。另外,直接注射模式(µ-EA)还可以快速地高精度地分析所有水溶性有机物总体的δ 13C。irm-LC/MS方法在蜜糖、果汁饮

料、葡萄酒等食品安全掺假分析和产地溯源方面具有重要的应用前景。

[Application Note: 30024] irm-LC/MS: δ 13C of Carbohydrates in Honey

Andreas W. Hilkert, Michael Krummen, Dieter Juchelka, Thermo Fisher Scientific, Bremen, Germany

摘要 糖类即碳水化合物,是生命体内最重要、最普遍的有机化合物之一,其自然丰度或添加示踪剂的13C/12C同位素比值记录了生物代谢过程

的重要信息。高效液相色谱与稳定同位素比质谱联用技术(irm-LC/MS)是糖类单体δ 13C分析的最佳选择。由于irm-LC/MS方法的衍生化作

用小、前处理步骤简单,使用该方法分析蜂蜜中糖类各组分δ 13C时,可以确保高的δ 13C精度(σ < 0.3‰)。

[Application Note: 30147] 13C and Simultaneous 18O and 2H Isotope Analysis in Ethanol with Thermo Scientific DELTA V Isotope Ratio Mass

Spectrometers

Oliver Kracht, Andreas Hilkert, Thermo Fisher Scientific, Bremen, Germany

摘要 稳定同位素技术已成为食品质量评鉴、真实性控制和产地溯源的重要工具。葡萄酒、酒精饮料和发酵果汁通过蒸馏法可获得高浓缩乙

醇,稳定同位素比质谱仪与元素分析仪联用技术(EA-IRMS)实现了在线快速测定乙醇样品中δ 13C、δ 18O和δ 2H,其中,采用杜马斯动态燃

烧法测定样品中的13C/12C,采用高温碳还原技术可同时进行18O/16O和2H/1H的分析。乙醇δ 13C、δ 18O和δ 2H的精度分别优于0.1‰ 、0.08‰和

0.12‰。

[Application Note: 30048] 18O-Equilibration on Water, Fruit Juice and Wine Using Thermo Scientific GasBench II

Andreas W. Hilkert, Hairigh Avak, Thermo Fisher Scientific, Bremen, Germany

摘要 植物源性食品中的18O/16O 和2H/1H,主要受当地气候和水文条件的影响,可作为食品安全真实性鉴定和产地溯源的最佳示踪剂。通过

CO2水平衡法测定葡萄酒和果汁等饮品中水δ 18O以及当地地下水δ 18O,可以判断这些饮品的掺水状况。Thermo Scientific GasBench II在线气

体制备和导入装置与稳定同位素比质谱仪联用(GB-IRMS),实现了批量样品水δ 18O的在线分析,现代的连续流进样技术结合内置的重复定

量环技术,可以达到与双路进样系统(Dual Inlet)相当的高精度。

——更多应用报告请登陆www.thermoscientific.com查阅

3

部分参考文献

Cabañero, A. I., J. L. Recio, et al. (2006). "Liquid chromatography coupled to isotope ratio mass spectrometry: a new perspective on honey adulteration detection." Journal of agricultural and food chemistry 54(26): 9719-9727.

Elflein, L. and K.-P. Raezke (2008). "Improved detection of honey adulteration by measuring differences between 13C/12C stable carbon isotope ratios of protein and sugar compounds with a combination of elemental analyzer-isotope ratio mass spectrometry and liquid chromatography-isotope ratio mass spectrometry (δ 13C-EA/LC-IRMS)." Apidologie 39(5): 574-587.

Kropf, U. k., T. Golob, et al. (2010). "Carbon and nitrogen natural stable isotopes in Slovene honey: adulteration and botanical and geographical aspects." Journal of agricultural and food chemistry 58(24): 12794-12803.

Padovan, G., D. De Jong, et al. (2003). "Detection of adulteration of commercial honey samples by the13C/12C isotopic ratio." Food Chemistry 82(4): 633-636.

Schellenberg, A., S. Chmielus, et al. (2010). "Multielement stable isotope ratios (H, C, N, S) of honey from different European regions." Food Chemistry 121(3): 770-777.

Simsek, A., M. Bilsel, et al. (2012). "13C/12C pattern of honey from Turkey and determination of adulteration in commercially available honey samples using EA-IRMS." Food Chemistry 130(4): 1115-1121.

Tosun, M. (2012). "Detection of adulteration in honey samples added various sugar syrups with 13C/12C isotope ratio analysis method." Food Chemistry.

费晓庆, 吴斌, et al. (2011). "液相色谱/元素分析-同位素比值质谱联用法鉴定蜂蜜掺假." 色谱 29(01): 15-19.

罗东辉, 罗海英, et al. (2012). "同位素质谱联用技术鉴别无蛋白蜂蜜的真实性." 现代食品科技 28(7): 862-866.

• 蜂蜜是一种高品质的天然甜味剂,是由蜜蜂从花蜜或蜜露中

生产出来的。绝大多数的天然蜂蜜均来自C3植物,其总体

蜂蜜和蜂蜜蛋白均来自相同的植物碳源,二者的碳同位素

组成应该相等,即δ 13Ch= δ 13Cp。

• 由于商业利益驱使的一些掺假行为,例如掺入C4植物糖浆,

总体蜂蜜δ 13Ch发生改变,变化大小取决于掺假量和掺假糖

浆的δ 13C,但是蜂蜜蛋白δ 13Cp很稳定几乎不变。

• 根据分析家协会正式分析方法(AOAC 998.12),使用EA-

IRMS(元素分析仪-同位素质谱联用)测定总体蜂蜜δ 13Ch

和蜂蜜蛋白δ 13Cp,通过Δ δ 13Cp-h判定是否掺入C4糖浆,如果

Δ δ 13Cp-h小于-1‰,说明掺假。根据同位素质量平衡方程可

计算添加的C4糖浆碳含量:C4~C [%] = [δ 13Cp-δ 13Ch]×100 /

[δ 13Cp-(-9.7)],这里C4糖浆的平均δ 13C为-9.7‰。但是这种

方法对C4糖浆碳含量的可靠的检测限为7%,很难检测低量

的C4糖掺假品,更无法检测添加了C3糖的掺假品。

• 新近发展的LC-IRMS(液相色谱-同位素质谱联用)分析方

法是AOAC 998.12分析方法的进一步发展,该方法实现了

峰蜜中各糖类组分如果糖、葡萄糖、二糖和三糖等δ 13C的

分离与分析,与EA-IRMS相结合,可进行添加了C3和C4糖

浆的蜂蜜掺假鉴定,大大提高了蜂蜜掺假的检测能力。纯

天然蜂蜜的碳同位素组成至少应该同时符合以下3个条件:

Δ δ 13C ∈±2.1‰,Δ δ 13Cfru-glu∈±1.0‰,Δ δ 13Cp-h≥-1.0‰ ,

否则即为掺假。

LC-IRMS测定蜂蜜中各糖类单体的δ 13C

25 0

-24.0

-23.0

-22.0

-21.0

-20.0pure polyflora

hone y, EasternEurope

adulterate dpolyflora

honey, EasternEurope

pure acaciahoney, Easte rn

Europe

adulteratedacacia honey,

EasternEurope

pure polyflorahone y, Asia

adulteratedpolyflora

hone y, Asia

pure pinehoney,

SoutheasternEurope

adulterate dpine honey,

SoutheasternEurope

-28.0

-27.0

-26.0

-25.0

蜂蜜或蜂蜜蛋白样品:100-200 µg燃烧炉:900℃还原炉:650℃

GC柱温:45℃

He流速:110mL min-1 O2流速:175mL min-1,4s

10000

Mass 44 (mV)

Fruc

tose

luco

se

0

2000

4000

6000

8000

10000

0 2000 4000 6000 8000

FG

Sucr

ose

Time (s)

蜂蜜样品:稀释至1g/L,注入10 µL

HPLC柱:Phenomenex Rezek RCM (Ca2+) ,

300 mm×8 mm

柱箱温度:55 ℃

流动相: Milli-Q water, 0.3 mL min-1

过硫酸钠:0.5 mol L-1, 0.05 mL min-1

磷酸:0.5 mol L-1, 0.05 mL min-1

EA-IRMS测定总体蜂蜜δ 13Ch和蜂蜜蛋白δ 13Cp

应用案例一:

蜂蜜掺假

4

葡萄酒中甘油和乙醇δ 13C 测定

欧洲产地葡萄酒中水δ 18O(GB-IRMS)与乙醇δ 13C(GC-IRMS)

利用GC-IRMS测定酒精饮品中乙醇的δ D和δ 13C

应用案例二:

葡萄酒产地溯源

葡萄酒中水δ 18O和δ D、乙醇δ 13C、δ D和δ 18O以及其它醇类和糖类单体δ 13C等可采用GasBench 、GC C/

TC或HPLC-IRMS方法测定,多组分多元素同位素比结果用于葡萄酒产地溯源和真实性鉴定研究。

方法:LC-IRMS

色谱柱:HyperREZ Carbohydrate H+,

300 mm×8 mm

柱温:65 ℃

流动相:Milli-Q water, 400 µL min-1

氧化剂: 0.5mol L-1 Na2S2O8, 30 µL min-1

酸:0.5mol L-1 H3PO4, 20 µL min-1

部分参考文献

Bréas, O., F. Reniero, et al. (1994). "Isotope ratio mass spectrometry: analysis of wines from different European countries." Rapid Communications in Mass Spectrometry 8(12): 967-970.

Cabañero, A. I., J. L. Recio, et al. (2008). "Isotope ratio mass spectrometry coupled to liquid and gas chromatography for wine ethanol characterization." Rapid Communications in Mass Spectrometry 22(20): 3111-3118.

Cabañero, A. I., J. L. Recio, et al. (2009). "Simultaneous stable carbon isotopic analysis of wine glycerol and ethanol by liquid chromatography coupled to isotope ratio mass spectrometry." Journal of agricultural and food chemistry 58(2): 722-728.

Costinel, D., A. Tudorache, et al. (2011). "The impact of grape varieties to wine isotopic characterization." Analytical Letters 44(18): 2856-2864.

Dutra, S., L. Adami, et al. (2013). "Characterization of wines according the geographical origin by analysis of isotopes and minerals and the influence of harvest on the isotope values." Food Chemistry.

Perini, M. and F. Camin (2013). "δ 18O of Ethanol in Wine and Spirits for Authentication Purposes." Journal of food science 78(6): C839-C844.

Rossmann, A., F. Reniero, et al. (1999). "Stable oxygen isotope content of water of EU data-bank wines from Italy, France and Germany." Zeitschrift für Lebensmittel-Untersuchung und-Forschung A 208(5-6): 400-407.

Rossmann, A., H.-L. Schmidt, et al. (1996). "Stable carbon isotope content in ethanol of EC data bank wines from Italy, France and Germany." Zeitschrift für Lebensmittel-Untersuchung und Forschung 203(3): 293-301.

Spitzke, M. E. and C. Fauhl-Hassek (2010). "Determination of the 13C/12C ratios of ethanol and higher alcohols in wine by GC-C-IRMS analysis." European Food Research and Technology 231(2): 247-257.

Wachter, H., N. Christoph, et al. (2009). "Verifying Authenticity of Wine by Mahalanobis Distance and Hypothesis Testing of Stable Isotope Pattern-A Case Study using the EU Wine Databank." Mitteilungen Klosterneuburg, Rebe und Wein, Obstbau und Früchteverwertung 59(4): 237-249.

5

可疑葡萄酒样品中:水18O更贫化, 说明可能掺水乙醇13C更富集, 可能掺入C4糖浆

果汁饮品中各类有机酸的δ 13C测定

利用GasBench分析果汁中水δ 18O和δ 2H 利用LC-IRMS测定各类饮品中咖啡因的含量和δ 13C

应用案例三:

果汁饮料真实性控制

方法:LC-IRMS

色谱柱:Allure® Organic Acids, 300 mm×4.6 mm

流动相:100 mM KH2PO4, pH=3, 500 µL min-1

部分参考文献

Cabañero, A. I. and M. Rupérez (2012). "Carbon isotopic characterization of cider CO2 by isotope ratio mass spectrometry: a tool for quality and authenticity assessment." Rapid Communications in Mass Spectrometry 26(16): 1753-1760.

Cabañero, A. I., T. San-Hipólito, et al. (2007). "GasBench/isotope ratio mass spectrometry: a carbon isotope approach to detect exogenous CO2 in sparkling drinks." Rapid Communications in Mass Spectrometry 21(20): 3323-3328.

Calderone, G. and C. Guillou (2008). "Analysis of isotopic ratios for the detection of illegal watering of beverages." Food Chemistry 106(4): 1399-1405.

Chesson, L. A., L. O. Valenzuela, et al. (2010). "Links between purchase location and stable isotope ratios of bottled water, soda, and beer in the United States." Journal of agricultural and food chemistry 58(12): 7311-7316.

Figueira, R., W. G. Venturini Filho, et al. (2011). "Isotope analysis (δ 13C) of pulpy whole apple juice." Ciência e Tecnologia de Alimentos 31(3): 660-665.

Magdas, D. A. and R. Puscas (2011). "Stable isotopes determination in some Romanian fruit juices." Isotopes in Environmental and Health Studies 47(3): 372-378.

Rummel, S., S. Hoelzl, et al. (2010). "The combination of stable isotope abundance ratios of H, C, N and S with 87Sr / 86Sr for geographical origin assignment of orange juices." Food Chemistry 118(4): 890-900.

Schipilliti, L., I. Bonaccorsi, et al. (2012). "Evaluation of Gas Chromatography–Combustion–Isotope Ratio Mass Spectrometry (GC-C-IRMS) for the Quality Assessment of Citrus Liqueurs." Journal of agricultural and food chemistry 61(8): 1661-1670.

Vaclavik, L., A. Schreiber, et al. (2012). "Liquid chromatography–mass spectrometry-based metabolomics for authenticity assessment of fruit juices." Metabolomics 8(5): 793-803.

钟其顶, 王道兵, et al. (2011). "稳定氢氧同位素鉴别非还原 (NFC) 橙汁真实性应用初探." 饮料工业 14(12): 6-9.

10 0 00

12 0 00

O2

2 00 0

4 00 0

6 00 0

8 00 0

m/z

44

(mV)

CO

00 2 00 4 00 6 00 80 0 10 00 1 20 0 1 40 0

T im e (s )

-24

-22

-20

-18

-16

δ 13

C (‰

)

δ13C= -18.78 ± 0.34 ‰ δ13C= -19.14 ± 0.11 ‰

δ13C= -22.64 ± 0.22 ‰ δ13C= -22.69 ± 0.15 ‰

δ13C 26 90 ± 0 35 ‰ δ13C 27 17 ± 0 14 ‰

-32

-30

-28

-26

0 500 1000 1500 2000 2500 3000 3500 4000

Amount (ng)

δ13C= -26.90 ± 0.35 ‰ δ13C= -27.17 ± 0.14 ‰

δ13C= -28.78 ± 0.32 ‰ δ13C= -28.98 ± 0.12 ‰

6

鲜纯果汁水δ 18O和δ D更富集, 散点偏离GMWL. 冲水/掺水果汁水

δ 18O和δ D更贫化, 接近Tap Water, 散点分布在GMWL附近

欧洲和美洲脱脂牛肉δ 13C和δ 15N分析

欧洲产地羊肉蛋白δ 13C和δ D分析

中国产地鸡肉脂肪δ 13C、蛋白质δ 15N和δ 34S分析

有机牛肉与普通牛肉的δ 13C和δ 15N

应用案例四:

肉品产地来源

采用EA-IRMS方法测定猪肉、牛肉、羊肉和鸡肉等肉品中脂肪和蛋白质的C、N、S、H和O多元素同位素比,

通过判别分析和冗余分析等复杂的数理统计方法,进行肉品产地来源和真实性控制研究。

部分参考文献

Bahar, B., F. J. Monahan, et al. (2005). "Alteration of the carbon and nitrogen stable isotope composition of beef by substitution of grass silage with maize silage." Rapid Communications in Mass Spectrometry 19(14): 1937-1942.

Bahar, B., O. Schmidt, et al. (2008). "Seasonal variation in the C, N and S stable isotope composition of retail organic and conventional Irish beef." Food Chemistry 106(3): 1299-1305.

Camin, F., L. Bontempo, et al. (2007). "Multi-element (H, C, N, S) stable isotope characteristics of lamb meat from different European regions." Analytical and bioanalytical chemistry 389(1): 309-320.

Guo, B., Y. Wei, et al. (2010). "Stable C and N isotope ratio analysis for regional geographical traceability of cattle in China." Food Chemistry 118(4): 915-920.

Heaton, K., S. D. Kelly, et al. (2008). "Verifying the geographical origin of beef: The application of multi-element isotope and trace element analysis." Food Chemistry 107(1): 506-515.

Horacek, M. and J.-S. Min (2010). "Discrimination of Korean beef from beef of other origin by stable isotope measurements." Food Chemistry 121(2): 517-520.

Osorio, M. T., A. P. Moloney, et al. (2011). "Multielement isotope analysis of bovine muscle for determination of international geographical origin of meat." Journal of agricultural and food chemistry 59(7): 3285-3294.

Schmidt, O., J. Quilter, et al. (2005). "Inferring the origin and dietary history of beef from C, N and S stable isotope ratio analysis." Food Chemistry 91(3): 545-549.

Vinci, G., R. Preti, et al. (2013). "Authenticity and quality of animal origin food investigated by stable-isotope ratio analysis." Journal of the Science of Food and Agriculture 93(3): 439-448.

郭波莉, 魏益民, et al. (2007). "碳, 氮同位素在牛肉产地溯源中的应用研究." 中国农业科学 40(2): 365-372.

7

动植物油脂中甘油的δ 13C和δ 18O分析(EA-IRMS)

香柠檬油中多成分多元素同位素比分析(GC-IRMS)

不同产地橄榄油的δ 13C和δ 18O分析(EA-IRMS)

应用案例五:

油和脂肪

MaizeA

Maize BM i C26 0

28.0

C4

Soya

Soya

Sesame

WheatNut

Sun flower

AlmondGum based

(commercial)

Butter Lard A

Fishoil Flax

Monoglyceride

Maize CMaize D

Lard B16 0

18.0

20.0

22.0

24.0

26.0

δ18

O [‰

]

C3

Cattlefat (commercial)

14.0

16.0

-35.0 -30.0 -25.0 -20.0 -15.0

δ 13 C [‰]

Tunisia 23

23.5

Tuscany(Italy)

Greece

20

20.5

21

21.5

22

22.5

23

δ18

O [‰

]

y( y)

19.5

20

-32 -31.5 -31 -30.5 -30 -29.5 -29 -28.5 -28

δ 13 C [‰]

-30

-28

-26

-24

-22

δ13CPDB[‰]

-30

-28

-26

-24

-22-300 -275 -250 -225

authentic 1 - 5

commercial 2

commercial 3δ2H (‰)

-28

-26

-24

-22

-20-275 -250 -225 -200

authentic (1-5)commercial 3

δ2H (‰)

Linalool

Linalyl Acetate

-34

-32

γ-terpinene

caryophyllenenerylacetate

linalyl acetatelinalool

myrcene

α-pineneβ-pinene/sabinene

limonene

-34

-32commercial 1

δ13C (‰)

-32

-30

28commercial 1

commercial 2

δ13C (‰)

部分参考文献

Baum, A., Y. Lu, et al. (2010). "Differentiation between origins of extra virgin olive oils by GC-C-IRMS using principal component analysis, linear discriminant analysis, and hierarchical cluster analysis.“

Camin, F., R. Larcher, et al. (2010). "Characterisation of authentic Italian extra-virgin olive oils by stable isotope ratios of C, O and H and mineral composition." Food Chemistry 118(4): 901-909.

Fronza, G., C. Fuganti, et al. (2001). "δ 13C and δ 18O Values of glycerol of food fats." Rapid Communications in Mass Spectrometry 15(10): 763-766.

Gotoh, N., T. Nagai, et al. (2013). "Comparison of catabolic rates of fatty acids using stable isotope and isotope-ratio mass spectrometry." Lipid Technology 25(5): 110-112.

Heuer, V., M. Elvert, et al. (2006). "Online δ 13C analysis of volatile fatty acids in sediment/porewater systems by liquid chromatography-isotope ratio-mass spectrometry." Limnol. Oceanogr. Methods 4: 346-357.

Meier-Augenstein, W. (2002). "Stable isotope analysis of fatty acids by gas chromatography–isotope ratio mass spectrometry." Analytica chimica acta 465(1): 63-79.

Richter, E. K., J. E. Spangenberg, et al. (2010). "Characterization of rapeseed (Brassica napus) oils by bulk C, O, H, and fatty acid C stable isotope analyses." Journal of agricultural and food chemistry 58(13): 8048-8055.

Schipilliti, L., P. Dugo, et al. (2012). "Authenticity control on lemon essential oils employing Gas Chromatography–Combustion-Isotope Ratio Mass Spectrometry (GC–C-IRMS)." Food Chemistry 131(4): 1523-1530.

8

利用GC/C或GC/TC-IRMS测定香料中香兰素(Vanillin)的δ 18O或δ 13C

部分参考文献

Bensaid, F. F., K. Wietzerbin, et al. (2002). "Authentication of natural vanilla flavorings: isotopic characterization using degradation of vanillin into guaiacol." Journal of agricultural and food chemistry 50(22): 6271-6275.

Dennis, M., P. Wilson, et al. (1998). "The use of pyrolytic techniques to estimate site specific isotope data of vanillin." Journal of Analytical and Applied Pyrolysis 47(1): 95-103.

Gassenmeier, K., E. Binggeli, et al. (2013). "Modulation of the 13C/12C ratio of vanillin from vanilla beans during curing." Flavour and Fragrance Journal 28(1): 25-29.

Greule, M., L. D. Tumino, et al. (2010). "Improved rapid authentication of vanillin using δ 13C and δ 2H values." European Food Research and Technology 231(6): 933-941.

应用案例六:

香料

7000

8000m/z 28

m/z 29

m/z 30

No. Vanillin Frambinone1 9.09 14.02

δ 18O/16OSMOW [‰]

3000

4000

5000

6000

Am

plitu

de (m

V)

2 9.11 13.973 9.17 14.204 8.52 14.155 9.21 14.196 9.24 14.087 9.19 14.128 9.34 14.379 9.20 14.34

10 8.88 14.28Average 9.10 14.17

Stdev 0.23 0.13

Vanillin(1)

0

1000

2000

450 500 550 600 650 700 750

Time (s)

有机水果与传统水果果肉δ 15N比较 有机牛奶与传统牛奶的δ 13C和δ 15N

应用案例七:

有机食品

部分参考文献

Bateman, A. S. and S. D. Kelly (2007). "Fertilizer nitrogen isotope signatures." Isotopes in Environmental and Health Studies 43(3): 237-247.

Camin, F., M. Perini, et al. (2011). "Potential isotopic and chemical markers for characterising organic fruits." Food Chemistry 125(3): 1072-1082.

del Amor, F. M., J. Navarro, et al. (2008). "Isotopic discrimination as a tool for organic farming certification in sweet pepper." Journal of environmental quality 37(1): 182-185.

Molkentin, J. and A. Giesemann (2010). "Follow-up of stable isotope analysis of organic versus conventional milk." Analytical and bioanalytical chemistry 398(3): 1493-1500.

Rapisarda, P., F. Camin, et al. (2010). "Influence of Different Organic Fertilizers on Quality Parameters and the δ 15N, δ 13C, δ 2H, δ 34S, and δ 18O Values of Orange Fruit (Citrus sinensis L. Osbeck)." Journal of agricultural and food chemistry 58(6): 3502-3506.

9

样品浓度: 250 ng/µL色谱柱: HP-1, 25m×0.32 mmHe流速: 1.4 mL/min柱头温度: 220 ℃, 不分流模式

程序升温: 40 (2) // 7.0 // 260 (2)

两个不同国家农产品的多元素同位素比分析

利用EA-IRMS分析不同产地花生的δ 13C和δ 15N

利用GC-IRMS测定正构烷烃δ 13C

利用GC-IRMS分析草莓各类芳香成分的δ 13C

利用GC-IRMS测定咖啡因δ 15N

应用案例:

其它农副产品

多元素同位素比

10

77 0

1

2

3

4

5

6

7

Sesame ASesame BBlack Sesame ABlack Sesame BMillet AMillet B

Blue: Country A, Red: Country BSame symbol = same legume

1.0

2.0

3.0

4.0

5.0

6.0

7.0

δ15N

[‰]

Sesame ASesame BBlack Sesame ABlack Sesame BMillet AMillet BBlack Soybean ABlack Soybean BWhite Soybean AWhite Soybean B

Blue: Country A, Red: Country BSame symbol = same legume

-1

0

10.0 15.0 20.0 25.0 30.0δ18O [‰]

Black Soybean ABlack Soybean BWhite Soybean AWhite Soybean B-1.0

0.0

-35.0 -30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0

δ13C [‰]

C3 C4

-26

-240 50 100 150 200 250 300 N

-36

-34

-32

-30

-28

δ13C

(‰)

C14H30C15H32C16H34

-38Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10

-23

-22

Sequence February 20Sequence March 9Expected Value -25.7 ‰

Sequence February 20Average: -25.69 ‰Stdev : 0 39 ‰

-28

-27

-26

-25

-24

δ15N

(‰)

Stdev.: 0.39 ‰

Sequence March 9Average: -25.73 ‰Stdev.: 0.28 ‰

-290 10 20 30 40 50 60

Number of Analysis

乳制品

Camin, F., M. Perini, et al. (2008). "Influence of dietary composition on the carbon, nitrogen, oxygen and hydrogen stable isotope ratios of milk." Rapid Communications in Mass Spectrometry 22(11): 1690-1696.

Chesson, L. A., L. O. Valenzuela, et al. (2010). "Hydrogen and oxygen stable isotope ratios of milk in the United States." Journal of agricultural and food chemistry 58(4): 2358-2363.

Lin, G., Y. Rau, et al. (2003). "Measurements of δ D and δ 18O stable isotope ratios in milk." Journal of food science 68(7): 2192-2195.

Molkentin, J. and A. Giesemann (2010). "Follow-up of stable isotope analysis of organic versus conventional milk." Analytical and bioanalytical chemistry 398(3): 1493-1500.

Pillonel, L., R. Badertscher, et al. (2003). "Stable isotope ratios, major, trace and radioactive elements in emmental cheeses of different origins." LWT-Food Science and Technology 36(6): 615-623.

Scampicchio, M., T. Mimmo, et al. (2012). "Identification of Milk Origin and Process-Induced Changes in Milk by Stable Isotope Ratio Mass Spectrometry." Journal of agricultural and food chemistry 60(45): 11268-11273.

食醋

Camin, F., L. Bontempo, et al. (2013). "Control of wine vinegar authenticity through δ 18O analysis." Food control 29(1): 107-111.

Hattori, R., K. Yamada, et al. (2011). "Intramolecular carbon isotope distribution of acetic acid in vinegar." Journal of agricultural and food chemistry 59(17): 9049-9053.

Hattori, R., K. Yamada, et al. (2010). "Measurement of the isotope ratio of acetic acid in vinegar by HS-SPME-GC-TC/C-IRMS." Journal of agricultural and food chemistry 58(12): 7115-7118.

Tagami, K. and S. Uchida (2008). "Online stable carbon isotope ratio measurement in formic acid, acetic acid, methanol and ethanol in water by high performance liquid chromatography–isotope ratio mass spectrometry." Analytica chimica acta 614(2): 165-172.

钟其顶 (2012). "一种食醋中乙酸碳稳定同位素的快速测定方法.“

其它农副产品

Ben-David, M. and D. Schell (2001). "Mixing models in analyses of diet using multiple stable isotopes: a response." Oecologia 127(2): 180-184.

Chesson, L. A., D. W. Podlesak, et al. (2008). "Variation of hydrogen, carbon, nitrogen, and oxygen stable isotope ratios in an American diet: fast food meals." Journal of agricultural and food chemistry 56(11): 4084-4091.

del Amor, F. M., J. Navarro, et al. (2008). "Isotopic discrimination as a tool for organic farming certification in sweet pepper." Journal of environmental quality 37(1): 182-185.

Förstel, H. (2007). "The natural fingerprint of stable isotopes-use of IRMS to test food authenticity." Analytical and bioanalytical chemistry 388(3): 541-544.

Guillou, C. and F. Reniero (2001). "Isotope methods for the control of food products and beverages." New approaches for stable isotope ratio measurements 13(12C): 39.

Jahren, A. H. and R. A. Kraft (2008). "Carbon and nitrogen stable isotopes in fast food: Signatures of corn and confinement." Proceedings of the National Academy of Sciences 105(46): 17855-17860.

Janssens, G., S. Mangelinckx, et al. (2013). "Application of gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry (GC-MS/C/IRMS) to detect the abuse of 17β-estradiol in cattle." Journal of agricultural and food chemistry.

Kelly, S., K. Heaton, et al. (2005). "Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis." Trends in Food Science & Technology 16(12): 555-567.

Knobbe, N., J. Vogl, et al. (2006). "C and N stable isotope variation in urine and milk of cattle depending on the diet." Analytical and bioanalytical chemistry 386(1): 104-108.

Korenaga, T., M. Musashi, et al. (2010). "Statistical Analysis of Rice Samples for Compositions of Multiple Light Elements (H, C, N, and O) and Their Stable Isotopes." Analytical Sciences 26(8): 873-878.

Longobardi, F., G. Casiello, et al. (2011). "Characterisation of the geographical origin of Italian potatoes, based on stable isotope and volatile compound analyses." Food Chemistry 124(4): 1708-1713.

Muccio, Z. and G. P. Jackson (2009). "Isotope ratio mass spectrometry." Analyst 134(2): 213-222.

Pilgrim, T. S., R. J. Watling, et al. (2010). "Application of trace element and stable isotope signatures to determine the provenance of tea (Camelliasinensis) samples." Food Chemistry 118(4): 921-926.

Rapisarda, P., F. Camin, et al. (2010). "Influence of Different Organic Fertilizers on Quality Parameters and the δ 15N, δ 13C, δ 2H, δ 34S, and δ 18O Values of Orange Fruit (Citrus sinensis L. Osbeck)." Journal of agricultural and food chemistry 58(6): 3502-3506.

Rock, L. (2012). "The use of stable isotope techniques in egg authentication schemes: A review." Trends in Food Science & Technology 28(2): 62-68.

Rossmann, A. (2001). "Determination of stable isotope ratios in food analysis." Food Reviews International 17(3): 347-381.

Schipilliti, L., P. Dugo, et al. (2011). "Headspace-solid phase microextraction coupled to gas chromatography–combustion-isotope ratio mass spectrometer and to enantioselective gas chromatography for strawberry flavoured food quality control." Journal of Chromatography A 1218(42): 7481-7486.

Suzuki, Y., Y. Chikaraishi, et al. (2008). "Geographical origin of polished rice based on multiple element and stable isotope analyses." Food Chemistry 109(2): 470-475.

郭波莉, 魏益民, et al. (2006). "同位素溯源技术在食品安全中的应用." 核农学报 20(2): 148-153.

其它参考文献

11

EA、GC IsoLink、LC IsoLink和GasBench连续流分析技术与方法

Gehre, M., H. Geilmann, et al. (2004). "Continuous flow 2H/1H and 18O/16O analysis of water samples with dual inlet precision." Rapid Communications in Mass Spectrometry 18(22): 2650-2660.

Gehre, M. and G. Strauch (2003). "High-temperature elemental analysis and pyrolysis techniques for stable isotope analysis." Rapid Communications in Mass Spectrometry 17(13): 1497-1503.

Werner, R. A., B. A. Bruch, et al. (1999). "ConFlo III-An Interface for High Precision d13C and d15N Analysis with an Extended Dynamic Range." Rapid Communications in Mass Spectrometry 13(13): 1237-1241.

Godin, J.-P. (2008). "High-precision ¹³C isotopic analyses in life sciences by gas and liquid chromatography coupled to isotope ratio mass spectrometry.”

Jochmann, M. A., M. Blessing, et al. (2006). "A new approach to determine method detection limits for compound-specific isotope analysis of volatile organic compounds." Rapid Communications in Mass Spectrometry 20(24): 3639-3648.

Meier-Augenstein, W. (1999). "Applied gas chromatography coupled to isotope ratio mass spectrometry." Journal of Chromatography A 842(1): 351-371.

Reinnicke, S., D. Juchelka, et al. (2012). "Gas chromatography/isotope ratio mass spectrometry of recalcitrant target compounds: performance of different combustion reactors and strategies for standardization." Rapid Communications in Mass Spectrometry 26(9): 1053-1060.

Albéric, P. (2011). "Liquid chromatography/mass spectrometry stable isotope analysis of dissolved organic carbon in stream and soil waters." Rapid Communications in Mass Spectrometry 25(20): 3012-3018.

Boschker, H., T. Moerdijk-Poortvliet, et al. (2008). "A versatile method for stable carbon isotope analysis of carbohydrates by high-performance liquid chromatography/isotope ratio mass spectrometry." Rapid Communications in Mass Spectrometry 22(23): 3902-3908.

Godin, J. P. and J. S. McCullagh (2011). "Review: Current applications and challenges for liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS)." Rapid Communications in Mass Spectrometry 25(20): 3019-3028.

Godin, J.-P., G. r. Hopfgartner, et al. (2008). "Temperature-programmed high-performance liquid chromatography coupled to isotope ratio mass spectrometry." Analytical chemistry 80(18): 7144-7152.

Hettmann, E., W. A. Brand, et al. (2007). "Improved isotope ratio measurement performance in liquid chromatography/isotope ratio mass spectrometry by removing excess oxygen." Rapid Communications in Mass Spectrometry 21(24): 4135-4141.

Krummen, M., A. W. Hilkert, et al. (2004). "A new concept for isotope ratio monitoring liquid chromatography/mass spectrometry." Rapid Communications in Mass Spectrometry 18(19): 2260-2266.

Marschner, M., P. Middlestead, et al. (2005). "Using a simple high-performance liquid chromatography separation and fraction collection methodology to achieve compound-specific isotopic analysis for dissolved organic compounds." Rapid Communications in Mass Spectrometry 19(2): 261-268.

McCullagh, J. S. (2010). "Mixed-mode chromatography/isotope ratio mass spectrometry." Rapid Communications in Mass Spectrometry 24(5): 483-494.

Breitenbach, S. F. and S. M. Bernasconi (2011). "Carbon and oxygen isotope analysis of small carbonate samples (20 to 100 µg) with a GasBench II preparation device." Rapid Communications in Mass Spectrometry 25(13): 1910-1914.

Cabañero, A. I., T. San-Hipólito, et al. (2007). "GasBench/isotope ratio mass spectrometry: a carbon isotope approach to detect exogenous CO2 in sparkling drinks." Rapid Communications in Mass Spectrometry 21(20): 3323-3328.

Casciotti, K., D. Sigman, et al. (2002). "Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method." Analytical chemistry 74(19): 4905-4912.

Paul, D. and G. Skrzypek (2006). "Flushing time and storage effects on the accuracy and precision of carbon and oxygen isotope ratios of sample using the Gasbench II technique." Rapid Communications in Mass Spectrometry 20(13): 2033-2040.

Paul, D., G. Skrzypek, et al. (2007). "Normalization of measured stable isotopic compositions to isotope reference scales–a review." Rapid Communications in Mass Spectrometry 21(18): 3006-3014.

Seth, B., C. Schneider, et al. (2006). "Improved reliability of oxygen isotopic analysis of water using the Finnigan GasBench II periphery of a continuous flow isotope ratio mass spectrometer by backflushing of the sampling line." Rapid Communications in Mass Spectrometry 20(6): 1049-1051.

Sigman, D., K. Casciotti, et al. (2001). "A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater." Analytical chemistry 73(17): 4145-4153.

TAO, C., M.-z. ZHANG, et al. (2006). "The Research and Application of Gasbench-IRMS H_2/H_2O (l) Equlibrium H/D Isotope Analysis [J]." Journal of Chinese Mass Spectrometry Society 4: 004.

Torres, M. E., A. C. Mix, et al. (2005). "Precise δ 13C analysis of dissolved inorganic carbon in natural waters using automated headspace sampling and continuous-flow mass spectrometry." Limnol. Oceanogr.: Methods 3: 349-360.

Werner, R. A. and W. A. Brand (2001). "Referencing strategies and techniques in stable isotope ratio analysis." Rapid Communications in Mass Spectrometry 15(7): 501-519.

其它参考文献

12


Recommended