+ All Categories
Home > Documents > By Alessandro Tricoli (CERN)

By Alessandro Tricoli (CERN)

Date post: 19-Jan-2023
Category:
Upload: khangminh22
View: 0 times
Download: 0 times
Share this document with a friend
86
By AlessandroTricoli (CERN) Presenting results from LHC, Tevatron and HERA experiments EPSHEP,Vienna 2229 July 2015
Transcript

By  Alessandro  Tricoli  (CERN)  Presenting  results  from  LHC,  Tevatron  and  HERA  experiments  

EPS-­‐HEP,  Vienna  22-­‐29  July  2015  

¡  Our  understanding  and  modelling  of  QCD  interactions  have  direct  impact  on  the  potential  for  precision  measurements  and  discoveries    §  Accurate  modeling  of  Soft  and  Hard  QCD  processes  is  of  paramount  importance  for  the  success  of  

collider  physics  programs  

 

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   2  

¡  Our  understanding  and  modelling  of  QCD  interactions  have  direct  impact  on  the  potential  for  precision  measurements  and  discoveries    §  Accurate  modeling  of  Soft  and  Hard  QCD  processes  is  of  paramount  importance  for  the  success  of  

collider  physics  programs    

¡  We  experimentally  probe  and  test  different  aspects  of  QCD  calculations  and  modelling  to  improve  the  understanding  of  SM  physics  §  In  addition  we  can  improve  descriptions  of  QCD  production  mechanisms,  backgrounds  to  rare  

processes,  e.g.  EW,  new  physics  channels  and  can  enhance  sensitivity  to  new  physics,  e.g.  jets,  V+jets,  VV  

 

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   3  

¡  Our  understanding  and  modelling  of  QCD  interactions  have  direct  impact  on  the  potential  for  precision  measurements  and  discoveries    §  Accurate  modeling  of  Soft  and  Hard  QCD  processes  is  of  paramount  importance  for  the  success  of  

collider  physics  programs    

¡  We  experimentally  probe  and  test  different  aspects  of  QCD  calculations  and  modelling  to  improve  the  understanding  of  SM  physics  §  In  addition  we  can  improve  descriptions  of  QCD  production  mechanisms,  backgrounds  to  rare  

processes,  e.g.  EW,  new  physics  channels  and  can  enhance  sensitivity  to  new  physics,  e.g.  jets,  V+jets,  VV  

¡  How  well  do  we  know  QCD    ?  §  Meticulous  and  systematic  work  of  exploration  of  different  corners  of  the  Standard  Model  is  on-­‐

going  to  accurately  test  predictions  ▪  Studies  of  many  processes  spanning  may  orders  of  magnitude  in  cross-­‐section  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   4  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   5  

¡  Great  progress  made  in  past  years  in  calculations  and  modeling  of  QCD  production  mechanisms,  driven  by  higher  and  higher  experimental  accuracy  

¡  QCD  measurement  are  becoming  more  and  more  precision  measurements  §  Reaching  the  percent  level  on  experimental  uncertainties    

 

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   6  

¡  Great  progress  made  in  past  years  in  calculations  and  modeling  of  QCD  production  mechanisms,  driven  by  higher  and  higher  experimental  accuracy  

¡  QCD  measurement  are  becoming  more  and  more  precision  measurements  §  Reaching  the  percent  level  on  experimental  uncertainties    

 

¡  Despite  this  great  theoretical  progress  in  recent  years  there  are  still  theory  uncertainties  related  to  various  sources  which  can  be  constrained  by  data  

§  Many  measurements  have  reached  sensitivity  to  QCD  effects  beyond  the  NLO  accuracy  at  hadron  colliders    ▪  However  most  of  SM  processes  are  known  to  NLO  in  pQCD  in  hadron  colliders,  so  we  need  

more  NNLO  differential  calculations  to  match  experimental  precision    §  Measurements  constrain  soft  QCD  modeling,  proton  parton  densities  (PDF),  prompt  new  

developments  in  MC  generators  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   7  

¡  MC  are  a  critical  tool  in  HEP  §  Correct  for  detector  and  selection  effects  §  Test  for  the  SM  and  measuring  its  parameters  §  Estimate  new  signal  properties  and  their  backgrounds  

¡  Our  conception  of  QCD  interactions  as  implemented  in  MC  generators    

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   8  

¡  Our  conception  of  QCD  interactions  as  implemented  in  MC  generators  §  Hard  Interaction    

¡  MC  are  a  critical  tool  in  HEP  §  Correct  for  detector  and  selection  effects  §  Test  for  the  SM  and  measuring  its  parameters  §  Estimate  new  signal  properties  and  their  backgrounds  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   9  

¡  Our  conception  of  QCD  interactions  as  implemented  in  MC  generators  §  Hard  Interaction  §  Initial/Final  state  Radiation  (implemented  by  parton  

showering)  

 

¡  MC  are  a  critical  tool  in  HEP  §  Correct  for  detector  and  selection  effects  §  Test  for  the  SM  and  measuring  its  parameters  §  Estimate  new  signal  properties  and  their  backgrounds  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   10  

¡  Our  conception  of  QCD  interactions  as  implemented  in  MC  generators  §  Hard  Interaction  §  Initial/Final  state  Radiation  (implemented  by  parton  

showering)  §  Hadronisation  

 

¡  MC  are  a  critical  tool  in  HEP  §  Correct  for  detector  and  selection  effects  §  Test  for  the  SM  and  measuring  its  parameters  §  Estimate  new  signal  properties  and  their  backgrounds  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   11  

¡  Our  conception  of  QCD  interactions  as  implemented  in  MC  generators  §  Hard  Interaction  §  Initial/Final  state  Radiation  (implemented  by  parton  

showering)  §  Hadronisation  §  Multiple  Parton  Interaction    (part  of  the  underlying  

event)  

 

¡  MC  are  a  critical  tool  in  HEP  §  Correct  for  detector  and  selection  effects  §  Test  for  the  SM  and  measuring  its  parameters  §  Estimate  new  signal  properties  and  their  backgrounds  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   12  

¡  Our  conception  of  QCD  interactions  as  implemented  in  MC  generators  §  Hard  Interaction  §  Initial/Final  state  Radiation  (implemented  by  parton  

showering)  §  Hadronisation  §  Multiple  Parton  Interaction    (part  of  the  underlying  

event)  

¡  All  these  aspects  can/must  be  constrained                  by  experimental  measurements    

 

¡  MC  are  a  critical  tool  in  HEP  §  Correct  for  detector  and  selection  effects  §  Test  for  the  SM  and  measuring  its  parameters  §  Estimate  new  signal  properties  and  their  backgrounds  

¡  Much  recent  work  to  make  them  more  and  more  precise  §  Including  state  of  the  art  High-­‐Order  pQCD  Calculations  matched  to  Parton  

Showering  and  modeling  of  Soft-­‐Physics  (PDF,  Underlying  event)      

¡  Will  show  impact  of  recent  (and  selected)  QCD  measurements  on  understanding  of  SM  physics  

   

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   13  

¡  Will  show  impact  of  recent  (and  selected)  QCD  measurements  on  understanding  of  SM  physics  

 1.  Improvements  on  modeling  of  Soft  QCD  interactions  

§  Minimum  Bias  interactions  §  Underlying  Event  §  Multiple  Parton  interactions  §  diffractive  and  exclusive  processes  -­‐>  not  discussed  here  (refer  to  QCD  parallel  session)    

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   14  

¡  Will  show  impact  of  recent  (and  selected)  QCD  measurements  on  understanding  of  SM  physics  

 1.  Improvements  on  modeling  of  Soft  QCD  interactions  

§  Minimum  Bias  interactions  §  Underlying  Event  §  Multiple  Parton  interactions  §  diffractive  and  exclusive  processes  -­‐>  not  discussed  here  (refer  to  QCD  parallel  session)    

2.  Tests  of  high-­‐order  perturbative  QCD  calculations  and  MC  simulations    §  Inclusive,  multiple-­‐jet  production  cross-­‐sections  §  V+jets  production      

 

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   15  

¡  Will  show  impact  of  recent  (and  selected)  QCD  measurements  on  understanding  of  SM  physics  

 1.  Improvements  on  modeling  of  Soft  QCD  interactions  

§  Minimum  Bias  interactions  §  Underlying  Event  §  Multiple  Parton  interactions  §  diffractive  and  exclusive  processes  -­‐>  not  discussed  here  (refer  to  QCD  parallel  session)    

2.  Tests  of  high-­‐order  perturbative  QCD  calculations  and  MC  simulations    §  Inclusive,  multiple-­‐jet  production  cross-­‐sections  §  V+jets  production      

3.   Measurements  of  fundamental  Standard  Model  parameter  αS    

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   16  

¡  Will  show  impact  of  recent  (and  selected)  QCD  measurements  on  understanding  of  SM  physics  

 1.  Improvements  on  modeling  of  Soft  QCD  interactions  

§  Minimum  Bias  interactions  §  Underlying  Event  §  Multiple  Parton  interactions  §  diffractive  and  exclusive  processes  -­‐>  not  discussed  here  (refer  to  QCD  parallel  session)    

2.  Tests  of  high-­‐order  perturbative  QCD  calculations  and  MC  simulations    §  Inclusive,  multiple-­‐jet  production  cross-­‐sections  §  V+jets  production      

3.   Measurements  of  fundamental  Standard  Model  parameter  αS    4.   Constraining  of  models  of  Parton  Density  Functions  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   17  

¡  Soft  particle  production  cannot  be  calculated:  free  model  parameters  are  tuned  using  data  ¡  Charged  particle  distributions  are  measured  at  different  √s  up  to  13  TeV!  

§  Track-­‐based  analysis  of  MB  properties  from  dedicated  low-­‐pileup  runs  §  Comparison  with  predictions  of  models  tuned  to  a  wide  range  of  measurements  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   18  

ATLAS-CONF-2015-028!

¡  Soft  particle  production  cannot  be  calculated:  free  model  parameters  are  tuned  using  data  ¡  Charged  particle  distributions  are  measured  at  different  √s  up  to  13  TeV!  

§  Track-­‐based  analysis  of  MB  properties  from  dedicated  low-­‐pileup  runs  §  Comparison  with  predictions  of  models  tuned  to  a  wide  range  of  measurements  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   19  

Ø  Precision  of  analyses  highlights  clear  differences  between  models  and  measurements  

Ø  EPOS  and  shown  Pythia8  tunes  reproduce  the  data  the  best  

ATLAS-CONF-2015-028!

¡  Soft  particle  production  cannot  be  calculated:  free  model  parameters  are  tuned  using  data  ¡  Charged  particle  distributions  are  measured  at  different  √s  up  to  13  TeV!  

§  Track-­‐based  analysis  of  MB  properties  from  dedicated  low-­‐pileup  runs  §  Comparison  with  predictions  of  models  tuned  to  a  wide  range  of  measurements  

¡  Measurement  of  Nch  energy  dependence  §  Lever  arm  of  13  TeV  data  helps  constraining                  energy  dependence  of  models!  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   20  

Ø  Precision  of  analyses  highlights  clear  differences  between  models  and  measurements  

Ø  EPOS  and  shown  Pythia8  tunes  reproduce  the  data  the  best  

arXiv:1507.05915!

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   21  

¡  UE  comprises    all  particles  from  the  collision  except  those  from  the  hard  process  of  interest    

¡  Experimental  studies  of  UE  activity  in  different  processes  and  √s  shed  light  on  process  dependence  and  energy  evolution  of  UE  activity  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   22  

¡  UE  comprises    all  particles  from  the  collision  except  those  from  the  hard  process  of  interest    

¡  Experimental  studies  of  UE  activity  in  different  processes  and  √s  shed  light  on  process  dependence  and  energy  evolution  of  UE  activity  

-­‐  Z  Boson  -­‐  Leading  Track  -­‐  Leading  Jet  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   23  

Ø  Consistent  UE  activity  across  processes  within  known  selection  bias  

Eur.Phys.J.C(2014)74:3195!

¡  Experimental  studies  of  UE  activity  in  different  processes  and  √s  shed  light  on  process  dependence  and  energy  evolution  of  UE  activity  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   24  

Ø  Consistent  UE  activity  across  processes  within  known  selection  bias  

Ø  Modern  tunes  reproduce  well  the  energy  dependence  

Eur.Phys.J.C(2014)74:3195!CERN-PH-EP-2015-176!

¡  Experimental  studies  of  UE  activity  in  different  processes  and  √s  shed  light  on  process  dependence  and  energy  evolution  of  UE  activity  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   25  

Ø  Consistent  UE  activity  across  processes  within  known  selection  bias  

Ø  Modern  tunes  reproduce  well  the  energy  dependence  up  to  √s  =  13  TeV!  

Ø  Difficult  for  MC  tunes  to  describe  simultaneously  Minimum  Bias  and  UE  observables  well  (see  EPOS  and  Herwig++  as  examples)  

Eur.Phys.J.C(2014)74:3195!

¡  Experimental  studies  of  UE  activity  in  different  processes  and  √s  shed  light  on  process  dependence  and  energy  evolution  of  UE  activity  

ATL-PHYS-PUB-2015-019!

CERN-PH-EP-2015-176!

¡  Measurements  of  production  properties  of  low-­‐pT  particles  of  different  species  are  important  input  for  the  modeling  of  soft  parton  interactions  and  hadronisation  processes  

¡  ALICE  has  measured  production  properties  of  prompt  π±,  K±,  p,  p  at  √s=7  TeV    §   Combination  of  5  techniques  (sub-­‐detectors)  for  particle  identification  that  cover  a  wide  pT  range  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   26  

_  

arXiv:1504.00024!

Ø  Shapes  of  spectra  reasonably  reproduced  by  most  models  Ø  No  model  can  simultaneously  describe  the  yield  of  π,  K  and  p  Ø  These  results  can  help  constrain  hadron  production  models  

¡  Bose-­‐Einstein  Correllations  (BEC):                higher  emission  probability  of  two  identical  bosons                        with  very  similar  momenta    

 

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   27  

arXiv:1502.07947!

 Ø  Saturation  effect  of  R  at  high  multiplicities  at  R  =2.28±0.32  fm    

§  predicted  by  Pomeron-­‐based  models  as  consequence  of  overlap  of  colliding  protons  Phys. Lett. B703,288(2011); Nucl. Phys. Proc. Suppl.219-220,10(2011)!

q  Recent  experimental  results  at  pp,  pPb  and  PbPb  and  different  √s  (CMS,  ALICE  etc.)  

 q  Recent  ATLAS  result  in  pp  collisions                including  high  track  multiplicities  

§  Measurement  of  emitting  source  effective  radius  R  

Double Parton Interactions (DPI)

⌅ D P I i s c h a r a c t e r i s e d b y t h e e ↵ e c t i v e a r e ap a r a m e t e r , � e ↵ ( s ) , w h i c h i s a s s u m e d t o b ei n d e p e n d e n t o f p h a s e s p a c e a n d p r o c e s s

⌅ P r e v i o u s l y a n u m b e r o f m e a s u r e m e n t s h a v e b e e np e r f o r m e d i n pp a n d pp̄ c o l l i s i o n s a t

ps = 6 3

G e V , 6 3 0 G e V , 1 . 8 T e V a n d 1 . 9 6 T e V

⌅ M e a s u r e d v a l u e s r a n g e f r o m 5 m b a t l o w e n e r g i e su p t o 1 5 m b a t T e v a t r o n e n e r g i e s

⌅ I n t e r e s t i n D P I a t t h e L H C d u e t o⇤ Higher centre-of-mass enhances parton densities so

expect larger impact of DPI on many signatures⇤ Higher energy and luminosity means multiple

interactions occur at higher transverse momentum

W+

¯̀

qg

q

g

⌫q

¯̀

W+

20 of 25

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   28  

Single Parton Interact. (SPI)

Double Parton Interact. (DPI)

¡  Potential  contribution  to  precision  measurements                    (e.g.  Higgs,  WW)  and  new  physics  searches  ¡  Rapid  increase  with  rising  √s    ¡  Difficult  to  measure  as  buried  in  other  signal  

           

L.&Di&Ciaccio&I&LHCP&2013&I&May&2013&& 27&

DPI in W + 2 jets !

Fraceon&of&DPIIproduced&in&W+2j&events&at&detector&level&&

σeff  =  effective  area  parameter                          assumed  to  be  independent  of  phase  space  and  process                          =>  need  to  prove  this  assumption  experimentally  

Double Parton Interactions (DPI)

⌅ DPI is characterised by the e↵ective areaparameter, �e↵(s), which is assumed to beindependent of phase space and process

⌅ Previously a number of measurements have beenperformed in pp and pp̄ collisions at

ps = 63

GeV, 630 GeV, 1.8 TeV and 1.96 TeV

⌅ Measured values range from 5mb at low energiesup to 15mb at Tevatron energies

⌅ Interest in DPI at the LHC due to⇤ Higher centre-of-mass enhances parton densities so

expect larger impact of DPI on many signatures⇤ Higher energy and luminosity means multiple

interactions occur at higher transverse momentum

W+

¯̀

qg

q

g

⌫q

¯̀

W+

20 of 25

Double Parton Interactions (DPI)

⌅ D P I i s c h a r a c t e r i s e d b y t h e e ↵ e c t i v e a r e ap a r a m e t e r , � e ↵ ( s ) , w h i c h i s a s s u m e d t o b ei n d e p e n d e n t o f p h a s e s p a c e a n d p r o c e s s

⌅ P r e v i o u s l y a n u m b e r o f m e a s u r e m e n t s h a v e b e e np e r f o r m e d i n pp a n d pp̄ c o l l i s i o n s a t

ps = 6 3

G e V , 6 3 0 G e V , 1 . 8 T e V a n d 1 . 9 6 T e V

⌅ M e a s u r e d v a l u e s r a n g e f r o m 5 m b a t l o w e n e r g i e su p t o 1 5 m b a t T e v a t r o n e n e r g i e s

⌅ I n t e r e s t i n D P I a t t h e L H C d u e t o⇤ Higher centre-of-mass enhances parton densities so

expect larger impact of DPI on many signatures⇤ Higher energy and luminosity means multiple

interactions occur at higher transverse momentum

W+

¯̀

qg

q

g

⌫q

¯̀

W+

20 of 25

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   29  

Single Parton Interact. (SPI)

Double Parton Interact. (DPI)

¡  Potential  contribution  to  precision  measurements                    (e.g.  Higgs,  WW)  and  new  physics  searches  ¡  Rapid  increase  with  rising  √s    ¡  Difficult  to  measure  as  buried  in  other  signal  

         

L.&Di&Ciaccio&I&LHCP&2013&I&May&2013&& 27&

DPI in W + 2 jets !

Fraceon&of&DPIIproduced&in&W+2j&events&at&detector&level&&

σeff  =  effective  area  parameter                          assumed  to  be  independent  of  phase  space  and  process                          =>  need  to  prove  this  assumption  experimentally  

Double Parton Interactions (DPI)

⌅ DPI is characterised by the e↵ective areaparameter, �e↵(s), which is assumed to beindependent of phase space and process

⌅ Previously a number of measurements have beenperformed in pp and pp̄ collisions at

ps = 63

GeV, 630 GeV, 1.8 TeV and 1.96 TeV

⌅ Measured values range from 5mb at low energiesup to 15mb at Tevatron energies

⌅ Interest in DPI at the LHC due to⇤ Higher centre-of-mass enhances parton densities so

expect larger impact of DPI on many signatures⇤ Higher energy and luminosity means multiple

interactions occur at higher transverse momentum

W+

¯̀

qg

q

g

⌫q

¯̀

W+

20 of 25 Ø  DPI  contributions  studied  in  various  processes  by  measuring  kinematic  correlations  §  4jets,  W+2jets,  double-­‐J/ψ, Z+D,  W+J/ψ, §  Z+J/ψ, §  γ+3jets,  §   2b-­‐jets  +2jets §  γγ+2jets,  §   J/ψ +Υ  

ATLAS  Z+J/ψ (2015)

D0Note-6470-CONF!D0Note-6472-CONF!

D0Note-6470-CONF!

CMS-PAS-FSQ-13-010!

ATLAS Eur.Phys.J.C75(2015)229!

CMS-PAS-FSQ-12-017!

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   30  

¡   Jet  production  cross-­‐sections  are  excellent  probes  of  QCD  dynamics  and  modeling  over                        many  orders  of  magnitudes  

§  test  pQCD  calculations  and  interplay                with  non-­‐perturbative  effects  §  sensitive  to  strong  coupling  constant  αS,                  PDF  and  Multi  Parton  Interactions  

¡   Jet  production  cross-­‐sections  are  excellent  probes  of  QCD  dynamics  and  modeling  over                        many  orders  of  magnitudes  

§  test  pQCD  calculations  and  interplay                with  non-­‐perturbative  effects  §  sensitive  to  strong  coupling  constant  αS,                  PDF  and  Multi  Parton  Interactions  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   31  

Ø  Many  experimental  results  at  Hera,  Tevatron  and  at  LHC  at  different  √s  §  Covering  scales  from  few  GeV  to  multi-­‐TeV  §  Measurements  performed  with  different  jet  clustering  algorithm  radii  to  probe  interplay  

between  Hard  and  Soft  QCD  effects    §  Measurements  are  compared  to  fixed-­‐order  NLO  and  MC  generators  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   32  

JHEP02(2015)153!

[GeV/c]T

Jet p30 40 100 200 1000 2000

GeV

/cpb

dy Tdp

σ2 d

-510

-310

-110

10

310

510

710

910

1110

1310 = 8 TeV CMS Preliminaryspp

21

(low PU runs)-1 = 5.8 pbint

open: L (high PU runs)-1 = 10.71 fbintfilled: L

NP ⊗NNPDF 2.1 NLO

)5 10×0.0 <|y|< 0.5 ( )4 10×0.5 <|y|< 1.0 ( )3 10×1.0 <|y|< 1.5 ( )2 10×1.5 <|y|< 2.0 ( )1 10×2.0 <|y|< 2.5 ( )0 10×2.5 <|y|< 3.0 ( )-1 10×3.2 <|y|< 4.7 (

)5 10×0.0 <|y|< 0.5 ( )4 10×0.5 <|y|< 1.0 ( )3 10×1.0 <|y|< 1.5 ( )2 10×1.5 <|y|< 2.0 ( )1 10×2.0 <|y|< 2.5 ( )0 10×2.5 <|y|< 3.0 ( )-1 10×3.2 <|y|< 4.7 (

CMS-PAS-FSQ-12-031!CMS-PAS-SMP-12-012!  Ø  LHC  Measurements  cover  jet  pT  range  20  GeV-­‐2  TeV,  precision  reaches  ~5%  level    Ø  Very  good  agreement  with  NLO  QCD  calculations  ¡  Complementary  measurements  of  incl.  jet,  di-­‐jet,  3-­‐jet  cross  sections  at  HERA  and  LHC    

§  Different  sensitivity  to  underlying  sub-­‐processes  and  parton  densities,  e.g.  gluon  at  high-­‐x  §  Full  correlation  across  measurements  allows  for  simultaneous  use  as  inputs  in  QCD  fits  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   33  

¡  New  measurement  by  CMS  at  2.76  TeV  

CMS-SMP-14-017 !

Six  |y|  bins  (0.0-­‐3.0),  pT  range  74-­‐592  GeV  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   34  

¡  New  measurement  by  CMS  at  2.76  TeV  

CMS-SMP-14-017 !

Six  |y|  bins  (0.0-­‐3.0),  pT  range  74-­‐592  GeV   Ø  Sensitivity  to  PDF  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   35  

¡  New  measurement  by  CMS  at  2.76  TeV  

CMS-SMP-14-017 !

Six  |y|  bins  (0.0-­‐3.0),  pT  range  74-­‐592  GeV  

¡  Ratios  of  jet  cross-­‐sections  at  different  √s  allows  for  partial  cancellation  of  uncertainties  when  correlations  are  accounted  for  ¡  Precise  test  of  QCD  at  different  √s  and  input  to  PDF  fits  

o  e.g.  recently    ATLAS  2.76  TeV  /  7  TeV  [EPJC(2013)73 2509]!

Ø  Sensitivity  to  PDF  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   36  

¡  New  measurement  by  CMS  at  2.76  TeV  

CMS-SMP-14-017 !

CMS-SMP-14-017 !

Ø  CMS  2.76  TeV  /  8  TeV    ratio  in  range  0.1-­‐14%  and  decreases  with  increasing  jet  pT              =>  good  agreement  with  NLO  theory  

Six  |y|  bins  (0.0-­‐3.0),  pT  range  74-­‐592  GeV  

¡  Ratios  of  jet  cross-­‐sections  at  different  √s  allows  for  partial  cancellation  of  uncertainties  when  correlations  are  accounted  for  ¡  Precise  test  of  QCD  at  different  √s  and  input  to  PDF  fits  

o  e.g.  recently    ATLAS  2.76  TeV  /  7  TeV  [EPJC(2013)73 2509]!

Ø  Sensitivity  to  PDF  

¡   ATLAS  4-­‐jets  cross-­‐sections  at  8  TeV,  differentially  in  several  variables  depending  on  the  jet  momenta  and  angular  distributions,  in  various  event  topologies  §  Test  of  LO  (PS  and  ME+PS)  and  NLO  predictions  up  to  multi-­‐TeV  scales  !

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   37  

¡   ATLAS  4-­‐jets  cross-­‐sections  at  8  TeV,  differentially  in  several  variables  depending  on  the  jet  momenta  and  angular  distributions,  in  various  event  topologies  §  Test  of  LO  (PS  and  ME+PS)  and  NLO  predictions  up  to  multi-­‐TeV  scales  !

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   38  

Ø  Δφmin3j:  2-­‐vs-­‐2  from  1-­‐vs-­‐3  topologies  

p(1)T  >  100  GeV  

p(1)T  >  400  GeV  

p(1)T  >  700  GeV  

p(1)T  >  1000  GeV  

¡   ATLAS  4-­‐jets  cross-­‐sections  at  8  TeV,  differentially  in  several  variables  depending  on  the  jet  momenta  and  angular  distributions,  in  various  event  topologies  §  Test  of  LO  (PS  and  ME+PS)  and  NLO  predictions  up  to  multi-­‐TeV  scales  !

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   39  

Ø  Δφmin3j:  2-­‐vs-­‐2  from  1-­‐vs-­‐3  topologies  

p(1)T  >  100  GeV  

p(1)T  >  400  GeV  

p(1)T  >  700  GeV  

p(1)T  >  1000  GeV  

¡   ATLAS  4-­‐jets  cross-­‐sections  at  8  TeV,  differentially  in  several  variables  depending  on  the  jet  momenta  and  angular  distributions,  in  various  event  topologies  §  Test  of  LO  (PS  and  ME+PS)  and  NLO  predictions  up  to  multi-­‐TeV  scales  !

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   40  

Ø  Δφmin3j:  2-­‐vs-­‐2  from  1-­‐vs-­‐3  topologies  

p(1)T  >  100  GeV  

p(1)T  >  400  GeV  

p(1)T  >  700  GeV  

p(1)T  >  1000  GeV  

Ø  NLO  predictions  BlackHat/Sherpa and  NJet/Sherpa:  compatible  with  data  within  large  theoretical  uncertainties  (O(30%)  at  low  momenta)  

Ø  HEJ  (all-­‐order  resummation)  provides  a  good  description  of  angular  variables  

¡  Dijet  azimuthal  decorrelations  is  complementary  to  multi-­‐jet  analyses  §  Gain  insight  on  multi-­‐jet  production  without  measuring  jets  beyond  the  leading  two  §  Experimental  uncertainty  on  normalised  distribution  reach  percent  level  at  ΔφDijet  ≈π    

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   41  

ΔφDijet=  |  φjet1  –  φjet2  |  

ΔφDijet  ≈π    

ΔφDijet  ≈2π/3    

ΔφDijet  -­‐>  0    

CMS-PAS-SMP-14-015!

NLO  

LO  

Ø  Good  agreement  with  3-­‐jet  NLO  calculation  (NLOJet++)  

           in  NLO  range  

Ø  Multi-­‐jet  2-­‐>4  MC  (Madgraph+Pythia6)  provides  best  description  overall  

¡  αs  is  a  fundamental  QCD  quantity  which  many  QCD  measurements  are  sensitive  to  §  Inclusive  jet  cross  section,  3-­‐jet  mass,  3-­‐jet  to  2-­‐jet  cross  section  ratio  (R32),  event  shapes,  tt  cross-­‐

section  etc.  ¡  Sensitive  to  new  physics  

§  The  running  of  the  strong  coupling  constant  can  be  measured  to  unprecedented  scales  Q,  in  different  processes  at  the  LHC  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   42  

 

Ø  Good  agreement  with  2-­‐loop  solution                  of  the  RGE  as  a  function  of  the  scale  Q                  up  to  TeV  scale              

Incl.  jets  3-­‐jet  mass  

R32  tt  

)!/d

(co

s "

)d#

(1/

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Data (exp. unc.)

NLO pQCD (th. unc.)

= 7 TeVs ATLAS -1L dt = 158 pb $Preliminary

CT10 NNLO

jets R = 0.4tanti-k

) = 0.1173Z

(ms%

!cos

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Da

ta /

Th

eo

ry

0.9

1

1.1

¡  New  measurement  by  ATLAS  data  using  event  shapes,  as  a  continuation  of  αS  measurements  at  e+e-­‐  colliders  (PETRA-­‐PEP,  TRISTAN,LEP-­‐SLC)  §  Jet-­‐based  transverse  energy-­‐energy  correlation    

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   43  

§  Experimental  distributions  in  agreement    with  NLO  calculation  

 

Ø  Extraction  of  αS  at  Q=MZ  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   44  

¡  Excellent  compatibility  with  World  Average  and  with  jet-­‐based  measurements  at  hadron  and  e-­‐p  colliders  

Ø  NNLO  calculations  needed  for  jet  processes                  to  improve  precision  on  αS  at  hadron  colliders  

§  Theoretical  scale  uncertainty                dominate  over  exp.  uncertainties  

ATLAS Energy Energy Correlations

Preliminary

32ATLAS N

ATLAS-CONF-2013-041 (2013)

Malaescu & Starovoitov ATLAS Inclusive jet

Eur. Phys. J. C 72 (2012) 2041

32CMS R

Eur. Phys. J. C 73 (2013) 2604

CMS inclusive jet cross section

Eur. Phys. J. C 75 (2015) 288

CMS 3-jet mass

Eur. Phys. J. C 75 (2015) 186

CDF Inclusive jet cross sections

Phys. Rev. Lett. 88 (2002) 042001

D0 Inclusive jet cross sections

Phys. Rev. D 80 (2009) 111107

D0 Jet angular correlations

Phys. Lett. B 718 (2012) 56

p!ZEUS Inclusive jet cross sections in

Nucl. Phys. B 864 (2012) 1

in ep collisions2H1 Multijet production at high Q

Eur. Phys. J. C 75 (2015) 65

H1 + ZEUS Inclusive jet cross sections in ep collisions

H1prelim-07-132, ZEUS-prel-07-025

World average 2014

Chin. Phys. C 38 (2014) 090001

)Z

(mS"

0.11 0.12 0.13 0.14 0.15 0.16 0.17

Experimental Uncertainty

Total Uncertainty

PDG Total UncertaintyPreliminary ATLAS

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   45  

Ø  V+jets probe different aspects of QCD calculations Ø  Overall good data-theory

agreement over 5 orders of magnitude in cross-sections

Ø  High experimental accuracy

exposes discrepancies with predictions

New  CMS  γγ+jets  at  7  TeV    CMS-SMP-14-021!(see  backup)  !

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   46  

q  Tevatron legacy on V+jets analyses and still many new results are coming…

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   47  

q  Tevatron legacy on V+jets analyses and still many new results are coming… q  Larger cross-sections at LHC and larger integrated luminosity, different Bjorken-x, parton

densities and subprocesses

jetsN 1≥ 2≥ 3≥ 4≥ 5≥ 6≥ 7≥

-310

-210

-110

1

10

210

310

Data

2j@NLO 3,4j@LO + PS)≤Sherpa2 (

4j@LO + PS)≤Madgraph + Pythia6 (

CMS Preliminary (8 TeV)-119.6 fb

(R = 0.5) JetsTanti-k| < 2.4 jetη > 30 GeV, |jet

Tp

ll channel→*γZ/

[pb

]je

ts/d

Nσd

jetsN 1≥ 2≥ 3≥ 4≥ 5≥ 6≥ 7≥

Sher

pa2/

Dat

a

0.5

1

1.5

Stat. unc. (gen)

jetsN 1≥ 2≥ 3≥ 4≥ 5≥ 6≥ 7≥

Mad

Gra

ph/D

ata

0.5

1

1.5

Stat. unc. (gen)

CMS-PAS-SMP-13-007! Eur.Phys.J.C(2015)75:82!

Ø  Unprecedented  kinematic  reach  Ø  Discrepancies  between  data  and  theory  

§  These  results  already  used  to  improve  MC  simulations  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   48  

q  Tevatron legacy on V+jets analyses and still many new results are coming… q  Larger cross-sections at LHC and larger integrated luminosity, different Bjorken-x, parton

densities and subprocesses

q  Great theoretical advances in recent years/months

§  NLO calculations up to W+5 partons §  NNLO for W/Z+1 parton §  NLO MC matched to Parton

Showering §  Resummed calculations  

jetsN 1≥ 2≥ 3≥ 4≥ 5≥ 6≥ 7≥

-310

-210

-110

1

10

210

310

Data

2j@NLO 3,4j@LO + PS)≤Sherpa2 (

4j@LO + PS)≤Madgraph + Pythia6 (

CMS Preliminary (8 TeV)-119.6 fb

(R = 0.5) JetsTanti-k| < 2.4 jetη > 30 GeV, |jet

Tp

ll channel→*γZ/

[pb

]je

ts/d

Nσd

jetsN 1≥ 2≥ 3≥ 4≥ 5≥ 6≥ 7≥

Sher

pa2/

Dat

a

0.5

1

1.5

Stat. unc. (gen)

jetsN 1≥ 2≥ 3≥ 4≥ 5≥ 6≥ 7≥

Mad

Gra

ph/D

ata

0.5

1

1.5

Stat. unc. (gen)

CMS-PAS-SMP-13-007! Eur.Phys.J.C(2015)75:82!

Ø  Unprecedented  kinematic  reach  Ø  Discrepancies  between  data  and  theory  

§  These  results  already  used  to  improve  MC  simulations  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   49  

q  Theoretical uncertainties on W/Z+heavy flavour jets are larger than for light jets §  heavy-quark content in the proton §  modeling of gluon splitting (initial state, final state) §  massive vs massless b-quark in calculations

q  Test of QCD predictions with various implementations (LO multileg+PS, NLO, NLO+PS)

q  Very important processes as background to Higgs and searches

¡     W+c  is  sensitive  to  strange-­‐PDF  and  gluon  splitting  §  ATLAS  and  CMS  showed  results  compatible  with  strange  enhancement      §   DO  carried  out  measurement  sensitive  to  gluon  splitting  vs  c-­‐jet  pT    

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   50  

dominating  contribution  

W  

c  _  c   Increasingly  

important  at  high  pT

jet  

¡     W+c  is  sensitive  to  strange-­‐PDF  and  gluon  splitting  §  ATLAS  and  CMS  showed  results  compatible  with  strange  enhancement      §   DO  carried  out  measurement  sensitive  to  gluon  splitting  vs  c-­‐jet  pT    

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   51  

dominating  contribution  

W  

c  _  c   Increasingly  

important  at  high  pT

jet  

W+c-­‐jet  

PLB 743 (2015) 6-14!

 W+c-­‐jet:    

Underestimated  g-­‐splitting?  strange-­‐quark  enhancement?  

 

¡     W+c  is  sensitive  to  strange-­‐PDF  and  gluon  splitting  §  ATLAS  and  CMS  showed  results  compatible  with  strange  enhancement      §   DO  carried  out  measurement  sensitive  to  gluon  splitting  vs  c-­‐jet  pT    

¡   W+b  is  sensitive  to  gluon  splitting  and  intrinsic-­‐b  PDF  §  DO  cross-­‐section  measurement  vs  b-­‐jet  pT  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   52  

dominating  contribution  

W  

c  _  c   Increasingly  

important  at  high  pT

jet  

W+b-­‐jet  

PLB 743 (2015) 6-14!

W+c-­‐jet  

PLB 743 (2015) 6-14!

 W+c-­‐jet:    

Underestimated  g-­‐splitting?  strange-­‐quark  enhancement?  

 

W+b-­‐jet  :  missing  higher-­‐order  corrections        Overall  poor  description  of    

         NLO  calculations  

¡     Simultaneous  analysis  of  W+light-­‐jet,  W+b  and  W+c,    by  LHCb  in  forward  region  §  W-­‐>µν  with  2.0<|ηµ|<4.5  and  2.2<|ηjet|<4.2  and  pT

jet>20  GeV  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   53  

¡     Simultaneous  analysis  of  W+light-­‐jet,  W+b  and  W+c,    by  LHCb  in  forward  region  §  W-­‐>µν  with  2.0<|ηµ|<4.5  and  2.2<|ηjet|<4.2  and  pT

jet>20  GeV  

¡  Production  cross-­‐section  ratios  and  charge  asymmetries  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   54  

Ø   Wc/Wj  and  Wb/Wj  ratios  consistent  with  NLO  QCD  (4-­‐flavour  scheme  MCFM  with  CT10  PDF)  

Ø   no  sensitivity  to  intrinsic-­‐b  below  O(10%)  level    Ø   agreement  with  strange-­‐quark  fraction  in  CT10  PDF    

Ø   Charge  asymmetry  for  Wc  smaller  than  predicted  Ø  could  suggest  an  s-­‐s  asymmetry    

_  

arXiv:1505.04051!

v  Higgs  boson  production  depends  on  gluon  PDF  (gluon  fusion)  v  Very  large  PDF  uncertainties  in  phase-­‐spaces  relevant  for  new  heavy  particles  v  PDFs  dominant  syst.  for  precision  SM  measurements,    e.g.  MW  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   55  

¡  PDFs  are  determined  from  global  fits  to  many  observables                    (DIS,  Vector  Boson  production,  Jets,  Heavy  quark  production)  

PDG 2014 Chin.Phys.C38 090001!

NNPDF3.0  

v  Higgs  boson  production  depends  on  gluon  PDF  (ggF)  v  Very  large  PDF  uncertainties  in  phase-­‐spaces  relevant  for  new  heavy  particles  v  PDFs  dominant  syst.  for  precision  SM  measurements,    e.g.  MW  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   56  

¡  PDFs  are  determined  from  global  fits  to  many  observables                    (DIS,  Vector  Boson  production,  Jets,  Heavy  quark  production)  

Ø  New  generations  of  PDF's  include  LHC  data    to  improve  quark-­‐flavour  separation  and    gluon  PDF  ¡  W/Z  and  W+c  are  sensitive  to  quark  PDF,  e.g.  strange  fraction    ¡  Inclusive  jet  production  is  sensitive  to  the  large-­‐x  gluon  and  quark  PDF’s  

arXiv:1410.8849!

PDG 2014 Chin.Phys.C38 090001!

¡  HERA  provides  most  important  dataset  to  measure  PDF  ¡  HERA  II  yields  significant  improvements  in  precision  at  high  x-­‐Q2  region  

§  Combination  of  H1  and  ZEUS  inclusive  DIS  NC  and  CC  cross-­‐sections  in  HERA  I  and  II  §  QCD  analysis  at  LO,  NLO  and  NNLO  =>  HERAPDF2.0  §  Simultaneous  measurement  of  gluon-­‐PDF  and  αS(MZ)  after  inclusion  of  HERA  jet  and  charm  data  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   57  

H1 and ZEUS

0

0.2

0.4

0.6

0.8

1

1.2

10 3 10 4

mr,

NC

Q2/GeV2

HERA NC e p 0.4 fb–1–

HERA I

3s = 318 GeV

xBj = 0.008

xBj = 0.032

xBj = 0.08

xBj = 0.25

arXiv:1506.06042 !

§  Large  kinematic  range  and  unprecedented  precision  

             (up  to  few%)      

¡  HERA  provides  most  important  dataset  to  measure  PDF  ¡  HERA  II  yields  significant  improvements  in  precision  at  high  x-­‐Q2  region  

§  Combination  of  H1  and  ZEUS  inclusive  DIS  NC  and  CC  cross-­‐sections  in  HERA  I  and  II  §  QCD  analysis  at  LO,  NLO  and  NNLO  =>  HERAPDF2.0  §  Simultaneous  measurement  of  gluon-­‐PDF  and  αS(MZ)  after  inclusion  of  HERA  jet  and  charm  data  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   58  

H1 and ZEUS

0

0.2

0.4

0.6

0.8

1

1.2

10 3 10 4

mr,

NC

Q2/GeV2

HERA NC e p 0.4 fb–1–

HERA I

3s = 318 GeV

xBj = 0.008

xBj = 0.032

xBj = 0.08

xBj = 0.25

arXiv:1506.06042 !

0.2

0.4

0.6

0.8

1

-410 -310 -210 -110 1

HERAPDF2.0 NLO

HERAPDF1.0 NLO

HERAPDF2.0 NLO

HERAPDF1.0 NLO

x

xf

2 = 10 GeV2fµ

vxu

vxd 0.05)×xS (

0.05)×xg (

H1 and ZEUS

arXiv:1506.06042 !

§  Large  kinematic  range  and  unprecedented  precision  

             (up  to  few%)    

§  Valence  quark  and  gluon  PDF                    become  slightly  harder  

Ø  Important  input  for  LHC  Run-­‐II  predictions  =>  HERA  Legacy  

ATL-PHYS-PUB-2015-016!

Inclusive  photon  ET  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   59  

ATL-PHYS-PUB-2015-021!

Z+Njets  distribution  Drell-­‐Yan  distribution  

CMS-DP-2015-015!

[GeV]T

p210×4 210×5 210×6 210×7 210×8

[pb/G

eV]

y d Tp/dσ2 d

-110

1

10

210PreliminaryATLAS

-113 TeV, 78 pb| < 0.5y=0.4; |R jets, tanti-k

uncertaintiesSystematic

Non-pert. corr.×NLOJET++ (CT10)

Data

Relative uncertainty of 9% in the integrated luminosity not included

ATLAS-CONF-2015-034!

Inclusive  jet  cross-­‐section  

W  MT  distribution    

ATL-PHYS-PUB-2015-021!

CMS DP-2015-017!

Di-­‐jet  mass  distribution  

ATLAS-CONF-2015-027!

Ridge    in  pp  

J/ψ-­‐from-­‐b    cross-­‐section  

LHCb-PAPER-2015-037!

invariant mass [GeV]-µ+µ1 10 210

Even

ts /

GeV

1

10

210

310

410

510

610

710

810

ω

φψJ/

sBΥ

Z

Trigger pathsφψJ/'ψsB

Υlow mass double muon + trackdouble muon inclusive

(13 TeV)-120 pb

CMSPreliminary

Di-­‐µ  mass  distribution  

CMS DP-2015/01!

¡  Understanding  QCD  is  central  in  hadron  collider  physics  

¡  Both  experimentalists  and  theorists  are  striving  to  improve  our  knowledge  of  QCD  further  and  further  

¡  New  and  more  and  more  precise  results  from  Hera,  Tevatron  and  LHC  experiments  are  prompting  further  theoretical  developments  on  QCD  §  NLO-­‐>NNLO  QCD  differential  calculations  is  the  next  frontier  to  improve  data-­‐theory  agreement  in  

many  processes  at  hadron  colliders  §  Improve  PDF  (e.g.  quark  and  gluon  PDFs)  and  models  for  (multi-­‐)particle  production  dynamics  §  Constrain  Monte  Carlo  simulation,  e.g.  gluon  splitting  

¡  Thanks  to  wide  kinematic  reach  at  the  LHC  we  test  validity  of  SM  to  unprecedented  phase  spaces  §  scale  dependence  of  αS  now  tested  to  the  TeV  energy  scale  §  Jet  production  to  multi-­‐TeV  scales  §  V+jets  to  high  jet  multiplicity  and  TeV-­‐scale  jets  

 

¡  Many  more  results  are  to  come  and  we  look  forward  to  LHC  Run-­‐2  to  provide  further  insight  on  QCD  dynamics  in  a  new  energy  regime  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   60  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   61  

Back-­‐up  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   62  

¡  Data  from  different  experiments  used  as  inputs    to  tunes  of  MC  parameters  ¡  Data  input  with  largest  weight  is  shown  in  table  

¡  Some  tunes  focused  on  describing  Minimum  Bias  (MB)  distributions  others  to  describe  UE  distributions  

¡  Bose-­‐Einstein  Correlations  (BEC)  §  correlations  between  two  identical  bosons  

§  BEC  effect  corresponds  to  an  enhancement  in  two  identical  boson  correlation  function  when  the  two  particles  are  near  in  momentum  space  Q.  

 §  BEC  probe  space-­‐time  geometry  of  the  hadronization  region  and  allow  the  determination  of  the  

size  and  the  shape  of  the  emitting    source.  

§  Dependence  of  BEC  on  particle  multiplicity  and  transverse  momentum  helps  understand  the  multi-­‐particle  production  mechanism.  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   63  

Probability  to  observe  two  particles  with  momenta  p1  and  p2  

Probability  to  observe  one  particle  with  momentum  p1  or  p2  

R=  effective  radius  λ  =  strength  parameter  (incoherence  or  chaoticity  factor)  

¡  Recent  ATLAS  result  in  pp  collisions  §  Experimental  construction  of  C2(Q)  correlation  function:  

 

§  Construct  double  ratio  (Data  /  MC  with  no  BEC)  to  reduce  uncertainties  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   64  

§  Analysis  of  900  GeV  and  7  TeV  data  §  Including  high  track  multiplicities  ~240  at  7  TeV                (first  time  in  BEC  analyses)    Ø  Saturation  effect  of  R  at  high  multiplicities  at                R  =2.28±0.32  fm    predicted                  by  Pomeron-­‐based  models    

     

Reference  sample  particle  (track)  pairs  Q  distribution  =>  no  BEC  

Like-­‐sign  (ls)  particle  (track)  pairs  Q  distribution  =>  signal  with  BEC  

arXiv:1502.07947!

Phys. Lett. B703,288(2011)!Nucl. Phys. Proc. Suppl.219-220,10(2011)!!

¡  CMS  has  studied  2  b-­‐jets  +  2  jet  production  at  7  TeV  in  low-­‐pileup  2010  sample  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   65  

§  Measurements  of  normalised  differential  cross-­‐sections  as  a  function  of  many  correlation  variables  between  jets  (similarly  to  previous  4jet  analysis)  

§  ΔS  is  angular  variable  most  sensitive  to  MPI                  at  low  ΔS  

Ø  ΔS  not  well  described  by  any  prediction  =>  need  of  UE  tune  to  hard  MPI    

MPI-­‐sensitive  region  

S (rad)Δ0 0.5 1 1.5 2 2.5 3

MC/

data

0.20.40.60.8

11.21.41.6

S [1

/rad]

Δ/d

σ) d

σ(1

/

-210

-110

1

10

210

2 b + 2 j + X→ (7 TeV), pp-13 pb

| < 2.4η > 20 GeV, |T

2 b-j: p| < 4.7η > 20 GeV, |

T2 j: p

CMSPreliminary

MADGRAPH+P6 Z2*POWHEG+PYTHIA6 Z2'CUETP8S1-CTEQ6L1HERWIG++ UE-EE-5-CTEQ6L1CUETP8S1-CTEQ6L1 MPI offDATATotal Uncertainty

Correlated  jet  topology    (2b  and  2j  are  back-­‐to-­‐back)  

Uncorrelated  jet  topology  

CMS-PAS-FSQ-13-010!

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   66  

¡  Complementary  measurements  of  incl.  jet,  di-­‐jet,  3-­‐jet  cross  sections  at  HERA  and  LHC    §  Different  sensitivity  to  underlying  sub-­‐processes  and  to  parton  densities  §  Full  correlation  across  measurements  allows  for  simultaneous  use  as  inputs  in  QCD  fits  

Ø   Sensitivity  to  PDF,  e.g.  gluon  at  high-­‐x  Ø   3-­‐jet  mass  is  used  by  CMS  to  extract  strong  coupling  constant  αS  

1412.1633v2!

3-­‐jet  vs  mjjj  and  ymax    

3-­‐jet  vs  mjjj  and  Y*  

Eur.Phys.J.C(2015)75!

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   67  

CMS-SMP-14-017 !

¡  New  measurement  by  CMS  at  2.76  TeV  and  ratio  2.76  TeV  /  8  TeV      

CMS-SMP-14-017 !

Inclusive  jet  cross-­‐section  at  2.76  TeV     Inclusive  jet  cross-­‐section  ratio  2.76  TeV  /  8  TeV    

¡  Dijet  azimuthal  decorrelations  is  complementary  to  multi-­‐jet  analyses  §  Gain  insight  on  multi-­‐jet  production  without  measuring  jets  beyond  the  leading  two  §  Experimental  uncertainty  on  normalised  distribution  reach  percent  level  at  ΔφDijet  ≈π    

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   68  

ΔφDijet=  |  φjet1  –  φjet2  |  

ΔφDijet  ≈π    

ΔφDijet  ≈2π/3    

ΔφDijet  -­‐>  0    

CMS-PAS-SMP-14-015!

NLO  

LO  

Good  agreement  with  3-­‐jet  NLO  calculation  (NLOJet++)  in  NLO  range  Multi-­‐jet  2-­‐>4  MC  (Madgraph+Pythia6)  provides  best  description  overall  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   69  EPJ C75 (2015) 65!

¡  Simultaneous  and  correlated  Measurements  of  inclusive  jet,  di-­‐jet    and  three-­‐jets  at  HERA  (H1)  §  Jet  acceptance:  -­‐1<η<2.5,  5-­‐7  GeV  <pT

jet<50  GeV  

       

Ø  Experimental  precision  higher  than  theory  uncertainty  (scales)  

Ø  Overall  good  description  of  data  by  NLO  calculation                (NLOJET++  corrected  for  hadronisation  and  EW  effects)  

Ø  Extraction  of  competitive  value  of  strong  coupling  constant  αS(MZ)  §  Most  precise  from  jet  cross-­‐sections  

0.60.8

11.2

0.60.8

11.2

0.60.8

11.2

0.60.8

11.2

0.60.8

11.2

7 10 20 300.60.8

11.2

7 10 20 30 7 10 20 30

Inclusive Jet Dijet Trijet

[GeV]TjetP [GeV]2�T

jtP� [GeV]3�TjtP�

Rat

io to

NLO

2 < 200 GeV2150 < Q

2 < 270 GeV2200 < Q

2 < 400 GeV2270 < Q

2 < 700 GeV2400 < Q

2 < 5000 GeV2700 < Q

2 < 15000 GeV25000 < Q

H1 Data ew c� had c�NLO Sys. Uncertainty 0.118 =s _MSTW2008,

NLOJet++ with fastNLO

H1

¡   D*  production  at  HERA  gives  insight  on  High-­‐Order  QCD  corrections  and  charm-­‐fragmentation  §  Combination  of  H1  and  ZEUS  results  with  full  HERA  II  dataset  

§  Single  and  double  differential  cross-­‐section  in  various  variables  §  Full  D-­‐meson  reconstruction  §  Clean  signal  in                                                                                            distribution  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   70  

Dominant  charm-­‐production  mechanism  

Ø  Data  yields  much  higher  precision  than  theory  

Ø  NLO  QCD  theory  is  in  reasonable  agree  with  data,  but  Higher-­‐Order  calculations  will  reduce  theory  uncertainty    

(D*)

(nb/

GeV

)T

/dp

md

-410

-310

-210

-110

1

(D*) (GeV)T

p2 3 4 5 6 7 8 9 10 20

ratio

to H

ERA

0.6

0.8

1

1.2

HERA-IINLO QCDNLO QCD customised

± D*ANLO QCD b

2 < 1000 GeV25 < Q0.02 < y < 0.7

(D*) > 1.5 GeVT

p(D*)| < 1.5d|

X H1 and ZEUS± eD*A ep

arXiv:1503.06042!

¡   Studies  of  jet  properties  can  constrain  models  of  jet  formation  §  ATLAS  analysis  on  Jet  Charge  in  dijet  events  (two  well-­‐balanced  jets)      

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   71  

pT-­‐weighted  track  charge  for  tracks  associated  to  a  jet    κ=regularisation  param.  to  control  fluctuations  due  to  soft-­‐radiation  

1st  ,  2nd  moments    of  Jet  Charge  distribution  measured    vs  jet  pT  

Ø   Data  is  10%  above  MC  predictions  §  PDF  uncertainties  do  not  cover  discrepancy  =>  likely  source  is  fragmentation  modeling  

§  Jet  charge  increases  with  jet  pT  following  increase  of  up-­‐flavour  jets  in  dijet  sample  

             (PDF  evolution)  

ATLAS-CONF-2015-025!

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   72  

arXiv:1412.1115

Ø  NNLO QCD calculations are necessary to describe Drell-Yan data

JHEP  06  (2014)  112  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   73  

Njets0 1 2 3 or 4

/dN

jets

σ d

σ1/

2−10

1−10

1 (7 TeV)-15.0 fb

CMSPreliminary

Data

SHERPA

aMC@NLO

0 1 2 3 or 4

SHER

PA /

Dat

a

00.5

11.5

22.5

3

0 1 2 3 or 4

aMC

@N

LO /

Dat

a

00.5

11.5

22.5

3

1j≥, close ,j}γ R{Δ

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

1j

≥, cl

ose

,j}

γ R

/dσ

1/

2−10

1−10

(7 TeV)-15.0 fb

CMSPreliminary

Data

SHERPA

aMC@NLO

GoSam

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

SHER

PA /

Dat

a

00.5

11.5

22.5

3

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

aMC

@N

LO /

Dat

a

00.5

11.5

22.5

3

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

GoS

am /

Dat

a

00.5

11.5

22.5

3

q  Differential  γγ+jets  cross  section  at  7  TeV  by  CMS  

§  Event  selection:    o  photon  pT>  40,  25  GeV  o  jet  pT  >  25  GeV  (anti-­‐kT  R=0.5)  

Ø  Sherpa  (LO  multi-­‐leg)  and  aMC@NLO  (NLO  up  to  2  jets)  agree  well  with  data  §  NLO  calculation  less  affected  by  scale  uncertainties  

Ø  GoSam  (fixed-­‐order  NLO  for  1  or  2  jets  corrected  for  N.P.  effects)  shows  discrepancies  with  data  

           in  γ-­‐jet  angular  correlations                  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   74  

Ø  Extraordinary agreement between experiments and theory over 5 orders of magnitude in cross-sections

Ø  High experimental accuracy exposes discrepancies with predictions

Eur.Phys.J.C(2015)75:82!

[pb/

GeV

]T

1 je

t)/dp

≥ +

νµ

→(Wσd -510

-410

-310

-210

-110

1

10 DataBlackHat+Sherpa (NLO)Sherpa (LO)MadGraph+Pythia (LO)

-1 = 7 TeV 5.0 fbsCMS

(R = 0.5) jetsTanti-k| < 2.4jetη > 30 GeV, |jet

Tp

selectionνµ→W

[GeV]T

Leading jet p100 200 300 400 500 600 700 800

Theo

ry/D

ata

0.5

1

1.5

BlackHat+Sherpa (1 jet NLO)

Theory stat. + syst.

[GeV]T

Leading jet p100 200 300 400 500 600 700 800

Theo

ry/D

ata

0.5

1

1.5

NNLOσSherpa, normalized to

Theory stat.

[GeV]T

Leading jet p100 200 300 400 500 600 700 800

Theo

ry/D

ata

0.5

1

1.5

NNLOσMadGraph+Pythia, normalized to

Theory stat.

Phys. Lett. B 741 (2015) 12 q   W+jets  at  7  TeV  by  ATLAS  and  CMS  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   75  

q  Mismodelings seen in W+jets, Z+jets and γ+jet separately mostly cancel in Ratios §  Ratio measurements allow for cancellations of uncertainties (exp. and theory)

Ø  Significant discrepancies with theory in some regions of phase space Ø  Z/γ: over-estimation of ratio by a flat 10-20% by NLO calc. and LO multi-leg MC

W+jets (W + ≥ 2jets) Rjets=W+jets / Z+jets

Eur.Phys.J.C(2014)74: 3168!Eur.Phys.J.C(2015)75:82!

Z+jet / γ+jet

[GeV]γZ/T

p100 200 300 400 500 600 700 800

γ T/d

/ d

Z T/d

pσd

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Data

Stat.+syst.

BlackHat

MadGraph

CMS (8 TeV)-119.7 fb

|<1.4V|y

arXiv.1505.06250!

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   76  

q  Ratio  measurements  allow  for  cancellations  of  uncertainties  (exp.  and  theory)  §  Experimental:  jet  calibration  uncertainties,  lumi  etc.  §  Theory:  scale+PDF  uncertainties:  20%  (W+1j)  -­‐>  2-­‐4%  on  W+1j/Z+1j  at  jet  pT=800  GeV  

W+jets W+jets / Z+jets

Eur.Phys.J.C(2014)74: 3168!Eur.Phys.J.C(2015)75:82!

Ø  Accurate  test  of  SM  predictions    Ø  Important  for  background  estimation  in  searches  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   77  

Ø  Z/γ: over-estimation of ratio by a flat 10-20% by NLO calc. and LO multi-leg MC

[GeV]γZ/T

p100 200 300 400 500 600 700 800

γ T/d

/ d

Z T/d

pσd

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Data

Stat.+syst.

BlackHat

MadGraph

CMS (8 TeV)-119.7 fb

|<1.4V|y

Z+jet / γ+jet

[GeV]γZ/T

p100 200 300 400 500 600 700 800

Mad

Gra

ph/D

ata

0.6

0.8

1.0

1.2

1.4

MadGraph stat. error

[GeV]γZ/T

p100 200 300 400 500 600 700 800

Blac

kHat

/Dat

a

0.6

0.8

1.0

1.2

1.4

PDF Scale

CMS

(8 TeV)-119.7 fb

arXiv.1505.06250! arXiv.1505.06250!

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   78  

q  Test limit of validity of NLO pQCD calculation (where large logs are expected or missing higher orders) q  Fixed-order NLO fails at large pT

Z/pT 1st jet due to missing higher predictions

§  3-jet emission only at LO in BlackHat

q  Parton shower adds soft jets and provides better description of high tails

)j1T

/pZT

(p10

log-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

)j1 T/pZ T

(p10

/d lo

gσd

10

210

310

410

>40 llT

2, p≥ jets, N-l+ l→ *γZ/

data

stat+syst

)Z+2jetBlackHat(

NNLOSherpa k

NNLOMadGraph k

Preliminary CMS (8TeV)-119.7fb

Z-jet are back-to-back

Z pT < jet pT

3rd jet is relevant (NLO becomes LO)

arXiv.1505.06250!

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   79  

q  First double differential measurement: leading jet pT and rapidity (like in jet measurements) §  also suitable for PDF fitting

q  Extended jet rapidity range, up to |η| = 4.7

[GeV]T

Leading jet p60 80 100 120 140 160 180

Theo

ry/D

ata

0.4

0.6

0.8

1

1.2

1.4

1.6

4j @LO≤MadGraph Z+

4j@LO≤Sherpa Z +1,2j @NLO,

Total experimental unc|<4.7

j 3.2<|y

CMS Preliminary (8 TeV)-119.6 fb

[GeV]T

Leading jet p50 100 150 200 250 300 350 400

Theo

ry/D

ata

0.4

0.6

0.8

1

1.2

1.4

1.6

4j @LO≤MadGraph Z+

4j@LO≤Sherpa Z +1,2j @NLO,

Total experimental unc|<2.0

j 1.5<|y

CMS Preliminary (8 TeV)-119.6 fb

Ø  Experimental  precision  of  central  jets    is  higher  than  prediction-­‐to-­‐prediction  differences    §  up  to  ±20%  data-­‐theory  discrepancies  (Madgraph,  Sherpa  MEPS@NLO)  in  high  pT  tails  of  1st  jet      

CMS-PAS-SMP-14-009!

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   80  

q  Theoretical uncertainties on W/Z+heavy flavour jets are larger than for light jets §  heavy-quark content in the proton §  modeling of gluon splitting (initial state, final state) §  massive vs massless b-quark in calculations

q  Test of QCD predictions with various implementations (LO multileg+PS, NLO, NLO+PS)

q  Very important processes as background to Higgs and searches

arXiv:1407.3643 (ATLAS)! JHEP 12 (2013) 39 (CMS) !

Ø  Distribution shapes generally well described by predictions

Ø  Except for configurations with nearby b-jets, dominated by gluon splitting

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   81  

W+b*•  Very*challenging*due*to*large*

backgrounds*

•  Measurement*of:*- W+b*- W+b+1*jet*

•  bWtagging*used*to*discriminate*signal*processes*

Produc4on*processes*

Gluon*splixng*in*PS*

bWquark*in*ini4al*state*

DoubleWparton*interac4ons*

11*b-tagging discriminante (Neural Network output)

W+b*•  Very*challenging*due*to*large*

backgrounds*

•  Measurement*of:*- W+b*- W+b+1*jet*

•  bWtagging*used*to*discriminate*signal*processes*

Produc4on*processes*

Gluon*splixng*in*PS*

bWquark*in*ini4al*state*

DoubleWparton*interac4ons*

11*b-tagging discriminante (Neural Network output)

W+b*•  Very*challenging*due*to*large*

backgrounds*

•  Measurement*of:*- W+b*- W+b+1*jet*

•  bWtagging*used*to*discriminate*signal*processes*

Produc4on*processes*

Gluon*splixng*in*PS*

bWquark*in*ini4al*state*

DoubleWparton*interac4ons*

11*b-tagging discriminante (Neural Network output)

q  Descriptions  of  “b-­‐initiated  processes”  §  4  flavors  number  scheme  (4FNS):  b-­‐quark  generated  through  gluon  splitting  §  5  flavors  number  scheme  (5FNS):  b-­‐quark  generated  in  the  initial  state  by  DGLAP  evolution  

W+b-jets b

b

Z

g

(a)

b

b

Z

g

(b)

q

q

b

b

Z

(c)

q Z

b

bq

(d)

Figure 1: Main diagrams for associated production of a Z boson and one ormore b-jets.

larity silicon pixel and microstrip detectors allow for the re-construction of secondary decay vertices. The electromagneticcalorimeter uses lead absorbers and liquid argon as the activematerial and covers the rapidity range |!| < 3.2, with high lon-gitudinal and transverse granularity for electromagnetic showerreconstruction. For electron detection the transition region be-tween the barrel and end-cap calorimeters, 1.37 < |!| < 1.52,is not considered in this analysis. The hadronic tile calorime-ter is a steel/scintillating-tile detector that extends the instru-mented depth of the calorimeter to fully contain hadronic par-ticle showers. In the forward regions it is complemented bytwo end-cap calorimeters using liquid argon as the active ma-terial and copper or tungsten as the absorber material. Themuon spectrometer comprises three large air-core supercon-ducting toroidal magnets which provide a typical field integralof 3 Tm. Three stations of chambers provide precise trackinginformation in the range |!| < 2.7, and triggers for high mo-mentum muons in the range |!| < 2.4. The transverse energyET is defined to be Esin", where E is the energy associatedwith a calorimeter cell or energy cluster. Similarly, pT is themomentum component transverse to the beam line.

3. Collision data and simulated samples

3.1. Collision dataThe analysis presented here is performed on data from pp

collisions at a centre-of-mass energy of 7 TeV recorded by AT-LAS in 2010 in stable beams periods and uses data selectedfor good detector performance. The events were selected on-line by requiring at least one electron or muon with high trans-verse momentum, pT. The trigger thresholds evolved withtime to keep up with the increasing instantaneous luminositydelivered by the LHC. The highest thresholds applied in thelast data taking period were ET > 15 GeV for electrons andpT > 13 GeV for muons. The integrated luminosity after beam,detector and data-quality requirements is 36.2 pb!1(35.5 pb!1)

!ln tan("/2). The distance !R in ! ! # space is defined as !R =!

!#2 + !!2.

for events collected with the electron (muon) trigger, measuredwith a ±3.4% relative error [13, 14].

3.2. Simulated events

The measurements will be compared to theoretical predic-tions of the Standard Model, using Monte-Carlo samples ofsignal and background processes. The detector response to thegenerated events is fully simulated with GEANT4 [15].

Samples of signal events containing a Z boson decayinginto electrons or muons and at least one b-jet have been sim-ulated using the ALPGEN, SHERPA, and MCFM generators,using the CTEQ6.6 PDF set [16]. All three generators includeZ/$" interference terms. The ALPGEN generator is interfacedto HERWIG [17] for parton shower and fragmentation, andJIMMY for the underlying event simulation [18]. For jets orig-inating from the hadronisation of light quarks or gluons (here-after referred to as light-jets), the LO generator ALPGEN usesMLM matching [19] to remove any double counting of iden-tical jets produced via the matrix element and parton shower,but this is not available for b-jets in the present version. There-fore events containing two b-quarks with !R < 0.4 (!R > 0.4)coming from the matrix element (parton shower) contributionare removed. SHERPA uses the CKKW [20] matching for thesame purpose. The MCFM NLO generator lacks an interfaceto a parton shower and fragmentation package, hence to com-pare with the data we apply correction factors describing theparton-to-particle correspondence, obtained from particle-levelLO simulations. For all Monte-Carlo events, the cross-sectionis normalised by rescaling the inclusive Z cross-section of therelevant generator to the NNLO cross-section [21].

The dominant background comes from Z + jets events, withthe Z decaying into electrons, muons or tau leptons, where onejet is a light or c-jet which has been incorrectly tagged as ab-jet. These events are simulated using the same generatorsas the signal. Other background processes considered includet t pair production simulated by MC@NLO [22, 23], W(# l%)+ jets simulated by PYTHIA [24], WW/WZ/ZZ simulated byALPGEN, and single-top production simulated by [email protected] cross-sections for these processes have been normalisedto the predictions of [25, 26] (approximate NNLO) for t t pairproduction, [21] (NNLO) for W(# l%) + jets, [3] (NLO) forWW/WZ/ZZ, and the MC@NLO value for single-top.

Events have been generated with the number of collision ver-tices drawn from a Poisson distribution with an average of 2.0vertices per event. Simulated events are then reweighted tomatch the observed vertex distribution in the data.

4. Reconstruction and selection of Z + b candidates

Events are required to contain one primary vertex with atleast three high-quality charged tracks. As the final state shouldcontain a Z boson, the selection of events closely follows theselection criteria used by ATLAS for the inclusive Z analysis[27]. In the e+e! channel, two opposite sign electron candi-dates are required with ET > 20 GeV and |!| < 2.47. Electron

2

b

b

Z

g

(a)

b

b

Z

g

(b)

q

q

b

b

Z

(c)

q Z

b

bq

(d)

Figure 1: Main diagrams for associated production of a Z boson and one ormore b-jets.

larity silicon pixel and microstrip detectors allow for the re-construction of secondary decay vertices. The electromagneticcalorimeter uses lead absorbers and liquid argon as the activematerial and covers the rapidity range |!| < 3.2, with high lon-gitudinal and transverse granularity for electromagnetic showerreconstruction. For electron detection the transition region be-tween the barrel and end-cap calorimeters, 1.37 < |!| < 1.52,is not considered in this analysis. The hadronic tile calorime-ter is a steel/scintillating-tile detector that extends the instru-mented depth of the calorimeter to fully contain hadronic par-ticle showers. In the forward regions it is complemented bytwo end-cap calorimeters using liquid argon as the active ma-terial and copper or tungsten as the absorber material. Themuon spectrometer comprises three large air-core supercon-ducting toroidal magnets which provide a typical field integralof 3 Tm. Three stations of chambers provide precise trackinginformation in the range |!| < 2.7, and triggers for high mo-mentum muons in the range |!| < 2.4. The transverse energyET is defined to be Esin", where E is the energy associatedwith a calorimeter cell or energy cluster. Similarly, pT is themomentum component transverse to the beam line.

3. Collision data and simulated samples

3.1. Collision dataThe analysis presented here is performed on data from pp

collisions at a centre-of-mass energy of 7 TeV recorded by AT-LAS in 2010 in stable beams periods and uses data selectedfor good detector performance. The events were selected on-line by requiring at least one electron or muon with high trans-verse momentum, pT. The trigger thresholds evolved withtime to keep up with the increasing instantaneous luminositydelivered by the LHC. The highest thresholds applied in thelast data taking period were ET > 15 GeV for electrons andpT > 13 GeV for muons. The integrated luminosity after beam,detector and data-quality requirements is 36.2 pb!1(35.5 pb!1)

!ln tan("/2). The distance !R in ! ! # space is defined as !R =!

!#2 + !!2.

for events collected with the electron (muon) trigger, measuredwith a ±3.4% relative error [13, 14].

3.2. Simulated events

The measurements will be compared to theoretical predic-tions of the Standard Model, using Monte-Carlo samples ofsignal and background processes. The detector response to thegenerated events is fully simulated with GEANT4 [15].

Samples of signal events containing a Z boson decayinginto electrons or muons and at least one b-jet have been sim-ulated using the ALPGEN, SHERPA, and MCFM generators,using the CTEQ6.6 PDF set [16]. All three generators includeZ/$" interference terms. The ALPGEN generator is interfacedto HERWIG [17] for parton shower and fragmentation, andJIMMY for the underlying event simulation [18]. For jets orig-inating from the hadronisation of light quarks or gluons (here-after referred to as light-jets), the LO generator ALPGEN usesMLM matching [19] to remove any double counting of iden-tical jets produced via the matrix element and parton shower,but this is not available for b-jets in the present version. There-fore events containing two b-quarks with !R < 0.4 (!R > 0.4)coming from the matrix element (parton shower) contributionare removed. SHERPA uses the CKKW [20] matching for thesame purpose. The MCFM NLO generator lacks an interfaceto a parton shower and fragmentation package, hence to com-pare with the data we apply correction factors describing theparton-to-particle correspondence, obtained from particle-levelLO simulations. For all Monte-Carlo events, the cross-sectionis normalised by rescaling the inclusive Z cross-section of therelevant generator to the NNLO cross-section [21].

The dominant background comes from Z + jets events, withthe Z decaying into electrons, muons or tau leptons, where onejet is a light or c-jet which has been incorrectly tagged as ab-jet. These events are simulated using the same generatorsas the signal. Other background processes considered includet t pair production simulated by MC@NLO [22, 23], W(# l%)+ jets simulated by PYTHIA [24], WW/WZ/ZZ simulated byALPGEN, and single-top production simulated by [email protected] cross-sections for these processes have been normalisedto the predictions of [25, 26] (approximate NNLO) for t t pairproduction, [21] (NNLO) for W(# l%) + jets, [3] (NLO) forWW/WZ/ZZ, and the MC@NLO value for single-top.

Events have been generated with the number of collision ver-tices drawn from a Poisson distribution with an average of 2.0vertices per event. Simulated events are then reweighted tomatch the observed vertex distribution in the data.

4. Reconstruction and selection of Z + b candidates

Events are required to contain one primary vertex with atleast three high-quality charged tracks. As the final state shouldcontain a Z boson, the selection of events closely follows theselection criteria used by ATLAS for the inclusive Z analysis[27]. In the e+e! channel, two opposite sign electron candi-dates are required with ET > 20 GeV and |!| < 2.47. Electron

2

Z+b-jets

qq→Wbb  

bq→Wbq  gq→Wbbq  

qq→Zbb  

bg→Zb  

b

b

Z

g

(a)

b

b

Z

g

(b)

q

q

b

b

Z

(c)

q Z

b

bq

(d)

Figure 1: Main diagrams for associated production of a Z boson and one ormore b-jets.

larity silicon pixel and microstrip detectors allow for the re-construction of secondary decay vertices. The electromagneticcalorimeter uses lead absorbers and liquid argon as the activematerial and covers the rapidity range |!| < 3.2, with high lon-gitudinal and transverse granularity for electromagnetic showerreconstruction. For electron detection the transition region be-tween the barrel and end-cap calorimeters, 1.37 < |!| < 1.52,is not considered in this analysis. The hadronic tile calorime-ter is a steel/scintillating-tile detector that extends the instru-mented depth of the calorimeter to fully contain hadronic par-ticle showers. In the forward regions it is complemented bytwo end-cap calorimeters using liquid argon as the active ma-terial and copper or tungsten as the absorber material. Themuon spectrometer comprises three large air-core supercon-ducting toroidal magnets which provide a typical field integralof 3 Tm. Three stations of chambers provide precise trackinginformation in the range |!| < 2.7, and triggers for high mo-mentum muons in the range |!| < 2.4. The transverse energyET is defined to be Esin", where E is the energy associatedwith a calorimeter cell or energy cluster. Similarly, pT is themomentum component transverse to the beam line.

3. Collision data and simulated samples

3.1. Collision dataThe analysis presented here is performed on data from pp

collisions at a centre-of-mass energy of 7 TeV recorded by AT-LAS in 2010 in stable beams periods and uses data selectedfor good detector performance. The events were selected on-line by requiring at least one electron or muon with high trans-verse momentum, pT. The trigger thresholds evolved withtime to keep up with the increasing instantaneous luminositydelivered by the LHC. The highest thresholds applied in thelast data taking period were ET > 15 GeV for electrons andpT > 13 GeV for muons. The integrated luminosity after beam,detector and data-quality requirements is 36.2 pb!1(35.5 pb!1)

!ln tan("/2). The distance !R in ! ! # space is defined as !R =!

!#2 + !!2.

for events collected with the electron (muon) trigger, measuredwith a ±3.4% relative error [13, 14].

3.2. Simulated events

The measurements will be compared to theoretical predic-tions of the Standard Model, using Monte-Carlo samples ofsignal and background processes. The detector response to thegenerated events is fully simulated with GEANT4 [15].

Samples of signal events containing a Z boson decayinginto electrons or muons and at least one b-jet have been sim-ulated using the ALPGEN, SHERPA, and MCFM generators,using the CTEQ6.6 PDF set [16]. All three generators includeZ/$" interference terms. The ALPGEN generator is interfacedto HERWIG [17] for parton shower and fragmentation, andJIMMY for the underlying event simulation [18]. For jets orig-inating from the hadronisation of light quarks or gluons (here-after referred to as light-jets), the LO generator ALPGEN usesMLM matching [19] to remove any double counting of iden-tical jets produced via the matrix element and parton shower,but this is not available for b-jets in the present version. There-fore events containing two b-quarks with !R < 0.4 (!R > 0.4)coming from the matrix element (parton shower) contributionare removed. SHERPA uses the CKKW [20] matching for thesame purpose. The MCFM NLO generator lacks an interfaceto a parton shower and fragmentation package, hence to com-pare with the data we apply correction factors describing theparton-to-particle correspondence, obtained from particle-levelLO simulations. For all Monte-Carlo events, the cross-sectionis normalised by rescaling the inclusive Z cross-section of therelevant generator to the NNLO cross-section [21].

The dominant background comes from Z + jets events, withthe Z decaying into electrons, muons or tau leptons, where onejet is a light or c-jet which has been incorrectly tagged as ab-jet. These events are simulated using the same generatorsas the signal. Other background processes considered includet t pair production simulated by MC@NLO [22, 23], W(# l%)+ jets simulated by PYTHIA [24], WW/WZ/ZZ simulated byALPGEN, and single-top production simulated by [email protected] cross-sections for these processes have been normalisedto the predictions of [25, 26] (approximate NNLO) for t t pairproduction, [21] (NNLO) for W(# l%) + jets, [3] (NLO) forWW/WZ/ZZ, and the MC@NLO value for single-top.

Events have been generated with the number of collision ver-tices drawn from a Poisson distribution with an average of 2.0vertices per event. Simulated events are then reweighted tomatch the observed vertex distribution in the data.

4. Reconstruction and selection of Z + b candidates

Events are required to contain one primary vertex with atleast three high-quality charged tracks. As the final state shouldcontain a Z boson, the selection of events closely follows theselection criteria used by ATLAS for the inclusive Z analysis[27]. In the e+e! channel, two opposite sign electron candi-dates are required with ET > 20 GeV and |!| < 2.47. Electron

2

b

b

Z

g

(a)

b

b

Z

g

(b)

q

q

b

b

Z

(c)

q Z

b

bq

(d)

Figure 1: Main diagrams for associated production of a Z boson and one ormore b-jets.

larity silicon pixel and microstrip detectors allow for the re-construction of secondary decay vertices. The electromagneticcalorimeter uses lead absorbers and liquid argon as the activematerial and covers the rapidity range |!| < 3.2, with high lon-gitudinal and transverse granularity for electromagnetic showerreconstruction. For electron detection the transition region be-tween the barrel and end-cap calorimeters, 1.37 < |!| < 1.52,is not considered in this analysis. The hadronic tile calorime-ter is a steel/scintillating-tile detector that extends the instru-mented depth of the calorimeter to fully contain hadronic par-ticle showers. In the forward regions it is complemented bytwo end-cap calorimeters using liquid argon as the active ma-terial and copper or tungsten as the absorber material. Themuon spectrometer comprises three large air-core supercon-ducting toroidal magnets which provide a typical field integralof 3 Tm. Three stations of chambers provide precise trackinginformation in the range |!| < 2.7, and triggers for high mo-mentum muons in the range |!| < 2.4. The transverse energyET is defined to be Esin", where E is the energy associatedwith a calorimeter cell or energy cluster. Similarly, pT is themomentum component transverse to the beam line.

3. Collision data and simulated samples

3.1. Collision dataThe analysis presented here is performed on data from pp

collisions at a centre-of-mass energy of 7 TeV recorded by AT-LAS in 2010 in stable beams periods and uses data selectedfor good detector performance. The events were selected on-line by requiring at least one electron or muon with high trans-verse momentum, pT. The trigger thresholds evolved withtime to keep up with the increasing instantaneous luminositydelivered by the LHC. The highest thresholds applied in thelast data taking period were ET > 15 GeV for electrons andpT > 13 GeV for muons. The integrated luminosity after beam,detector and data-quality requirements is 36.2 pb!1(35.5 pb!1)

!ln tan("/2). The distance !R in ! ! # space is defined as !R =!

!#2 + !!2.

for events collected with the electron (muon) trigger, measuredwith a ±3.4% relative error [13, 14].

3.2. Simulated events

The measurements will be compared to theoretical predic-tions of the Standard Model, using Monte-Carlo samples ofsignal and background processes. The detector response to thegenerated events is fully simulated with GEANT4 [15].

Samples of signal events containing a Z boson decayinginto electrons or muons and at least one b-jet have been sim-ulated using the ALPGEN, SHERPA, and MCFM generators,using the CTEQ6.6 PDF set [16]. All three generators includeZ/$" interference terms. The ALPGEN generator is interfacedto HERWIG [17] for parton shower and fragmentation, andJIMMY for the underlying event simulation [18]. For jets orig-inating from the hadronisation of light quarks or gluons (here-after referred to as light-jets), the LO generator ALPGEN usesMLM matching [19] to remove any double counting of iden-tical jets produced via the matrix element and parton shower,but this is not available for b-jets in the present version. There-fore events containing two b-quarks with !R < 0.4 (!R > 0.4)coming from the matrix element (parton shower) contributionare removed. SHERPA uses the CKKW [20] matching for thesame purpose. The MCFM NLO generator lacks an interfaceto a parton shower and fragmentation package, hence to com-pare with the data we apply correction factors describing theparton-to-particle correspondence, obtained from particle-levelLO simulations. For all Monte-Carlo events, the cross-sectionis normalised by rescaling the inclusive Z cross-section of therelevant generator to the NNLO cross-section [21].

The dominant background comes from Z + jets events, withthe Z decaying into electrons, muons or tau leptons, where onejet is a light or c-jet which has been incorrectly tagged as ab-jet. These events are simulated using the same generatorsas the signal. Other background processes considered includet t pair production simulated by MC@NLO [22, 23], W(# l%)+ jets simulated by PYTHIA [24], WW/WZ/ZZ simulated byALPGEN, and single-top production simulated by [email protected] cross-sections for these processes have been normalisedto the predictions of [25, 26] (approximate NNLO) for t t pairproduction, [21] (NNLO) for W(# l%) + jets, [3] (NLO) forWW/WZ/ZZ, and the MC@NLO value for single-top.

Events have been generated with the number of collision ver-tices drawn from a Poisson distribution with an average of 2.0vertices per event. Simulated events are then reweighted tomatch the observed vertex distribution in the data.

4. Reconstruction and selection of Z + b candidates

Events are required to contain one primary vertex with atleast three high-quality charged tracks. As the final state shouldcontain a Z boson, the selection of events closely follows theselection criteria used by ATLAS for the inclusive Z analysis[27]. In the e+e! channel, two opposite sign electron candi-dates are required with ET > 20 GeV and |!| < 2.47. Electron

2

b

b

Z

g

(a)

b

b

Z

g

(b)

q

q

b

b

Z

(c)

q Z

b

bq

(d)

Figure 1: Main diagrams for associated production of a Z boson and one ormore b-jets.

larity silicon pixel and microstrip detectors allow for the re-construction of secondary decay vertices. The electromagneticcalorimeter uses lead absorbers and liquid argon as the activematerial and covers the rapidity range |!| < 3.2, with high lon-gitudinal and transverse granularity for electromagnetic showerreconstruction. For electron detection the transition region be-tween the barrel and end-cap calorimeters, 1.37 < |!| < 1.52,is not considered in this analysis. The hadronic tile calorime-ter is a steel/scintillating-tile detector that extends the instru-mented depth of the calorimeter to fully contain hadronic par-ticle showers. In the forward regions it is complemented bytwo end-cap calorimeters using liquid argon as the active ma-terial and copper or tungsten as the absorber material. Themuon spectrometer comprises three large air-core supercon-ducting toroidal magnets which provide a typical field integralof 3 Tm. Three stations of chambers provide precise trackinginformation in the range |!| < 2.7, and triggers for high mo-mentum muons in the range |!| < 2.4. The transverse energyET is defined to be Esin", where E is the energy associatedwith a calorimeter cell or energy cluster. Similarly, pT is themomentum component transverse to the beam line.

3. Collision data and simulated samples

3.1. Collision dataThe analysis presented here is performed on data from pp

collisions at a centre-of-mass energy of 7 TeV recorded by AT-LAS in 2010 in stable beams periods and uses data selectedfor good detector performance. The events were selected on-line by requiring at least one electron or muon with high trans-verse momentum, pT. The trigger thresholds evolved withtime to keep up with the increasing instantaneous luminositydelivered by the LHC. The highest thresholds applied in thelast data taking period were ET > 15 GeV for electrons andpT > 13 GeV for muons. The integrated luminosity after beam,detector and data-quality requirements is 36.2 pb!1(35.5 pb!1)

!ln tan("/2). The distance !R in ! ! # space is defined as !R =!

!#2 + !!2.

for events collected with the electron (muon) trigger, measuredwith a ±3.4% relative error [13, 14].

3.2. Simulated events

The measurements will be compared to theoretical predic-tions of the Standard Model, using Monte-Carlo samples ofsignal and background processes. The detector response to thegenerated events is fully simulated with GEANT4 [15].

Samples of signal events containing a Z boson decayinginto electrons or muons and at least one b-jet have been sim-ulated using the ALPGEN, SHERPA, and MCFM generators,using the CTEQ6.6 PDF set [16]. All three generators includeZ/$" interference terms. The ALPGEN generator is interfacedto HERWIG [17] for parton shower and fragmentation, andJIMMY for the underlying event simulation [18]. For jets orig-inating from the hadronisation of light quarks or gluons (here-after referred to as light-jets), the LO generator ALPGEN usesMLM matching [19] to remove any double counting of iden-tical jets produced via the matrix element and parton shower,but this is not available for b-jets in the present version. There-fore events containing two b-quarks with !R < 0.4 (!R > 0.4)coming from the matrix element (parton shower) contributionare removed. SHERPA uses the CKKW [20] matching for thesame purpose. The MCFM NLO generator lacks an interfaceto a parton shower and fragmentation package, hence to com-pare with the data we apply correction factors describing theparton-to-particle correspondence, obtained from particle-levelLO simulations. For all Monte-Carlo events, the cross-sectionis normalised by rescaling the inclusive Z cross-section of therelevant generator to the NNLO cross-section [21].

The dominant background comes from Z + jets events, withthe Z decaying into electrons, muons or tau leptons, where onejet is a light or c-jet which has been incorrectly tagged as ab-jet. These events are simulated using the same generatorsas the signal. Other background processes considered includet t pair production simulated by MC@NLO [22, 23], W(# l%)+ jets simulated by PYTHIA [24], WW/WZ/ZZ simulated byALPGEN, and single-top production simulated by [email protected] cross-sections for these processes have been normalisedto the predictions of [25, 26] (approximate NNLO) for t t pairproduction, [21] (NNLO) for W(# l%) + jets, [3] (NLO) forWW/WZ/ZZ, and the MC@NLO value for single-top.

Events have been generated with the number of collision ver-tices drawn from a Poisson distribution with an average of 2.0vertices per event. Simulated events are then reweighted tomatch the observed vertex distribution in the data.

4. Reconstruction and selection of Z + b candidates

Events are required to contain one primary vertex with atleast three high-quality charged tracks. As the final state shouldcontain a Z boson, the selection of events closely follows theselection criteria used by ATLAS for the inclusive Z analysis[27]. In the e+e! channel, two opposite sign electron candi-dates are required with ET > 20 GeV and |!| < 2.47. Electron

2

b

b

Z

g

(a)

b

b

Z

g

(b)

q

q

b

b

Z

(c)

q Z

b

bq

(d)

Figure 1: Main diagrams for associated production of a Z boson and one ormore b-jets.

larity silicon pixel and microstrip detectors allow for the re-construction of secondary decay vertices. The electromagneticcalorimeter uses lead absorbers and liquid argon as the activematerial and covers the rapidity range |!| < 3.2, with high lon-gitudinal and transverse granularity for electromagnetic showerreconstruction. For electron detection the transition region be-tween the barrel and end-cap calorimeters, 1.37 < |!| < 1.52,is not considered in this analysis. The hadronic tile calorime-ter is a steel/scintillating-tile detector that extends the instru-mented depth of the calorimeter to fully contain hadronic par-ticle showers. In the forward regions it is complemented bytwo end-cap calorimeters using liquid argon as the active ma-terial and copper or tungsten as the absorber material. Themuon spectrometer comprises three large air-core supercon-ducting toroidal magnets which provide a typical field integralof 3 Tm. Three stations of chambers provide precise trackinginformation in the range |!| < 2.7, and triggers for high mo-mentum muons in the range |!| < 2.4. The transverse energyET is defined to be Esin", where E is the energy associatedwith a calorimeter cell or energy cluster. Similarly, pT is themomentum component transverse to the beam line.

3. Collision data and simulated samples

3.1. Collision dataThe analysis presented here is performed on data from pp

collisions at a centre-of-mass energy of 7 TeV recorded by AT-LAS in 2010 in stable beams periods and uses data selectedfor good detector performance. The events were selected on-line by requiring at least one electron or muon with high trans-verse momentum, pT. The trigger thresholds evolved withtime to keep up with the increasing instantaneous luminositydelivered by the LHC. The highest thresholds applied in thelast data taking period were ET > 15 GeV for electrons andpT > 13 GeV for muons. The integrated luminosity after beam,detector and data-quality requirements is 36.2 pb!1(35.5 pb!1)

!ln tan("/2). The distance !R in ! ! # space is defined as !R =!

!#2 + !!2.

for events collected with the electron (muon) trigger, measuredwith a ±3.4% relative error [13, 14].

3.2. Simulated events

The measurements will be compared to theoretical predic-tions of the Standard Model, using Monte-Carlo samples ofsignal and background processes. The detector response to thegenerated events is fully simulated with GEANT4 [15].

Samples of signal events containing a Z boson decayinginto electrons or muons and at least one b-jet have been sim-ulated using the ALPGEN, SHERPA, and MCFM generators,using the CTEQ6.6 PDF set [16]. All three generators includeZ/$" interference terms. The ALPGEN generator is interfacedto HERWIG [17] for parton shower and fragmentation, andJIMMY for the underlying event simulation [18]. For jets orig-inating from the hadronisation of light quarks or gluons (here-after referred to as light-jets), the LO generator ALPGEN usesMLM matching [19] to remove any double counting of iden-tical jets produced via the matrix element and parton shower,but this is not available for b-jets in the present version. There-fore events containing two b-quarks with !R < 0.4 (!R > 0.4)coming from the matrix element (parton shower) contributionare removed. SHERPA uses the CKKW [20] matching for thesame purpose. The MCFM NLO generator lacks an interfaceto a parton shower and fragmentation package, hence to com-pare with the data we apply correction factors describing theparton-to-particle correspondence, obtained from particle-levelLO simulations. For all Monte-Carlo events, the cross-sectionis normalised by rescaling the inclusive Z cross-section of therelevant generator to the NNLO cross-section [21].

The dominant background comes from Z + jets events, withthe Z decaying into electrons, muons or tau leptons, where onejet is a light or c-jet which has been incorrectly tagged as ab-jet. These events are simulated using the same generatorsas the signal. Other background processes considered includet t pair production simulated by MC@NLO [22, 23], W(# l%)+ jets simulated by PYTHIA [24], WW/WZ/ZZ simulated byALPGEN, and single-top production simulated by [email protected] cross-sections for these processes have been normalisedto the predictions of [25, 26] (approximate NNLO) for t t pairproduction, [21] (NNLO) for W(# l%) + jets, [3] (NLO) forWW/WZ/ZZ, and the MC@NLO value for single-top.

Events have been generated with the number of collision ver-tices drawn from a Poisson distribution with an average of 2.0vertices per event. Simulated events are then reweighted tomatch the observed vertex distribution in the data.

4. Reconstruction and selection of Z + b candidates

Events are required to contain one primary vertex with atleast three high-quality charged tracks. As the final state shouldcontain a Z boson, the selection of events closely follows theselection criteria used by ATLAS for the inclusive Z analysis[27]. In the e+e! channel, two opposite sign electron candi-dates are required with ET > 20 GeV and |!| < 2.47. Electron

2

b

b

Z

g

(a)

b

b

Z

g

(b)

q

q

b

b

Z

(c)

q Z

b

bq

(d)

Figure 1: Main diagrams for associated production of a Z boson and one ormore b-jets.

larity silicon pixel and microstrip detectors allow for the re-construction of secondary decay vertices. The electromagneticcalorimeter uses lead absorbers and liquid argon as the activematerial and covers the rapidity range |!| < 3.2, with high lon-gitudinal and transverse granularity for electromagnetic showerreconstruction. For electron detection the transition region be-tween the barrel and end-cap calorimeters, 1.37 < |!| < 1.52,is not considered in this analysis. The hadronic tile calorime-ter is a steel/scintillating-tile detector that extends the instru-mented depth of the calorimeter to fully contain hadronic par-ticle showers. In the forward regions it is complemented bytwo end-cap calorimeters using liquid argon as the active ma-terial and copper or tungsten as the absorber material. Themuon spectrometer comprises three large air-core supercon-ducting toroidal magnets which provide a typical field integralof 3 Tm. Three stations of chambers provide precise trackinginformation in the range |!| < 2.7, and triggers for high mo-mentum muons in the range |!| < 2.4. The transverse energyET is defined to be Esin", where E is the energy associatedwith a calorimeter cell or energy cluster. Similarly, pT is themomentum component transverse to the beam line.

3. Collision data and simulated samples

3.1. Collision dataThe analysis presented here is performed on data from pp

collisions at a centre-of-mass energy of 7 TeV recorded by AT-LAS in 2010 in stable beams periods and uses data selectedfor good detector performance. The events were selected on-line by requiring at least one electron or muon with high trans-verse momentum, pT. The trigger thresholds evolved withtime to keep up with the increasing instantaneous luminositydelivered by the LHC. The highest thresholds applied in thelast data taking period were ET > 15 GeV for electrons andpT > 13 GeV for muons. The integrated luminosity after beam,detector and data-quality requirements is 36.2 pb!1(35.5 pb!1)

!ln tan("/2). The distance !R in ! ! # space is defined as !R =!

!#2 + !!2.

for events collected with the electron (muon) trigger, measuredwith a ±3.4% relative error [13, 14].

3.2. Simulated events

The measurements will be compared to theoretical predic-tions of the Standard Model, using Monte-Carlo samples ofsignal and background processes. The detector response to thegenerated events is fully simulated with GEANT4 [15].

Samples of signal events containing a Z boson decayinginto electrons or muons and at least one b-jet have been sim-ulated using the ALPGEN, SHERPA, and MCFM generators,using the CTEQ6.6 PDF set [16]. All three generators includeZ/$" interference terms. The ALPGEN generator is interfacedto HERWIG [17] for parton shower and fragmentation, andJIMMY for the underlying event simulation [18]. For jets orig-inating from the hadronisation of light quarks or gluons (here-after referred to as light-jets), the LO generator ALPGEN usesMLM matching [19] to remove any double counting of iden-tical jets produced via the matrix element and parton shower,but this is not available for b-jets in the present version. There-fore events containing two b-quarks with !R < 0.4 (!R > 0.4)coming from the matrix element (parton shower) contributionare removed. SHERPA uses the CKKW [20] matching for thesame purpose. The MCFM NLO generator lacks an interfaceto a parton shower and fragmentation package, hence to com-pare with the data we apply correction factors describing theparton-to-particle correspondence, obtained from particle-levelLO simulations. For all Monte-Carlo events, the cross-sectionis normalised by rescaling the inclusive Z cross-section of therelevant generator to the NNLO cross-section [21].

The dominant background comes from Z + jets events, withthe Z decaying into electrons, muons or tau leptons, where onejet is a light or c-jet which has been incorrectly tagged as ab-jet. These events are simulated using the same generatorsas the signal. Other background processes considered includet t pair production simulated by MC@NLO [22, 23], W(# l%)+ jets simulated by PYTHIA [24], WW/WZ/ZZ simulated byALPGEN, and single-top production simulated by [email protected] cross-sections for these processes have been normalisedto the predictions of [25, 26] (approximate NNLO) for t t pairproduction, [21] (NNLO) for W(# l%) + jets, [3] (NLO) forWW/WZ/ZZ, and the MC@NLO value for single-top.

Events have been generated with the number of collision ver-tices drawn from a Poisson distribution with an average of 2.0vertices per event. Simulated events are then reweighted tomatch the observed vertex distribution in the data.

4. Reconstruction and selection of Z + b candidates

Events are required to contain one primary vertex with atleast three high-quality charged tracks. As the final state shouldcontain a Z boson, the selection of events closely follows theselection criteria used by ATLAS for the inclusive Z analysis[27]. In the e+e! channel, two opposite sign electron candi-dates are required with ET > 20 GeV and |!| < 2.47. Electron

2

gg→Zbb  

q  Experimental  analysis  strategy:    §  b-­‐jet  tagging  

o  Exploit  long  life-­‐time  and  large  masses  of  b-­‐hadrons                  (e.g.  secondary  vertex  and  large  impact  parameter)  

§  Signal  extraction  based  on  fit  to  distributions  sensitive  jet-­‐flavour  o   i.e.  b-­‐tagging  weight  distribution    o  Templates  based  on  MC,  but  checked  in  data  control  regions    

4FN  

4FN  5FN  

5FN  

4FN  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   82  

q  W+c sensitive to strange quark content in proton §  gluon splitting treated as background in ATLAS and CMS

v  Strange-quark usually suppressed by factor ½ wrt down-quark in PDF §  as suggested by ν-N DIS (NuTev)

v  ATLAS W/Z cross section measurements favour strange-quark enhancement

q  Charm  candidates  identified  with  two  strategies  §  Soft  muon  tagged  inside  a  jet    §  Exclusive  decays  of  the  charmed  hadrons  D±  and  D*±  

q  Use  the  W-­‐charm  charge  correlation  to  suppress  backgrounds  (e.g.  gluon  splitting,  multijet,  etc..)  §  Same-­‐sign  contribution  is  subtracted  ⇒  Measuring  OS-­‐SS  yields  

90%     sg→Wc  

10%      dg→Wc  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   83  

(W + c) [pb]σ0 20 40 60 80 100 120

= 7 TeVs at -1L = 5.0 fbCMS

Total uncertainty

Statistical uncertainty

CMS 2011 4.9 (syst.) pb± 2.0 (stat.) ±84.1

MSTW08 pb

PDF -1.7 +1.4 78.7

CT10 pb

PDF -5.2 +6.2 87.3

NNPDF23 pb PDF 3.3 ±78.2

collNNPDF23 pb PDF 11.8±102.7

| < 2.5jetη > 25 GeV, |jetT

p

| < 2.1lη > 35 GeV, |lT

p

Predictions:NLO MCFM + NNLO PDF

Ø  Overall  agreement  with  NLO  QCD  predictions  

Ø  Cross  section  depends  on  PDF  Ø  ATLAS  data  suggests  s-­‐quark  enhancement  (ATLAS-­‐

epWZ12  and  NNPDF2.3coll  with  enhanced  strange)  §  Consistently  with  inclusive  W/Z  data  results    

Ø  CMS  data  in  better  agreement  with  suppressed  strange  

JHEP02(2014)013 (CMS) !

JHEP05(2014)068 (ATLAS)!

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   84  

Source J. Rojo (NNPDF)

¡  Impact  of  HERA  jet  and  charm  data  on  αS  measurement  §  Inclusive  ep  data  alone  cannot  constrain  αs(M2

Z)  well  ¡  Simultaneous  fit  of  PDFs    and  αs(M2

Z):  HERAPDF2.0Jets  §  Extracted  αs(M2

Z)  value  very  close  to  fixed  one    §  αs(M2

Z)  value  compatible  with  world  average  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   85  

H1 and ZEUS

0

20

40

0.105 0.11 0.115 0.12 0.125 0.13

r2 - rm

in2

NLOinclusive + charm + jet data, Q2inclusive + charm + jet data, Qmin = 3.5 GeV2

inclusive + charm + jet data, Q2inclusive + charm + jet data, Qmin = 10 GeV2

inclusive + charm + jet data, Q2inclusive + charm + jet data, Qmin = 20 GeV2

0

20

40

0.105 0.11 0.115 0.12 0.125 0.13

r2 - rm

in2

NLOinclusive data only, Q2inclusive data only, Qmin = 3.5 GeV2

inclusive data only, Q2inclusive data only, Qmin = 10 GeV2

inclusive data only, Q2inclusive data only, Qmin = 20 GeV2

0

20

40

0.105 0.11 0.115 0.12 0.125 0.13

_s(MZ2)

r2 - rm

in2

NNLOinclusive data only, Q2inclusive data only, Qmin = 3.5 GeV2

inclusive data only, Q2inclusive data only, Qmin = 10 GeV2

inclusive data only, Q2inclusive data only, Qmin = 20 GeV2

arXiv:1506.06042!

¡  ZEUS-­‐H1  combined  data  of  inclusive  DIS  cross-­‐sections  in  ep  scattering  can  be  used  to  set  limits  on    physics  Beyond  the  SM    ⇒  effective  radius  of  electroweak  charge  of  quarks  

¡  Extension  of  HERAPDF2.0  analysis  by  ZEUS  Coll.  accounting  for  possible  effects  of  new  physics  with  quark  charge  as  additional  model  parameter  ¡  New  interactions  can  modify  cross-­‐section  at  high  Q2  and  may  be  mistakenly  absorbed  into  PDF  fits  

Alessandro  Tricoli   EPS-­‐HEP,  Vienna  22-­‐29  July  2015   86  

Classical  quark    Form  Factor  approach:    

)2 (GeV2Q310 410

SMm/

m

1

-1p 0.5 fb+HERA NC e-1p 0.4 fb-HERA NC e

HERAPDF2.0 total unc.

)2 (GeV2Q310 410

SMm/

m

1

Quark Radius Limit at 95% CL

(prel.)2m)-1810u = (0.45q 2R

310 410

0.95

1

1.05

310 410

0.95

1

1.05

ZEUS preliminary )2 (GeV2Q310 410

SMm/

m

1

-1p 0.5 fb+HERA NC e-1p 0.4 fb-HERA NC e

HERAPDF2.0 total unc.

)2 (GeV2Q310 410

SMm/

m

1

Quark Radius Limit at 95% CL

(prel.)2m)-1810u = (0.45q 2R

310 410

0.95

1

1.05

310 410

0.95

1

1.05

ZEUS preliminary

Improvement  wrt  previous    ZEUS  and  similar  to  L3  limit    

ZEUS-prel-15-004!ZEUS-prel-15-004!


Recommended