+ All Categories
Home > Documents > Chapter 11: 상태도 (Phase Diagrams)

Chapter 11: 상태도 (Phase Diagrams)

Date post: 24-Jan-2023
Category:
Upload: khangminh22
View: 0 times
Download: 0 times
Share this document with a friend
35
Chapter 11 - 1 학습목표 2개의 원소가 결합이 되면 평형상태는 어떤 상태일까? 특히, 우리가 다음과 같은 요소를 정한다면.. -- 조성 (e.g., wt% Cu - wt% Ni), -- 온도 (T, temperature ) 개의 상이 형성될까 ? 각각의 상은 어떤 조성이 될까 ? 각각의 상의 양은 얼마일까? Chapter 11: 상태도 (Phase Diagrams) Phase B Phase A Nickel atom Copper atom
Transcript

Chapter 11 - 1

학습목표 • 2개의 원소가 결합이 되면 평형상태는 어떤 상태일까?

• 특히, 우리가 다음과 같은 요소를 정한다면.. -- 조성 (e.g., wt% Cu - wt% Ni), -- 온도 (T, temperature )

몇 개의 상이 형성될까 ? 각각의 상은 어떤 조성이 될까 ? 각각의 상의 양은 얼마일까?

Chapter 11: 상태도 (Phase Diagrams)

Phase B Phase A

Nickel atom Copper atom

Chapter 11 - 2

Phase Equilibria: Solubility Limit

Q: 20°C 수용액에서 설탕이 녹을 수 있는 용해한도는?

Answer: 65 wt% sugar. At 20°C, if C < 65 wt% sugar: syrup At 20°C, if C > 65 wt% sugar: syrup + sugar

65

• 용해한도(Solubility Limit): 단일 상에서 다른 원소가 존재할 수 있는 최대 조성

Sugar/Water Phase Diagram

Suga

r

Tem

pera

ture

(°C

)

0 20 40 60 80 100 C = Composition (wt% sugar)

L (liquid solution

i.e., syrup)

Solubility Limit L

(liquid) + S

(solid sugar) 20

4 0

6 0

8 0

10 0

Wat

er

Adapted from Fig. 11.1, Callister & Rethwisch 9e.

• 용액 (Solution) – 고체, 액체, 가스, 단일상 • 혼합물 (Mixture) – 1개 이상의 상으로 구성

Chapter 11 - 3

• 성분 (Components) : 합금에 존재하는 원소 또는 화합물 (e.g., Al and Cu) • 상 (Phases) : 물리적 및 화학적으로 서로 달리 구성하고 있는 재료의 영역 (e.g., α and β).

Aluminum- Copper Alloy

성분과 상 (Components and Phases)

α (darker phase)

β (lighter phase)

Adapted from chapter-opening photograph, Chapter 9, Callister, Materials Science & Engineering: An Introduction, 3e.

Chapter 11 - 4

70 80 100 60 40 20 0

Tem

pera

ture

(°C

)

C = Composition (wt% sugar)

L ( liquid solution

i.e., syrup)

20

100

40

60

80

0

L (liquid)

+ S

(solid sugar)

조성과 온도의 영향 • 온도를 변화하면 상의 개수는 : path A to B. • 조성을 변화하면 상의 개수는 : path B to D.

water- sugar system

Fig. 11.1, Callister & Rethwisch 9e.

D (100°C,C = 90) 2 phases

B (100°C,C = 70) 1 phase

A (20°C,C = 70) 2 phases

Chapter 11 - 5

고용도( Solid Solubility)의 기준

결정구조 전기음성도 r (nm)

Ni FCC 1.9 0.1246

Cu FCC 1.8 0.1278

• 결정구조, 전기음성도, 원자 반경이 비슷할 경우, 높은 상호 용해도를 갖는다. (W. Hume – Rothery rules)

Simple system (e.g., Ni-Cu solution)

• 니켈과 구리는 모든 요소에서 서로에 대해 완전히 용해된다.

Chapter 11 - 6

상태도 (Phase Diagrams) • T, C, P 의 함수로서 상을 나타냄. . • 기본으로: - 2원계 시스템 (binary systems): 2개의 성분으로 구성. - 독립적 변수: 온도와 조성 (T and C) (P = 1 atm 대기압. )

Phase Diagram for Cu-Ni system

Fig. 11.3(a), Callister & Rethwisch 9e. (Adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash, Editor, 1991. Reprinted by permission of ASM International, Materials Park, OH.)

• 2 phases: L (liquid) α (FCC solid solution)

• 3 different phase fields: L L + α α

wt% Ni 20 40 60 80 100 0 1000

1100

1200

1300

1400

1500

1600 T(°C)

L (liquid)

α (FCC solid solution)

Chapter 11 - 7

Cu-Ni phase

diagram

전율 고용 2원계 상태도 Isomorphous Binary Phase Diagram

• 상태도: Cu-Ni system. • System is:

Fig. 11.3(a), Callister & Rethwisch 9e. (Adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash, Editor, 1991. Reprinted by permission of ASM International, Materials Park, OH.)

-- 2원계 (binary) i.e., 2성분 : Cu and Ni. -- isomorphous i.e., 다른 원소에 대하여 완전한 용해도를 보여주는 상태; 0 ~ 100 wt% Ni에서 α상이 연장된다. wt% Ni 20 40 60 80 100 0

1000

1100

1200

1300

1400

1500

1600 T(°C)

L (liquid)

α (FCC solid solution)

Chapter 11 -

wt% Ni 20 40 60 80 100 0 1000

1100

1200

1300

1400

1500

1600 T(°C)

L (liquid)

α

(FCC solid solution)

Cu-Ni phase

diagram

8

상태도 (Phase Diagrams): 존재하는 상의 정의

• Rule 1: 온도(T )와 조성 (Co)를 알면: -- 상태도에서 어떤 상이 존재할 수 있는지를 정의할 수 있다.

• Examples: A(1100°C, 60 wt% Ni): 1 phase: α

B (1250°C, 35 wt% Ni): 2 phases: L + α

B (

1250

ºC,3

5)

A(1100ºC,60) Fig. 11.3(a), Callister & Rethwisch 9e. (Adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash, Editor, 1991. Reprinted by permission of ASM International, Materials Park, OH.)

Chapter 11 - 9

wt% Ni 20

1200

1300

T(°C)

L (liquid)

α (solid)

30 40 50

Cu-Ni system

Phase Diagrams: Determination of phase compositions

• Rule 2: If we know T and C0, then we can determine: -- the composition of each phase.

• Examples: TA A

35 C0

32 CL

At TA = 1320°C: Only Liquid (L) present CL = C0

( = 35 wt% Ni)

At TB = 1250°C: Both α and L present CL = C liquidus ( = 32 wt% Ni) Cα = C solidus ( = 43 wt% Ni)

At TD = 1190°C: Only Solid (α) present Cα = C0 ( = 35 wt% Ni)

Consider C0 = 35 wt% Ni

D TD

tie line

4 Cα 3

Fig. 11.3(b), Callister & Rethwisch 9e. (Adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash, Editor, 1991. Reprinted by permission of ASM International, Materials Park, OH.)

B TB

Chapter 11 - 10

• Rule 3: T 와 C0를 정의하면: -- 각 상의 질량비를 정의할 수 있다. • Examples:

TA에서 : Only Liquid (L) present WL = 1.00, Wα = 0

TD에서 : Only Solid ( α ) present WL = 0, W α = 1.00

Phase Diagrams: Determination of phase weight fractions

wt% Ni 20

1200

1300

T(°C)

L (liquid)

α (solid)

3 0 4 0 5 0

Cu-Ni system

TA A

35 C0

32 CL

B TB

D TD

tie line

4 Cα 3

R S

TB에서 : Both α and L present

= 0.27

WL = S R + S

Wα = R R + S

Consider C0 = 35 wt% Ni

Fig. 11.3(b), Callister & Rethwisch 9e. (Adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash, Editor, 1991. Reprinted by permission of ASM International, Materials Park, OH.)

Chapter 11 - 11

• 타이 라인 (Tie line) –서로 열적 평형상태의 상을 연결하는 선– 때로는 등온선이라고도 한다.

The Lever Rule

각 상의 비율은 ? 지랫대 법칙을 생각하자. (teeter-totter) ML Mα

R S

wt% Ni 20

1200

1300

T(°C)

L (liquid)

α (solid)

3 0 4 0 5 0

B T B

tie line

C0 CL Cα

S R

Adapted from Fig. 11.3(b), Callister & Rethwisch 9e.

Chapter 11 - 12

wt% Ni 20

120 0

130 0

3 0 4 0 5 0 110 0

L (liquid)

α (solid)

T(°C)

A

35 C0

L: 35 wt%Ni

Cu-Ni system

• Phase diagram: Cu-Ni system.

Adapted from Fig. 11.4, Callister & Rethwisch 9e.

• A 조성의 합금에 대하여 냉각을 동반 미세 구조 변화를 고려한다. C0 = 35 wt% Ni alloy

Ex: Cu-Ni Alloy의 냉각

46 35 43 32

α: 43 wt% Ni L: 32 wt% Ni

B α: 46 wt% Ni L: 35 wt% Ni

C

E L: 24 wt% Ni

α: 36 wt% Ni

24 36 D

α: 35 wt% Ni

Chapter 11 - 13

기계적 성질 : Cu-Ni System • 고용 강화(solid solution strengthening)에 따른 효과:

-- Tensile strength (TS) -- Ductility (%EL)

Adapted from Fig. 11.5(a), Callister & Rethwisch 9e.

Tens

ile S

treng

th (M

Pa)

Composition, wt% Ni Cu Ni 0 20 40 60 80 100

200

300

400

TS for pure Ni

TS for pure Cu

Elon

gatio

n (%

EL)

Composition, wt% Ni

Cu Ni 0 20 40 60 80 100 20

30

40

50

60

%EL for pure Ni

%EL for pure Cu

Adapted from Fig. 11.5(b), Callister & Rethwisch 9e.

Chapter 11 - 14

2 components has a special composition with a min. melting T.

Fig. 11.6, Callister & Rethwisch 9e [Adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.].

2원계 공정시스템 (Binary-Eutectic Systems)

• 3 개의 단일상 지역 존재 (L, α, β)

• 제한된 용해 한도: α: mostly Cu β: mostly Ag

• TE : TE이하에서는 액상X

: TE 에서의 조성 • CE

Ex.: Cu-Ag system Cu-Ag system

L (liquid)

α L + α L + β β

α

+ β

C, wt% Ag 20 40 60 80 100 0

200

1200 T(°C)

400

600

800

1000

CE

TE 8.0 71.9 91.2 779°C

cooling

heating

• 공정 반응 (Eutectic reaction) L(CE) α(CαE) + β(CβE)

Chapter 11 - 15

L + α L + β

α + β

200

T(°C)

18.3

C, wt% Sn 20 60 80 100 0

300

100

L (liquid)

α 183°C 61.9 97.8

β

• 150°C에서 40 wt% Sn-60 wt% Pb alloy: 상을 정의하시오. Pb-Sn system

EX 1: Pb-Sn 공정 상태도

Answer: α + β -- 각 상의 조성은?

-- 각상의 상대적으로 존재하는 양은?

150

40 C0

11 Cα

99 Cβ

S R

Answer: Cα = 11 wt% Sn Cβ = 99 wt% Sn

W α = Cβ - C0 Cβ - Cα

= 99 - 40 99 - 11

= 59 88

= 0.67

S R+S

=

W β = C0 - Cα Cβ - Cα

= R R+S

= 29 88

= 0.33 = 40 - 11 99 - 11

Answer:

Fig. 11.7, Callister & Rethwisch 9e. [Adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 3, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.]

Chapter 11 - 16

Answer: Cα = 17 wt% Sn -- 각 상의 조성은?

L + β

α + β

200

T(°C)

C, wt% Sn 20 60 80 100 0

300

100

L (liquid)

α β L + α

183°C

• 220°C에서 40 wt% Sn-60 wt% Pb alloy: 상을 정의하시오. Pb-Sn system

EX 2: Pb-Sn 공정 상태도

-- 각상의 상대적으로 존재하는 양은?

W α = CL - C0 CL - Cα

= 46 - 40 46 - 17

= 6 29

= 0.21

WL = C0 - Cα CL - Cα

= 23 29

= 0.79

40 C0

46 CL

17 Cα

220 S R

Answer: α + L

CL = 46 wt% Sn

Answer:

Fig. 11.7, Callister & Rethwisch 9e. [Adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 3, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.]

Chapter 11 - 17

• 예를 들어, C0 < 2 wt% Sn • 결과적으로: 실온에서는 -- 조성 C0를 갖는 α상이 다결정으로 존재한다.

공정 상태도를 이용한 미세 구조 개발 I

0

L + α 200

T(°C)

C, wt% Sn 10

2

20 C0

300

100

L

α

30

α + β

400

(room T solubility limit)

TE (Pb-Sn System)

α L

L: C0 wt% Sn

α: C0 wt% Sn

Fig. 11.10, Callister & Rethwisch 9e.

Chapter 11 - 18

• 예를 들어, 2 wt% Sn < C0 < 18.3 wt% Sn • Result: α + β 의 온도에서는 -- α 결정립의 다결정이 생성되고 작은 β-상의 입자들이 석출된다.

Fig. 11.11, Callister & Rethwisch 9e.

공정 상태도를 이용한 미세 구조 개발 II

Pb-Sn system

L + α

200

T(°C)

C , wt% Sn 10

18.3

20 0 C0

300

100

L

α

30

α + β

400

(sol. limit at TE)

TE

2 (sol. limit at T room )

L α

L: C0 wt% Sn

α β

α: C0 wt% Sn

Chapter 11 - 19

• 합금 조성이 공정 조성일 때 (C0 = CE) • 결과: 공정 미세구조를 형성 (lamellar structure) -- α 와 β 상이 판상 구조로 교대로 반복됨.

Fig. 11.12, Callister & Rethwisch 9e.

공정 상태도를 이용한 미세 구조 개발 III

Fig. 11.13, Callister & Rethwisch 9e. (From Metals Handbook, 9th edition, Vol. 9, Metallography and Microstructures, 1985. Reproduced by permission of ASM International, Materials Park, OH.)

160 μm

Micrograph of Pb-Sn eutectic microstructure

Pb-Sn system

L + β

α + β

200

T(°C)

C, wt% Sn 20 60 80 100 0

300

100

L

α β L + α

183°C

40

TE

18.3

α: 18.3 wt%Sn

97.8

β: 97.8 wt% Sn

CE 61.9

L: C0 wt% Sn

Chapter 11 - 20

Lamellar Eutectic Structure

Figs. 11.13 & 11.14, Callister & Rethwisch 9e. (Fig. 11.13 from Metals Handbook, 9th edition, Vol. 9, Metallography and Microstructures, 1985. Reproduced by permission of ASM International, Materials Park, OH.)

Chapter 11 - 21

• 예를 들어, 18.3 wt% Sn < C0 < 61.9 wt% Sn • 결과: α 상의 초정상와 공정 미세구조가 형성 된다.

공정 상태도를 이용한 미세 구조 개발 IV

18.3 61.9

S R

97.8

S R

primary α eutectic α

eutectic β

WL = (1- W α ) = 0.50

Cα = 18.3 wt% Sn CL = 61.9 wt% Sn

S R + S

Wα = = 0.50

• TE 의 바로 위:

• TE 의 바로 아래 : C α = 18.3 wt% Sn C β = 97.8 wt% Sn

S R + S

W α = = 0.73

W β = 0.27 Fig. 11.15, Callister & Rethwisch 9e.

Pb-Sn system

L + β 200

T(°C)

C, wt% Sn

20 60 80 100 0

300

100

L

α β L + α

40

α + β

TE

L: C0 wt% Sn L α L α

Chapter 11 - 22

L + α L + β

α + β

200

C, wt% Sn 20 60 80 100 0

300

100

L

α β TE

40

(Pb-Sn System)

아공정(Hypoeutectic) & 과공정(Hypereutectic)

Fig. 11.7, Callister & Rethwisch 9e. [Adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 3, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.]

160 μm eutectic micro-constituent

Fig. 11.13, Callister & Rethwisch 9e.

hypereutectic: (illustration only)

β

β β β

β

β

Adapted from Fig. 11.16, Callister & Rethwisch 9e. (Illustration only)

(Figs. 11.13 and 11.16 from Metals Handbook, 9th ed., Vol. 9, Metallography and Microstructures, 1985. Reproduced by permission of ASM International, Materials Park, OH.)

175 μm

α

α

α

α α α

hypoeutectic: C0 = 50 wt% Sn

Fig. 11.16, Callister & Rethwisch 9e.

T(°C)

61.9 eutectic

eutectic: C0 = 61.9 wt% Sn

Chapter 11 - 23

중간 화합물 (Intermetallic Compounds)

Mg2Pb

Note: 금속 간 화합물은 상태도에 라인으로 존재한다 – 화학양론적조성 이므로 면이 아님 - (i.e. 화합물의 조성은 고정 값이다)

Fig. 11.19, Callister & Rethwisch 9e. [Adapted from Phase Diagrams of Binary Magnesium Alloys, A. A. Nayeb-Hashemi and J. B. Clark (Editors), 1988. Reprinted by permission of ASM International, Materials Park, OH.]

Chapter 11 - 24

• 공석 (Eutectoid) – 하나의 고상은 두 개의 다른 고상으로 변환 S2 S1+S3

γ α + Fe3C (For Fe-C, 727°C, 0.76 wt% C)

intermetallic compound - cementite

cool heat

공정, 공석& 포정 Eutectic, Eutectoid, & Peritectic

• 공정 (Eutectic): 액체는 두 개의 고체 상으로 변환 L α + β (For Pb-Sn, 183°C, 61.9 wt% Sn)

cool heat

cool heat

• 포정 (Peritectic) - 액체 및 하나 고체상이 제2의 고상으로 변환 S1 + L S2 δ + L γ (For Fe-C, 1493°C, 0.16 wt% C)

Chapter 11 - 25

Eutectoid & Peritectic Cu-Zn Phase diagram

Fig. 11.20, Callister & Rethwisch 9e. [Adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 2, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.]

Eutectoid transformation δ γ + ε

Peritectic transformation γ + L δ

Chapter 11 - 26

Iron-Carbon (Fe-C) 상태도 • 2 important points

- Eutectoid (B): γ ⇒ α + Fe3C

- Eutectic (A): L ⇒ γ + Fe3C

Fig. 11.23, Callister & Rethwisch 9e. [Adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.]

Fe3C

(cem

entit

e)

1600

1400

1200

1000

800

600

400 0 1 2 3 4 5 6 6.7

L

γ (austenite)

γ +L

γ +Fe3C

α +Fe3C

δ

(Fe) C, wt% C

1148°C

T(°C)

α 727°C = T eutectoid

4.30 Result: Pearlite = alternating layers of α and Fe3C phases

120 μm

Fig. 11.26, Callister & Rethwisch 9e. (From Metals Handbook, Vol. 9, 9th ed., Metallography and Microstructures, 1985. Reproduced by permission of ASM International, Materials Park, OH.)

0.76

B γ γ γ γ

A L+Fe3C

Fe3C (cementite-hard) α (ferrite-soft)

Chapter 11 - 27 Fe

3C (c

emen

tite)

1600

1400

1200

1000

800

600

400 0 1 2 3 4 5 6 6.7

L

γ (austenite)

γ +L

γ + Fe3C

α + Fe3C

L+Fe3C

δ

(Fe) C, wt% C

1148°C

T(°C)

α 727°C

(Fe-C System)

C0

0.76

아공석 강 (Hypoeutectoid Steel)

Adapted from Figs. 11.23 and 11.28, Callister & Rethwisch 9e. [Figure 9.24 adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.]

Adapted from Fig. 11.29, Callister & Rethwisch 9e. (Photomicrograph courtesy of Republic Steel Corporation.)

초석 페라이트 pearlite

100 μm Hypoeutectoid steel

α

pearlite

γ γ γ

γ α α α

γ γ γ γ

γ γ γ γ

Chapter 11 - 28 Fe

3C (c

emen

tite)

1600

1400

1200

1000

800

600

400 0 1 2 3 4 5 6 6.7

L

γ (austenite)

γ +L

γ + Fe3C

α + Fe3C

L+Fe3C

δ

(Fe) C, wt% C

1148°C

T(°C)

α 727°C

(Fe-C System)

C0

0.76

아공석 강 (Hypoeutectoid Steel)

γ γ γ

γ α α α

s r Wα = s/(r + s) Wγ =(1 - Wα)

R S α

pearlite

Wpearlite = Wγ Wα’ = S/(R + S) W =(1 – Wα’) Fe3C

Adapted from Fig. 11.29, Callister & Rethwisch 9e. (Photomicrograph courtesy of Republic Steel Corporation.)

초석 페라이트 pearlite

100 μm Hypoeutectoid steel

Adapted from Figs. 11.23 and 11.28, Callister & Rethwisch 9e. [Figure 9.24 adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.]

Chapter 11 - Fe

3C (c

emen

tite)

1600

1400

1200

1000

800

600

400 0 1 2 3 4 5 6 6.7

L

γ (austenite)

γ +L

γ + Fe3C

α + Fe3C

L+Fe3C

δ

(Fe) C, wt% C

1148°C

T(°C)

α 727°C

(Fe-C System)

C0

29

과공석 강 (Hypereutectoid Steel)

0.76

C0

Fe3C

γ γ γ γ

γ γ γ γ γ γ

γ γ

Adapted from Fig. 11.32, Callister & Rethwisch 9e. (Copyright 1971 by United States Steel Corporation.)

proeutectoid Fe3C

60 μm Hypereutectoid steel

pearlite

pearlite

Adapted from Figs. 11.23 and 11.31, Callister & Rethwisch 9e. [Figure 9.24 adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.]

Chapter 11 - Fe

3C (c

emen

tite)

1600

1400

1200

1000

800

600

400 0 1 2 3 4 5 6 6.7

L

γ (austenite)

γ +L

γ + Fe3C

α + Fe3C

L+Fe3C

δ

(Fe) C, wt% C

1148°C

T(°C)

α 727°C

(Fe-C System)

C0

Adapted from Fig. 11.32, Callister & Rethwisch 9e. (Copyright 1971 by United States Steel Corporation.)

proeutectoid Fe3C

60 μm Hypereutectoid steel

pearlite

Adapted from Figs. 11.23 and 11.31, Callister & Rethwisch 9e. [Figure 9.24 adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.]

30

과공석 강 (Hypereutectoid Steel)

0.76

C0

pearlite

Fe3C

γ γ γ γ

x v

V X

Wpearlite = Wγ

Wα = X/(V + X)

W =(1 - Wα) Fe3C’

W =(1-Wγ) Wγ =x/(v + x)

Fe3C

Chapter 11 - 31

Example 11.4 99.6 wt% Fe-0.40 wt% C 강은 공석반응선 바로 밑에 존재한다. 다음을 정의하시오:

a) Fe3C 및 ferrite (α)의 조성은?. b) 100g의 강에서 cementite (Fe3C) 는 몇 gram? c) 100g의 강에서 pearlite 및 공석 페라이트 (α) 는 몇 gram?

Chapter 11 - 32

Solution to Example Problem

b) 지랫대 법칙 사용

a) Using the RS tie line just below the eutectoid Cα = 0.022 wt% C CFe3C = 6.70 wt% C

Fe3C

(cem

entit

e)

1600

1400

1200

1000

800

600

400 0 1 2 3 4 5 6 6.7

L

γ (austenite)

γ +L

γ + Fe3C

α + Fe3C

L+Fe3C

δ

C , wt% C

1148°C

T(°C)

727°C

C0

R S

CFe C 3 Cα

100 g 에서 Fe3C의 양

= (100 g)WFe3C

= (100 g)(0.057) = 5.7 g

Fig. 11.23, Callister & Rethwisch 9e. [From Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.]

Chapter 11 -

Fe3C

(cem

entit

e)

1600

1400

1200

1000

800

600

400 0 1 2 3 4 5 6 6.7

L

γ (austenite)

γ +L

γ + Fe3C

α + Fe3C

L+Fe3C

δ

C , wt% C

1148°C

T(°C)

727°°C

33

Solution to Example Problem (cont.) c) Using the VX tie line just above the eutectoid and

realizing that C0 = 0.40 wt% C Cα = 0.022 wt% C Cpearlite = Cγ = 0.76 wt% C

C0

V X

Cγ Cα

100 g에서의 펄라이트양 = (100 g)Wpearlite

= (100 g)(0.512) = 51.2 g

Fig. 11.23, Callister & Rethwisch 9e. [From Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.]

공석 페라이트= 펄라이트 양 – Fe3C의 양 = 51.2-5.7 = 45.6g 초석 페라이트= 전체 페라이트 - 공석 페라이트= 94.3- 45.6= 48.8

Chapter 11 - 34

Alloying with Other Elements

• Teutectoid changes:

Fig. 11.33, Callister & Rethwisch 9e. (From Edgar C. Bain, Functions of the Alloying Elements in Steel, 1939. Reproduced by permission of ASM International, Materials Park, OH.)

T Eut

ecto

id (º

C)

wt. % of alloying elements

Ti

Ni

Mo Si W

Cr

Mn

• Ceutectoid changes:

Fig. 11.34,Callister & Rethwisch 9e. (From Edgar C. Bain, Functions of the Alloying Elements in Steel, 1939. Reproduced by permission of ASM International, Materials Park, OH.)

wt. % of alloying elements C

eute

ctoi

d (w

t% C

)

Ni

Ti

Cr

Si Mn W Mo

Chapter 11 - 35

• 상태도(Phase diagrams) 다음을 결정하는데 유용한 데이터: -- 존재하는 상의 종류 및 숫자, -- 각 상의 조성( composition), -- 각 상의 존재 질량비 (weight fraction) (어떤 시스템에서 온도 및 조성 주어진 상태에서)

• 합금의 미세 구조에 대한 영향 -- 합금의 조성 -- 열적 평형 상태를 유지하는 냉각 속도의 여부

• 상태도에서 중요한 상 변태(phase transformation)는 공정(eutectic), 공석(eutectoid) 그리고 포정 (peritectic)이다.

Summary


Recommended