+ All Categories
Home > Documents > Core-shell graphene@amorphous carbon composites supported platinum catalysts for oxygen reduction...

Core-shell graphene@amorphous carbon composites supported platinum catalysts for oxygen reduction...

Date post: 12-Nov-2023
Category:
Upload: njau
View: 0 times
Download: 0 times
Share this document with a friend
6
Chinese Journal of Catalysis 36 (2015) 490–495 催化学报 2015年第36卷第4| www.chxb.cn available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/chnjc Article (Special Column on Electrocatalysis for Fuel Cells) Coreshell graphene@amorphous carbon composites supported platinum catalysts for oxygen reduction reaction Hui Wu, Tao Peng, Zongkui Kou, Jian Zhang, Kun Cheng, Daping He, Mu Pan, Shichun Mu * State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China ARTICLE INFO ABSTRACT Article history: Received 12 July 2014 Accepted 22 August 2014 Published 20 April 2015 A core‐shell graphene nanosheets (GNS) and amorphous carbon composite (GNS@a‐C) was pre‐ pared by a chlorination method and used as a highly efficient catalyst support for oxygen reduction reaction. Herein, GNS as a shell, with excellent conductivity, high surface area, and corrosion re‐ sistance, served as a protecting coating to alleviate the degradation of amorphous carbon core. Platinum nanoparticles were homogeneously deposited on the carbon support (Pt/GNS@a‐C) and showed a good catalytic activity and a higher electrochemical stability when compared with a commercial Pt/C catalyst. The mass activity of Pt/GNS@a‐C catalyst was 0.121 A/mg, which was almost twice as high as that of Pt/C (0.064 A/mg). Moreover, Pt/GNS@a‐C retained 51% of its initial electrochemical specific area after 4000 operating cycles when compared with Pt/C (33%). Thus, the prepared catalyst featured excellent electrochemical stability, showing promise for application in polymer electrolyte membrane fuel cells. © 2015, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved. Keywords: Low‐temperature fuel cell Support Core‐shell structure Oxygen reduction reaction 1. Introduction Polymer electrolyte membrane fuel cells (PEMFCs) have been considered as an environmentally friendly solution for automotive, backup, and residential power needs. However, PEMFCs are yet to be implemented on a commercial scale. One of the most important factors preventing their commercial implementation is the severe degradation of the traditional Pt/C catalyst employed in PEMFCs. For example, amorphous carbon, which is a commonly used carbon support, is susc‐ eptible to corrosive conditions [1] including high water cont‐ ent, low pH (< 1), relatively high temperatures (~50–90 °C), high potentials (~0.6–1.0 V), and high oxygen concentration. The corrosion of the carbon support subsequently leads to the detachment of noble metal nanoparticles (NPs) from the sup‐ port, resulting in aggregation of noble metal PNs, and then the catalytic activity decreases. Furthermore, oxidation of carbon can change the surface hydrophobicity of the support that can hinder gas transport [2]. The following two strategies can be used to mitigate carbon corrosion: (1) graphitization of carbon black and (2) alternative use of a more stable carbon support. Graphitization of carbon plays an important role in improving the electrochemical sta‐ bility of the support [3]. Higher amounts of graphitic carbon lead to reduction of defect sites on the carbon structure where carbon oxidation occurs [4]. Graphitization can be achieved by heating carbon materials in protective gas at a high temp‐ erature (≥ 1600 °C) [5,6]. Graphitization affords the fabrication of materials with high resistance to oxidation and corrosion but with reduced numbers of surface oxygen‐containing groups. The latter will accordingly affect metal deposition on the graphitized carbon support [7]. The second strategy to allevi‐ * Corresponding author. Tel: +86‐27‐87651837; Fax: +86‐27‐87879468; E‐mail: [email protected] This work was supported by the National Natural Science Foundation of China (51372186), the National Basic Research Program of China (973 Pro‐ gram, 2012CB215504), and the Natural Science Foundation of Hubei Province of China (2013CFA082). DOI: 10.1016/S1872‐2067(14)60211‐4 | http://www.sciencedirect.com/science/journal/18722067 | Chin. J. Catal., Vol. 36, No. 4, April 2015
Transcript

ChineseJournalofCatalysis36(2015)490–495 催化学报2015年第36卷第4期|www.chxb.cn 

a v a i l a b l e   a t  www . s c i e n c e d i r e c t . c om  

j o u r n a l   h omep a g e :  www . e l s e v i e r . c om / l o c a t e / c h n j c  

Article (Special Column on Electrocatalysis for Fuel Cells) 

Core‐shellgraphene@amorphouscarboncompositessupportedplatinumcatalystsforoxygenreductionreaction

HuiWu,TaoPeng,ZongkuiKou,JianZhang,KunCheng,DapingHe,MuPan,ShichunMu*

StateKeyLaboratoryofAdvancedTechnologyforMaterialsSynthesisandProcessing,WuhanUniversityofTechnology,Wuhan430070,Hubei,China

A R T I C L E I N F O  

A B S T R A C T

Articlehistory:Received12July2014Accepted22August2014Published20April2015

  A core‐shell graphene nanosheets (GNS) and amorphous carbon composite (GNS@a‐C)was pre‐paredbyachlorinationmethodandusedasahighlyefficientcatalystsupportforoxygenreductionreaction.Herein,GNS as a shell,with excellent conductivity, high surface area, and corrosion re‐sistance, served as a protecting coating to alleviate the degradation of amorphous carbon core.Platinumnanoparticleswerehomogeneouslydepositedonthecarbonsupport(Pt/GNS@a‐C)andshowed a good catalytic activity and a higher electrochemical stability when compared with acommercialPt/Ccatalyst.ThemassactivityofPt/GNS@a‐Ccatalystwas0.121A/mg,whichwasalmosttwiceashighasthatofPt/C(0.064A/mg).Moreover,Pt/GNS@a‐Cretained51%ofitsinitialelectrochemicalspecificareaafter4000operatingcycleswhencomparedwithPt/C(33%).Thus,thepreparedcatalystfeaturedexcellentelectrochemicalstability,showingpromiseforapplicationinpolymerelectrolytemembranefuelcells.

©2015,DalianInstituteofChemicalPhysics,ChineseAcademyofSciences.PublishedbyElsevierB.V.Allrightsreserved.

Keywords:Low‐temperaturefuelcellSupportCore‐shellstructureOxygenreductionreaction

 

 

1. Introduction

Polymer electrolyte membrane fuel cells (PEMFCs) havebeen considered as an environmentally friendly solution forautomotive, backup, and residential power needs. However,PEMFCsareyettobeimplementedonacommercialscale.Oneof the most important factors preventing their commercialimplementation is the severe degradation of the traditionalPt/C catalyst employed in PEMFCs. For example, amorphouscarbon, which is a commonly used carbon support, is susc‐eptible to corrosive conditions [1] including highwater cont‐ent, low pH (< 1), relatively high temperatures (~50–90 °C),high potentials (~0.6–1.0 V), and high oxygen concentration.Thecorrosionofthecarbonsupportsubsequentlyleadstothedetachmentofnoblemetalnanoparticles (NPs) fromthe sup‐port,resultinginaggregationofnoblemetalPNs,andthenthe

catalytic activity decreases. Furthermore, oxidation of carboncanchangethesurfacehydrophobicityofthesupportthatcanhindergastransport[2].

Thefollowingtwostrategiescanbeusedtomitigatecarboncorrosion:(1)graphitizationofcarbonblackand(2)alternativeuseofamorestablecarbonsupport.Graphitizationofcarbonplaysan important role in improving theelectrochemical sta‐bility of the support [3]. Higher amounts of graphitic carbonleadtoreductionofdefectsitesonthecarbonstructurewherecarbonoxidationoccurs[4].Graphitizationcanbeachievedbyheating carbon materials in protective gas at a high temp‐erature(≥1600°C)[5,6].Graphitizationaffordsthefabricationofmaterialswithhighresistancetooxidationandcorrosionbutwith reduced numbers of surface oxygen‐containing groups.The latter will accordingly affect metal deposition on thegraphitizedcarbonsupport [7].The second strategy to allevi‐

*Correspondingauthor.Tel:+86‐27‐87651837;Fax:+86‐27‐87879468;E‐mail:[email protected] ThisworkwassupportedbytheNationalNaturalScienceFoundationofChina(51372186),theNationalBasicResearchProgramofChina(973Pro‐gram,2012CB215504),andtheNaturalScienceFoundationofHubeiProvinceofChina(2013CFA082).DOI:10.1016/S1872‐2067(14)60211‐4|http://www.sciencedirect.com/science/journal/18722067|Chin.J.Catal.,Vol.36,No.4,April2015

HuiWuetal./ChineseJournalofCatalysis36(2015)490–495 491

ating carbon corrosion involves the use of carbon supportswithhigherstability.Recently,graphenenanosheets(GNS),astwo‐dimensional layers of sp2‐bonded carbon, have attractedconsiderable attention owing to their high surface area, re‐markable mechanical stiffness, excellent conductivity, andchemicalandelectrochemicalstabilities[8–10]forapplicationincatalystsupports[11,12].However,GNStendtoagglomerateor restack through van derWaals interactions [9,10], consid‐erablyloweringthesurfaceareaandlimitingpermeationoftheelectrolyte between the graphene layers, consequently de‐creasing the active surface area. These severely restrict theapplicationofGNS[13–15].ManyattemptshavebeenmadetoinhibittherestackingofGNSthroughsurfacefunctionalization[16–18], electrostatic stabilization [19], and synthesis of gra‐phenecompositesconsistingofsecondarybuildingblockssuchascarbonblack,carbonnanotube,andconductivenanoceram‐ic [13,14,20].Recently,ourgroup reporteda facilemethod topreparegraphenefroma‐Si1–xCxora‐Ti1–xCxnanofilmsusingachlorinationmethodundermildprocessingconditions[21,22].As reported, graphene can exist as graphene‐amorphous car‐bon (GNS@a‐C) core‐shell structures, which can afford in‐creased corrosion resistance for high electrochemical perfor‐mance[21].

Herein, for the first time,we report a core‐shell GNS@a‐Ccompositepreparedbyachlorinationmethodanduseditasasupport of Pt NPs for oxygen reduction reaction (ORR). Thecore‐shell structure not only inhibits the restacking of GNSmentioned earlier, but also restricts the corrosion of theamorphouscarboncoreundertheharshoperatingconditionstypically used in PEMFCs. Comparison between the currentPt/GNS@a‐Ccatalystand thecommercialPt/Ccatalyst showsthattheformerhasagoodcatalyticactivityandaremarkablyhighstability.

2. Experimental

2.1. Preparationofcore‐shellGNS@a‐CcompositesandPt/GNS@a‐Ccatalysts

Silicon carbide (SiC) samples (where the shell and core isamorphousandcrystallineSiC,respectively)withNano‐shells/films bought fromKaierNanoCo. andused as receivedwereplaced inahorizontalhot‐wall tubular flowreactoroperatingatambientpressures.Then, thereactorwasheated to800 °Cunder pure He and subsequently exposed to a He/Cl2 atmo‐spherefor1h.Thereactionwasstoppedbyflushingthereac‐torwithpureHegasat800 °C for1h toremoveresidualCl2andby‐products.Thefurnacewascooledto25°CunderpureHe,andthentheGNS@a‐Cwasobtained.

H2PtCl6·6H2O(SinopharmChemicalReagentCo.,Ltd.)solu‐tion,whichwasusedasaPtprecursor,wasaddeddropwisetotheGNS@a‐Csuspensionundervigorousstirring.ThepHofthesolutionwasadjustedto10–12using1.0mol/LNaOHaqueoussolution,andthenthemixturewasheatedunderrefluxat150°Cfor3–4htoensurecompleteformationofPtNPs.Followingstirring overnight, themixturewas filtered andwashedwithde‐ionizedwater.Theobtainedcatalystwasdriedinavacuum

ovenat80°Cfor8h.Forcomparisonpurposes,acommercialPt/C catalyst (20 wt % Pt supported on carbon black) waspurchasedfromJohnsonMatthey.

2.2. Characterization

MorphologiesofthesupportandcatalystwereanalyzedonaJEOL2100high‐resolutiontransmissionelectronmicroscope(HRTEM), operating at 10 kV. Raman spectroscopywas perf‐ormed on a Renishaw using Ar ion laser with an excitationwavelength of 514.5 nm. X‐ray diffraction (XRD)was perfor‐medon aRigakuX‐ray diffractometer equippedwith a CuKαradiation source.XRDpatternswere collectedusing a stepof0.01° and a count time of 2 s per step within a 2θ range of10°–90°.

Electrochemicalstudieswereconductedusingacomputer‐controlled Autolab PGSTAT 30 potentiostat (Eco Chemie B.V,Holland)withathree‐electrodecellsetup.Asaturatedcalomelelectrode was used as the reference electrode and platinumwirewasusedasthecounterelectrode.However,inthispaper,all potentials are expressedon the scaleof the reversible hy‐drogen electrode (RHE). The electrolyte solution (0.1 mol/LHClO4)waspurgedusinghigh‐purityN2for30minpriortoanyelectrochemicalmeasurements. The sample (3mg)was disp‐ersed in the stock solution (1000 L) that was prepared bymixing isopropanol (600L)withpurewater(380L)and5wt%Nafionionomersolution(20L;DuPontCo.,Ltd.).Then,theformedinkwascoatedonamirror‐polishedglassycarbondisk electrode as a working electrode. The electrochemicalerosion(ECE)ofthesupportwasassessedataconstantpoten‐tialof1.2Vasa functionoftimetovarytheECErates.Cyclicvoltammogramsintherangeof0–1.2Vwererecordedperiod‐icallybeforeandaftertheECEtestataconstantscanrateof50mV/s. An electrochemical‐accelerated durability test (ADT)wasconductedbycyclicvoltammetry(CV)analysisperformedat 0.6–1.2 V for 4000 cycles. CVs were recorded before andafterADTfrom0to1.2Vatascanrateof50mV/s.Finally,theORR activity of the catalystswas assessed in anO2‐saturated0.1mol/LHClO4solutionona rotatingdiskelectrodesystem.Polarization curves were obtained at room temperature at ascan rate of 10mV/s and a rotation rate of 1600 r/min, rec‐ordedfrom1.1to0.2V.

3. Resultsanddiscussion

3.1. StructuralandelectrochemicalpropertiesofGNS@a‐Ccomposites

Asobserved inFig.1(a),afterchlorination, theamorphouscarbonNPswerecoveredwithafewlayersofGNS,resultingina core‐shell GNS@a‐C architecture. Crystal residues of β‐SiCwerenotobservedafterchlorination,indicatingthenear‐com‐plete transformation of SiC into nanoporous carbide‐ derivedcarbon (CDC) matrix and graphene shells (Fig. 1(b)). Fig. 2showstheRamanspectrumofthefinalsiliconcarbide‐derivedcarbon (SiC‐CDC).Theoccurrenceofa2Dpeakand two rela‐tivelybroadDandGpeaksat1320and1580cm−1indicatesthe

492 HuiWuetal./ChineseJournalofCatalysis36(2015)490–495

presenceoforderedgraphiticdomainsinthea‐Si1–xCxnetwork[23,24], thereby confirming the successful transformation ofa‐Si1–xCx nanoshell on the crystalline SiC NPs into graphenenanoshell. The D band was associated with the presence ofdefectsandstagingdisorderofgrapheneandamorphouscar‐bon,andtheGbandcouldbeusedtoinvestigatethedegreeofgraphitization.Asnoted in the followingdiscussion, thepres‐enceofdefectsongrapheneisconducivetotheadsorptionofPtNPs on the support. Therefore, a‐Si1–xCx nanoshellswere suc‐cessfullyconvertedintographeneonsurfacesofβ‐SiCNPsbychlorination, while the β‐SiC core was converted into amor‐phouscarbon.

ECE test was conducted to investigate the stability ofGNS@a‐C.Theresultswereconsistentwiththatfromourpre‐vious work [21]. Fig. 1(c) and (d) present the CV curves ofGNS@a‐C and commercial Vulcan XC‐72 carbon, respectively.Thepotentialwindowbetween0.3and0.8Visanindicatorofcapacitive current, which depends on the electrochemicallyaccessible area for diffusion of the electrolyte to the internalmicropores of the carbon matrix. Relative to XC‐72 carbonblack, GNS@a‐C shows a considerably higher electric double‐layer capacitance, indicative of a higher specific surface areaand greater accessibility to the electrolyte and charged ions.For both samples, the peaks between 0.6 and 0.8 Vwere at‐tributed to the oxidation–reduction of graphene that becamemoreprominentwithincreasingECEtreatmenttimesupto24h.Theincreaseinthepeakintensitycanbeascribedtothepres‐enceofsurfacedefectsthataggravatedthecorrosionofcarbon.After24h,theoxidationpeakintensityofXC‐72increasedwithtime, whereas that of GNS@a‐C decreased. This finding sug‐

gests that GNS@a‐C features higher corrosion resistance andimproved electrochemical stability owing to the presence ofgraphenelayersthatpreventscorrosionofamorphouscarbon.

3.2. StructuralandelectrochemicalpropertiesofPt/GNS@a‐Ccatalysts

PowderXRDanalysis(Fig.3)wasconductedtocomparethestructures of GNS@a‐C, XC‐72, commercial Pt/C, and Pt/GNS@a‐C.Thepeakat24.5°wasattributedtothe(002)carbonplaneofXC‐72.Incontrast,the(002)peakofGNS@a‐Cshiftedtoalowerangle(21.5°)relativetothatofXC‐72whichcouldbeattributedtothesynergeticeffectbetweengrapheneandamor‐phous carbon. Following chlorination, distinct crystalline SiCresiduesorcrystallinegraphitewasnotobserved,indicatinganear‐complete transformation of β‐SiC into carbon includingamorphous carbon and graphene. The peaks at 2θ= 30°–90°were indexed to Pt crystals with face‐centered cubic (fcc)structures.Thepeaksat39.7°,46.5°,67.7°,and81.4°wereas‐signed to the (111), (200), (220), and (311) planes of Pt, re‐spectively.

Fig. 4 shows themicrostructuresofPt/GNS@a‐CandPt/Ccatalysts.ThelatticeplanesofPt/GNS@a‐Cwithspacingof0.35and0.22nmwereattributedtographeneandPt(111),respec‐tively.Additionally, Fig. 4(a) and (c) (inset) show theparticlesize histograms of the catalyst samples as determined from

~0.35 nmgraphene

amorphous carbon

~0.35 nmgraphene

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2-3-2-101234567

Cur

rent

den

sity

(m

A/c

m2 )

Potential (V vs. RHE)

0 h 12 h 24 h 48 h 72 h

(c)

0.0 0.2 0.4 0.6 0.8 1.0 1.2-0.8-0.6-0.4-0.20.00.20.40.60.81.01.21.4

Cur

rent

den

sity

(m

A/c

m2 )

Potential (V vs. RHE)

0 h 12 h 24 h 48 h 72 h

(d)

Fig.1. (a,b)HRTEMimagesofGNS@a‐C.CVplotsofGNS@a‐CNPs(c)andcommercialcarbonblack(VulcanXC‐72)(d)recordedat1.2V(vs.RHE)asa functionof time(0.1mol/LHClO4, scanrate:50mV/s) forelectrochemicalerosionevaluation.

1000 1500 2000 2500 3000

Inte

nsity

Raman shift (cm1)

D

G

2D

Fig.2.Ramanspectrumofa‐C@GNSNPs.

10 20 30 40 50 60 70 80 90

(4)

(3)

(2)

Pt(220) Pt(311)Pt(200)

Inte

nsit

y

2/( o )

C(002)

Pt(111)

(1)

Fig. 3. XRD patterns of XC‐72 (1), GNS@a‐C (2), Pt/C (3), andPt/GNS@a‐C(4).

HuiWuetal./ChineseJournalofCatalysis36(2015)490–495 493

TEM images. Commercial Pt/C catalyst sample (Fig. 4(c) and(d))featuredPtNPswithanaveragesizeof3.2nm;someareasfeaturingaggregatedPtNPswereadditionallypresent,reveal‐ingtheinhomogeneousdistributionofthecatalystparticles.Incontrast, Pt NPs were well dispersed on GNS (Pt/GNS@a‐C)withanaveragediameterof2.8nmandaverynarrowparticlesizedistribution.ThesurfacedefectsonGNSservedasanchor‐ingsitesforthePtprecursortopreventaggregationofPtNPs.Smallercatalystparticlesarebelievedtodisplaybettercatalyticactivities relative to larger catalyst particles introduced at agivencontent.

Fig.5 showsCVcurvesofbothcatalysts recordedat roomtemperature. All voltammograms display a two‐peak reduc‐tion‐oxidation/adsorption‐desorptionfeature.Thefirstpeakat0.04–0.3VwasattributedtotheadsorptionanddesorptionofhydrogenonPt,andthesecondpeakat0.5–1.2VwasascribedtotheoxidationandreductionofPtmetal.Theelectrochemicalspecificarea(ECSA)ofthecatalystsampleswascalculatedbymeasuring the charge collected within the hydrogen adsorp‐tion–desorption region following double‐layer correction andassumingavalueof210μC/cm2foradsorptionontoahydro‐genmonolayer[25,26].AsdeterminedinFig.5(a),theECSAofPt/GNS@a‐C (90.1m2/g) was higher than that of Pt/C (79.2m2/g).BasedonthepolarizationcurvesforORRofthesecata‐lystsinFig.5(b),Pt/GNS@a‐Cfeaturedasimilarhalf‐wavepo‐tential(0.83V)tothatofPt/C(0.81V).Diffusion‐limitingcur‐rents were obtained in the potential region below 0.6 V,whereasamixedkinetic‐diffusioncontrolregionwasobservedbetween0.7and0.9V.ThekineticcurrentwascalculatedfromtheORRpolarization curve at 0.9V vs.RHE according to theKoutecky‐Levichequation[27].ThemassactivityofPt/GNS@a‐C (0.121 A/mg) was nearly twice as high as that of Pt/C(0.064 A/mg), demonstrating the higher ORR activity of

Pt/GNS@a‐CcomparedwiththatofPt/C.The improvedECSAandORRactivitycouldbeattributed to theoptimizeddisper‐sion and size distribution of Pt NPs, and the good electricalconductivityofGNS.

AsshowninFig.6(a)and(b),bothcatalystsdisplayedade‐crease in thehydrogen adsorption region followingADT.TheretainedECSA,asnormalizedwiththeinitialECSA,wasplottedas a function of cycle number in Fig. 6(c). After 4000 cycles,53% of the initial ECSA of Pt/GNS@a‐C was maintained,whereas only 35%of the initial ECSAwaspreserved inPt/C,therebydemonstrating that Pt deposited onGNS@a‐C is con‐siderablymorestablethanthatdepositedoncarbonunderthesametestingconditions.TheORRactivitiesofPt/GNS@a‐CandPt/CbeforeandafterADTare shown inFig.6(d).After4000cycles, Pt/C displayed 91mV negative shift of the half‐ wavepotential.Incontrast,Pt/GNS@a‐Conlydisplayeda31mVneg‐ative shift. The mass activity of Pt/C changed from 0.064 to0.010A/mg,correspondingtoadecreaseof84.4%.Incontrast,themassactivityofPt/GNS@a‐Cchangedbyonly66.7%.

Tofurthersubstantiatethedifferenceindegradationbetw‐eenPt/GNS@a‐CandPt/C,bothcatalystswereinvestigatedbyHRTEMafterADT.Fig.7showstheTEMimagesofthecatalystsandtheassociatedPtsizehistograms.Slightagglomerationofthe Pt NPs was observed for Pt/GNS@a‐C that displayed anincreased average particle size from 2.8 to 4.8 nm followingADT(Fig.7(a)and(c)).Bycontrast,moresevereagglomerationofthePtNPswasobservedforPt/CafterADT(Fig.7(b)),andthemean size increased to 5.2 nm after the potential cyclingtest (Fig. 7(d)). The high stability of Pt/GNS@a‐C relative tothatofPt/Cdemonstratesthatthegraphenelayeriseffectivein

~0.22nm Pt(111)

~0.35nmgraphene

(a) (b)

~0.22nm Pt(111)

(c) (d)

Pt/ GNS @ a-C

2.8nm2.8 nm

05

1015202530354045

2.0 2.5 3.0 3.5 4.0 4.5

Nu

mb

er

(%)

Particle size (nm)

Pt/GNS@a-C

Pt/C3.2nm3.2 nm

2.5 3.0 3.5 4.0 4.5Particle size (nm)

5.0 5.505

10152025303540

Nu

mb

er (

%) Pt/C

Fig.4.TEMimagesofPtNPssupportedonGNS@a‐C(a,b)andXC‐72(c,d).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4-0.6-0.5-0.4-0.3-0.2-0.10.00.10.20.30.4

0.4 0.6 0.8 1.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Cur

rent

den

sity

(m

A/(g

Pt c

m2 ))

Potential (V vs. RHE)

(a)

Pt/C

Pt/GNS@a-C

Pt/GNS@a-C

Pt/C

Cur

rent

den

sity

(m

A/(g

Pt c

m2 ))

Potential (V vs. RHE)

(b)

Fig.5.CVcurvesofPt/CandPt/GNS@a‐C(a);Current‐potential‐polar‐izedcurvesforORR(b).

494 HuiWuetal./ChineseJournalofCatalysis36(2015)490–495

inhibiting the migration and aggregation of Pt NPs, and in‐creasingtheresistanceofthesupporttoelectrochemicalcorro‐sion.However,forPt/C,themigrationandagglomerationofPtNPson thesurfaceofcarbonblackarepredominantlycausedbythecorrosionofcarbonsupportsandtheOstwaldripeningofPtNPsthatlowerstheelectrochemicalactivityofthecatalyst[27].

4. Conclusions

Core‐shell GNS@a‐C composites were successfully synthe‐sizedbyachlorinationmethodandusedasthesupportforPtnanoparticles.ThePt/GNS@a‐CcatalystdisplayedsignificantlyenhancedactivityandstabilityrelativetothecommercialPt/Ccatalyst. The improved activity was attributed to the goodconductivity of graphene that was also effective in inhibitingmigrationandaggregationofPtnanoparticlesbycoveringthe

amorphouscarboncore,aswellasprotectingthecarbonfromchemical and electrochemical corrosion. The present findingsdemonstrated the GNS@a‐C composite as a highly efficientcatalyst support possesses great potential application in fuelcellsandotherindustrialfields.

References

[1] KinoshitaK.Carbon:Electrochemical andPhysicochemicalProp‐erties.NewYork:wiley,1988

[2] YuXW,YeSY.JPowerSources,2007,172:133[3] StevensDA,HicksMT,HaugenGM,DahnJR.JElectrochemSoc,

2005,152:A2309[4] ShaoYY,YinGP, Zhang J, GaoY Z.ElectrochimActa, 2006,51:

5853[5] Coloma F, Sepulvedaescribano A, Rodriguezreinoso F. J Catal,

1995,154:299[6] BomD,AndrewsR,JacquesD,AnthonyJ,ChenB,MeierMS,Sele‐

0.2 0.4 0.6 0.8 1.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.6

0.4

0.2

0.0

-0.2

-0.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0 1000 2000 3000 40000.0

0.2

0.4

0.6

0.8

1.0

Cur

rent

den

sity

(m

A/(g

Pt c

m2 ))

Pt/ GNS@a-C before 4000C Pt/GNS@a-C after 4000C Pt/C before 4000C Pt/C after 4000C

31 mV

93 mV

(d)

Potential (V vs. RHE)

Cur

rent

den

sity

(m

A/(g

Pt c

m2 ))

Potential (V vs. RHE)

Cur

rent

den

sity

(m

A/(g

Pt c

m2 ))

(a) 0C 100C 200C 300C 400C 500C 1000C 2000C 3000C 4000C

Potential (V vs. RHE)

0C 100C 200C 300C 400C 500C 1000C 2000C 3000C 4000C

(b)

Pt r

elat

ive

surf

ace

(vs.

inti

al)

Number of potential cycles

Pt/GNS@a-C Pt/C

(c)

Fig.6.CVcurvesofPt/GNS@a‐C(a)andPt/Ccatalysts(b)beforeandaftercycling;VariationinECSA,relatedtothePtcatalyticsurfacearea,asafunctionofthecyclenumber(c);ORRonPt/GNS@a‐CandPt/Cbeforeandafter4000cyclesat1600r/min(0.1mol/LHClO4,scanrate10mV/s)(d).

(a)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.50

5

10

15

20

25

30

Pt/GNS@a-C

Num

ber

of p

oten

tial

(%

)

Partical size (nm)

4.8 nm(b) (c)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.00

5

10

15

20

25

Num

ber

of p

oten

tial

(%

)

Partical size (nm)

5.4 nm(d)

Fig.7.HRTEMimagesofPt/GNS@a‐C(a)andPt/C(c)catalystsafterADT;AssociatedPtparticlesizedistributionsofPt/GNS@a‐C(b)andPt/C(d)catalysts.

HuiWuetal./ChineseJournalofCatalysis36(2015)490–495 495

gueJP.NanoLett,2002,2:615[7] HeCZ,DesaiS,BrownG,BollepalliS.ElectrochemSoc interface,

2005,14(3):41[8] GeimAK,NovoselovKS.NatMater,2007,6:183[9] LiD,MullerMB,GiljeS,KanerRB,WallaceGG.NatNanotechnol,

2008,3:101[10] StankovichS,DikinDA,DommettGHB,KohlhaasKM,ZimneyEJ,

StachEA,PinerRD,NguyenST,RuoffRS.Nature,2006,442:282[11] HeDP,ChengK,PengT,PanM,MuSC.JMaterChemA,2013,1:

2126[12] WuP,LüHF,PengT,HeDP,MuSC.SciRep,2014,4:3968[13] ZhaoX,HaynerCM,KungMC,KungHH.ACSNano,2011,5:8739[14] RaoCNR,SoodAK,VogguR, SubrahmanyamKS. JPhysChem

Lett,2010,1:572[15] DuXS,YuZZ,DasariA,MaJ,MoMS,MengYZ,MaiYW.Chem

Mater,2008,20:2066[16] ZuSZ,HanBH.JPhysChemC,2009,113:13651[17] HeDP,KouZK,XiongYL,ChengK,ChenX,PanM,MuSC.Carbon,

2014,66:312[18] HeDP,ChengK,LiHG,PengT,XuF,MuSC,PanM.Langmuir,

2012,28:3979[19] YangXY,DouX,RouhanipourA,ZhiLJ,RaderHJ,MullenK.JAm

ChemSoc,2008,130:4216[20] FanZJ,YanJ,ZhiLJ,ZhangQ,WeiT,FengJ,ZhangML,QianWZ,

WeiF.AdvMater,2010,22:3723[21] PengT,LvHF,HeDP,PanM,MuS.C.SciRep,2013,3:1148[22] PengT,KouZK,WuH,MuSC.SciRep,2014,4:5494[23] BullotJ,SchmidtMP.PhysStatusSolidiB,1987,143:345[24] MorimotoA,KataokaT,KumedaM,ShimizuT.PhilosMagB,1984,

50:517[25] SchmidtTJ,GasteigerHA,StäbGP,UrbanPM,KolbDM,BehmR

J.JElectrochemSoc,1998,145:2354[26] ColombiCiacchiL,PompeW,DeVitaA.JPhysChemB,2003,107:

1755[27] LimB,JiangMJ,CamargoPHC,ChoEC,TaoJ,LuXM,ZhuYM,

XiaYN.Science,2009,324:1302

应用于氧还原反应的石墨烯-无定形碳核壳结构复合材料载铂催化剂

吴 惠, 彭 焘, 寇宗魁, 张 建, 程 坤, 何大平, 潘 牧, 木士春*

武汉理工大学材料复合新技术国家重点实验室, 湖北武汉430070

摘要: 采用氯化法制备石墨烯-无定型碳复合材料(GNS@a-C), 并用作质子交换膜燃料电池(PEMFC)氧还原反应Pt催化剂的载体.

结果显示, 所制Pt/GNS@a-C催化剂与传统商业催化剂Pt/C相比, 有较好的活性和较高的稳定性: 质量活性(0.121 A/mg)几乎是

Pt/C (0.064 A/mg)的两倍. 更重要的是, 该新型催化剂加速4000圈后其电化学活性面积保留了最初的51%,与Pt/C的33%相比, 前者

有更好的电化学稳定性, 显示它在PEMFC中将具有较好的应用潜力.

关键词: 低温燃料电池; 载体; 核壳结构; 氧还原反应

收稿日期: 2014-07-12. 接受日期: 2014-08-22. 出版日期: 2015-04-20.

*通讯联系人. 电话: (027)87651837; 传真: (027)87879468; 电子信箱: [email protected]

基金来源: 国家自然科学基金(51372186); 国家重点基础研究发展计划(973计划, 2012CB215504); 湖北省自然基金重点项目(2013-

CFA082)

本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18722067).

GraphicalAbstract

Chin.J.Catal.,2015,36:490–495 doi:10.1016/S1872‐2067(14)60211‐4

Core‐shellgraphene@amorphouscarboncompositessupportedplatinum catalystsforoxygenreductionreaction

HuiWu,TaoPeng,ZongkuiKou,JianZhang,KunCheng,DapingHe,MuPan,ShichunMu*

WuhanUniversityofTechnology

Core‐shell graphene nanosheets@amorphous carbon (GNS@a‐C) composite, as ahighlyefficientcatalystsupport,displaysexcellentoxygenreductionreactionactivityandhighelectrochemicalstability.


Recommended