+ All Categories
Home > Documents > Digital Video Handbook Volume II

Digital Video Handbook Volume II

Date post: 21-Nov-2023
Category:
Upload: independent
View: 0 times
Download: 0 times
Share this document with a friend
71
Page 1 of 71 September 2015 Draft
Transcript

  Page  1  of  71    

   

September  2015  Draft  

  Page  2  of  71    

CONTENTS  INTRODUCTION   3  

TRENDS   10  TECHNOLOGY  EXPANSION  IN  PUBLIC  SAFETY:  IOT,  SENSORS  AND  ANALYTICS   10  

CASE  STUDIES   16  HD  AND  NETWORK  VIDEO:  MOVING  PUBLIC  SAFETY  AND  SCHOOLS  FORWARD  IN  SECURITY   16  

STANDARDS   25  NAVIGATING  THE  SECURITY  AND  PUBLIC  SAFETY  INDUSTRY:  FROM  ASSOCIATIONS  TO  STANDARDS  25  ULTRAHD  AND  THE  VIDEO  SURVEILLANCE  INDUSTRY   31  ULTRAHD  RESOLUTIONS   33  

IOT,  SENSORS  AND  ANALYTICS   35  

CYBER  SECURITY  OF  IOT  SENSORS   42  

IOT  AND  CYBER  SECURITY  FAQ   48  ASIS  INTERNATIONAL  SECURITY  APPLIED  SCIENCES  FACILITY  MODEL   51  UL  2802  –  STANDARD  FOR  PERFORMANCE  TESTING  OF  CAMERA  IMAGE  QUALITY   57  FORENSIC  VIDEO  PROGRAM  READINESS   62  DIGITAL  MULTIMEDIA  CONTENT  —  MORE  THAN  JUST  VIDEO  DATA   62  FORENSIC  REVIEW   62  VIDEO  CONTENT  ANALYSIS   63  CHECKLIST:  IMPLEMENTING  A  FORENSIC  VIDEO  READINESS  PROGRAM   64  TOP  TECHNOLOGY  CONSIDERATIONS  IN  FORENSIC  VIDEO   65  CRIMINAL  PATTERN  IDENTIFICATION  AND  SECURITY/VIDEO  DATA   66  LINKING  DMC  TO  POLICY   67  

IMPLEMENTATION   68  

PROJECT  IMPLEMENTATION  PLAN  FOR  A  NETWORK  VIDEO  SURVEILLANCE  SOLUTION   68  

INDEX   71          

  Page  3  of  71    

Introduction    Digital  multimedia  content  (DMC)  is  defined  as  including  the  video  content  itself,  plus  associated  metadata  (feature  data)  and  audio.    The  storage  location  or  device  (i.e.,  network  video  record,  server,  or  virtual  [cloud]  storage)  where  digital  video,  digital  multimedia  content,  or  digital  multimedia  evidence  (DME)  is  originally  stored  is  significant  in  achieving  Video  QoS  or  the  ability  to  acquire,  render,  search,  disseminate,  distribute  DMC.    DMC  may  also  be  referred  to  as  IP  or  digital  video,  IP  video  content,  or  Digital  Multimedia  Evidence  (DME).  Digital  data  representing  audio  content,  video  content,  metadata  information,  location‑based  information,  relevant  IP  addresses,  recording  time,  system  time,  and  any  other  information  attached  to  a  digital  file.  DMC  may  be  compressed  or  uncompressed  and  may  also  be  referred  to  as  original,  copied,  local,  or  virtual.    DMC  may  be  compressed  or  transcoded  from  the  original  DMC  in  an  industry  standard  file  format,  resulting  in  a  reduced  amount  of  data  required  to  represent  the  original  data  set.    For  forensic  readiness,  the  original  DMC  is  extremely  important;  data  recorded  and  retrieved  to  DMC  media  in  its  native  file  format  (i.e.,  first  usable  form)  must  always  be  retained  at  the  embedded  video  camera  solid  state  media,  local  network  attached  storage,  local  server  or  virtualized  cloud.    For  further  information,  see  the  Digital  Video  Handbook  Volume  I    Video  Content  Analysis    A  discussion  of  core  terminology  in  achieving  video  quality  is  important.    Video  analytics  is  an  analysis  “snapshot”  in  time;  it  differs  from  video  content  analysis  (VCA),  which  analyzes  video  data  by  single  or  multiple  criteria  and  then  delivers  a  search  result.  VCA  is  not  to  be  confused  with  a  newer  technology,  known  as  video  summarization  or  synopsis,  which  condenses  an  entire  day  of  video  to  a  matter  of  minutes.  Video  summarization  is  based  on  the  movement  of  objects  through  tubes;  the  movement  is  represented  on  a  condensed  video  clip  along  with  object  time  stamps.    Digital  multimedia  content  (DMC)  is  defined  as  including  the  video  content  itself,  plus  associated  metadata  (feature  data)  and  audio.    The  storage  location  or  device  (i.e.,  network  video  record,  server,  or  virtual  [cloud]  storage)  where  digital  video,  digital  multimedia  content,  or  digital  multimedia  evidence  (DME)  is  originally  stored  is  significant  in  achieving  Video  QoS  or  the  ability  to  acquire,  render,  search,  disseminate,  distribute  DMC.    DMC  may  also  be  referred  to  as  IP  or  digital  video,  IP  video  content,  or  Digital  Multimedia  Evidence  (DME).  Digital  data  representing  audio  content,  video  content,  

  Page  4  of  71    

metadata  information,  location-­‐based  information,  relevant  IP  addresses,  recording  time,  system  time,  and  any  other  information  attached  to  a  digital  file.  DMC  may  be  compressed  or  uncompressed  and  may  also  be  referred  to  as  original,  copied,  local,  or  virtual.    DMC  may  be  compressed  or  transcoded  from  the  original  DMC  in  an  industry  standard  file  format,  resulting  in  a  reduced  amount  of  data  required  to  represent  the  original  data  set.    For  forensic  readiness,  the  original  DMC  is  extremely  important;  data  recorded  and  retrieved  to  DMC  media  in  its  native  file  format  (i.e.,  first  usable  form)  must  always  be  retained  at  the  embedded  video  camera  solid  state  media,  local  network  attached  storage,  local  server  or  virtualized  cloud.    For  further  information,  see  the  Digital  Video  Handbook  Volume  I    Video  Content  Analysis    A  discussion  of  core  terminology  in  achieving  video  quality  is  important.    Video  analytics  is  an  analysis  “snapshot”  in  time;  it  differs  from  video  content  analysis  (VCA),  which  analyzes  video  data  by  single  or  multiple  criteria  and  then  delivers  a  search  result.  VCA  is  not  to  be  confused  with  a  newer  technology,  known  as  video  summarization  or  synopsis,  which  condenses  an  entire  day  of  video  to  a  matter  of  minutes.  Video  summarization  is  based  on  the  movement  of  objects  through  tubes;  the  movement  is  represented  on  a  condensed  video  clip  along  with  object  time  stamps.    FOR  EDITING    How  is  Digital  Multimedia  Content  (DMC)  searched  or  made  actionable?    Video  analytics  solutions  (also  referred  to  as  Video  Content  Analysis,  or  VCA),  are  a  set  of  computerized  vision  algorithms  that  automatically  analyze  live  or  recorded  video  streams,  without  the  need  for  human  intervention.  The  output  of  these  algorithms  is  actionable  data.  Adding  video  analytics  to  a  surveillance  network  allows  the  system  operator  to  be  more  effective  in  the  detection,  prevention,  response  and  investigation  of    incidents  captured  by  the  surveillance  system.    VCA  can  also  be  used  to  collect  valuable  business  intelligence  about  the  behavior  of  people  and  vehicles.    What  are  the  VCA  Categories?    1.  Situational  Awareness  &  Incident  Response:  Real-­‐Time  Detections  and  Alerts  Defining  events  and  scenarios  and  receiving  real-­‐time  alerts  when  such  events  are  detected    2.  Forensic  Analysis/DMC  Search  

  Page  5  of  71    

Searching  through  recorded  video  after  an  incident  to  pinpoint  specific  video  footage      3.  Business  Intelligence    Analyzing  video  footage  and  generating  statistical  reports  from  the  data  collected  within  the  video    What  are  the  application  categories?    1.Applications:    2.Security  &  Perimeter  Protection  3.Safety  4.Traffic  Monitoring    5.Asset  Protection    What  are  the  category  examples,  using  search  parameters  and  filters,  of  Forensic  Analysis/DMC  Search?    1.Target  Type  –  People,  Vehicles,  Static  Objects  2.Event  Type  –  Moving,  Stationary,  Crossing  a  Line,  Occupancy,  Crowding  3.Filter  by  Color    4.Filter  by  Size  5.Filter  by  defined  Time  Ranges  6.Search  on  selected  cameras  or  group  of  cameras  7.Search  for  Similar  Targets  –  Once  a  target  is  observed,  a  simple  search  can  be  conducted  to  locate  additional  appearances  of  the  same  /  similar  target  in  the  recorded  video    What  are  application  categories  of  DMC-­‐based  business  intelligence?    1.Customer  Traffic  Analysis    2.In-­‐store  Customer  Behavior  Analysis  3.Operational  Efficiency  4.Vehicle  Traffic  Analysis    What  are  the  most  popular  uses  of  analyzed  DMC  data  output?    1.  Accurate,  wide-­‐ranging  statistical  data  related  to  people  and  vehicles    2.  Multiple  viewing  options  for  statistical  analysis  of  traffic  volumes  (people  /  vehicles),  including  numerical  charts  and  user-­‐friendly  graphs  to  enable  traffic  comparisons,  aggregates  and  identification  of  traffic  trends    3.  Advanced  visualization  options  of  heat  map  and  target  path  to  analyze  movement  trends  and  motion  patterns,  enabling  effortless  comprehension  of  hot  /  cold  traffic  zones  and  dominant  traffic  paths  4.  Easy  exporting  of  raw  data  for  further  analysis  or  integration  with  other  systems    

  Page  6  of  71    

   "Underutilization  of  video  surveillance"    1.  "66%  of  those  who  use  video  surveillance  estimate  less  than  half  the  footage  is  actively  monitored"  2.  Only  9%  report  100%  monitoring  of  surveillance  footage"    3.  Sonic  Automotive  is  a  U.S.-­‐based  dealership,  parts  and  services  chain  with  23  collision  centers  and  110  dealership  locations  throughout  14  states.  "Some  of  those  other  outcomes  have  been  measured  by  Sonic  in  terms  of  a  reduction  in  “actionable  events”—any  time  a  suspicious  person  enters  the  premises.  With  the  live  monitoring  that  its  analytics  allows,  the  security  monitoring  team  can  identify  an  actionable  event  as  it  occurs  and  communicate  via  loudspeakers  that  the  person  is  under  surveillance.  “Nine  times  out  of  10  that  person  will  leave,”  says  Hallice.“We  want  to  prevent  something  from  happening  in  the  first  place,  and  communicating  in  this  way  is  a  great  way  to  prevent  incidents.”    4.  Cost-­‐effectiveness  (52%),  effectiveness  of  monitoring  (29%)  and  the  nuisance  of  false  alarms  (21%)  were  the  three  factors  most  often  cited  as  preventing  further  investment  in  video  surveillance  monitoring.    5.  Storage:  61%  of  respondents  keep  video  data  for  more  than  30  days  before  deleting.  30%  of  those  keep  it  for  90  days  or  more.  56%  of  respondents  say  the  data  is  reviewed  only  if  there  is  an  incident,  while  just  23%  report  that  it  is  reviewed  on  a  regular  schedule.    6.  Underutilized  surveillance  58%  say  their  organizations  cover  50%  or  less  of  their  valuable  assets  with  video  surveillance.  The  trend  is  more  significant  in  the  healthcare  and  critical  infrastructure  (oil,  gas,  utilities  and  energy)  industries:  72%  and  71%  of  respondents,  respectively,  estimated  that  less  than  half  their  valuable  assets  are  covered  by  video  surveillance.  Just  4%  of  respondents  report  100%  of  their  valuable  assets  are  currently  covered  by  video  surveillance.  Where  video  surveillance  is  in  use,  two-­‐thirds  of  respondents  (66%)  estimate  less  than  half  the  footage  is  actively  monitored  by  security  personnel.  Again,  the  trend  is  more  significant  in  certain  industries;  in  healthcare  (81%),  transportation  and  logistics  (74%),  and  critical  infrastructure  (68%)  in  particular.  The  proportion  of  respondents  who  indicate  security  personnel  actively  monitor  at  least  75%  of  all  surveillance  was  again  low—  just  20%  overall—and  only  9%  reported  100%  monitoring.    

  Page  7  of  71    

7.  Who  uses  the  Data?  security/facilities  (73%)  operations  (43%)  IT  (28%)    8.  Who  uses  video  surveillance  data  from  analytic  tools?  IT  (41%)  Marketing  (30%)  Sales  (24%)  Customer  relations  (22%)  HR  (20%)  departments          

  Page  8  of  71    

There  are  numerous  trends  in  the  public  safety  and  security  industries  and  the  impact  from  technology-­‐related  and  emerging  markets  is  having  a  big  effect.    The  technology  in  physical  security  is  greatly  impacted  from  consumer  electronics  and  IT  technology.  The  hot  technologies  in  the  consumer  space  include  Ultra  HD,  including  4K  video,  which  will  start  impacting  security  during  2015,  as  well  as  Near  Field  Communication  (such  as  Apple  Pay  and  Google  Wallet),  which  can  also  be  used  for  access  control  in  the  future.  Other  technologies  are  Cloud,  which  everyone  talks  about,  but  few  have  a  real  plan  for  executing  the  implementation  and  understanding  how  it  will  affect  their  operations.    Intelligent,  adaptive  security  devices  like  IP  cameras  that  automatically  adjust  for  the  extremes  of  ultra  low  light  and  intense  light  sources  will  become  standard  “go-­‐to”  products  for  public  safety  and  event  security.  Entry  screening  technologies  are  getting  noticed  for  private  corporations.    With  the  increase  in  border  drug  and  controlled  substance  traffic,  it  has  become  commonplace  for  high  risk  facilities  to  link  mobile  X-­‐Ray  and  backscatter  technologies  to  live  video  feeds.    Yes,  check  those  tires;  there  might  be  contraband  inside.    The  biggest  surprise  may  come  from  cyber  security;  big  data  breaches  will  still  happen  and  vendors  and  integrators  along  with  Security  departments  need  to  be  prepared  for  taking  their  responsibility  for  securing  the  systems.    This  Handbook  will  address  case  studies  in  several  markets.    There  are  a  number  of  significant  trends  impacting  video  surveillance.    School  security  will  continue  to  be  important  to  the  overall  community,  as  will  city  surveillance  and  critical  infrastructure  security.  Retailers  will  still  see  the  easier  to  calculate  ROI,  even  if  they  will  continue  to  be  under  pressure  from  online  sales.    Public  safety  will  have  a  growing  surveillance  market  in  event  security.    More  cities  are  becoming  entertainment  centers,  often  with  hundreds  of  thousands  of  visitors  at  a  single  event.    Part  of  this  market  will  be  served  by  the  temporary  surveillance  and  entry  screening  solution  market.    In  the  Standards  section  of  this  Handbook,  we  will  identify  significant  ecosystem  members  and  these  groups  are  evolving  and  requiring  new  solutions.  Regarding  manufacturers  and  solution  providers,  a  continued  inflow  of  new  solutions  will  continue  as  physical  security  continues  to  attract  new  companies,  as  well  as  entrants  from  Asia.  That  means  that  competition  is  increasing  meaning  that  vendors  will  have  to  continue  to  invest  to  stay  relevant.    Dealers  and  systems  integrators  have  a  continued  need  to  understand  requirements  form  an  IT  perspective,  and  work  strategically  with  end  users  to  sell  value  a  long  term  relationships,  and  not  products.    Monitoring  providers  are  playing  a  greater  role;  with  high  quality  video  being  available  also  for  small  system  at  reasonable  cost,  

  Page  9  of  71    

expectations  for  video  verification  from  the  end  users  will  continue  to  emerge.  Great  opportunities  exist  in  the  area  of  video  monitoring,  with  bandwidth  and  technology  being  appropriate  form  solutions,  and  also  mobility  bringing  additional  value  to  the  systems.  Ideally  alarm  system  should  be  integrated  with  video  verification.  In  the  residential  market  new  entrants  such  as  Telco’s  and  Google  will  continue  to  make  inroads  also  on  the  security  systems  side.    There  are  initiatives  in  some  vertical  market  segments,  like  Schools,  for  policies  around  security.  The  need  for  school  safety  and  security  standards  and  best  practices  is  being  met  by  states  with  the  largest  systems,  like  California,  Florida,  New  York,  Chicago  and  Connecticut.    Critical  infrastructure  working  groups  are  now  focusing  efforts  in  petrochemical,  power  and  food  and  water  defense.    There  are  however,  some  pressing  security  industry  issues  expected  to  remain  unresolved.  There  are  areas  where  technology  is  ahead  of  the  industry.  One  example  is  integrated  systems.  While  most  security  managers  would  agree  that  security  systems  should  be  fully  integrated  (i.e.  intrusion,  access  control  and  video)  most  systems  today,  even  new  ones  being  installed,  are  still  stand  alone  systems.  End  users  are  rapidly  replacing  “closed”  appliance-­‐based  solutions  with  platforms  linking  security  devices  for  scalability,  agility  and  elasticity.    Another  thing  is  video  verification,  most  alarms  today  are  not  verified  by  video  which  means  that  guards/police  are  dispatched  on  many  false  alarms.  Video  verification  could  help  reduce  false  alarms,  and  also  making  safety  staff  be  better  prepared  as  they  respond  to  a  real  alarm.  Hosted  video  provided  for  a  scalable  what  to  provide  video  verification.      With  more  data  breaches  some  very  tough  requirements  might  come  down  on  the  cyber  security  side  that  the  vendors  and  integrators  need  to  understand  and  live  up  to.        

  Page  10  of  71    

Trends  

Technology  expansion  in  public  safety:  IoT,  Sensors  and  Analytics    The  Internet  of  Things  has  truly  changed  the  technology  landscape.  In  fact,  many  of  the  things  we  only  dreamt  about  a  few  short  years  ago  are  now  commonplace.  As  IoT  begins  to  converge  with  sensors  and  analytics  it’s  evident  that  the  technology  landscape  is  poised  to  change  yet  again.  And  that  change  will  impact  industries  across  the  board.     It’s  not  hard  to  imagine  some  of  those  scenarios  that  are  probably  just  around  the  corner.    In  a  not  too  distant  future,  an  interesting  set  of  events  is  taking  place  in  a  single  day.    Virtual  visit    A  family  checks  in  to  medical  reception  for  one  member’s  outpatient  procedure.    The  patient  is  given  an  RF  ID  tag  and  a  family  member’s  smartphone  NFC  function  is  activated  via  the  hospital’s  patient  care  application.    Both  are  beacons,  meaning  they  present  a  specific  set  of  information  securely  to  nearby  sensors.    The  patient  is  already  in  pre-­‐op  and  the  family  member  with  the  smartphone  walks  over  to  a  self-­‐serve  kiosk  that  senses  they’re  nearby.    A  greeting  given,  a  simple  yet  trusted  identity  verification  performed  and  the  kiosk  pulls  up  a  video  of  their  loved  one  resting  comfortably  awaiting  surgery.    “We’ll  be  back  before  you  know  it,”  the  nurse  says  reassuringly  to  the  intelligent  video  surveillance  dome  camera,  knowing  the  patient’s  family  is  anxiously  waiting.    Within  the  hour,  a  notification  pops  into  the  family’s  smartphone,  letting  them  know  the  patient  is  in  recovery.    A  return  to  the  kiosk  lets  them  say  a  quick  “hello.”    Virtually  no  buttons  have  been  pushed  or  complex  device  registration  performed;  the  video  surveillance  camera,  application  and  connectivity  did  [almost]  all  the  work.    With  the  outpatient  census  at  this  particular  smart  healthcare  center  being  quite  high,  this  same  cycle  is  repeated  over  and  over  again,  simultaneously  and  with  improving  optimization  of  

  Page  11  of  71    

the  services.    A  facial  recognition  application  verifies  the  patient  location  on  exit  and  will  speed  their  check-­‐in  when  a  follow  up  visit  is  required.    For  today’s  challenging  and  increasing  patient  “elopements”  or  unplanned  wandering  off-­‐premises  of  longer  term  care  individuals,  the  facial  recognition  App  and  mobile  notification  to  a  security  officer’s  smartphone  becomes  another  tool  in  potentially  saving  a  life.    The  data  relating  to  the  quality  and  frequency  of  this  interaction  are  logged  so  that  the  smart  application  can  reserve  more  Healthcare  Center  infrastructure  services  during  peak  periods.    Crime  fighting  intelligence    In  another  city,  a  specialized  team  of  law  enforcement  professionals  just  received  intelligence  of  a  new  “crib”  potentially  nearby,  where  illegal  narcotics  and  weapons  are  being  stored.    Two  members  of  the  city’s  gang  violence  reduction  unit  start  a  tour  and  soon  receive  a  “hit”  off  a  fixed  surveillance  camera  with  a  built-­‐in  license  plate  recognition  (LPR)  application  and  connected  to  the  NCIC1.  The  detecting  camera  has  a  microcomputer  connected  to  a  NAS  (network  attached  storage).    A  “hot  list”  was  recently  uploaded  to  the  NAS  device  after  the  city’s  crime  analysis  software  related  the  vehicle  registration  of  a  known  gang  associate  to  the  primary  suspects.        A  “beacon”  application  notifies  the  team  nearby,  as  well  as  the  Command  Center  of  the  alert.    The  camera  is  equipped  with  a  “next  generation”  codec  called  Zipstream,  so  a  clip  of  the  vehicle  passing  by  the  camera  is  pushed  to  law  enforcement  on  site.    The  camera  is  capable  of  rendering  details  through  forensic  capture,  and  the  team  sees  the  vehicle  occupants  are  armed  with  automatic  weapons.        Knowing  the  location  of  their  law  enforcement  assets,  Command  automatically  pushed  out  notifications  of  the  filtered  social  media  chatter  to  the  nearby  detectives  and  tactical  response  team.    The  cloud-­‐based  social  media  app  has  been  listening  for  known  gang  language,  keywords  and  locations,  focusing  the  intel  to  just  what  is  most  vital  in  this  operation.    A  warrant  is  obtained  and  the  unit  leader  requests  the  “go-­‐ahead”  for  the  operation  from  Command.    A  traffic  management  application  creates  a  protective  radius  around  the  site  operation,  freezing  traffic  and  dispatching  EMS  for  potential  injuries  and  HAZMAT  should  there  be  toxic  drug  production  onsite.  The  team  executes  the  warrant  and  takes  key  gang  members  into  custody.    

                                                                                                               1  The  Federal  Bureau  of  Investigation  (FBI)  compares  license  plates  against  its  National  Crime  Information  Center  (NCIC)  database. As  law  enforcement  agencies  take  advantage  of  advanced  technologies,  the  opportunities  for  using  data  to  help  with  investigations  increases  greatly.  

LPR  cameras  locate  license  plates  within  an  image,  decode  them  using  automatic  number  plate  recognition  and  character  recognition.            

  Page  12  of  71    

Each  one  of  these  realistic  scenarios  is  not  only  possible  with  a  well  running  IoT  ecosystem,  they  represent  a  ubiquitous  development  of  social  and  technology  fusion.    What  really  makes  this  work?    An  even  better  question  is,  can  this  scale,  or  can  hundreds  of  these  scenarios  be  running  simultaneously  and  continuously  in  many  locations?  The  Internet  of  Things  links  sensors  like  advanced  IP  cameras,  together  with  communications,  storage,  infrastructure,  analytics  and  quality  of  service.    To  say  that  IoT  is  about  just  sensors  and  infrastructure  would  take  us  back  to  the  days  when  virtually  every  part  of  a  security  solution  required  monitoring  or  interpretation.    With  the  evolution  of  IoT,  tactical  profiles  may  be  identified  and  potential  response  scenarios  generated,  with  the  most  confident  automation  by  analytical  processes  performed  repeatedly.    First  responders  become  safer  through  intelligence;  families  stay  informed  and  involved.    IoT  prominence    Measurable  outcomes  to  the  impact  of  IoT  are  well  documented.    According  to  Gartner,  IoT  product  and  service  suppliers  will  generate  incremental  revenue  exceeding  $300  billion  in  2020;  Cisco  reports  an  increase  in  private  sector  profits  of  21%  and  add  $19  trillion  to  the  global  economy  also  by  2020.      The  McKinsey  Global  Institute  reports  $36  trillion  operating  costs  of  key  affected  industries  could  be  impacted  by  IoT.        In  2014,  Industrial  Internet  Consortium2  (IIC)  was  formed  by  AT&T,  Cisco,  GE,  IBM  and  Intel  and  is  focused  on  accelerating  growth  by  coordinating  IoT  ecosystem  initiatives  to  connect  and  integrate  objects  with  people,  processes  and  data.      Why  is  this  happening  now?    There  are  scalable  improvements  in  each  part  of  the  IoT  puzzle;  sensors  like  IP  cameras  are  more  powerful  than  ever  –  it  takes  a  significant  amount  of  consistent  processing  and  image  quality  to  encode  as  efficiently  say,  for  example  Zipstream  that  can  reduce  bandwidth  and  storage  by  at  least  50%.  Analytics  like  LPR  and  facial  recognition  run  more  effectively  in  cameras  with  more  powerful  processing.    At  IFSEC,  last  month,  one  of  the  industry’s  first  cameras  with  built-­‐in  facial  recognition  was  introduced.    Last  year,  ultra  low  light  technologies  like  LightFinder  are  making  video  analytics  possible  right  at  the  “edge”  sensor.    However,  the  sensor  is  no  longer  an  edge,  but  more  like  a  node  in  the  IoT  network  linking  consuming  devices  like  smartphones  and  “wearables,”  while  supported  by  infrastructure  and  storage  in  cloud  and  near  (or  embedded  in)  the  sensors.    By  collecting,  storing  and  analyzing  data  more  cost  effectively,  reliably  and  securely,  both  industrial  and  consumer  markets  rely  on  connectivity.    To  streamline  the                                                                                                                  2  The  current  priorities  of  the  IIC  are  to  build  end-­‐to-­‐end  security  use  cases,  apply  security  use  cases  to  each  of  the  use  case  groups,  derive  requirements  from  each  use  case,  identify  what  is  common  (architectural),  identify  what  is  one-­‐off  (application-­‐specific),  design  secure,  integration  framework  based  on  combined  use  cases  (with  technology  team)  and  build  test  beds  

  Page  13  of  71    

processing  of  satellite  images  involved  with  field-­‐testing  the  All-­‐Terrain  Hex-­‐Limbed  Extra-­‐Terrestrial  Explorer  (ATHLETE)  robot,  NASA/JPL  engineers  developed  an  application  that  takes  advantage  of  the  parallel  nature  of  the  Amazon  Web  Services  (AWS)  workflow.    AWS  recently  processed  complex  3.2  giga-­‐pixel  images  to  support  the  ATHLETE  robot  operations  enabling  the  vehicle  to  travel  across  various  types  of  terrain—ranging  from  smooth  surfaces  to  rolling  hills  to  ruggedly  steep  terrain,  yet  also  reconfigure  on  demand  to  form  robot  “feet.”  For  the  Mars  Science  Laboratory,  AWS  served  as  one  of  the  primary  data  processing  and  delivery  pipelines  and  “allowed  us  to  process  nearly  200,000  Cassini  [Satellite]  images  within  a  few  hours  under  $200.”    By  connecting  “everything”  the  number  IoT  devices  will  be  approximately  seven  times  the  number  of  people  on  earth  today  by  2020,  according  to  Cisco.    The  continuing  growth  in  demand  from  subscribers  for  better  voice,  video  and  mobile  broadband  experiences  is  encouraging  the  industry  to  look  ahead  at  how  networks  can  be  readied  to  meet  future  extreme  capacity  and  performance  demands.    According  to  Nokia3,  10,000  times  more  traffic  will  need  to  be  carried  through  all  mobile  broadband  technologies  at  some  point  between  2020  and  2030.  We  made  our  prediction  in  2010  and  since  then  have  gathered  information  from  the  market  which  shows  that  the  growth  we  foresaw  is  actually  happening.  The  need  for  more  capacity  goes  hand-­‐in-­‐hand  with  access  to  more  spectrum  on  higher  carrier  frequencies.  The  new  5G  system  needs  to  be  designed  in  a  way  that  enables  deployment  in  new  frequency  bands.    We  will  see  growth  between  ten  and  a  hundred  devices  for  each  mobile  communications  user  –  even  now  many  people  have  a  phone,  tablet,  laptop  and  a  few  Bluetooth-­‐enabled  devices.  The  security  of  security    Device,  network  and  application  security  is  critical  to  IoT's  adoption.    With  all  these  devices,  how  can  we  prepare  against  seemingly  endless  security  vulnerabilities?    According  to  Good  Technology  Chief  Executive  Officer  Christy  Wyatt,  the  key  question  is  “What  data  is  ending  up  on  what  device  and  how  do  I  protect  it?    Cyber  Security  Is  A  Journey  Not  Destination.”    Deploying  an  IP  camera  capable  of  handling                                                                                                                  3  “5G  use  cases  and  requirements,”  Nokia  Networks  FutureWorks,  2014  

  Page  14  of  71    

digital  certificates  to  verify  they  are  a  “trusted”  non-­‐person  entity  on  a  network  will  be  essential  to  scale  IoT  security.    One  method  is  to  validate  the  identities  and  permissions  of  both  IP  camera  and  the  consumer  of  the  digital  multimedia  content  on  the  network.      IoT  in  action    Monitoring  of  equipment  and  people  for  safety  and  security,  using  IoT  is  underway  by  Union  Pacific,  the  largest  railroad  in  the  United  States.    IoT  devices  like  acoustic  sensors  and  IP  cameras  help  predict  equipment  failures  and  reduce  derailment  risks.  These  sensors  are  placed  on  or  near  tracks  to  monitor  the  integrity  of  train  wheels.    Union  Pacific,  has  been  able  to  reduce  bearing-­‐related  derailments,  which  can  result  in  catastrophic  events  and  costly  delays,  often  up  to  $40  million  in  damages  per  incident.  By  applying  analytics  to  sensor  data,  Union  Pacific  can  predict  not  just  imminent  problems  but  also  potentially  dangerous  developments  well  in  advance.  Train  operators  can  be  informed  of  potential  hazards  within  five  minutes  of  detecting  anomalies  in  bearings  or  tracks.    Retail  is  an  industry  also  undergoing  significant  changes  using  IoT  innovation.  The  ability  to  detect  customer  behavior  when  they  visit  a  “connected  retail  store”  results  in  improved  customer  experience.  These  IoT  sensors  include  video  cameras  and  location  “beacons”  that  provide  in-­‐shelf  availability,  inventory  and  merchandise  optimization,  loss  prevention  and  mobile  payments.    Public  Safety  professionals  in  the  wake  of  recent  events  are  now  closely  considering  the  benefits  of  IoT  devices,  not  only  to  do  their  job  better,  but  also  to  remain  safe.  The  recent  Public  Safety  Summit  held  by  the  Video  Quality  in  Public  Safety  (VQIPS)  working  group  of  the  Department  of  Homeland  Security  Science  and  Technology  Directorate  (DHS  S+T)  revealed  an  exciting  new  program  called  the  Next  Generation  First  Responder  Program.    “If  we  were  able  to  track  [first  responder]  status  using  technology  tools,  the  on  scene  commanders  would  know  what  is  happening  in  real  time,”  according  to  Paramedic  Don  MacGarry  of  Loudon  County  Fire  and  Rescue  in  Virginia.      “Safety  is  always  a  priority.    We  go  into  high-­‐rise  buildings,  and  sometimes  into  basements,  which  turn  out  to  be  sometimes  the  most  dangerous  places  to  be,  and  we  don’t  have  communications;”  Victoria  Anthony,  Master  Firefighter,  Rockville  MD  Volunteer  Fire  Dept.  

  Page  15  of  71    

 First  Responder  of  the  future  goals  include:  

- Be  protected  from  hazards  and  have  the  best  situation  awareness  possible  - Be  connected  to  their  peers  and  are  able  to  locate  them  on  demand  - Be  connected  to  their  commanders  and  citizens  they  support  

 Chem-­‐bio,  gas  and  explosives  sensors  are  wearable  IoT  devices  under  consideration  for  this  program.    If  a  police  office  has  a  tactical  picture  of  where  an  active  shooter  is,  they  will  have  a  better  chance  at  directing  the  appropriate  response  and  saving  lives.    Having  improved  situation  awareness  during  a  fire  is  essential  for  placing  assets,  including  what  side  of  the  building  is  burning  and  what  openings  are  available.    IoT  devices  and  their  ecosystem  will  help  first  responders  not  only  respond  to  an  incident,  but  control  it,  and  positively  impact  the  safety  of  our  cities.      

  Page  16  of  71    

CASE  STUDIES    

HD  and  Network  Video:  moving  public  safety  and  schools  forward  in  security    Adoption  is  the  key  word  in  high  definition  video;  whether  it  is  for  learning,  research  or  forensic  investigation.    Give  yourself  a  little  test.    Is  there  any  growing  industry  that  relies  on  video  content  that  is  less  than  HD  resolution?    According  to  IMS  research4,  some  interesting  trends  are  apparent  in  not  only  the  Americas,  but  also  the  world:      

• “In  terms  of  shipments,  the  proportion  of  the  world  market  accounted  for  by  network  cameras  is  forecast  to  rise  significantly,  from  just  16.2%  of  security  camera  shipments  in  2012  to  40%  in  2017.    In  terms  of  revenue,  network  cameras  are  forecast  to  account  for  over  65.5%  of  the  market  in  2017.”  

• In  the  education  sector,  the  revenues  for  analog  video  surveillance  is  forecast  to  decrease  each  year  through  2017,  compounded  annually  at  an  average  of  -­‐10.3%  (CAGR)  

• In  the  education  sector,  the  revenues  for  network  video  surveillance  is  forecast  to  increase  each  year  through  2017,  compounded  annually  at  an  average  of  19.8%  (CAGR)  

 Revenue  often  drives  research;  research,  technology  improvements;  technology,  ROI;  and  ROI,  adoption.      One  of  the  most  significant  drivers  for  adoption  in  any  market  is  compliance.    There  are  both  mandatory  and  elective  measures  in  school  safety  and  security  and  the  dial  is  moving  toward  the  former.    What  better  way  to  enhance  design  criteria  than  by  planning  for  what  will  be  required,  than  what  will  need  to  be  replaced?    Recently  the  State  of  Connecticut  introduced  a  Standard  titled  “Report  of  the  School  Safety  Infrastructure  Council”  (revised  and  updated  to  2/4/2014).    

• “Mechanical  surveillance  is  the  use  of  mechanical  or  electronic  devices  for  observation  purposes,  such  as  mirrors,  closed  circuit  television  (CCTV)”  

• “the  following  minimum  standards  shall  be  met:  At  minimum,  mechanical  surveillance  shall  be  used  at  the  primary  access  points  to  the  site  for  both  pedestrian  and  vehicular  traffic”  

• [School  exterior]  “the  following  minimum  standards  shall  be  met:  At  minimum,  mechanical  surveillance  shall  be  used  at  the  primary  points  of  entry.”  

                                                                                                               4  The  World  Market  for  CCTV  &  Video  Surveillance  Equipment  –  2013  Edition  (re-­‐issued  14  June  2013)  

  Page  17  of  71    

• [Parking  Areas  and  Vehicular  and  Pedestrian  Routes]  “At  the  minimum,  mechanical  surveillance  shall  be  used  at  the  primary  access  points  to  the  site  for  both  pedestrian  and  vehicular  traffic.”  

   This  Standard  continues  to  cite  the  required  use  of  guidance  as  provided  by  agencies  like  the  US  Department  of  Homeland  Security  (DHS),  Science  and  Technology  Directorate.    There  is  a  substantial  amount  of  guidance  on  the  DHS  site,  firstresponder.gov,  including  the  guide  authored  by  the  Agency’s  Video  Quality  in  Public  Safety  Program,  the  Digital  Video  Handbook  (May  2013,  available  here).    The  focus  of  this  group’s  efforts  (and  document)  is  to  deliver  best  practices  on  achieving  video  quality  in  public  safety  disciplines,  including  the  school  safety  and  security  sector.        The  Digital  Video  Handbook  illustrates  the  significance  of  matching  a  required  number  of  imaging  “pixels  on  target”  for  forensic  and  recognition  requirements.  Since  many  school  surveillance  systems  do  not  use  continuous  observation  of  all  cameras,  the  necessity  for  the  system  to  be  “forensic-­‐ready”  or  capable  of  accurately  reviewing  critical  events  affecting  student  safety  with  the  highest  visual  acuity  possible  is  paramount.    Most  every  use  case  outlined  in  this  best  practice  document  can  only  be  economically  achieved  through  network  or  IP  video  devices.      What  is  driving  this  adoption?    We’ve  seen  one  example  of  a  Standard  driving  this  adoption,  and  the  economies  of  achieving  visual  acuity  and  forensic  evidence  through  network  video’s  higher  resolution.    That  is  a  simply  a  baseline.    A  number  of  school  district  safety  committees,  made  up  of  building  principals,  facility  management  and  representatives  from  centralized  jurisdictions,  are  putting  together  standardized  plans  for  implementation  controlled  access  rollouts.        Whether  it  includes  controlling  access  to  prevent  loss,  validating  entries  of  students,  faculty  and  staff  or  locking  down  in  the  event  of  a  crisis,  the  ability  to  integrate  network  cameras  is  vital  to  situation  awareness.    The  time  saved  by  pinpointing  a  student’s  entry  or  exit  time  using  integration  available  with  network  (IP)  video  might  just  save  a  life.    Security  measures  are  moving  forward  in  many  schools  and  with  expanded  training  for  virtually  everyone  on  campus.    The  greater  simplification  and  availability  that  network  video  offers  is  making  this  mandatory  in  many  cases.    In  one  county  in  Alabama,  every  single  staff  member  is  to  be  trained  on  what  to  do  in  not  just  an  intruder  situation,  but  it  other  emergency  situations  like  a  fire  or  severe  weather,  allowing  for  better  communications.    

  Page  18  of  71    

Is  this  a  force  multiplier  for  security  staff  in-­‐house,  and  for  first  responders?  When  all  six  first  responder  disciplines  are  considered,  and  not  just  law  enforcement,  the  goal  becomes  clearer.    Fire,  EMS,  Search  &  Rescue,  Explosives  and  Hazmat  are  important  support  sectors  and  each  school  must  be  prepared  to  give  these  life  saving  personnel  the  most  capable  situation  awareness  tools.    They  also  need  to  do  their  very  best  at  keeping  the  first  responders  themselves  safe  during  the  often-­‐dangerous  response  scenarios.    This  is  the  cornerstone  of  the  recently  highlighted  National  Unified  Goal,  promoting  the  safety  and  effective  teaming  with  first  responders.    Can  your  school’s  surveillance  system  support  video  mobility  requirements  for  multiple  personnel  responding  in  each  first  responder  discipline?    One  of  several  basic  features  of  network  (IP)  video  is  the  ability  to  distribute  multiple  video  streams  over  compatible  wireless  or  wired  infrastructure.    The  liability  of  a  “closed”  analog  video  surveillance  system  in  these  cases  may  be  reason  enough  to  adopt  IP  video.    “What  we  need  is  a  plan”  was  a  recent  statement  of  one  concerned  school  staff  member  in  a  Nevada  K-­‐12  facility.    The  safety  and  security  personnel  needed  to  assess  risks  and  develop  a  Security  Master  Plan.    Once  completed,  the  technology  extends  and  helps  enable  this  plan.    There  are  cautions,  however,  in  adopting  any  technology  and  recognizing  that  the  plan  comes  first  is  an  important  step.    Should  the  security  and  surveillance  solution  fall  short  in  capability,  flexibility,  agility  and  the  velocity  of  delivering  the  right  data  when  needed,  the  “plan”  could  be  obstructed.    The  flexibility  of  today’s  network  video  solutions  contributes  to  moving  past  this  potentially  dangerous  barrier.    Is  the  use  of  network  video  making  a  difference  in  school  security  in  local  or  state  jurisdictions?    In  local,  private  schools  the  focus  on  protective  child  services  is  often  driving  the  enhanced  surveillance  IP  video  provides.    Moving  wider  in  geography,  districts,  counties,  especially  those  in  more  densely  populated  areas  are  guided  or  even  directed  by  central  AHJ’s  (authority  having  jurisdiction).    These  are  often  separated  into  K-­‐12,  middle  schools  and  Pre-­‐K  in  areas  requiring  specialized  protective  and  safety  services.    State  jurisdictions  prevail  in  high  population  states  like  New  York  (Office  of  General  Services)  and  California,  supporting  centralized  purchasing  and  specification.    In  some  cities  like  New  York  there  is  a  "School  Construction  Authority"  providing  a  suite  of  design  services  to  the  public  school  system.    Cases  like  this  offer  a  wide  opportunity  for  economies  of  scale  where  the  cost  of  a  network  video  system  is  often  less  than  their  proprietary  analog  counterpart.    With  recent  case  studies,  it  has  become  apparent  that  an  IT  manager  of  the  school,  district,  or  other  AHJ  is  heavily  involved.      For  value  engineering  and  simply  making  use  of  existing  infrastructure  investments,  this  can  be  a  significant  opportunity.    Network  video  systems  are  designed  to  leverage  existing  infrastructure  to  deliver  

  Page  19  of  71    

power,  support  expansion  (and  contraction)  and  offer  the  value  of  using  video  data  for  departments  other  than  security  and  safety,  if  that  weren’t  enough!    Sporting  events  at  school  gymnasiums  outfitted  with  compatible  network  video  systems  can  distribute  video  streams  for  entertainment  purposes.    Cameras  in  cafeteria  check  out  lanes  verify  student  purchases.    Network  video  plus  access  control  reduce  theft  of  today’s  high  value  tablets  and  projectors.    In  the  State  of  Illinois  one  city’s  school  system  has  deployed  a  unique  “virtual  gymnasium”  using  multiple  projectors  to  promote  exercise  and  health  in  a  limited  space  and  at  reduced  cost.    The  recent  trend  of  gamification  at  the  same  school  literally  creates  a  fun  learning  experience,  through  the  use  of  wirelessly  connected  tablets  at  each  student  workstation.    The  continuity  of  these  progressive  strategies  could  easily  be  compromised  should  loss  occur.    Network  video  solutions  can  spot  check  entries  to  the  high  value  storage  areas  and  even  integrate  with  radio  frequency  loss  prevention  tags,  alerting  personnel  to  unauthorized  technology  removal.      Every  part  of  the  ecosystem,  from  designer,  first  responder  to  user  makes  the  case  for  IP  video  even  stronger  with  today’s  beneficial  technologies.      

  Page  20  of  71    

A  day  in  the  life  of  security  and  public  safety  on  campus    Examining  a  day  in  the  life  of  a  campus  (corporate,  education  or  other)  can  reveal  some  fascinating  aspects  of  the  safety  and  operational  requirements  you  may  not  have  known  about.    It  is  a  well  known  process  to  track  the  activities  of  a  safety  and  security  officer  to  better  help  them  deliver  vital  services  in  an  active  environment.  The  following  represents  a  simple  timeline  of  potential  events  in  a  day  at  a  typical  campus.    02:00

Early  morning  at  a  university  in  the  Midwest,  a  vehicle  breaches  a  staff  parking  entrance,  the  driver  parks  near  a  poorly  lit  loading  dock  and  forces  a  service  door  open.    Responding  security  officers  already  had  a  head  start  when  the  vehicle’s  license  plate  was  not  in  the  school  student,  faculty,  staff  or  contractor  database  and  the  gate  camera  sent  an  alert  immediately  and  directly.    The  video  intercom  at  the  service  door  also  showed  the  door  breached  and  the  suspect  vehicle  with  waiting  accomplice  still  in  the  vehicle.    The  alert  campus  command  center  operator  dispatches  law  enforcement,  which  arrives  immediately  after  campus  security,  apprehending  the  suspects.    05:00

The  campus  day  begins  with  the  arrival  of  a  fresh  security  officer  shift  that  checks  in  at  command.    The  team  reviews  the  last  shift’s  events  with  a  quick  overview  of  several  video  clips,  providing  the  incoming  safety  and  security  officers  a  visual  overview  of  the  previous  days  issues  and  additional  intelligence  to  keep  their  campus  safe.  The  usual  main  entrance  monitoring  and  screening  overviews,  classes  let  out,  students  returning  to  access  controlled  dormitories,  evening  deliveries,  automated  faculty  escorts  and  the  one  overnight  breach  are  reviewed  in  minutes  using  the  saved  and  metadata  video  management  system  searches.    The  team  goes  on  their  way  and  begins  their  tours  and  manning  their  posts.    All  officers  are  equipped  with  tablets  capable  of  real  time  video  view,  alarm  review,  dispatched  incidents  and  direct  messaging  to  the  local  public  safety  answering  point  (PSAP)  for  all  first  responder  categories.    The  term  “first  responder”  is  now  well  defined  by  the  US  Department  of  Homeland  Security  Science  and  Technology  Directorate  (S&T)  web  site,  firstresponder.gov,  and  six  disciplines  are  represented:  EMS,  law  enforcement,  fire,  explosives,  HAZMAT  and  search  &  rescue.    All  these  disciples  contribute  to  improved  campus  safety  and  security,  and  their  diversity  is  well  represented  in  S&T’s  guidance  document  and  publication  “Digital  Video  Handbook”,  available  on  the  website  www.firstresponder.gov,  along  with  useful  policy  and  best  practices.    07:00

  Page  21  of  71    

Staff,  student  and  faculty  arrival  builds  continuously  early  morning  and  command  center  operators  and  safety/security  director  are  all  at  attention  and  monitoring  the  activity.  The  use  of  360°,  HDTV  network  cameras  achieves  a  panoramic  view  of  school  ingress  and  egress  areas,  with  a  useful  overview  of  controlled  access  points,  main  student  entry  and  reception.  “My  field  of  view  has  been  increased  tenfold,”  says  the  safety  and  security  director  when  asked  about  the  system’s  enhanced  video  surveillance.  “If  I  don’t  get  you  coming  in,  I’m  going  to  get  you  going  out.”      12:00 The  campus  lunch  break  has  the  usual  students  eating  both  indoors  and  outdoors,  together  with  a  number  of  activity  tables  on  the  common  grounds.    Seeing  that  the  break  has  just  started,  the  command  center  uses  the  campus  public  address  system  and  directs  students  which  way  to  go  for  the  lunch  break’s  events.    The  video  surveillance  system  confirms  they’ve  got  the  message  as  activity  builds.    16:00 The  day  is  just  about  over  for  most  of  the  student  population,  but  not  for  staff,  faculty  and  an  incoming  evening  shift  that  prepares  for  a  review  of  the  previous  day’s  and  shift’s  events,  again  made  simple  through  intelligent  searches  and  embedded  applications  inside  the  network  cameras.    These  “apps”,  whether  license  plate  detection,  cross  line  detection,  student  activity  mapping  or  people  counting  literally  turn  the  network  cameras  into  domain  awareness  sensors,  relaying  a  steady  stream  of  data  available  on  demand.    The  incoming  security  crew  knows  when  to  expect  the  student  exit  activity  to  decrease  through  the  video  surveillance  “heat”  or  activity  mapping  tools.    They  wait  until  after  this  time  to  conduct  the  shift  transition  to  avoid  any  missed  incidents.      20:00 The  evening’s  student  dorm  access  control  entries  continue  and  security  officers  on  patrol  are  ready  to  receive  alerts  of  doors  left  and  propped  open.    The  door  entries  are  silent  until  a  door  left  open  signal  buzzes  and  automatically  resets  on  door  close.    Safety  and  security’s  command  responsibility  is  to  review  these  door  breaches  on  video  and  verify  that  no  suspicious  activity  and  “piggybacking”  has  taken  place.    The  simplified  alarm  “histogram”  guides  to  operator  over  to  the  video  associated  with  the  door  alarm.    All’s  well  as  it  was  just  a  couple  of  students  carrying  in  a  replacement  microwave  oven.    Safe  waiting  areas  around  the  campus  have  a  good  amount  of  pedestrian  traffic  as  students  and  faculty  board  transport  at  prearranged  locations  around  campus.    There  are  enhanced  LED  lighting,  360°,  HDTV  network  cameras,  area  video  analytics,  wireless  connectivity  and  an  audio  system  at  each  one  of  these  areas.    Should  someone  be  walking  toward  the  waiting  area,  the  LED  lights  flash,  increasing  

  Page  22  of  71    

their  output  as  a  safety  indication  and  alert  a  person  already  waiting  there.    They  then  have  the  option  to  use  their  smartphone  or  call  box  as  an  alert  device,  should  they  feel  unsafe.    This  time  of  evening  finds  faculty  and  staff  walking  to  their  vehicles  and  using  a  “video  escort”  application  on  their  smartphones.    Should  they  confirm  an  incident,  passively  report  and  fail  to  check  in  while  they  walk  to  their  cars  or  dorm,  campus  command  is  immediately  notified  and  nearby  cameras  activated.    The  system  has  preprogrammed  camera  locations  that  are  related  to  the  alert’s  location,  from  the  user’s  smartphone  or  tablet.    About  20  students  and  faculty  are  using  this  application  after  hours  and  the  system  is  ready  to  process  any  alerts.      22:00 Our  “day  in  the  life”  concludes  with  the  security  staff  verifying  cafeteria  and  facility  supply  deliveries.    Each  of  the  delivering  vendors  has  checked  in  online  prior  to  delivery,  entering  their  commercial  trailer  plate  and  approximate  delivery  window.    The  embedded  license  plate  recognition  system  automatically  detects  the  plate  on  entry  and  exit,  delivering  an  exception  alert  should  the  plate  either  not  be  in  the  database  or  failed  to  exit.    The  safety/security  officers  work  together  with  command  and  make  a  visual  verification  of  the  delivery  into  the  transition  space.    The  vendor  does  not  have  to  enter  the  secured  building  space  for  delivery,  simplifying  and  shortening  the  process  for  both  parties.    A  HDTV  network  camera  monitors  the  delivery  transition  area  and  the  camera’s  embedded  video  motion  detector  is  active  after  hours.    Each  of  the  above  examples  is  technology  in  action,  enhancing  the  safety  on  campus  and  delivering  tactical  advantages  to  campus  resources.    How  do  these  solutions  work  and  can  the  designer  easily  specify  them?    Four  categories  used  in  our  “day  in  the  life”  example  include  the  following:    

• Design  of  video  surveillance  systems  for  forensic  video  “readiness”  • Campus  video  mobility,  supporting  enhanced  situation  awareness  and  

response  • Image  quality  and  video  analytics  supporting  improved  response  to  off-­‐

normal  conditions  • The  maturity  of  license  plate  recognition  (LPR)  and  how  campus  surveillance  

systems  benefit      Forensic  Video  Readiness  in  Campus  Security    In  campus  security,  recorded  video  and  related  feature  data  of  events  is  one  of  the  first  and  most  important  resources  for  incident  review.  But  what  is  available  in  this  

  Page  23  of  71    

data,  and  what  are  the  opportunities  for  command  center  personnel,  first  responders,  operations  management  and  safety  teams?  To  understand  this,  we  first  need  to  define  what  is  included  with  this  “forensic”  video  data  and  then  apply  a  process  for  its  use.    Digital  Multimedia  Content  is  more  than  just  video  data.  This  is  digital  data  representing  audio  content,  video  content,  metadata  information,  location-­‐based  information,  relevant  IP  addresses,  recording  time,  system  time,  and  any  other  information  attached  to  a  digital  file.      All  of  this  is  information  valuable  to  the  campus  security  professional  either  in  real  time  or  for  forensic  use.    Applying  an  understanding  of  the  effect  of  light  on  the  scene  can  improve  the  image  quality  of  the  video  content.  Advances  in  camera  technology  that  produce  usable  color  or  “find  the  light”  in  dark  or  low  illumination  scenes  are  improving  forensic  video  content.    The  design  of  the  video  solution  to  provide  maximum  coverage  is  of  great  importance  for  systems  used  for  forensic  review.  Using  standards-­‐based,  high-­‐image  quality  sources  like  HDTV  IP  cameras  and  technologies  to  accommodate  difficult  lighting  will  improve  the  recorded  image  quality.    Video  analytics  is  of  interest  to  the  campus  safety  and  security  professional  as  they  can  perform  complex  repetitive  functions  such  as  object  detection  and  recognition  simultaneously  on  many  channels  of  video.    These  tools  can  provide  improved  searches,  based  on  object  characteristics  and  behavior.    These  include  metadata-­‐incorporating  object  characteristics  such  as  color,  size,  trajectory,  location-­‐based  information,  relevant  IP  addresses,  recording  time  and  system  time.      Video  analytics  embedded  in  the  network  camera  represents  a  growing  segment  where  applications  run  and  values  or  decisions  based  on  recognition  are  available  with  the  “edge”  network  camera  and  minimal  software.    One  popular  example  that  can  report  student  behavior  at  main  entry/egress  points  uses  a  “people  counter”  where  the  network  camera  and  built-­‐in  app  return  the  number  of  people  passing  into  a  zone,  through  a  boundary,  or  into  the  field  of  view.  This  can  provide  criteria  on  which  to  increase  camera  frame  rate  and  stored  resolution  during  the  time  of  highest  traffic.    Another  popular  video-­‐recognition  solution  that  runs  either  as  an  embedded  network  camera  application  or  in  the  Video  Management  System  is  fixed  License  Plate  Recognition  and  Capture  (LPR/LPC).  This  specialized  app  captures  license  plate  information  for  immediate  processing  by  LPR  software.  The  software  may  run  in  a  rapid-­‐acquisition  mode  and  compare  plates  later  against  an  approved  list  or  perform  the  recognition  sequentially  as  the  vehicles  pass  within  the  camera  field  of  view.  In  either  case,  LPR  is  a  mature  application  embraced  by  campus  safety  for  

  Page  24  of  71    

entry  and  exit  locations.    The  trend  to  embed  this  function  reduces  cost  and  allows  greater  flexibility.      “Heat”  activity  mapping  provides  a  visual  color-­‐coded  summary  showing  how  students,  faculty  and  staff  move  about  a  campus.  This  type  of  video  content  analysis  can  improve  safety  by  analyzing  the  flow  of  pedestrian  and  vehicular  traffic  on  campus.  Understanding  personnel  traffic  flow  will  often  help  camera  placement  and  ultimately  the  video  forensic-­‐review  process.    Integrated  surveillance  cameras  and  real  time  command  and  control  will  improve  a  campus  safety  and  security  operator’s  ability  to  detect.    There  are  numerous  resources  for  the  campus  professional  to  improve  safety,  operations  and  communications.    Local  law  enforcement,  first  responders  and  fusion  centers,  often  run  by  state  police  agencies  have  outreach  teams  and  can  often  be  the  best  resource  you  never  knew  about.    There  are  a  number  of  key  subjects  and  issues  that  a  campus  safety  and  security  professional  need  consider  prior  to  the  deployment  of  any  of  the  aforementioned  technologies.    Some  of  these  include:    

• The  school  security  risk  assessment  model  • Steps  to  successful  Security  and  Safety  Master  Planning  • Crime  Prevention  Through  Environmental  Design  and  Lighting  –  how  to  

create  a  safe  environment  • Lock  it  down  or  free  egress  –  the  intelligent  debate  in  school  crisis  

environments  • Loss  prevention  is  more  important  than  you  think  • Video,  mobility,  emergency  messaging,  video  escorting  and  deploying  a  “See  

Something,  Say  Something”  program  • Forming  a  digital  evidence  repository  as  a  tool  for  first  responders  and  

school  safety      A  balance  of  operational  responsibilities,  appropriate  response,  technology  engagement  and  hopefully  personal  growth  and  insight  of  their  service  delivery  mark  the  day-­‐to-­‐day  activities  on  campus  for  the  safety  and  security  professional.      

  Page  25  of  71    

STANDARDS    

Navigating  the  Security  and  Public  Safety  Industry:  from  Associations  to  Standards    If  you  think  about  it,  without  standards  to  govern  the  product  and  services  we  manufacturer  and  buy,  industries  might  collapse.  Cars  wouldn’t  run.  Buildings  wouldn’t  be  “intelligent”  or  save  energy.    Service  people  would  be  at  a  loss  as  to  how  to  fix  things  or  even  get  the  correct  replacement  parts.    The  electronic  security  sector  is  no  different.  Without  standards  cameras  and  video  management  software  couldn’t  communicate  with  each  other.  Integrators  wouldn’t  know  how  to  install  systems.  And  end  users  wouldn’t  be  able  to  view  and  search  their  video  for  forensic  evidence.    So  who  decides  what  standards  should  be  adopted?  And  how  do  those  standards  permeate  the  various  industries  that  depend  on  them  to  protect  their  businesses?    Normative  vs.  informative  standards  –  requirements  vs.  recommendations  Before  we  delve  into  those  questions,  it’s  important  to  understand  that  there  are  two  kinds  of  standard.  Standards  with  a  capital  “S”  –  also  known  as  normative  standards  –  contain  specific  requirements  that  must  be  followed.  Standards  with  a  small  “s”  –  also  known  as  informative  standards  –  are  best  practices  guidelines  for  achieving  a  specific  security  goal.      One  example  of  a  normative  Standard  would  be  the  specifications  published  by  the  Society  of  Motion  Picture  and  Television  Engineers  (SMPTE)  that  outline  what  qualifies  as  an  HDTV  camera.  The  image  must  conform  to  a  16:9  widescreen  format,  contain  720  or  1080  scan  lines,  be  able  to  stream  at  30  or  60  frames  per  second,  and  generate  video  in  high  color  fidelity.  An  example  of  an  informative  standard  would  be  the  recommendation  to  install  redundant  local  archiving  as  a  fail-­‐safe  in  case  network  connectivity  to  the  remote  server  is  disrupted.      Who  creates  standards?  Normative  Standards  are  created  by  accredited  Standards  Developing  Organizations  (SDOs).  There  are  a  host  of  SDOs  that  play  an  important  role  in  shaping  electronic  security.  Here  are  just  a  few  of  them:        ASIS  International  In  the  physical  security  and  security  applied  sciences  end-­‐user  community,  the  largest  global  accredited  SDO  is  ASIS  International.  It  bases  its  comprehensive  educational  programs  as  study  for  the  CPP  (Certified  Protection  Professional)  and  PSP  (Physical  Security  Professional)  credentials  on  industry  Standards  and  

  Page  26  of  71    

guidelines.  ASIS  has  organized  its  membership  into  regional  chapters,  as  well  as  vertical  markets  and  councils  to  apply  each  domain’s  Standards.  In  the  retail  market  both  the  National  Retail  Federation  and  ASIS  International  work  together  on  interpreting  the  significance  of  the  PCI-­‐DSS  Standard  which  governs  the  payment  card  data  security  process  -­‐-­‐  including  prevention,  detection  and  appropriate  reaction  to  security  incidents.  Physical  Security,  Facility  Security  and  Advanced  Security  Solutions  like  explosives  detection  have  resulted  in  ASIS  focusing  members  into  the  Physical  Security,  Security  Architecture  &  Engineering  and  the  newly  formed  Security  Applied  Sciences  Council  (SAS).  SAS  and  the  IT  SDO,  ISC(2)  are  working  together  now  to  deliver  advanced  guidance  on  trending  solutions.    Recently,  at  the  ASIS  Annual  Seminar  and  the  co-­‐located  ISC(2)  World  Congress,  ASIS  International  Education  delivered  high  interest  during  sessions  on  Mobile  Device  Forensics,  Explosives  and  Contraband  Detection  and  Active  Shooter  Response.      SIA  The  Security  Industry  Association  (SIA)  has  evolved  into  a  significant  provider  of  focused  collaborations  for  industry  manufacturers  and  solution  providers.    If  security  and  safety  devices  are  interoperable,  they  are  more  easily  deployed  and  solutions  can  be  scalable,  agile  and  elastic,  meeting  end  user  requirements.    SIA  also  provides  a  lobbying  point,  bringing  policy  makers  and  stakeholders  together  to  address  federal  and  state  initiatives  affecting  the  security  industry.    SIA  Education  is  using  trending  industry  Standards  to  deliver  classes  on  UltraHD  video  and  Near  Field  Communications  (NFC)  at  industry  events.    NFC-­‐based  Apple  Pay  and  Google  Wallet  services  allow  consumers  to  “Tap  and  Pay,”  while  the  same  NFC  technology  is  turning  smartphones  into  electronic  access  control  credentials.    BICSI  In  the  building  industry,  Building  Industry  Consulting  Service  International  (BICSI)  supports  the  advancement  of  the  information  and  communication  technology  (ICT)  community,  which  covers  voice,  data,  electronic  safety  and  security,  project  management  and  audio/video  technologies.  BICSI  recently  published  a  Data  Center  design  Standard  to  specify  how  to  properly  engineer  a  data  center.  BICSI  also  recently  published  an  Electronic  Security  and  Safety  Standard  (ESS),  becoming  the  first  SDO  to  unify  physical  security,  physical  infrastructure  and  safety  in  a  single  document.    ESA  Another  important  SDO  is  the  Electronic  Security  Association  (ESA)  whose  membership  includes  independent,  national  and  global  systems  integrators.  One  of  its  charters  is  to  provide  extensive  vertical  industry  education  to  its  members.  Recently  they’ve  taken  a  leadership  role  in  developing  Electronic  Security  Guidelines  for  Schools  to  ensure  the  safety  of  children,  teachers  and  school  personnel.    

  Page  27  of  71    

CSAA  The  Central  Station  Alarm  Association  (CSAA)  represents  protection  service  providers,  users  and  bureaus  certified  by  Nationally  Recognized  Testing  Laboratories  like  UL.  CSAA  activities  and  Standards  are  encouraging  the  industry  practices  leading  to  life-­‐saving  false  alarm  reduction  and  improved  central  station  performance.    Through  CSAA’s  ASAP  to  the  PSAP  program,  the  second  largest  Next  Generation  911  (NG911)  center  in  the  City  of  Houston  can  often  process  alarms  previously  taking  several  minutes  in  15  seconds.    LEVA  In  the  law  enforcement  sector,  the  Law  Enforcement  Video  Association  (LEVA)    not  only  publishes  best  practices  guidelines  for  conducting  forensic  video  investigation  but  also  offers  a  rigorous  certification  program  for  Forensic  Video  Analysts  and  Forensic  Video  Technicians.  Nowhere  was  the  value  of  that  training  more  evident  than  during  the  Vancouver  Stanley  Cup  riots  in  2011  when  more  than  18,000  arrests  were  made.    SISC  In  the  electronic  security  industry,  there  is  a  unique  working  group  known  as  the  Security  Industry  Council  (SISC).  It  reviews  and  coordinates  the  standards  activities  of  accredited  member  SDOs,  identifies  related  organization  with  relevant  expertise  for  SDO  assistance  and  coordinates  with  their  individual  standards  projects.        How  do  standards  extend  into  the  user  community?    Standards  come  into  play  on  multiple  levels  in  a  security  scenario.  Take  for  instance  an  after-­‐hours  jewelry  store  robbery.  The  robbery  is  detected  by  the  near  perfect  processing  of  three  alarm  sensors.  A  glass  breaking  detector  is  activated  by  a  breach  in  the  glass  panel  of  the  store’s  front  door.  A  remote  central  station  monitors  the  audio  level  at  the  store  and  is  able  to  recognize  the  sound  of  multiple  people  on  the  store.  The  central  station  also  monitors  the  video  cameras  on  the  premises  as  a  third  verification  of  the  burglars  in  action.  The  operator  can  now  call  law  enforcement  with  full  details  of  the  situation  and  let  officers  know  how  many  suspects  are  on  the  premises  so  that  all  participants  can  be  apprehended.    To  ensure  all  the  critical  systems  to  function  properly  and  in  concert  with  one  another  requires  the  adherence  to  multiple  Standards.  For  instance,  there  are  Standards  that  govern  the  alarm  transmission  and  the  video  verification,  including  bit  rates  and  .  There  are  protection  services  Standards  adopted  by  the  Central  Station  Alarm  Association  (CSAA)  that  are  certified  by  a  CSAA-­‐approved  Nationally  Recognized  Testing  Laboratory  (NRTL),  such  as  Underwriters  Laboratory,  FM  and  ETL.  There  are  also  image  quality  Standards  that  make  it  possible  to  identify  the  suspects,  such  as  HDTV  and  Ultra  High  Definition,  also  known  in  the  industry  as  4K  and  8K,  whose  specifications  are  governed  by  the  Consumer  Electronics  Association.  

  Page  28  of  71    

And  there  are  video  compression  Standards  such  as  H264  and  H.265  (also  known  as  High  Efficiency  Video  Codec  or  HEVC)  that  govern  the  how  the  video  is  streamed  so  as  to  reduce  bandwidth  consumption  without  degrading  image  quality.    If  you  think  about  it,  standards  are  the  fundamental  building  blocks  of  what  we  make  and  do.  For  instance,  energy  Standards  designate  the  specific  formula  of  unleaded  gas  and  diesel  fuel.  Standards  also  apply  to  generally  accepted  practices,  such  as  the  ringing  of  a  bell  to  connote  that  the  school  day  is  about  to  start.  The  first  is  a  normative  Standard  (note  the  capital  “S”)  published  by  a  formal  standards  developing  organization  (SDO),  in  this  case  the  EPA.  The  other  is  an  informative  standard  (lowercase  “s”)  –  a  best  practices  guideline  for  a  particular  sector,  in  this  case  education.    Both  types  of  standards  can  be  found  in  just  about  every  major  industry.  For  instance,  security  system  manufacturers  rely  on  technology  Standards  like  H.264  compression  and  HDTV  resolution  when  developing  products  to  ensure  component  interoperability.  A  best  practice  standard,  on  the  other  hand,  might  be  a  recommend  guideline  to  integrators  on  how  best  to  optimize  system  performance.  For  the  Healthcare  industry  privacy  Standards  like  HIPPA  govern  the  handling  of  patient  data  while  a  best  practices  standard  might  advise  healthcare  professionals  on  some  of  the  best  ways  to  triage  patients.  Another  might  include  the  use  of  ultra  low  light,  full  motion  video  capture  or  “Lightfinder”  for  monitoring  patients  in  sleep  centers  or  Neonatal  Intensive  Care  Units  (NICU)  where  visual  acuity  and  color  reproduction  can  indicate  when  infants  have  apnea  (breathing  difficulty)  or  jaundice  (oxygen  deficiency,  yellowing  skin).      For  Critical  Infrastructure  operational  Standards  like  CIP-­‐014-­‐1  address  the  physical  security  of  energy  facilities.  Best  practices  guidelines,  on  the  other  hand,  might  clarify  ways  operators  can  more  rapidly  and  efficiently  diagnose  malfunctions  before  full  failure.    An  energy  provider  in  the  Northeast  uses  thermal  imaging  to  remotely  detect  hot  running  transformers  and  switchgear.    Public  Safety  professionals  in  the  wake  of  recent  events  are  now  closely  examining  surveillance  video  retention  policies,  best  practices  and  Agency  Standards.    Are  we  keeping  enough  video  content  to  perform  a  comprehensive  investigation?    Do  we  have  a  policy  in  place  to  discard  video  storage  after  a  period  of  time?    This  was  a  recent  topic  of  discussion  at  a  Public  Safety  Summit  held  by  the  Video  Quality  in  Public  Safety  (VQIPS)  working  group  of  the  Department  of  Homeland  Security  Science  and  Technology  Directorate  (DHS  S+T).    It  was  discovered  that  some  agencies  in  the  Los  Angeles  area  require  at  least  90  days  of  Digital  Multimedia  Content  (video  plus  metadata),  while  an  agency  in  Little  Rock,  Arkansas  must  dispose  of  video  kept  longer  than  120  days.    

  Page  29  of  71    

A  newly  formed  public  safety  policy  team  for  VQIPS  will  be  working  together  in  2015  on  this  very  topic,  which  will  no  doubt  positively  impact  the  safety  of  our  cities.      

  Page  30  of  71    

The  following  diagrams  illustrate  the  participation  of  security  and  public  safety  ecosystem  entities  in  various  industry  associations  and  Standards  Development  organizations.    

             

  Page  31  of  71    

UltraHD  and  the  video  surveillance  industry    The  success  of  modern  IP  cameras  having  image  quality  and  contributing  to  successful  investigations  would  not  be  possible  without  today's  high  definition  Standards  like  HDTV  and  Ultra  High  Definition  (UHD).    UHD  includes  both  4K  and  8K  formats.    The  Consumer  Electronics  Association  (CEA)  defines  UHD  as  having  an  aspect  ratio  of  at  least  16:9  and  at  least  one  digital  input  capable  of  carrying  and  presenting  native  video  at  a  minimum  resolution  of  3840×2160  pixels.    The  way  we  currently  use  security  video  is  also  the  way  many  consumers  are  viewing  their  favorite  television  programs.    Netflix  has  just  announced  that  popular  shows  like  "House  of  Cards"  and  "The  Blacklist"  are  available  via  4K  video  streaming.    Subscribers  will  pay  a  premium  for  this  service,  but  it  is  another  video  Standard  that  makes  it  possible.    Most  surveillance  video  today  is  encoded  with  the  Advanced  Video  Codec  (AVC)  or  h.264  Standard,  basic  profile.    Today's  UHD  video  streaming  services  for  entertainment  and  gaming  are  making  use  of  an  even  more  efficient  encoding  Standard,  the  High  Efficiency  Video  Codec  (HEVC).    Recently,  several  car  races  have  been  streamed  at  UHD  and  encoded  with  HEVC,  delivering  amazing  resolution  to  both  broadcasters  and  mobile  users.    HEVC  made  a  big  introduction  at  this  year's  National  Association  of  Broadcasters  (NAB)  event.    HEVC's  significant  (often  40%)  efficiency  over  existing  H.264  solutions,  makes  a  compelling  solution  for  the  substantially  increased  bandwidth  required  for  4K.      Adoption  breeds  competition  and  Dynamic  Adaptive  Streaming  over  HTTP  (DASH),  also  known  as  MPEG-­‐DASH  will  compete  with  HEVC.    

1. What  are  the  advantages  for  a  big  company  using  4K  video  for  surveillance?  a. The  widespread  deployment  of  4K  HDTV  video  surveillance  cameras  

for  a  large  user  not  only  provides  increased  opportunities  for  improved  investigations,  but  also  business  intelligence.    For  example,  personnel  and  customer  paths  are  more  accurately  traced,    and  the  resolution  is  high  enough  to  often  support  multiple  content  analysis  opportunities  like  people  counting  and  vehicle  plate  recognition.  

 2. What  are  some  of  the  pieces  they  need  -­‐-­‐  high-­‐end  computers,  4K  screens,  4K  

video  cams,  and...?  a. The  most  important  consideration  in  4K  video  surveillance  is  the  

source,  usually  an  IP  video  4K  HDTV  camera.    A  4K  IP  video  camera  equipped  with  solid  state  internal  storage  like  an  SD  Card  can  retain  several  hours  of  recorded  video,  even  if  recording  server  and  display  should  fail.  

  Page  32  of  71    

b. The  second  most  important  device  is  a  Network-­‐Attached  Storage  unit,  usually  located  nearby  a  group  of  IP  cameras  and  providing  redundant  recording  and  the  opportunity  to  reduce  bandwidth  on  the  network.  

c. The  recording  and  application  server  must  be  powerful  enough  to  store,  index  and  conduct  searches  of  the  4K  video  content.  

d. 4K  displays  are  especially  important  if  the  images  will  be  viewed  on  larger  displays.    For  example,  given  a  viewing  distance  of  10’,  the  approximate  display  resolution  required  will  increase  with  display  size.    At  the  10’  viewing  distance,  a  36”  display  will  require  at  least  720p  HDTV  resolution,  60”  display  will  require  at  least  1080p  and  100”  will  require  4K5.  

 3. Which  companies  already  provide  security  surveillance  in  4K  or  have  plans  

to?  Who  should?  a. On  4/1/2014,  Axis  Communications  announced  its  first  4K  resolution  

camera  as  part  of  a  new  compact  bullet-­‐style  series.    The  AXIS  P1428-­‐E  Network  Camera  features  a  resolution  four  times  higher  than  HDTV  1080p  and  is  ideal  for  overlooking  large  areas  like  parking  lots  and  public  squares  while  also  being  able  to  capture  fine  details.    Companies  participating  in  the  ONVIF  video  interoperability  forum  introducing  similar  cameras  include  the  Dinion  IP  ultra  8000  MP  camera  from  Bosch  and  the  Samsung  NX1  28.2  Smart  4K  Camera.    Sony  has  demonstrated  a  multipurpose  4K  sensor  for  future  IP  video  products.    

 4. What  are  the  challenges  in  4K  for  surveillance?  

a. The  network  architect  or  IT  designer  may  decide  not  use  Network  Attached  Storage  Devices,  thus  requiring  the  network  infrastructure  to  bear  the  4K  streams  to  the  recording  server.    Internal  and  distributed  storage  provides  redundancy  efficient  video  stream  management.  

5. Can  the  4K  video  be  used  in  a  court  proceeding  to  ID  a  suspect  more  readily  than  even  HD?  Why  or  why  not?  

a. All  HDTV  resolutions,  720p,  1080p  and  4K  can  provide  improved  opportunities  to  identify  an  individual,  vehicle  or  object  in  real  time  observation  and  forensic  review.    A  video  source  capable  of  supporting  the  identification  of  a  person  or  vehicle  of  interest  depends  not  only  on  resolution,  but  imager,  image  processing,  lens,  illumination  and  compression  efficiency.    With  all  parameters  being  

                                                                                                               5  Digital  Trends,  3/8/2013,  “720p  vs.  1080p:  Can  You  Tell  The  Difference  Between  HDTV  Resolutions?”  

  Page  33  of  71    

equal,  4K  provides  four  times  the  resolution  of  1080p  HDTV  video  sources.  

 

UltraHD  Resolutions    

   

       

  Page  34  of  71    

  Page  35  of  71    

 IoT,  Sensors  and  Analytics  The significant technology expansion that’s about to happen The Internet of Things has truly changed the technology landscape. In fact, many of the things we only dreamt about a few short years ago are now commonplace. As IoT begins to converge with sensors and analytics it’s evident that the technology landscape is poised to change yet again. And that change will impact industries across the board. It’s not hard to imagine some of those scenarios that are probably just around the corner. In a not too distant future, an interesting set of events is taking place in a single day. Virtual visit A family checks in to medical reception for one member’s outpatient procedure. The patient is given an RF ID tag and a family member’s smartphone NFC function is activated via the hospital’s patient care application. Both are beacons, meaning they present a specific set of information securely to nearby sensors. The patient is already in pre-op and the family member with the smartphone walks over to a self-serve kiosk that senses they’re nearby. A greeting given, a simple yet trusted identity verification performed and the kiosk pulls up a video of their loved one resting comfortably awaiting surgery. “We’ll be back before you know it,” the nurse says reassuringly to the intelligent video surveillance dome camera, knowing the patient’s family is anxiously waiting. Within the hour, a notification pops into the family’s smartphone, letting them know the patient is in recovery. A return to the kiosk lets them say a quick “hello.” Virtually no buttons have been pushed or complex device registration performed; the video surveillance camera, application and connectivity did [almost] all the work. With the outpatient census at this particular smart healthcare center being quite high, this same cycle is repeated over and over

  Page  36  of  71    

again, simultaneously and with improving optimization of the services. A facial recognition application verifies the patient location on exit and will speed their check-in when a follow up visit is required. For today’s challenging and increasing patient “elopements” or unplanned wandering off-premises of longer term care individuals, the facial recognition App and mobile notification to a security officer’s smartphone becomes another tool in potentially saving a life. The data relating to the quality and frequency of this interaction are logged so that the smart application can reserve more Healthcare Center infrastructure services during peak periods. Crime fighting intelligence In another city, a specialized team of law enforcement professionals just received intelligence of a new “crib” potentially nearby, where illegal narcotics and weapons are being stored. Two members of the city’s gang violence reduction unit start a tour and soon receive a “hit” off a fixed surveillance camera with a built-in license plate recognition (LPR) application and connected to the NCIC6. The detecting camera has a microcomputer connected to a NAS (network attached storage). A “hot list” was recently uploaded to the NAS device after the city’s crime analysis software related the vehicle registration of a known gang associate to the primary suspects. A “beacon” application notifies the team nearby, as well as the Command Center of the alert. The camera is equipped with a “next generation” codec called Zipstream, so a clip of the vehicle passing by the camera is pushed to law enforcement on site. The camera is capable of rendering details through forensic capture, and the team sees the vehicle occupants are armed with automatic weapons. Knowing the location of their law enforcement assets, Command automatically pushed out notifications of the filtered social media chatter to the nearby detectives and tactical response team. The cloud-based social media app has been listening for known gang language, keywords and locations, focusing the intel to just what is most vital in this operation. A warrant is obtained and the unit leader requests the “go-ahead” for the operation from Command. A traffic management application creates a protective radius around the site operation, freezing traffic and dispatching EMS for potential injuries and HAZMAT should there be toxic drug production onsite. The team executes the warrant and takes key gang members into custody.

                                                                                                               6  The  Federal  Bureau  of  Investigation  (FBI)  compares  license  plates  against  its  National  Crime  Information  Center  (NCIC)  database. As  law  enforcement  agencies  take  advantage  of  advanced  technologies,  the  opportunities  for  using  data  to  help  with  investigations  increases  greatly.  LPR  cameras  locate  license  plates  within  an  image,  decode  them  using  automatic  number  plate  recognition  and  character  recognition.            

  Page  37  of  71    

Each one of these realistic scenarios is not only possible with a well running IoT ecosystem, they represent a ubiquitous development of social and technology fusion. What really makes this work? An even better question is, can this scale, or can hundreds of these scenarios be running simultaneously and continuously in many locations? The Internet of Things links sensors like advanced IP cameras, together with communications, storage, infrastructure, analytics and quality of service. To say that IoT is about just sensors and infrastructure would take us back to the days when virtually every part of a security solution required monitoring or interpretation. With the evolution of IoT, tactical profiles may be identified and potential response scenarios generated, with the most confident automation by analytical processes performed repeatedly. First responders become safer through intelligence; families stay informed and involved.

IoT prominence Measurable outcomes to the impact of IoT are well documented. According to Gartner, IoT product and service suppliers will generate incremental revenue exceeding $300 billion in 2020; Cisco reports an increase in private sector profits of 21% and add $19 trillion to the global economy also by 2020. The McKinsey Global Institute reports $36 trillion operating costs of key affected industries could be impacted by IoT.

  Page  38  of  71    

In 2014, Industrial Internet Consortium7 (IIC) was formed by AT&T, Cisco, GE, IBM and Intel and is focused on accelerating growth by coordinating IoT ecosystem initiatives to connect and integrate objects with people, processes and data. Why is this happening now? There are scalable improvements in each part of the IoT puzzle; sensors like IP cameras are more powerful than ever – it takes a significant amount of consistent processing and image quality to encode as efficiently say, for example Zipstream that can reduce bandwidth and storage by at least 50%. Analytics like LPR and facial recognition run more effectively in cameras with more powerful processing. At IFSEC, last month, one of the industry’s first cameras with built-in facial recognition was introduced. Last year, ultra low light technologies like LightFinder are making video analytics possible right at the “edge” sensor. However, the sensor is no longer an edge, but more like a node in the IoT network linking consuming devices like smartphones and “wearables,” while supported by infrastructure and storage in cloud and near (or embedded in) the sensors. By collecting, storing and analyzing data more cost effectively, reliably and securely, both industrial and consumer markets rely on connectivity. To streamline the processing of satellite images involved with field-testing the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) robot, NASA/JPL engineers developed an application that takes advantage of the parallel nature of the Amazon Web Services (AWS) workflow. AWS recently processed complex 3.2 giga-pixel images to support the ATHLETE robot operations enabling the vehicle to travel across various types of terrain—ranging from smooth surfaces to rolling hills to ruggedly steep terrain, yet also reconfigure on demand to form robot “feet.” For the Mars Science Laboratory, AWS served as one of the primary data processing and delivery pipelines and “allowed us to process nearly 200,000 Cassini [Satellite] images within a few hours under $200.” By connecting “everything” the number IoT devices will be approximately seven times the number of people on earth today by 2020, according to Cisco. The continuing growth in demand from subscribers for better voice, video and mobile broadband experiences is encouraging the industry to look ahead at how networks can be readied to meet future extreme capacity and performance demands.

                                                                                                               7  The  current  priorities  of  the  IIC  are  to  build  end-­‐to-­‐end  security  use  cases,  apply  security  use  cases  to  each  of  the  use  case  groups,  derive  requirements  from  each  use  case,  identify  what  is  common  (architectural),  identify  what  is  one-­‐off  (application-­‐specific),  design  secure,  integration  framework  based  on  combined  use  cases  (with  technology  team)  and  build  test  beds  

  Page  39  of  71    

According to Nokia8, 10,000 times more traffic will need to be carried through all mobile broadband technologies at some point between 2020 and 2030. We made our prediction in 2010 and since then have gathered information from the market which shows that the growth we foresaw is actually happening. The need for more capacity goes hand-in-hand with access to more spectrum on higher carrier frequencies. The new 5G system needs to be designed in a way that enables deployment in new frequency bands. We will see growth between ten and a hundred devices for each mobile communications user – even now many people have a phone, tablet, laptop and a few Bluetooth-enabled devices. The security of security Device, network and application security is critical to IoT's adoption. With all these devices, how can we prepare against seemingly endless security vulnerabilities? According to Good Technology Chief Executive Officer Christy Wyatt, the key question is “What data is ending up on what device and how do I protect it? Cyber Security Is A Journey Not Destination.” Deploying an IP camera capable of handling digital certificates to verify they are a “trusted” non-person entity on a network will be essential to scale IoT security. One method is to validate the identities and permissions of both IP camera and the consumer of the digital multimedia content on the network. IoT in action Monitoring of equipment and people for safety and security, using IoT is underway by Union Pacific, the largest railroad in the United States. IoT devices like acoustic sensors and IP cameras help predict equipment failures and reduce derailment risks. These sensors are placed on or near tracks to monitor the integrity of train wheels. Union Pacific, has been able to reduce bearing-related derailments, which can result in catastrophic events and costly delays, often up to $40 million in damages per incident. By applying analytics to sensor data, Union Pacific can predict not just imminent problems but also potentially dangerous developments well in advance. Train operators can be informed of potential hazards within five minutes of detecting anomalies in bearings or tracks. Retail is an industry also undergoing significant changes using IoT innovation. The ability to detect customer behavior when they visit a “connected retail store” results in improved customer experience.

                                                                                                               8  “5G  use  cases  and  requirements,”  Nokia  Networks  FutureWorks,  2014  

  Page  40  of  71    

These IoT sensors include video cameras and location “beacons” that provide in-shelf availability, inventory and merchandise optimization, loss prevention and mobile payments. Public Safety professionals in the wake of recent events are now closely considering the benefits of IoT devices, not only to do their job better, but also to remain safe. The recent Public Safety Summit held by the Video Quality in Public Safety (VQIPS) working group of the Department of Homeland Security Science and Technology Directorate (DHS S+T) revealed an exciting new program called the Next Generation First Responder Program. “If we were able to track [first responder] status using technology tools, the on scene commanders would know what is happening in real time,” according to Paramedic Don MacGarry of Loudon County Fire and Rescue in Virginia. “Safety is always a priority. We go into high-rise buildings, and sometimes into basements, which turn out to be sometimes the most dangerous places to be, and we don’t have communications;” Victoria Anthony, Master Firefighter, Rockville MD Volunteer Fire Dept. First Responder of the future goals include:

- Be protected from hazards and have the best situation awareness possible

- Be connected to their peers and are able to locate them on demand - Be connected to their commanders and citizens they support

Chem-bio, gas and explosives sensors are wearable IoT devices under consideration for this program. If a police office has a tactical picture of where an active shooter is, they will have a better chance at directing the appropriate response and saving lives. Having improved situation awareness during a fire is essential for placing assets, including what side of the building is burning and what openings are available.

  Page  41  of  71    

IoT devices and their ecosystem will help first responders not only respond to an incident, but control it, and positively impact the safety of our cities.

  Page  42  of  71    

Cyber  Security  of  IoT  sensors  

As users, we feel the effects of network and sensor outages in some extraordinary ways. A communications failure of one of the world’s largest airline carriers created cascading effects for not only the travel industry, but also logistics and distribution of consumer goods. “Internal technical issues” were stated to have affected operations simultaneously at two global financial exchanges. These events also preceded communications in the “Dark Web,” congratulating them on a job well done and referencing the institutions by name. Chances are, you're not so familiar with this hidden network of websites as they require special tools to access. Ironically, this network, often used to sell illegal goods voluntarily, shut down when it was discovered services protocol vulnerabilities could deanonymize server locations. Essentially, the hackers got hacked. A very recent failure of a sensor network shut down the largest petroleum refinery in the Midwest, causing the wholesale price for gasoline in Chicago and St Louis to increase 60¢ per gallon from the previous day. A fault in a submarine optical fiber cable connecting Australia, Guam and Japan also recently failed; however, hundreds of gigabit per second data traffic was rerouted from the impacted section to alternate paths on an optical fiber ring configuration. This avoided a route outage while a cable repair ship was mobilized, transited to the repair site, and implemented repairs in the challenging deep waters. Should this resiliency have not existed, the outage would have meant potential shutdown of credit-card purchases, withdrawing money from ATMs and vital teleconferencing for health care. The two most significant vulnerabilities of IoT devices are9 password attacks and identity spoofing. A better process to establish trusted access to the IoT was required and server-based authentication appeared to provide this.

                                                                                                               9  Source:  Capgemini  Consulting  and  Sogeti  High  Tech,  “Security  in  the  Internet  of  Things  Survey”,  November  2014  

  Page  43  of  71    

However, cyber security that is based on server locations far away from devices connected to the Internet or of the “things” in IoT is becoming less desirable to the network architect and the users they serve. The use of multi-factor authentication (MFA) can permit multiple servers, located closer to the “edge” IP cameras, physical access control panels or communications devices to process more rapid authorization requests. In order to sustain the high performance, increased security requirements and exponentially increasing numbers of IoT sensors and devices, improvement in the authentication process is necessary. One of the most common and secure examples of these high performance security processes is right in your pocket or handbag. Push Notification Services (PNS) highly efficient and secure remote notifications features for Android, iOS and Microsoft smartphone devices. Each IoT smartphone, device, sensor or even IP camera establishes an encrypted IP connection with the PNS and receives notifications over this connection. If a notification for an app arrives when that app is not running, the device alerts the user that the app has data waiting for it. When new data for an app arrives, the provider prepares and sends a notification to the PNS, which pushes the notification to the target device. The PNS establishes the IoT sensor identity Transport Layer Security (TLS) peer-to-peer authentication. This is very favorable and preferable over SSL, especially considering the latest PCI-DSS 3.1 compliance requirements. The IoT device initiates a TLS connection with the PNS, which returns a digital certificate from the server. The device validates this certificate and then sends its device certificate to the PNS, which validates that certificate.

  Page  44  of  71    

The PNS servers also have the necessary certificates, credential authority certificates, and cryptographic keys (both private and public) for validating connections and the identities of providers, corporate servers and IoT devices. Whether it is a text message, video stream or complete Digital Multimedia Content (video, audio and metadata), this process to establish trusted identities is the cornerstone of IoT device cyber security. Moving back to our example of high speed submarine cables, we see the need for resilient connectivity to be maintained and protected against attack. Although different transmission modes provide for connectivity, the architecture and authentication of devices on the network is prefereable. Why not just use “sat-backup” to keep authentication servers connected? The total carrying capacity of a typical submarine cable between the USA and East Asia is in the terabits per second, while satellites typically offer far less, in the thousands of megabits per second. The “Cyber Cloud” operators, governments and enterprises need the ability to quickly deliver differentiated services by activating on notice a virtual pool of bandwidth through resilient architecture. In our previous petroleum example, if caught in time, the IoT sensor network to detect leaking pipes would have notified plant operators to implement a repair in real time. Should a petroleum refinery flow sensor or server come under attack, the usage archives or historical data could be compromised. A cyber attack on a refinery during peak winter (heating) or summer (automobile usage) periods could be catastrophic. Protecting IoT sensor data in motion is important, but intelligence in the wrong hands can be deadly. This is what cyber resilience is all about: not only protecting the operation and transmission of data, but preserving “data at rest.” We know what we need to do to protect IoT devices, but why would corporations invest in these safeguards? To understand, we need to expose risk management professionals to the four main daunting consequences of suffering a breach:

1. class-action lawsuits 2. regulatory fines, penalties and consumer redress 3. reputational damage 4. data and income loss

So called “cyber damage” is also fueling the growth of a new type of business insurance: Cyber security insurance including Network Security and Privacy Liability Coverage. The following diagram illustrates potential components:

  Page  45  of  71    

IoT  Device  and  Solution  Cyber  Insurance  Components  IoT  Reference   F  E  &  O10  

Digital  Multimedia  Content  (DMC)  

Ecosystem  Cyber  Security   PII  Data  Elements  

Legacy  Reference   E&O11   Media  and  Data   Network  Security   Privacy  

    IoT  device/solution  failure  Infringement  of  Intellectual  Property  (other  than  patent)  

Cybercrime  and  Intellectual  Property  Crime  

PII  exposure  by  hacker  

    IoT  performance  degradation   Advertising  &  Personal  Injury  

Unauthorized  Access   IoT  device  loss  or  theft  

    Misconfiguration  Data  at  Rest  compromised  

Transmission  of  Virus  or  Malicious  Code  

Workplace  IoT  device  breach  (ex.  BYOD)  

    Solution  design  Errors  &  Omissions  

Data  in  motion  intercepted  or  denied  transmission/reception  

Theft/Destruction  of  Data   Lost  IoT  Device  

    Failure  to  deliver  services  by  IoT  devices       Cyber  Extortion    

    Breach  of  PII  data  elements       Watering  hole  formation    

    Device/Solution  Overutilization       IoT  to  Botnet  conversion    

    Server  Deanonymization              

    Failure  to  detect  Advanced  Persistent  Threats  (APT)              

    Failure  to  provide  recovery  paths              

In order to authenticate IoT devices, we often rely on both the public network and mobile carriers. Network outages are one big fear of mobile operators and a recent survey by Light Reading estimates that as many as 50% of mobile operators worldwide could be suffering an hour-long outage in a significant part of their network at a rate of once a year as a result of cyber attacks. Also, the attacks are growing, up from 11% in October 2013 to 16% in 2014. The deployment of in-house authentication servers may be a justified expense. The importance of threat intelligence sharing is also creating tough decisions. Does an enterprise keep their name out of the headlines as the next victim or contribute to a safer and secure world through cyber security attack postures? As a leading cyber security consultant recently stated, "When it comes to cyber intelligence, there's strength in numbers."

                                                                                                               10  Failure  of  IoT  device;  Errors  and  Omissions  relating  to  IoT  solution  11  Errors  and  Omissions  

  Page  46  of  71    

The Internet of Things in Safety and Security represents a networking paradigm where interconnected, smart sensors are powered, are protected and continuously generate data and transmit it over the Internet. There are more layers needed to make the IoT sensor operational and secure that must be considered. The primary categories of the most significant processes include:

1. IoT Device Structure – this can include the physical housing of an IP camera, as well as a wireless communication antenna and solar energy collection device

2. Wireless and Wired Communications 3. Cyber Security – the heart of the external, internal cyber security and

device protection functions, this layer also serves to assist in MFA 4. Power Transfer – where energy for storage is acquired; for example

wireless charging or energy harvesting 5. Energy Storage – primarily where volatile data storage and processing

functions 6. Data Exchange – performs protocol negotiation and interoperability 7. Process and Analysis – metadata analysis, efficiency, analytics, energy

management and storage optimization and indexing process 8. Data Storage – the “Thing” in IoT, all sensor data

The term IoT refers to three aspects that are expanded on by our IoT device model: 1.The Thing itself (the device) 2.The Local Network, wired or wireless, using Ethernet, Bluetooth or other connectivity 3.The Internet

  Page  47  of  71    

Data interchange and communication protocol and storage impact to important IoT device to consumer response time. Depending on the urgency of the response required for the event, there may be a need for the device to process certain data internally. Furthermore, there is metadata that describes size, color, speed, trajectory and time of the scene, in the case of an IP camera. Some of this data may be needed urgently, as in the case of a license plate of a vehicle associated with an amber alert or other time sensitive emergency. The object identification, location, processes and services provided are an example of such data. IoT data may statically reside internally, immediately nearby or in mobile objects and IoT data concentration storage points. The data may be distributed widely, but it always must be transmitted and stored securely. This migration or “flow” of IoT data can continue from one secure container to another, until a centralized data store is reached where more sophisticated processing and analysis takes place, like facial recognition or other pattern matching algorithm. Communication, storage, process, data exchange, security and device power are defining factors in the IoT model structure. The IoT sensor must be considered to be less of a “razor blade” and more of an evolving device and resource. This resources most vital part is often its data and so four important choices must be made about the data: how it is collected, how it is stored, how it is processed and how it is protected. With this foundation we can expand our use of IoT to a wide range of data types and formats from different data sources, including time and geo-location tags, and global intelligence. The IoT “Superball” model was developed in cooperation with the Security Applied Sciences Council, ASIS International and The Video Quality in Public Safety Working Group, US Dept. of Homeland Security Science and Technology Directorate.

  Page  48  of  71    

IoT  and  Cyber  Security  FAQ    How  does  certificate-­‐based  authentication  work?    When  presented  with  a  certificate,  an  authentication  server  will  do  the  following  (at  a  minimum):    

1. Has  the  Digital  Certificate  been  issued/signed  by  a  Trusted  CA?  2. Is  the  Certificate  Expired  –  checks  both  the  start  and  end  dates  3. Has  the  Certificate  been  revoked?  4. Has  the  client  provided  proof  of  possession?  

 Has  the  Digital  Certificate  Been  Signed  by  a  Trusted  CA?    The  signing  of  the  certificate  really  has  two  parts.  The  first  part  is  the  certificate  must  have  been  signed  correctly  (following  the  correct  format,  etc).  If  it  is  not,  it  will  be  discarded  immediately.  Next,  The  signing  CA’s  public  key  must  be  in  a  Trusted  Certificates  store,  and  that  certificate  must  be  trusted  for  purposes  of  authentication.    Has  the  Certificate  Expired?    Just  like  a  driver’s  license  or  a  passport,  a  certificate  will  have  2  dates  listed  in  it:  a  date  issued,  and  date  it  is  valid  to  (when  does  it  expire).    When  you  present  an  expired  drivers  license  to  law  enforcement,  it’s  a  problem  as  the  credential  is  no  longer  a  valid  source  of  identity.  “Access-­‐Reject”    An  authentication  server  does  the  same  sort  of  check.    Is  the  certificate  valid  for  the  date  and  time  that  the  authentication  request  comes  in.    This  is  one  reason  why  Network  Time  Protocol  (NTP)  is  so  important  when  working  with  certificates.    Many  of  us  have  seen  problems  where  time  was  out  of  sync.    For  example:  a  certificate  was  presented  on  January  10th  2014  at  11:11am,  but  its  “valid-­‐from”  value  started  on  January  10th  at  11:30am.    This  was  because  of  a  time  sync  issue  where  the  Certificate  Authority  thought  it  was  20  minutes  later  than  the  authentication  server,  and  the  brand-­‐new  certificate  was  not  valid  yet!    Has  the  Certificate  Been  Revoked?    You  are  driving  down  the  road,  and  you  are  pulled  over  by  a  policeman.    The  policeman  asks  for  your  driver’s  license  and  proof  of  insurance.    You  hand  the  officer  a  driver’s  license,  which  is  immediately  checked  for  evidence  of  authenticity,  i.e.:  does  it  look  like  a  valid  driver’s  license  or  a  forgery.    Ok,  it’s  not  fake,  Check.    Next,  expiration:  it  is  not  expired.    Check.    Now  the  policeman  asks  you  to  wait  there,  while  he  goes  back  to  his  squad  car.  

  Page  49  of  71    

 While  in  the  squad  car,  the  officer  will  perform  some  authorization  checks  (are  you  a  registered  owner  of  the  car  you  were  driving,  etc.).    Those  are  not  important  for  this  conversation,  though.    What  is  important  is  that  the  policeman  must  make  sure  your  VALID  drivers  license  was  not  revoked  by  the  DMV.    What  is  the  relationship  between  certificates  and  Active  Directory?    The  difference  lies  between  between  authentication  and  authorization.  A  certificate  issued  by  Active  Directory  Certificate  Services  is  still  just  a  certificate.    It  will  go  through  all  the  authentication  validation  listed  above,  regardless  of  the  fact  that  the  CA  was  integrated  into  AD.    What  is  possible,  is  to  examine  a  field  of  the  Certificate  &  then  to  do  a  separate  look-­‐up  into  AD  based  on  that  field  during  the  authorization  phase.    For  example,  a  certificate  corresponding  to  a  subject  person  is  attempting  authorization.    The  RADIUS  server  will  take  the  certificate  subject  and  do  a  look-­‐up  into  AD  for  that  username.    This  is  where  group  membership  and  other  policy  conditions  will  be  examined,  and  the  specific  authorization  result  will  be  issued.    What's  the  difference  between  two-­‐factor  authentication  and  multifactor  authentication?  I've  seen  both  terms  used,  but  the  specifics  are  still  a  bit  unclear.  What's  the  better  option  in  terms  of  securing  devices  and  systems?    Each  of  these  authentication  frameworks  uses  more  than  a  simple  username/password  scheme  to  identify  an  individual,  but  they  go  about  it  in  different  ways.  Two-­‐factor  authentication  (2FA)  uses  a  single  authentication  step  where  the  individual  authenticates  with  something  he  knows,  for  example  a  login  name,  and  something  he  has,  such  as  a  biometric  component  -­‐-­‐  like  retinal  scans,  fingerprints  or  voice  recognition  -­‐-­‐  or  an  assigned  2FA  token  issued  by  the  organization.  For  example,  when  I  log  onto  my  workstation  it  first  prompts  me  for  my  login  name,  then  prompts  for  the  number  showing  on  my  hard  token  that  I  have  on  my  person.  If  both  match  my  login  data,  then  I  can  then  access  my  files.    Multifactor  authentication  (MFA)  can  include  both  2FA  and  non-­‐2FA  credentials,  but  its  major  distinguishing  factor  is  that  it  is  a  multi-­‐authentication  process.  Using  the  same  example  from  above,  when  I  log  onto  my  workstation  it  prompts  me  for  my  login  name,  and  then  prompts  for  the  number  showing  on  my  hard  token.  I  am  then  prompted  to  enter  a  number  that  is  texted  to  my  mobile  phone.  If  the  information  entered  matches  my  login  data  I  can  then  access  my  files.  In  reality,  instead  of  working  in  conjunction  with  a  2FA  credential,  more  often  than  not  MFA  is  used  with  a  simple  username  and  password,  and  the  number  from  a  text  message  to  a  mobile  phone,  or  some  other  non-­‐2FA  information  such  as  secret  question  responses,  typing  in  text  garbled  on  an  image,  picking  an  image  that  the  user  previously  selected  in  another  session,  or  entering  additional  account  information.  

  Page  50  of  71    

 MFA  and  2FA  require  something  you  know  and  something  you  have  to  authenticate,  and  are  considered  even  when  it  comes  to  security.  However,  information  like  answers  to  a  secret  question,  is  easier  for  attackers  to  discover  or  guess,  thanks  to  the  Internet  of  Things,  social  media  and  other  potential  sources  of  data  leaks,  so  2FA  is  considered  more  secure.  But  the  bigger  question  to  ask  when  deciding  whether  to  use  2FA  or  MFA  is  which  is  more  easily  supported  by  your  applications  and  infrastructure?  If  the  applications  you  wish  to  protect  only  support  one  or  the  other  then  the  answer  is  quite  clear:  use  the  one  supported.  If  the  applications  can  support  both,  2FA  would  be  the  preferred  method  since  the  user  only  has  to  perform  one  authentication  event.  If  the  applications  support  neither,  then  it  might  be  necessary  to  recode  the  application.  Regardless  of  which  method  you  choose,  both  will  require  some  level  of  registration  process  changes,  and  of  course  the  end  users  will  need  to  be  trained  on  how  to  use  the  new  authentication  method  and  how  to  seek  help  should  they  run  into  an  issue  logging  in.        

  Page  51  of  71    

ASIS  International  Security  Applied  Sciences  Facility  Model    The  following  are  block  diagrams  showing  the  progressive  influence  of  control/analysis  system,  network  infrastructure,  policy  and  physical  infrastructure  on  application  locations  where  video  surveillance  is  deployed.    

 

  Page  52  of  71    

 The  following  diagram  adds  the  physical  and  logical  aspects  of  the  network,  together  with  policy.  

       

  Page  53  of  71    

The  following  diagram  adds  the  relationship  of  physical  infrastructure  such  as  physical  wiring  plant,  wireless  communications.  

     

  Page  54  of  71    

The  following  diagram  adds  significant  interoperability  and  data  exchange  paths  between  subsystems  like  Physical  Access  Control,  Communications,  Video  Surveillance.  

   

  Page  55  of  71    

   

  Page  56  of  71    

   

  Page  57  of  71    

UL  2802  –  Standard  for  Performance  Testing  of  Camera  Image  Quality    UL  2802  is  one  of  the  newest  video  imaging  standards  and  provides  progressive  and  objective  test  methods  to  assess  the  image  quality  of  digital  camera  equipment.  The  standard  was  published  in  September  2013  and  the  development  included  input  from  various  stakeholders  such  as  producers,  supply  chain  and  distributers,  authorities  having  jurisdiction,  practitioners,  commercial  /  industrial  users,  government,  etc.      UL  2802  defines  testing  procedures  and  quantifies  image  quality  based  on  an  objective  set  of  performance  tests  that  measure  the  following  nine  image  quality  attributes,  which  are  conducted  on  production  camera  samples:    

• Image  resolution/sharpness  –  measures  how  closely  the  digital  image  captured  by  the  camera  matches  the  actual  image    

• TV  distortion  –  quantifies  the  extent  to  which  the  two  –  dimensional  image  captured  deviates  from  the  actual  image  

• Relative  illumination  –  measures  the  ability  of  a  camera  to  effectively  capture  related  light  intensity  across  an  object        

• Maximum  frame  rate  –  measures  how  effectively  a  camera  can  capture  a  subject  in  motion  at  full  resolution  

• Sensitivity  –  determines  the  amount  of  light  required  to  digitally  re-­‐create  the  image  as  realistically  as  possible    

• Veiling  glare  –  quantifies  the  impact  of  stray  light  on  the  camera        • Dynamic  range  –  assesses  the  ratio  of  the  minimum  and  maximum  light  

intensities  captured  by  the  camera    • Grey  level  –  quantifies  how  well  a  camera  can  differentiate  areas  of  interest  

under  different  illumination,  reflectance  or  luminance  levels  • Bad  pixel  –  measure  the  level  of  pixel  defects  

Since  no  single  attribute  or  criterion  can  provide  a  reasonably  accurate  and  objective  evaluation  of  a  given  camera,  lens,  software,  image  processor,  camera  lens  housing,  electronic  components,  or  any  combination  of  the  like  critical  elements,  UL  2802  uses  several  different  quantifiable  metrics  to  assess  a  video  camera’s  performance.  These  metrics,  along  with  consistent,  documented  test  methods,  eliminate  any  potential  variations  in  the  evaluation  of  a  camera.    It  is  anticipated  that  UL  2802  is  one  of  a  series  of  video  imaging  standards  that  will  be  developed  in  addressing  the  complete  video  ecosystem.      During  the  test  program,  the  manufacture  and  testing  organization  (UL)  collaborate  to  ensure  that  the  video  camera  settings  are  optimized  and  the  test  results  reflect  the  camera’s  best  abilities.  The  process  typically  involves  fine  tuning  resolution  properties;  optimizing  exposure  time  and  gain  during  each  test,  enabling  or  disabling  default  features,  etc.,  to  optimize  camera  performance  and  achieve  the  most  favorable  test  results  based  on  the  cameras  abilities.  The  process  of  optimizing  settings  is  no  different  from  what  is  typically  done  during  deployment  of  a  video  system.  

  Page  58  of  71    

 Below  are  a  few  unique  features  of  the  UL  test  program  that  offers  a  new  approach  from  traditional  test  methods.  All  test  and  test  apparatus  are  comprehensively  detailed  in  the  published  standard.    Electronic  Test  Targets  Traditional  methods  for  testing  video  camera  image  quality  involve  the  use  of  standardized,  published  test  charts  for  resolution  and  grey  level  tests.  UL’s  program  implements  a  different  approach  that  incorporates  calibrated  light  sources  of  known  luminous  levels,  frequency,  spatial  orientation,  and  grey  levels.  Each  of  these  factors  contributes  to  a  video  camera’s  ability  to  capture  record  and  store  an  image  relative  to  the  actual  object.  The  electronic  test  targets  that  are  used  for  the  test  procedures  eliminates  some  of  the  known  potential  inconsistencies  associated  with  the  use  of  printed  test  charts  under  very  specific  lighting  conditions  and  lighting  angles,  which  can  be  difficult  to  control.  The  electronic  test  targets  are  calibrated  and  measured  during  each  test  program,  with  all  of  the  data  and  settings  recorded  for  each  test.    

   Circular  Edge  Analysis    

  Page  59  of  71    

Image  resolution  is  a  critical  test  in  that  it  is  a  measure  of  how  closely  the  digital  image  captured  by  the  camera  matches  the  actual  subject.  Digital  images  are  made  up  of  pixels,  which  are  stored  in  the  relative  dimension  of  the  actual  image.  An  accurate  resolution  measurement  requires  an  evaluation  of  a  camera’s  lens  and  sensors,  as  well  as  its  imaging  software,  and  is  often  presented  as  line  pairs  per  picture  height  or  LP/PH.  The  metric  is  a  measure  of  how  many  distinguishable  alternating  colors  can  be  represented  in  an  image.    Modulation  transfer  function  (MTF)  is  a  technique  used  to  quantify  image  resolution  in  more  complex  images.  MTF  corresponds  to  the  spatial  frequency  of  image  line  pairs  per  picture  height  (LP/PH),  that  is,  the  ability  to  represent  the  “real”  object  by  taking  the  light  intensity  and  plotting  it  along  imaginary  lines  traversing  the  representation  of  the  object.    Other  mechanisms  for  measuring  distortion  are  detailed  in  ISO  12233  (photography—Electronic  still  picture  cameras—Resolution  measurements),  and  in  the  standard  mobile  imaging  architecture  (SMIA)  forum  specification.  UL  2802  uses  the  same  spatial  frequency  response  (SFR)  method  for  resolution.  The  primary  difference  is  that  UL  2802  uses  a  circular  edge  analysis  method  (see  “The  Circular-­‐edge  Spatial  Frequency  Response  Test,”  by  Richard  Baer,  Agilent  Laboratories,  2002)  versus  a  more  traditional  slanted-­‐edge  method  to  detect  the  transition  edge  of  a  known  image.  Additional  benefits  of  the  circular  edge  methods  include  an  accurate  method  of  averaging  SFR  from  all  circular  directions  versus  multiple  (horizontal  and  vertical)  measurements  using  slanted-­‐edge  techniques.  An  added  benefit  is  that  consistency  of  measurements  is  improved  using  circular-­‐edge  techniques,  as  the  slanted-­‐edge  SFR  assumes  that  the  transition  edge  of  the  printed  resolution  chart  is  a  straight  line  and  factors  such  as  lens  distortion  can  deviate  the  edge  from  a  straight  line,  resulting  in  measurement  inaccuracies.  The  benefits  of  using  the  electronic  test  targets  and  circular  edge  techniques  for  measuring  SFR  are  cumulative  in  producing  accurate  test  data.    

         Circular  edge  vs.  slanted  edge.    Performance  Score  Each  test  results  in  an  interpolated  performance  score  that  is  calculated  from  traditional  photographic  units.  UL  reports  the  scores  in  two  usable  units  of  measure.  For  simple  comparisons  the  UL  units  scores  of  0-­‐100  makes  comparing  one  camera’s  test  score  to  another’s  relatively  simple  without  being  a  camera  expert.  For  those  that  are  more  technically  involved,  the  traditional  photographic  unit  scores  

  Page  60  of  71    

may  be  more  meaningful  in  comparing  test  results.  Either  way,  the  performance  scores  reflect  the  image  quality  achieved  for  each  test  parameter.    Performance  scores  will  help  a  video  system  integrator  make  an  accurate  decision  of  what  camera  would  be  best  for  their  particular  use  case  based  on  known  conditions.  For  example,  if  I  need  a  camera  that  will  perform  well  under  low  lighting  condition  and  with  fast  moving  objects,  One  may  want  to  compare  camera  parameters  that  specifically  relate  to  those  conditions  such  as  sensitivity,  dynamic  range  and  frame  rate.    No  single  number  or  criteria  can  provide  a  reasonably  accurate  and  objective  evaluation  of  a  given  camera  therefore  it  is  normal  that  an  integrator  will  need  to  consider  multiple  parameters  based  on  the  camera’s  use  case  application.  UL  2802  is  a  standard  that  provides  objective  test  results  based  on  the  cameras  tested  image  quality.    Other  UL  2802  Considerations  Unlike  other  UL  Standards  that  generally  focus  on  addressing  fire  and  shock  safety  concerns,  UL  2802  provides  guidance  for  both  safety  and  performance  characteristics  of  cameras.  Video  cameras  evaluated  according  to  the  performance  criteria  of  UL  2802  must  also  comply  with  the  safety  requirements  found  in  one  of  more  of  other  applicable  product  Standards.  These  Standards  include:   UL  60950-­‐1,  the  Standard  for  Safety  of  Information  Technology  Equipment,  Safety  –  Part  1:  General  Requirements   UL  60065,  the  Standard  for  Safety  of  Audio,  Video,  and  Similar  Electronic  Apparatus  –  Safety  Requirements   UL  62368-­‐1,  the  Standard  for  Safety  of  Audio/Video,  Information  and  Communication  Technology  Equipment  –  Part  1:  Safety  Requirements   UL  2044,  the  Standard  for  Safety  of  Commercial  Closed  CircuitTelevision  Equipment      Video  cameras  used  in  outdoor  settings  must  also  comply  with  the  safety  requirements  found  in  UL  62368-­‐1  60950-­‐22,  the  Standard  for  Safety  of  Information  Technology  Equipment  –  Safety  –  Part  22:  Equipment  to  be  installed  Outdoors.    This  progressive  camera  image  quality  standard  can  assist  the  end  user  in  determining  the  most  appropriate  video  camera(s)  for  specific  use  cases.      

  Page  61  of  71    

Tactical  Video:  emerging  Standards;  UL  3802        

  Page  62  of  71    

 

Forensic  Video  Program  Readiness    Recorded  video  and  related  feature  data  of  events  is  one  of  the  first  and  most  important  resources  for  incident  review.  But  what  is  available  in  this  data,  and  what  are  the  opportunities  for  industrial  security,  first  responders,  operations  management,  safety  and  loss-­‐prevention  professionals?  To  understand  this,  we  first  need  to  define  what  is  included  with  this  “forensic”  video  data  and  then  apply  a  process  for  its  use.    

Digital  Multimedia  Content  —  more  than  just  video  data    Digital  Multimedia  Content  (DMC)  is  also  known  as  digital  video  data,  IP  video  content,  or  Digital  Multimedia  uncompressed  and  may  also  be  referred  to  as  original,  copied,  local  or  virtual.  Compressed  DMC  is  the  most  common  video  data  available  that  has  been  transcoded  from  the  original  DMC  in  an  industry-­‐standard  file  format,  resulting  in  a  reduced  size  and  network  bandwidth  required  to  represent  the  original  data  set.  Advances  in  h.264  video  compression,  the  ability  to  store  DMC  within  the  camera  or  video-­‐encoding  device  itself  and  virtualized  or  cloud  computing  have  dramatically  improved  the  volume  and  duration  of  video  data  available  to  investigations.    Uncompressed  DMC  or  a  copy  of  the  original  DMC  with  no  further  compression  or  loss  of  information  that  is  in  an  industry-­‐standard  file  format  —  although  desirable  by  professional  video-­‐evidence  examiners  —  is  often  unavailable  and  can  be  an  unreasonable  expectation  due  to  the  far  larger  storage  requirements.  Given  the  choice  between  having  compressed  video  evidence  that  can  be  used  together  with  other  data,  still-­‐image  photography  is  what  most  security  professionals  prefer.    

Forensic  Review  The  act  of  applying  forensic  video  technology  to  this  DMC  defines  “forensic  video  review.”  Some  of  these  review  tasks  include  playback  and  analysis  of  DMC,  together  with  applying  a  scientific  methodology  of  forensic  video  analysis.  Also  important  is  the  use  of  DMC  evidence  in  the  legal  setting,  performing  data  recovery  as  needed,  performing  forensic  image  comparison  and  the  development  of  a  visual  presentation  of  evidence.    DMC  authentication  and  tamper  detection  are  examples  of  maintaining  the  chain  of  custody  for  DMC  evidence  as  specified  under  Law  Enforcement  and  Emergency  Services  Video  Association  “Guidelines  for  the  Best  Practice  in  the  Forensic  Analysis  of  Video  Evidence.”    

  Page  63  of  71    

Design  considerations  Applying  an  understanding  of  the  effect  of  light  on  the  scene  can  improve  the  image  quality  of  the  video  content.  Advances  in  camera  technology  that  produce  usable  color  or  “find  the  light”  in  dark-­‐  or  low-­‐illumination  scenes  are  improving  forensic  video  content.    The  design  of  the  video  solution  to  provide  maximum  coverage  is  of  great  importance  for  systems  used  for  forensic  review.  Using  standards-­‐based,  high-­‐image  quality  sources  like  HDTV  IP  cameras  and  technologies  to  accommodate  difficult  lighting  will  improve  the  recorded  image  quality.    

Video  content  analysis  Applications  that  use  video  analytics  can  perform  complex  repetitive  functions  such  as  object  detection  and  recognition  simultaneously  on  many  channels  of  video.  These  tools  can  provide  improved  searches,  based  on  object  characteristics  and  behavior.    Digital  Multimedia  Evidence  (DME).  The  purpose  of  referring  to  this  evidence,  as  “multimedia”  is  essential  in  understanding  the  different  digital  data  categories  included.  Video  content,  audio  content,  metadata-­‐incorporating  object  characteristics  such  as  color,  size,  trajectory,  location-­‐based  information,  relevant  IP  addresses,  recording  time  and  system  time  may  be  attached  or  associated  with  a  digital  video  file.      Designers  consider  this  where  the  system  uses  a  large  quantity  of  cameras  that  require  monitoring  for  specific  conditions  or  behaviors  that  are  capable  of  being  recognized.    The  setup  and  installation  are  relatively  simple  for  the  video  analytics  subsystem,  which  has  high,  sustained  accuracy  for  the  types  of  behaviors  and  objects  recognized.  With  video  synopsis  or  summarization,  a  condensed  clip  of  all  motion  for  selected  criteria  is  continuously  generated  and  stored,  allowing  an  “instant  review”  of  a  readily  available  “video  synopsis.”  It  is  possible  to  summarize  a  24-­‐hour  period  of  event  entries  in  as  little  as  15  minutes,  reducing  incident-­‐review  time  by  at  least  50  percent.  Video  analytics  offering  abnormal  scene  detection  allows  the  user  to  set  specific  object  criteria  and  direction.  The  scene  is  analyzed  continuously,  and  abnormal  behavior  differing  from  the  majority  of  the  scene  content  is  detected  and  annunciated  or  marked  for  later  review.    Video  analytics  embedded  in  the  network  camera  represents  a  growing  segment  where  applications  run  and  values  or  decisions  based  on  recognition  are  available  with  the  “edge”  network  camera  and  minimal  software.  One  popular  example  in  retail  and  quick-­‐service  establishments  is  the  “people  counter”  where  the  network  camera  and  built-­‐in  app  return  the  number  of  people  

  Page  64  of  71    

passing  into  a  zone,  through  a  boundary,  or  into  the  field  of  view.  This  can  provide  criteria  on  which  to  increase  camera  frame  rate  and  stored  resolution  during  the  time  of  highest  traffic.  Another  popular  video-­‐recognition  solution  that  runs  either  as  an  embedded  network  camera  application  or  in  the  Video  Management  System  is  fixed  License  Plate  Recognition  and  Capture  (LPR/LPC).  This  specialized  app  captures  license  plate  information  for  immediate  processing  by  LPR  software.  The  software  may  run  in  a  rapid-­‐acquisition  mode  and  compare  plates  later  against  an  approved  list  or  perform  the  recognition  sequentially  as  the  vehicles  pass  within  the  camera  field  of  view.  In  either  case,  LPR  is  a  mature  application  embraced  by  law  enforcement,  electronic-­‐toll  collection,  and  parking  management  organizations;  the  trend  to  embed  this  function  reduces  cost  and  allows  greater  flexibility.    “Heat”  activity  mapping  provides  a  visual  color-­‐coded  summary  showing  how  people  have  moved  in  the  camera  scene  for  a  fixed  duration.  Useful  in  retail  environments  where  “business  intelligence”  data  is  needed,  this  type  of  video  content  analysis  can  improve  safety  by  analyzing  the  flow  of  pedestrian  and  vehicular  traffic  in  a  facility.  Understanding  personnel  traffic  flow  will  often  help  camera  placement  and  ultimately  the  video  forensic-­‐review  process.      Checklist:  preparing  for  digital  forensics  –  Issues/opportunities    •   Digital  multimedia  content  (DMC),  incorporating  forensic  video  •   Cost  assessment  for  prep:  balance  cost-­‐effective  with  the  technically  feasible  •   Target  collection  capability  on  the  risks  to  the  business/event/assets  •   Consider  implementing  ALICE:  alert,  lockdown,  inform,  counter  and  evacuate*  •   Collect  admissible  evidence  within  the  legal  compliance  requirements:  review  the  legality  of  any  monitoring;  not  a  technical  issue  of  what  can  be  obtained  through  forensic  video  review    •   All  forms  of  potential  evidence  should  be  considered,  not  only  IP  cameras  or  legacy  CCTV  cameras,  personnel  records,  access  control  systems,  still  images  •   Understand  the  functional  differences  between  systems:  Observation,  Forensic  Review  and  Recognition/Content  Analysis  •   Understand  the  difference  between  pixel  density  and  visual  acuity/image  processing  and  how  the  highest  quality  video  content  is  produced  •   Differentiate  between  video  content  analysis/recognition  systems  optimized  for  “pro-­‐active”  vs  “reactive”,  understanding  that  many  “reactive”  tools  are  best  for  forensic  video  review    

Checklist:  implementing  a  forensic  video  readiness  program    

  Page  65  of  71    

1.   Define  the  business/industrial/first  responder  scenarios  that  require  digital  multimedia  content  (DMC),  incorporating  forensic  video  2.   Identify  available  sources  and  different  types  of  potential  evidence  3.   How  will  you  retrieve  the  DMC?  4.   Establish  the  capability  for  securely  gathering  legally  admissible  evidence  to  meet  the  requirement  5.   Establish  a  policy  for  secure  storage  and  handling  of  potential  evidence  Ensure  monitoring  is  targeted  to  detect  and  deter  major  incidents  (consider  ALICE  and  proactive  vs  reactive  technologies)  6.   Specify  circumstances  when  escalation  to  a  formal  investigation  (which  may  use  the  digital  evidence)  should  be  launched  7.   Train  staff  in  incident  awareness,  so  that  all  those  involved  understand  their  role  in  the  digital  evidence  process  and  the  legal  sensitivities  of  evidence  8.   Document  a  sample  case  with  forensic  video  evidence,  use  as  a  model  to  describe  incident  and  its  impact  9.   Ensure  legal  review  to  facilitate  action  in  response  to  the  incident    

Top  technology  considerations  in  forensic  video    •   Simplified  high  quality  redundancy  of  recording:  “edge”  camera  recording  •   High  quality,  High  Definition,  low  light  tech  (full  color,  thermal)  •   “Proactive”  “Ahead  of  the  threat”  advance  warning  video  tech  (abnormal  detection)  •   “Reactive”  video  technologies  help  investigations  (video  summarization,  synopsis,  LPR,  face  location)  •   Video  +  Mobility  and/or  Alarm  Automation        

  Page  66  of  71    

Criminal  Pattern  Identification  and  Security/Video  Data    Is  crime  cyclic  in  nature?  Can  we  predict  when  it  will  occur  in  cities?  How  does  this  impact  your  IT  operation  and  how  can  you  leverage  analytics?    We  can  explore  the  efforts  of  Chicago  and  Philadelphia,  Phoenix  and  Dallas  in  new  crime  fighting  efforts  using  data  analytics,  cloud  computing,  physical  security  and  predictive  policing  efforts.    How  does  a  city  analyze  crime  statistics  and  then  execute  crime  prevention?  Can  crime  mapping  reveal  problem  locations  not  considered  previously?  Temporal  crime  analysis  can  often  reveal  trends  for  different  times  and  locations  in  a  city.  Today's  crime  fighting  team  now  often  includes  persons  experienced  in  crime  analysis  and  psychology  to  explain  and  sometimes  predict  a  higher  possibility  of  data  center  breaches,  business  interruption  and  violent  crime.      Considering  the  unique  viewpoints  of  IT  management,  police,  attorneys,  and  physical  security  professionals,  the  review  of  crime  data  and  predictions  is  significant,  from  video  data  acquisition  to  dissemination  and  policy.        

  Page  67  of  71    

Linking  DMC  to  policy    See  the  chart  below  as  an  evolving  overview  how  data  is  linked  to  policy.    DMC12Acquisition   DMC    Usage   DMC    Storage   DMC    Compliance  Object,  incident  capture   Search   Retention   Solution13  

Interoperability  

Categorization  of  Content  

Monitoring,  Analysis,  and  Analytic  Applications  

Dissemination  and  Information  Sharing  

Auditing  

Access   Secure  Transmission  

System/Content  Security  

Video  Content  Management  Systems  and  Technology  

Sources   Relationship  to  other  databases  

Back-­‐Up/Continuity  of  Operations  Planning  (COOP)  Issues  

Operational  Impacts  

Compliance      Retention,  release  and  DMC  destruction  req't  

Governance  Issues  

Community   Privacy      Social  and  Environmental  Issues  

               

                                                                                                               12  Digital  multimedia  content  (DMC)  is  defined  as  including  the  video  content  itself,  plus  associated  metadata  (feature  data)  and  audio  13  DMC  acquisition  devices,  virtualization,  application  licensing,  analysis  subsystems,  content  distribution  and  DMC  rendering  and  consumption  

  Page  68  of  71    

Implementation  

Project  implementation  plan  for  a  network  video  surveillance  solution    1. Planning  

a. Project  commencement  meeting:  Introduce  contractor  personnel  to  other  parties  involved  

b. Determine  impact  of  other  projects  being  undertaken  at  the  same  time.  c. Review  the  client’s  requirements  and  concerns  d. Verify  policy  compliance  e. Review  the  IT  department  requirements  and  concerns  f. Contractor  to  review  and  interpret  the  project  documents  g. Facility  Infrastructure  Review  -­‐  conduct  a  walk-­‐through  of  all  work  areas  

with  the  client  h. Contractor  will  be  required  to  describe  specific  work  methods  and  

proposed  schedules  i. Attend  periodic  IT  Project  Meetings:  review  the  status  of  current  and  

planned  activities,  review  the  schedule  2. Infrastructure  impact  

a. Develop  and  implement  infrastructure  impact  plan  b. Develop  bandwidth/network/routing  maps  c. Develop  bandwidth  measurement  scenarios.  d. Bandwidth  calculation  

i. Note  individual  security  device  (eg.  Camera)  bandwidth  values  ii. Use  camera  and  recorder  bandwidth  calculators  as  required.  iii. Accumulate  to  nearest  network  switch—apply  totals.  iv. Accumulate  multiple  network  switch  bandwidth—apply  totals.  v. Accumulate  total  security  device  (eg  camera)  bandwidth  for  each  

aggregation  point  (eg  network  video  server  or  physical  access  control  panel)  

vi. Apply  totals.  vii. Note  individual  user  monitoring  station  bandwidth  values.  viii. Note  command  center  bandwidth  values  ix. Apply  scenarios  given  in  Command  Center  Display  Scenarios  chart  x. Accumulate  to  nearest  network  switch;  apply  totals  xi. Accumulate  typical  multiple  user  monitoring  station  bandwidth  

values  for  each  aggregation  point,  apply  totals.  e. Infrastructure  protocol,  power,  QoS  

i. Verify  infrastructure  compatibility  and  protocol  support.  ii. Verify  QoS  and  desired  performance  (eg  with  PACS,  credential  

acceptance  delay;  with  IP  Video,  refresh  rate,  control  delay,  stream  quality,  individual  image  capture  acuity)  

  Page  69  of  71    

iii. Consider  that  cable  infrastructure  needs  to  support  bandwidth  capacity  requirement.  

iv. Consider  that  cable  installation  and  cable  quality  significantly  impact  data  rate.  

v. Verify  design  of  wiring  plant  topology  and  network  switches  need  to  support  placement  of  security  and  surveillance  system  devices.  

f. Power  i. Deploy  PoE  systems  effectively  to  support  the  system’s  power  requirements  

ii. Verify  redundant  power  as  required  g. Network  infrastructure  simulation  

i. Verify  network  usage  scenarios.  ii. For  example,  recording  system  utilization  with  recording  streams,  

monitoring  users.  iii. Network  switch  functions  to  support  bandwidth  load  and  failure  

scenarios.  iv. Verify  recovery  from  the  most  common  and  reasonable  

infrastructure  failures.  v. Simulate  as  many  network  conditions  and  loads  as  possible  for  

components,  edge  devices,  and  infrastructure.  3. Commissioning  

a. Verify  the  network  device  commissioning  plan  to  specify  the  system  deployment.  

b. Perform  step-­‐by-­‐step  staging,  programming,  installing,  and  commissioning  tasks.  

4. Diagrams  a. Verify  that  the  following  diagrams  are  available:  b. Security  block  diagram.  c. Data  closet  design.  d. Security  device  type  schedule  and  bill  of  materials.  e. Security  device  type  detail.  f. Riser  diagrams.  g. Point-­‐to-­‐point  diagrams.  h. Command  center  elevations  and  stretchout.  i. Command  center  sequence  of  operations  by  scenario  

5. System  Bills  of  material  (BOM)  a. Master  bill  of  material  (BOM)  to  include:  b. Security  device  BOM  c. Telecom  Room  BOM.  d. Command  center  BOM.  e. Workstation  BOM.  

6. Acceptance  testing  a. Acceptance  testing  performed  after  the  completion  of  a  successful  and  

complete  system  burn-­‐in  period  

  Page  70  of  71    

b. Acceptance  testing  should  include  testing  individual  devices  for  operation,  scenarios  and  system  responses  

c. All  access  control  points,  intrusion  detection  points,  video  cameras,  and  intercom  systems  require  testing  and  observation  to  ensure  that  they  operate  as  required  in  the  construction  documents  

d. In  order  to  account  for  all  lighting  conditions,  video  cameras  must  be  examined  during  the  day  and  at  night  

e. Acceptance  testing  may  also  include  a  “defeat  the  system”  test  to  demonstrate  that  there  are  no  potential  shortcomings  within  the  hardware  and  software  system  that  would  compromise  the  integrity  of  the  system  under  normal  operating  conditions  Acceptance  testing  is  to  be  complete  and  test  documentation  approved  by  the  client  prior  to  the  project  completion  

f. Verify  performance  requirements  to  policy  g. Video-­‐based  acceptance  test.  

7. Framework  for  continuous  performance  verification  includes  performance  testing  metric  and  positive  influence  against  possible  legal  challenges  to  video  evidence.  

8. Training.    

 Figure  1  Sample  Security  Project  Timeline  (Gantt  Chart)    

     

  Page  71  of  71    

INDEX      

“  

“Report  of  the  School  Safety  Infrastructure  Council”  ·  7  

A  

ASIS  International  ·  17  

C  

Consumer  Electronics  Association  ·  24  Continuity  of  Operations  Planning  ·  41  

D  

Digital  multimedia  content  ·  3  

F  

forensic  video  review.  ·  36  forensic-­‐ready  ·  8  

L  

Law  Enforcement  Video  Association  ·  19  

P  

pixels  on  target  ·  8  

S  

Security  Applied  Sciences  Council  ·  18  Security  Industry  Association  ·  18  Security  Industry  Council  ·  19  

U  

Underwriters  Laboratory  ·  19  

V  

Video  Content  Analysis  ·  3  

   


Recommended