+ All Categories
Home > Documents > Distortion in elementary transistor circuits

Distortion in elementary transistor circuits

Date post: 24-Mar-2023
Category:
Upload: khangminh22
View: 0 times
Download: 0 times
Share this document with a friend
93
Willy Sansen 10-05 181 Distortion in elementary transistor circuits Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium [email protected]
Transcript

Willy Sansen 10-05 181

Distortionin elementary transistor circuits

Willy Sansen

KULeuven, ESAT-MICASLeuven, Belgium

[email protected]

Willy Sansen 10-05 182

Why distortion ?

mc

f

mc

fCM3

Non-linearity :distortion

Ch1 Ch2 Ch1 Ch2

Mixing up channels !!!

Willy Sansen 10-05 183

Table of contents

Definitions : HD, IM, intercept point, ..Distortion in a MOST

Single-ended amplifier

Differential amplifier

Distortion in a bipolar transistorReduction of distortion by feedbackDistortion in an opampOther cases of distortion and guide lines

Willy Sansen 10-05 184

Linear distortion

vIN

t

vOUT

t

vOUTvIN

f

High-pass filter

Willy Sansen 10-05 185

Linear distortion

vIN

t

vOUT

t

vOUTvIN

f

Low-pass filter

Willy Sansen 10-05 186

Non-linear distortion

vIN

vOUT

t

tvIN

vOUT

QRounded or compressed

Quiescent point

Expanded

Willy Sansen 10-05 187

Soft and hard non-linearity

vIN

vOUT

t

tvIN

vOUT

QSoft non-lin.

vIN

vOUT

t

tvIN

vOUT

QHard non-lin.

Willy Sansen 10-05 188

Non-linearity : by power series

vIN

vOUT

t

tvIN

vOUT

QSoft non-lin.

vOUT = a0 + a1vIN + a2vIN

2 + a3vIN3 + ...

vIN(t) vOUT(t)

Willy Sansen 10-05 189

How to find a0, a1, a2, a3, ...

y = a0 + a1u + a2u2 + a3u3 + …

a0 = y a1 =dydu u = 0

a3 = d3y

du3 u = 0 61

u = 0

a2 = d2y

du2 u = 0 21

Willy Sansen 10-05 1810

Definition of harmonic distortion HD

y = a0 + a1u + a2u2 + a3u3 + …

With u = U cos ωt cos2 x = 1/2 ( 1 + cos 2x)cos3 x = 1/4 ( 3 cos x + cos 3x)

y = a0 + a1u + a2u2 + a3u3 + … = a0 +

(a1+ a3U2) U cos ωt + U2 cos 2ωt + U3 cos 3ωt

HD2 = U

4a22

a34

3

21

41a2

a1

a3a1

HD3 = U2

Willy Sansen 10-05 1811

Amplitude HD versus input signal

U

HD10 %

1 %

0.1 %

- 20 dB

- 40 dB

- 60 dB

0.01 0.1 1

HD2

HD3

slope 1

slope 2

Low-distortionregion :slopes 1 and 2

Noise

Willy Sansen 10-05 1812

HD of a resistor

HD (dB)

Output Voltage (Vptp)

slope 1

slope 1

slope 2

slope 2

THD = HD22 + HD3

2 + …

HD2

Willy Sansen 10-05 1813

Output spectrum

Freq. (Hz)

Output amplitude (dB)

HD2 HD3

2f 3ff

Willy Sansen 10-05 1814

Definition of intermodulation distortion IM

y = a0 + a1u + a2u2 + a3u3 + …

with u = U (cos ω1t + cos ω2t )

y = a0 + …

IM2 = 2 HD2 = U

IM2 at ω1± ω2 IM3 at 2ω1± ω2 and ω1± 2ω2

a2a1

a3a14

3IM3 = 3 HD3 = U2

Willy Sansen 10-05 1815

IM components

f2f1-f2 f1 f2 2f2-f19 10 11 12

2f1 f1+f2 2f2 20 21 22

3f1 2f1+f2 2f2+f1 3f230 31 32 33 MHz

0 f2-f10 1

IM3IM3IM3IM3IM2IM2 HD2 HD2 HD3 HD3

F F

Willy Sansen 10-05 1816

IM components

f2f1-f2 f1 f2 2f2-f19 10 11 12

2f1 f1+f2 2f2 20 21 22

3f1 2f1+f2 2f2+f1 3f230 31 32 33 MHz

0 f2-f10 1

IM3IM3IM3IM3IM2IM2 HD2 HD2 HD3 HD3

a1U

2 x or 6 dB

3 x or 9.5 dB

a3U334 a3U31

4a2U2a2U2 a2U21

2

IM3 3 x larger !Next to F’s !

Willy Sansen 10-05 1817

Output spectrum of amplifier for IM

Output amplitude (dB)

Freq. (MHz)

IM3IM3

Ref.: J.Silva-Martinez, Kluwer 1993

Willy Sansen 10-05 1818

Amplitude IM3 versus input signal

Vin (dB)Noise

Vout (dB)

a1Vin

43 a3Vin

3

VNout

IM3

IMFDR3

DRN

IP3

1 dB -1 dBCompressionpoint

IP3 is the IM3Intercept point

SFDR3

Willy Sansen 10-05 1819

Relation IP3 and IM3

Vin

Vout

a1Vin

43 a3Vin

3

VNout

IM3

IMFDR3

DRN

IP3

1 dB IP3 is Vinwhere IM3 = F

IP3 =a1a33

4

= VinIM3

1

= VindB - IM3dB21

Willy Sansen 10-05 1820

Vin

Vout

a1Vin

43 a3Vin

3

VNout

IM3

IMFDR3

DRN

IP3

1 dB

Relation IMFDR3 and IP3

IMFDR3 = max DR@ VNout = 4

3 a3Vin3

IMFDR3 =

a1a33

4 1VNin

2

3

= IP3VNin

( )2/3

= (IP3dB-VNindB)32

Willy Sansen 10-05 1821

Vin

Vout

a1Vin

43 a3Vin

3

VNout

IM3

IMFDR3

DRN

IP3

1 dB

= IP3dB - 9.6 dB

-1 dB is x 0.891

Vin1dBc = 0.109a1a33

4

Vin1dBc = 0.109 IP3

The IP3 and -1 dB compression point

Willy Sansen 10-05 1822

Relationship exercise

Vin

Vout

a1Vin

43 a3Vin

3

VNout

IM3

IMFDR3

DRN

IP3

1 dBa1 = 20 a3 = 0.4 Vin = 0.45 VRMS or 6 dBm

IP3 = 6 + 25 = 31 dBm

IM3 = 0.3 % or -50 dB

VNin = 30 µVRMS (-78 dBm)

IMFDR3 = 119 = 73 dB32

Vin1dBc = 21 dBm

Willy Sansen 10-05 1823

Definition of crossmodulation distortion CM

y = a0 + a1u + a2u2 + a3u3 + …

with u = U cos ω1t + U (1 + mc cos ωct ) cos ω2t

CM3 = mc U2 = mc IM3 43

mc

f

mc

fCM3

a3a1

ω1 ω2 ω1 ω2

Willy Sansen 10-05 1824

Table of contents

Definitions : HD, IM, intercept point, ..Distortion in a MOST

Single-ended amplifier

Differential amplifier

Distortion in a bipolar transistorReduction of distortion by feedbackDistortion in an opampOther cases of distortion and guide lines

Willy Sansen 10-05 1825

iDS = K (vGS - VT)2 WL

IDS + ids = K (VGS + vgs - VT)2

IDS is the DC componentiDS is the DC + ac componentids is the ac componentIds is the amplitude of the ac component

Distortion in a single-MOST amplifier

K = K’

Willy Sansen 10-05 1826

DC and ac components

vIN

iDS

t

tvIN

Q

IDS : DC componentiDS : DC + ac componentids : ac componentIds : amplitude of the ac

component

Ids

IDSiDS

ids

Willy Sansen 10-05 1827

IDS = K (VGS - VT)2 WL

IDS + ids = K (VGS + vgs - VT)2

ids = K (VGS + vgs - VT)2 - K (VGS - VT)2

ids = 2K (VGS - VT) vgs + K vgs2

Distortion in a single-MOST amplifier

K = K’

Willy Sansen 10-05 1828

ids = 2K (VGS - VT) vgs + K vgs2

or ids = g1vgs + g2vgs2 + g3vgs

3 + …

g1 = 2K (VGS - VT)g2 = Kg3 = 0

IM2 = Vgs =g2g1

& IM3 = 0Vgs

2(VGS-VT)

Coefficients a1, a2, a3 by comparison

WL

K = K’

Willy Sansen 10-05 1829

Normalized current swing

ids = 2K (VGS - VT) vgs + K vgs2 iDS = K (vGS - VT)2

or y = a1u + a2u2 + a3u3 + ..

y = =ids

IDS

y = = u + u2Ids

IDS

2 vgs

VGS - VT+

14

2 vgs

VGS - VT( )2

14

Vgs

(VGS - VT)/2U =

y is the relative current swing !

Willy Sansen 10-05 1830

Numerical example

The peak value of Vgs is Vgsp = 100 mV(then VgsRMS = 100 /√2 = 71 mVRMS)

if VGS-VT = 0.5 V then Vgsp/[ 2(VGS-VT] = 0.1

gives IM2 = 10 % (HD2 = 5 %) & IM3 = 0

The relative current swing U = 0.1/0.25 = 0.4 !

Willy Sansen 10-05 1831

In generalids = gmvgs + K2gmvgs

2 + K3gmvgs3 +

govds + K2govds2 + K3govds

3 +gmbvbs + K2gmbvbs

2 + K3gmbvbs3 +

K2gm&gmbvgsvbs + K3,2gm&gmbvgs2vbs

+ K3,gm&2gmbvgsvbs2 +

………… +K3gm&gmb&govgsvdsvbs

More coefficients a1, a2, a3 ...

Willy Sansen 10-05 1832

Distortion of a MOST diode

iDS = K (vDS - VT)2

y = =ids

IDS

y = = u + u2Ids

IDS

2 vds

VDS - VT+

14

2 vds

VDS - VT( )2

14

Vds

(VDS - VT)/2U =

Same as for a MOST transistor amplifier !

Willy Sansen 10-05 1833

The zero HD3 point for smaller L

gm

VT

wi

vs

VGSgm’

gm’’

IDS’’’ = gm’’

gmsat = WCoxvsat

HD3 = 0 at VGS = VT ?

VGS

si

Willy Sansen 10-05 1834

Derivatives of gm

Ref. Fager JSSC Jan. 2004, 24-33

W = 60 µmL = 0.6 µmVDS = 2 V

Willy Sansen 10-05 1835

A differential pair is symmetrical

vOd

vIN

t

t

0

RLIB

rounded: compressed

vId

symmetrical: no 2nd order

Willy Sansen 10-05 1836

y = =iOd

IB

vId

VGS-VT

14

vId

VGS-VT

( )2

IBVGS - VT

1 -

vId is the differential input voltageiOd is the differential output current (gmvId) or

twice the circular current gmvId /2IB is the total DC current in the pair

Note that gm = = K’ (VGS - VT)

Distortion in MOST differential pair

WL

Willy Sansen 10-05 1837

y = = U 1 - U2IOd

IB

14

VId

VGS - VTU =

IM3 = U2332

≈ U - U318

1 - x ≈ 1 -x2

Distortion in MOST differential amplifier

y = =iOd

IB

vId

VGS-VT

14

vId

VGS-VT

( )21 -

IP3 = 4 (VGS - VT) ≈ 3.3 (VGS - VT)23

IM2 = 0U is the relative current swing

Willy Sansen 10-05 1838

Distortion in linear region

VDS1 = RDID ≈ 0.2 V

IDS1 = β1VDS1(VGS1-VT)

gm1 = β1VDS1 is constant

Ref. Alini,JSSC, Dec.92, pp.1905-1915

Low distortion !

Willy Sansen 10-05 1839

Table of contents

Definitions : HD, IM, intercept point, ..Distortion in a MOST

Single-ended amplifier

Differential amplifier

Distortion in a bipolar transistorReduction of distortion by feedbackDistortion in an opampOther cases of distortion and guide lines

Willy Sansen 10-05 1840

ICE = IS exp( )

ICE + ice = IS exp ( )

VBE

kTe/qVBE + vbe

kTe/q

1 + y = exp( ) vbe

kTe/q

≈ exp (u) = 1 + u + + + … if u << 1 u2

2u3

6

Distortion in a bipolar transistor amplifier

ICE DC componentiCE DC + ac componentice ac componentIce amplitude of

the ac component

Willy Sansen 10-05 1841

is the non-linear equation

y ≈ u + + + ... u2

2u3

6U =

Vbe

kTe/q

y is the relative current swing !

a1 = 1a2 = 1/2a3 = 1/6

IM2 = U =

IM3 = U2 = ( ) 2

a2a1

Vbe

kTe/q12

34

a3a1

Vbe

kTe/q18

Distortion in a bipolar transistor amplifier

Willy Sansen 10-05 1842

Numerical example

1. Relative current swing is 10 %yp = 0.1 gives IM2 = 5 % (HD2 = 2.5%)

IM3 = 0.125 % (HD3 = 0.04 %)As a result Vbep = yp(kTe/q)= 2.6 mVp (1.8 mVRMS)IP3 = √8 (kTe/q) = 74 mVp or 50 mVRMS or -13 dBm

2. Vbep = 100 mVthen yp = 0.1/0.026 ≈ 4 (must be << 1 !!) gives IM2 = ?? Too high distortion !!

Willy Sansen 10-05 1843

y = = u + +IdID

U =

Same as for a Bipolar transistor amplifier !

Vd

kTe/q

y ≈ u + + + ... u2

2u3

6

u2

2u3

6

iD = IS exp( )vD

kTe/q

Distortion in a diode

Willy Sansen 10-05 1844

Distortion in bipolar differential amplifier

y = = tanhiOd

IB

y = ≈ U - U3 IOd

IB13

VId

2kTe/qU =

IM3 = U214

VId

2kTe/qtanh x = e

x - e-x

≈ x - x313

ex + e-x

U is the relative current swing

IP3 = 4 kTe/qIM2 = 0

Willy Sansen 10-05 1845

C = C0 ( 1 + a1V + a2V2 + ... )

For poly-poly caps : a1 ≈ 20 ppm/V a2 ≈ 2 ppm/V2

R = R0 ( 1 + a1V + a2V2 + ... ) [≈ JFET with large VP]

For diffused resistors : a1 ≈ 5 ppm/V a2 ≈ 1 ppm/V2

Distortion in a resistor or capacitor

Willy Sansen 10-05 1846

Non-linearity depletion capacitance

VIN0-VB

Cj

C0

Cj =C0

1 -vIN

Φ

Cj = C0B (1 + x)-1/2 = C0B (1 - 1/2 x + 3/8 x2 - 5/16 x3 + ..)

vIN = VB + vin

Cj =C0

1 +VB

Φ

1

1 +VB + Φ

vin

x

Willy Sansen 10-05 1847

Table of contents

Definitions : HD, IM, intercept point, ..Distortion in a MOST

Single-ended amplifier

Differential amplifier

Distortion in a bipolar transistorReduction of distortion by feedbackDistortion in an opampOther cases of distortion and guide lines

Willy Sansen 10-05 1848

Distortion reduction by feedback

a1 a2 a3

d1 d2 d3

F

Σv u

v

y

y

u = v - Fy

y = a1u + a2 u2 + a3 u3

y = d1v + d2 v2 + d3 v3

elim. uelim. y coeff v2 : d2

coeff v : d1

coeff v3 : d3

-

Willy Sansen 10-05 1849

Distortion reduction by feedback

a1 a2 a3

d1 d2 d3

F

Σv u

v

y

y

Loop gain 1+T = 1+a1F u is (1+T) times smaller than v :v is reduced by loop gain (1+T)

u = v - Fy

a1

1 + T

a3 (1 + T) - 2F a22

(1 + T)5

d1 =

d2 =

d3 =

a2

(1 + T)3

≈ 1F

-

Willy Sansen 10-05 1850

IM2f = V = d2 V

(1 + T)2d1

a2

a1

1

(1 + T)

a2

a1=

V

(1 + T)

1

(1 + T)

a3

a1

2T

(1 + T)2a2

a1-

V2

(1 + T)2IM3f = V2d3

d1

34

= ( )[ ]34

2

Distortion components with feedback

reduction in current swing

expansioncompression

reduction by loop gain

reduction in current swing

Willy Sansen 10-05 1851

1

(1 + T)

a3

a1

2T

(1 + T)2a2

a1-

V2

(1 + T)2IM3f = V2d3

d1

34

=

(

)[ ]34

2

Distortion components with feedback : examples

MOST : a3 = 0 : a2 dominant

Diff. pair : a2 = 0 : a3 dominant

Bipolar : a1 = 1 a2 = 1/2 a3 = 1/6 : a2 dominant

a3 a1 - 2 a22

T1

a12

a3

T1

a1 a3a11 -

2 a22

(

)For large T : =

Willy Sansen 10-05 1852

IM2f = Vin

(1 + T)212

1(1 + T)

=U2

Emitter resistor to reduce distortion IM2f

1kTe/q

Vin

(1 + T)1

kTe/qU = is the relative current swing

T = gm RE =VRE

kTe/qa2

IM2f decreases linearly with T for constant U !

a1 2=

1

Willy Sansen 10-05 1853

IM3f =

Null for T = 0.5

Emitter resistor to reduce distortion IM3f

1 - 2T(1 + T)2

U2

8

Vin

(1 + T)1

kTe/qU = is the relative current swing

IM3f also decreases with T for constant U for large T !!

a2a1 2

=1 a3

a1 6=

1

Willy Sansen 10-05 1854

Null in IM3 ifa3 (1 + T) = 2f a2

2

a3 (1 + T) = 2T

0.01 T

RE

IM%

1

0.1

0.01

0.1 1 10 100

1 10 100 1kΩ

a1

1

a22

T = - 1a1a3

2a22T = 0.5

IM2

IM3Same slopes !

Null in IM3 by RE (Bipolar trans. ICE = 1 mA)

Willy Sansen 10-05 1855

Vin

T

1

kTe/qU = =

REICE

Vin

IM2fT = = U

2T

Vin kTe/q

2 (REICE )2

IM3fT = = (U2

4T

Emitter resistor RE reduces distortion for large T

=kTe/q 2 T2

Vin 1

Vin2 kTe/q

4 (REICE )3kTe/q 4 T3

Vin 1=)2

Willy Sansen 10-05 1856

IM2f = 1

(1 + T)

U

4

Source resistor RS to reduce distortion

is the relative current swing

T = gm RS =VRS

(VGS-VT)/2

Vin

(1 + T)

1

(VGS-VT)/2U =

IM3f = T

(1 + T)23U2

32

a2

a1 4=

1a3 = 0

≈(VGS-VT)/2 4 T2

Vin 1=

Vin (VGS-VT)/2

4 (RSIDS )2

≈(VGS-VT)2/4 32T3

Vin2 3

=3Vin

2 (VGS-VT)/2

32 (RSIDS )3

Willy Sansen 10-05 1857

Iout

M2

R

M1VG

+

-

Iout

(VGS-VT) (VGS-VT)

(W/L) (W/L)

Same Iout & same VG :

Same gain !Same output noise !

Same distortion ?

Current source with series R

IM2f

IM2=

VR

VGST1

1 -

( 1 + ) 2

VR

VGST1

Willy Sansen 10-05 1858

Source & Emitter Follower

vin vout

IBVB

RS

U =Vin

VEnL

Vin

(VGS - VT)/2

1

gmrDS

If vBS = 0 !!

CL

vin vout

IBVB

RS

CL

U U

U =Vin

VE

Vin

kTe/q

1

gm ro= =

Willy Sansen 10-05 1859

vinvOUT

IBVB

vOUT = vIN - vGS

K’W/L

IBvGS = VT +

vOUTF = |2ΦF| +vOUT - |2ΦF|

vIN = vOUT + VT0 + γ [ vOUTF ] +K’W/L

IB

VT = VT0 + γ [ vOUTF ]

Distortion Source follower with substrate effect

CL

Willy Sansen 10-05 1860

VOUT

VIN

γ = 0slope 1

γ = 0.8 V 1/2

slope 1/n

0

vIN = u2 + γ u + B

u2 = vOUT + |2ΦF|B = VGS0 - |2ΦF| - γ |2ΦF|

K’W/L

IBVGS0 = VT0 +

VT0 = 0.6 V ; VGS0 = 0.9 V; 2ΦF = 0.7 V; B = -0.47 V; 1/n = 0.73a1 = 0.765; a2 = 0.02; a3 = -0.0035VINp = 1 Vp; HD2 = 1.32 %; HD3 = -0.114 %

2 3 V0

2

V

1 1

1.37

0.9 2.27

1

Distortion Source follower - Example

Willy Sansen 10-05 1861

Increasing the IP3 by feedback

M1Vid/2 -Vid/2

2Ibias

-ioutiout

M1 M1Vid/2 -Vid/2

Ibias

-ioutiout

M1

IbiasR R 2R

IP3 ≈ 3.3 (VGS-VT)(1+gm1R)2 HD3/n2 n= 1+gm1R

HD3 = - 60 dB for Vid = 1 V requires VGS-VT = 0.38 V and gm1R = 3 !!!

Willy Sansen 10-05 1862

Increasing the IP3 by feedback

Additional local FB

2R

More FB with opamps

2R

Willy Sansen 10-05 1863

Distortion cancellation

Vid/2 -Vid/2

IB2IB1

iout

M1

iout

M2M1

Parameters :α = IB2 / IB1

≈ 0.25v = VGST1 / VGST2

≈ 1.6VGST = VGS-VT

IM3 ≈ 0 if v = α-1/3

then iout = gm1 Vid (1 - α2/3 )

Willy Sansen 10-05 1864

Distortion cancellation

IM3 ≈

iDS

IB= U - U3 U =

Vid

VGS - VT

18

IM3 = U2332

Vid

VGS1- VT

332

)2( 1 - α v3

1 - α v

IM3 ≈ 0 if v00 = α -1/3

at which point iout = gm1 Vid (1 - α 2/3 )

iout = 2 (iDS1 - iDS2)

Willy Sansen 10-05 1865

Compensation of IM3

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75

α = 0.20v00 = 1.71

α = 0.25v00 = 1.6

α = 0.33v00 = 1.44

v

1 - α v3

1 - α v

Willy Sansen 10-05 1866

Output signal vs current ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 α

1 - α 2/3

α ≈ 0.25v00 = 1.6

x 0.6

Willy Sansen 10-05 1867

Table of contents

Definitions : HD, IM, intercept point, ..Distortion in a MOST

Single-ended amplifier

Differential amplifier

Distortion in a bipolar transistorReduction of distortion by feedbackDistortion in an opampOther cases of distortion and guide lines

Willy Sansen 10-05 1868

Miller CMOS opamp with Feedback

GBW = 10 MHz & Avc = 10 ZL = 100 kΩ//5pF

R2

+-

R1vIN vOUT

ZL

Av

Av0

f

BW = 1 kHz

GBW = 10 MHz

101 MHz

Willy Sansen 10-05 1869

Distortion in input stage

a1 a2 a3

d1 d2 d3

F

Σv u

v y

u = v - Fy

y = B1(a1u + a2 u2 + a3 u3)

y = d1v + d2 v2 + d3 v3

elim. uelim. y coeff v2 : d2

coeff v : d1

coeff v3 : d3

B1y

-1+T = 1 + B1a1F

Willy Sansen 10-05 1870

IM2f = V = d2 V

(1 + T)2d1

a2

a1

1

(1 + T)

a2

a1=

V

(1 + T)

1

(1 + T)

a3

a1

2T

(1 + T)2a2

a1-

V2

(1 + T)2IM3f = V2d3

d1

34

= ( )[ ]34

2

Distortion in input stage

1+T = 1 + B1a1F

Same as before but with different Loop gain :

Willy Sansen 10-05 1871

Distortion in input stage with LPF

a1 a2 a3

d1 d2 d3

F

Σv u

v y

u = v - Fy

y = B1p(a1u + a2 u2 + a3 u3)

y = d1v + d2 v2 + d3 v3

elim. uelim. y coeff v2 : d2

coeff v : d1

coeff v3 : d3

yB1fp

-

1+T = 1 + B1pa1F

Willy Sansen 10-05 1872

IM2f = V

(1 + T)2a2

a1

1

(B1pa1F)2

a2

a1= V

1

(1 + T)

a3

a1

V2

(1 + T)2IM3f =

34

Distortion in input stage with LPF

diff.pair

=a3

a1

34

1

(B1pa1F)3V2

f

ffp

fp

40 dB/dec

60 dB/decIM3f =

Single trans.

a22

a12

34

2

(B1pa1F)3V2

Willy Sansen 10-05 1873

Distortion in output stage

A1

d1 d2 d3

F

Σv u

v y

u = v - Fy

y = A1b1u+A12b2u2+A1

3b3 u3

y = d1v + d2 v2 + d3 v3

elim. uelim. y coeff v2 : d2

coeff v : d1

coeff v3 : d3

yb1 b2 b3

-1+T = 1 + A1b1F

Willy Sansen 10-05 1874

IM2f = V

(1 + T)2b2

b1

A1

(A1b1F)2

b2

b1= V

Distortion in output stage

f

f

= b2

2

b12

34

2 A12

(A1b1F)3V2

IM3f =

Single trans.

2T

(1 + T)2b2

b1

V2

(1 + T)2( )

34

2

x A1

x A12

Willy Sansen 10-05 1875

IM2f

Two-stage opamp a & b

ffp

V

T2

a2

a1 fp

f

V

T2

b2

b1a1 T = a1b1F

IM3f

ffp

V2

T3

a3

a1

V2

T3

b3

b1a1

2

34

( )2

fp

f( )

3( )

a1a3 - 2 a22

a1a3

( )b1b3 - 2 b2

2

b1b3

34

Willy Sansen 10-05 1876

IM2f

Three-stage opamp a & b & c

ffp

V

T2

a2

a1 fp

f

V

T2

c2

c1a1b1 T = a1b1c1F

IM3f

ffp

V2

T3

a3

a1

V2

T3

c3

c1a1

2b12

34

( )2

fp

f( )

3( )

a1a3 - 2 a22

a1a3

( )c1c3 - 2 c2

2

c1c3

34

Willy Sansen 10-05 1877

Distortion in an opamp at low frequencies

12

34

VOUT

= 1 VM1 M1

M2 M2

M4

+- Cc

M3

GBW = 10 MHzAv0 = 10.000BW = 1 kHz Avc = 10

Vin = 0.1 mV

Vm = 10 mV

ZL IDS1 = 6 µAgm1 = 60 µSIDS3 = 120 µAgm3 = 1.2 mSRL = 100 k ΩCL = 5 pFCc = 1 pF

Willy Sansen 10-05 1878

Low-distortion amplifier

Av

Av0

f

BW = 1 kHz

GBW = 10 MHz

10

Av

Av0

f

vout

vm

RL(CL+Cc)

1 MHz

256 kHz

Av2

Av1

30 MHz

gm1

gm3

CL+Cc

Cc

≈ 0.3

vin = constant

≈fnd

GBW

Willy Sansen 10-05 1879

Distortion in an opamp at low frequencies

12

34

VOUT

= 1 VM1 M1

M2 M2

M4

+- Cc

Vnode at 100 Hz ?M3

GBW = 10 MHzAvc = 10

Vin = 0.1 mV

Vm = 10 mV

ZL

U1 = gm1Vin/IDS1 = 5 10-4

IDS1 = 6 µAIDS3 = 120 µA

U3 = gm3Vm/IDS3 = 0.1

Willy Sansen 10-05 1880

Distortion generation by nonlinear output stage :

Distortion reduction by feedback :T = 1000 IM2f = 2.5 %/1000 = 0.0025 % Negligible !

U3 = gm3Vm/IDS3 = 0.1

IM2 = U3/4 = 0.25 0.1 = 2.5 %

Distortion in an opamp at low frequencies

Willy Sansen 10-05 1881

Distortion in an opamp at high frequencies

12

34

VOUT

= 1 VM1 M1

M2 M2

M4

+- Cc

Vnode at 100 kHz ?M3

GBW = 10 MHzAvc = 10

Vin = 10 mV

Vm = 10 mV

ZL

U1 = gm1Vin/IDS1 = 5 10-2

IDS1 = 6 µAIDS3 = 120 µA

U3 = gm3Vm/IDS3 = 0.1

Willy Sansen 10-05 1882

Distortion generation by nonlinear output stage :

Distortion reduction by feedback :T = 10 IM2f = 2.5 %/100 = 0.25 %

U3 = gm3Vm/IDS3 = 0.1

IM2 = U3/4 = 0.25 0.1 = 2.5 %

Distortion in an opamp at high frequencies

Distortion generation by nonlinear input stage :U1 = gm1Vm/IDS1 = 0.05

IM3 = U12/10 = 0.0025/10 = 0.025 % Negligible !

Willy Sansen 10-05 1883

Miller CMOS OTA Measured Distortion

HD2 (dB)

Freq. (Hz)

Willy Sansen 10-05 1884

1.8 V Low distortion CMOS Opamp

Ref.Hernes Kluwer 2003

GBW ≈ 3 GHz

CL = 8 pF

fP = 380 MHzat 0.38 Vpeak

SR ≈ 900 V/µs

fP =2π Vpeak

SR

Large VGS4-VT

Willy Sansen 10-05 1885

HD2 & HD3 vs Amplitude

large distortion

Slope 1

Slope 2

Willy Sansen 10-05 1886

HD2 & HD3 vs Frequency

HD2 HD3dBdB

Hz Hz

Willy Sansen 10-05 1887

Table of contents

Definitions : HD, IM, intercept point, ..Distortion in a MOST

Single-ended amplifier

Differential amplifier

Distortion in a bipolar transistorReduction of distortion by feedbackDistortion in an opampOther cases of distortion and guide lines

Willy Sansen 10-05 1888

Other cases of distortion and guide lines

Distortion caused by limited SRDistortion of a switchDistortion at high frequencies :

Volterra series instead of power seriesDistortion in continuous-time filtersGuide lines

Willy Sansen 10-05 1889

Guide lines for low distortion

Scaling such that voltage amplitudes

are limited

Scaling such that relative current swings

are limited

Feedback

All fully differential

Willy Sansen 10-05 1890

Distortion comp. IM2 IM3x Up x Up

2 Up = Vref =

Bipolar 1/2 1/8 kTe/q

MOST 1/4 0 (VGS-VT)/2

Bip. diff.pair 0 1/4 2kTe/q

MOST diff.pair 0 3/32 (VGS-VT)

Vref

Vip

Distortion components

Willy Sansen 10-05 1891

Distortion comp. IM2 -IM3x Up x Up

2 Up = Vref =

Bipolar 1/2T 1/4T kTe/q x T

MOST 1/4T 3/32T (VGS-VT)/2 x T

Bip. diff.pair 0 1/4T 2kTe/q x T

MOST diff.pair 0 3/32T (VGS-VT) x T

Vref

Vip

Distortion components with Feedback (T > 5)

Willy Sansen 10-05 1892

References

P.Wambacq, W.Sansen : Distortion analysis of analog Integrated

Circuits, Kluwer Ac. Publ. 1998

W.Sansen : “Distortion in elementary transistor circuits”

IEEE Trans. CAS II Vol 46, No 3, March 1999, pp.315-324

J. Silva-Martinez, etal : High-performance CMOS continuous-time

filters, Kluwer Ac. Publ. 1993

B. Hernes, T. Saether : Design criteria for low-distortion in

feedback opamp circuits, Kluwer Ac. Publ. 2003

G. Palumbo, S. Pennisi : Feedback amplifiers, Kluwer Ac. Publ. 2002

Willy Sansen 10-05 1893

Table of contents

Definitions : HD, IM, intercept point, ..Distortion in a MOST

Single-ended amplifier

Differential amplifier

Distortion in a bipolar transistorReduction of distortion by feedbackDistortion in an opampOther cases of distortion and guide lines


Recommended