+ All Categories
Home > Documents > Geochronological evidence and tectonic significance of Carboniferous magmatism in the southwest...

Geochronological evidence and tectonic significance of Carboniferous magmatism in the southwest...

Date post: 19-Jan-2023
Category:
Upload: akdeniz
View: 0 times
Download: 0 times
Share this document with a friend
26
This article was downloaded by: [Karadeniz Teknik Universitesi] On: 17 October 2012, At: 02:44 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK International Geology Review Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tigr20 Geochronological evidence and tectonic significance of Carboniferous magmatism in the southwest Trabzon area, eastern Pontides, Turkey Abdullah Kaygusuz a , Mehmet Arslan b , Wolfgang Siebel c , Ferkan Sipahi a & Nurdane Ilbeyli d a Department of Geological Engineering, Gümüşhane University, TR-29000 Gümüşhane, Turkey b Department of Geological Engineering, Karadeniz Technical University, TR-61080 Trabzon, Turkey c Institute of Geosciences, Universität Tübingen, D-72074 Tübingen, Germany d Department of Geological Engineering, Akdeniz University, TR-070058 Antalya, Turkey Version of record first published: 05 Apr 2012. To cite this article: Abdullah Kaygusuz, Mehmet Arslan, Wolfgang Siebel, Ferkan Sipahi & Nurdane Ilbeyli (2012): Geochronological evidence and tectonic significance of Carboniferous magmatism in the southwest Trabzon area, eastern Pontides, Turkey, International Geology Review, 54:15, 1776-1800 To link to this article: http://dx.doi.org/10.1080/00206814.2012.676371 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
Transcript

This article was downloaded by: [Karadeniz Teknik Universitesi]On: 17 October 2012, At: 02:44Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,37-41 Mortimer Street, London W1T 3JH, UK

International Geology ReviewPublication details, including instructions for authors and subscription information:http://www.tandfonline.com/loi/tigr20

Geochronological evidence and tectonic significanceof Carboniferous magmatism in the southwest Trabzonarea, eastern Pontides, TurkeyAbdullah Kaygusuz a , Mehmet Arslan b , Wolfgang Siebel c , Ferkan Sipahi a & NurdaneIlbeyli da Department of Geological Engineering, Gümüşhane University, TR-29000 Gümüşhane,Turkeyb Department of Geological Engineering, Karadeniz Technical University, TR-61080 Trabzon,Turkeyc Institute of Geosciences, Universität Tübingen, D-72074 Tübingen, Germanyd Department of Geological Engineering, Akdeniz University, TR-070058 Antalya, Turkey

Version of record first published: 05 Apr 2012.

To cite this article: Abdullah Kaygusuz, Mehmet Arslan, Wolfgang Siebel, Ferkan Sipahi & Nurdane Ilbeyli (2012):Geochronological evidence and tectonic significance of Carboniferous magmatism in the southwest Trabzon area, easternPontides, Turkey, International Geology Review, 54:15, 1776-1800

To link to this article: http://dx.doi.org/10.1080/00206814.2012.676371

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematicreproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form toanyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contentswill be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses shouldbe independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims,proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly inconnection with or arising out of the use of this material.

International Geology ReviewVol. 54, No. 15, November 2012, 1776–1800

Geochronological evidence and tectonic significance of Carboniferous magmatismin the southwest Trabzon area, eastern Pontides, Turkey

Abdullah Kaygusuza*, Mehmet Arslanb , Wolfgang Siebelc , Ferkan Sipahia and Nurdane Ilbeylid

aDepartment of Geological Engineering, Gümüshane University, TR-29000 Gümüshane, Turkey; bDepartment of GeologicalEngineering, Karadeniz Technical University, TR-61080 Trabzon, Turkey; cInstitute of Geosciences, Universität Tübingen, D-72074

Tübingen, Germany; dDepartment of Geological Engineering, Akdeniz University, TR-070058 Antalya, Turkey

(Accepted 12 March 2012)

The northern and southern zones of the eastern Pontides (northeast Turkey) contain numerous plutons of varying ages andcompositions. Geochemical and isotopic results on two Hercynian granitoid bodies located in the northern zone of theeastern Pontides allow a proper reconstruction of their origin for the first time. The intrusive rocks comprise four distinctbodies, two of which we investigated in detail. Based on LA–ICP–MS U–Pb zircon dating, the Derinoba and Kayadibigranites have similar 206Pb/238U versus 207Pb/235U Concordia ages of 311.1 ± 2.0 and 317.2 ± 3.5 million years for theformer and 303.8 ± 1.5 million years for the latter. Aluminium saturation index values of both granites are between 0.95 and1.35, indicating dominant peraluminous melt compositions. Both intrusions have high SiO2 (74–77 wt.%) contents and showhigh-K calc-alkaline and I- to S-type characteristics. Primitive mantle-normalized element diagrams display enrichment in K,Rb, Th, and U, and depletion in Ba, Nb, Ta, Sr, P, and Ti. Chondrite-normalized rare earth element patterns are characterizedby concave-upward shapes and pronounced negative Eu anomalies with Lacn/Ybcn = 4.6–9.7 and Eucn/Eu∗ = 0.11–0.59(Derinoba), and Lacn/Ybcn = 2.7–5.5 and Eucn/Eu∗ = 0.31–0.37 (Kayadibi). These features imply crystal-melt fractionationof plagioclase and K-feldspar without significant involvement of garnet. The Derinoba samples have initial εNd valuesbetween –6.1 and –7.1 with Nd model ages and TDM between 1.56 and 2.15 thousand million years. The Kayadibi samplesshow higher initial εNd(I) values, –4.5 to –6.2, with Nd model ages between 1.50 and 1.72 thousand million years. Thisstudy demonstrates that the Sr isotope ratios generally display negative correlation with Nd isotopes; Sr isotope ratios werelowered in some samples by hydrothermal interaction or alteration. Isotopic and petrological data suggest that both graniteswere produced by the partial melting of early Palaeozoic lower crustal rocks, with minor contribution from the mantle.Collectively, these rocks represent a late stage of Hercynian magmatism in the eastern Pontides.

Keywords: Carboniferous magmatism; U–Pb zircon dating; Sr–Nd–Pb isotope; high-K; southwest Trabzon; easternPontides; Turkey

Introduction

The Pontide tectonic unit (Ketin 1966) includes variousintrusive and extrusive rocks, many of which are relatedto the convergence of Eurasia and Gondwana (Figure 1A).These Permo-Carboniferous rocks (Çogulu 1975; Topuzet al. 2004, 2010; Dokuz 2011) are present as basementcomplexes in a terrane formed from the Cretaceous–Palaeocene (Yılmaz et al. 2000; Boztug et al. 2006; Ilbeyli2008; Kaygusuz et al. 2008, 2009, 2010; Kaygusuz andAydınçakır 2009; Karslı et al. 2010; Sipahi 2011) to theEocene (Boztug et al. 2004; Topuz et al. 2005; Yılmaz-Sahin 2005; Arslan and Aslan 2006; Karslı et al. 2007;Eyüboglu et al. 2010, Figure 1B). Rock compositions rangefrom low-K through high-K calc-alkaline metaluminous–peraluminous granitoids to alkaline syenites (Yılmaz andBoztug 1996). Igneous activity apparently occurred in

*Corresponding author. Email: [email protected]

various tectonic settings ranging from arc-collisional tosyn-collisional and post-collisional regimes (Yılmaz andBoztug 1996; Okay and Sahintürk 1997; Yılmaz et al.1997; Yegingil et al. 2002).

About 40% of the exposed Palaeozoic basement rocksof the eastern Pontides are made up of granitoids. Despiteextensive exposure, these granitoids have received lit-tle attention so far (e.g. Yılmaz 1974; Çogulu 1975).Thus, knowledge regarding Palaeozoic geological pro-cesses in northeast Turkey is still insufficient, and precisegeochronological data are rare, thereby hampering theunderstanding of the tectonic and magmatic evolution ofthis region. We report on our systematic research of twonewly mapped intrusions, the Derinoba and Kayadibi gran-ites. New field-based observations, as well as geochemical,geochronological, and Sr–Nd–Pb isotope data from these

ISSN 0020-6814 print/ISSN 1938-2839 online© 2012 Taylor & Francishttp://dx.doi.org/10.1080/00206814.2012.676371http://www.tandfonline.com

Dow

nloa

ded

by [

Kar

aden

iz T

ekni

k U

nive

rsite

si]

at 0

2:44

17

Oct

ober

201

2

International Geology Review 1777

1 2 3 4 5 6 7

Köse

40

40

Kürtün

Torul

Trabzon

Maçka

Gümü hane pluton

Da ba ı

BLACK SEA

Köse plüton

8

39

Tonya

9 10

B

Özdil

Black Sea

Mediterranean SeaCyprus

Eurasian

plate

NAFZ

Arabian plate

African plate

Aegean S

ea

EAFZ

DS

FZ

0 200 km

42

36

39

33

4527 3933

A

Fig.2

Fig1b

N

0 5 km

Figure 1. (A) Tectonic map of Turkey and surroundings (modified after Sengör et al. (2003)). (B) Distribution of plutonic and volcanicunits in the eastern Pontides (modified from Güven (1993)). (1) Palaeozoic metamorphic rocks, (2) Palaeozoic granitoids, (3) Liassic–Dogger volcanic rocks, (4) Malm–Lower Cretaceous sedimentary rocks, (5) Upper Cretaceous volcanic rocks, (6) Upper Cretaceousgranitoids, (7) Tertiary calc-alkaline volcanic rocks, (8) Tertiary alkaline volcanic rocks, (9) Eocene granitoids, (10) alluvium. NAFZ,north Anatolian fault zone; EAFZ, east Anatolian fault zone.

rocks, are presented. This study aims to gain a betterunderstanding of the regional petrogenesis and tectonicenvironment.

Geological setting and regional geology

The eastern Pontides are commonly subdivided into anorthern zone and a southern zone (Figure 2A), basedon structural and lithological features (Özsayar et al.1981; Okay and Sahintürk 1997). Pre-Late Cretaceous

sedimentary rocks are widely exposed in the southernzone, whereas Late Cretaceous and middle Eocene–lateMiocene volcanic and volcaniclastic rocks dominate thenorthern zone (Arslan et al. 1997; Sen et al. 1998; Arslanet al. 2000; Sen 2007; Temizel et al. 2012). Liassic vol-canic rocks of the eastern Pontides lie unconformably ona Palaeozoic heterogeneous crystalline basement and arecross-cut by younger granitoids of Jurassic to Palaeoceneage (Yılmaz 1972; Çogulu 1975; Okay and Sahintürk 1997;Topuz et al. 2010; Dokuz 2011) (Figure 1A). Volcanic and

Dow

nloa

ded

by [

Kar

aden

iz T

ekni

k U

nive

rsite

si]

at 0

2:44

17

Oct

ober

201

2

1778 A. Kaygusuz et al.

Simene P

Susuzkiran H

Mandagözüobasi P

Kadırga P

Sehitkitan H

Tuzlakkaya H

07

N

05

27 29 31

09

03

11

13

15

17

Kefli P

Ardiclik H

Dikenli P

Budak P

Kınalık H

Bayırmahalle P

Kurban H

Davunlu H

Kizilagac P

Arpaköy

0 1km

Trabzon RizeOrdu

Samsun

NAFZ

Niksar

TokatSiran

Bayburt

Artvin

Erzurum

AXIAL ZONE

TAURID PLAT

NORTHERN ZONE

SOUTHERN ZONEEAFZ

N

41

37 38 39 40 41

0 60 km

Da ba ı

Palaeozoic metamorp Mainly Mesozoic sedimentary rocks

Platform carbonate rocks

Undifferentiated Mesozoic and Cenozoic rocks

Serpentinite

Palaeozoic granites

Fault

Late Cretaceous and Eocene arc gran.

Cretaceous and Eocene arc volc.rocks

Thrustf.Normal fault

BLACK SEA

M41

43

M40

M43

M46

T133

T134

T136

T137

T138

T139

T140

T135

M45

M44

Kiziluzum P

Sahmetlik P

Davunlu P

Karaorman H

Dikenli H

Karaaptal H

Derinoba P

Suluk H

Pazarkiran H

Celige H

Gez H

T5N12

T1N15

M42

Palaeozoic granites

Explanation

Upper Cretaceous granitoids

Kızılkaya Formation (dacite and pyroclastics)

(Upper Cretaceous)

Çatak Formation (andesite and pyroclastics)

(Upper Cretaceous)

Berdiga Formation (dolomitic limestone)

(Jurassic-Lower Cretaceous)

Hamurkesen Formation (basalt,

andesite and pyroclastics) (Liassic)

M16

Kayadibi

(A)

(B)

M43 Sample location

Thrust

Fault

Road

Figure 2. (A) Major structures of the eastern Pontides (modified from Eyuboglu et al. (2007)). (B) Geological map of the study areawith sample locations and main settlements.

volcano-sedimentary rocks of Early and Middle Jurassicage are tholeiitic in character (Arslan et al. 1997; Sen2007). These rocks are overlain conformably by Middle–Late Jurassic–Cretaceous neritic and pelagic carbonates.The Late Cretaceous series that unconformably overliesthese carbonate rocks is made up of sedimentary rocksin the southern part and of volcanic rocks in the northernpart (Bektas et al. 1987; Robinson et al. 1995; Yılmaz andKorkmaz 1999).

Cretaceous volcanic rocks mainly belong to the tholei-itic and calc-alkaline series. Eocene volcanic rocks uncon-formably overlie the Late Cretaceous volcanic and/orsedimentary series (Güven 1993; Yılmaz and Korkmaz1999).

The altitude of the eastern Pontides (above sea level)during the Palaeocene–early Eocene era is attributed tothe collision between the Pontide arc and the Tauride–Anatolide platform (Okay and Sahintürk 1997; Boztug

Dow

nloa

ded

by [

Kar

aden

iz T

ekni

k U

nive

rsite

si]

at 0

2:44

17

Oct

ober

201

2

International Geology Review 1779

et al. 2004). Eocene volcanic and volcaniclastic rocks areintruded by calc-alkaline granitoids of similar age (Arslanand Aslan 2006; Karslı et al. 2007; Eyuboglu et al. 2011).Post-Cretaceous magmatic rocks include Palaeocene plagi-oleucitites in the southern zone (Altherr et al. 2008), earlyEocene ‘adakitic’ granitoids (Topuz et al. 2005), and mid-dle to late Eocene calc-alkaline to tholeiitic, basaltic toandesitic volcanic rocks, as well as the cross-cutting gran-itoids exposed throughout the eastern Pontides (e.g. Tokel1977; Arslan et al. 1997; Karslı et al. 2007; Boztug andHarlavan 2008; Temizel and Arslan 2009; Temizel et al.2011).

The clastic input into locally developed basins is dueto post-Eocene uplift and erosion (Korkmaz et al. 1995).Towards the end of the middle Eocene, the region is largelyabove sea level. Minor volcanism and terrigeneous sedi-mentation continues to the present (Okay and Sahintürk1997). Miocene and post-Miocene volcanic history of theeastern Pontides is characterized by calc-alkaline to mildlyalkaline volcanism (Aydın 2004; Yücel et al. 2011; Temizelet al. 2012).

The study area is located in the northern zone ofthe eastern Pontides (Figure 1). Basement rocks consist-ing of Palaeozoic granites (Derinoba, Kayadibi, Sahmetlik,and Kızılagaç) have been newly mapped and are beingreported for the first time in this study (Figure 2B).The granites are unconformably overlain by Liassic vol-canics (Figure 3A) consisting of basalts, andesites, andtheir pyroclastic equivalents. These rocks are overlain

conformably by Middle–Late Jurassic–Cretaceous carbon-ates and Late Cretaceous volcanics. All these lithologiesare cut by Late Cretaceous granitoids.

Analytical techniques

A total of 15 samples were collected from the Derinobagranite and 5 samples from the Kayadibi granite (for sam-ple location, see Figure 2B). Based on the petrographicalstudies, 16 of the freshest and most representative rocksamples from the granites were selected for whole-rockmajor, trace, and rare earth element (REE) analyses. Rocksamples were crushed in steel crushers and ground in anagate mill to a grain size of <200 µm. Major, trace,and REE analyses were carried out at ACME AnalyticalLaboratories Ltd, Vancouver, Canada. Major and trace ele-ment compositions were determined by ICP-AES after0.2 g samples of rock powder were fused with 1.5 g LiBO2

and then dissolved in 100 ml 5% HNO3. REE contentswere analysed by ICP–MS after 0.25 g samples of rockpowder were dissolved via four acid digestion steps. Losson ignition was determined by the weight difference afterignition at 1000◦C. Total iron concentration was expressedas Fe2O3. Detection limits ranged from 0.01 to 0.1 wt.% formajor oxides, 0.1 to 10 ppm for trace elements, and 0.01 to0.5 ppm for REE.

Zircon grains were extracted by heavy-liquid and mag-netic separation methods and further purified by hand-picking under a binocular microscope. Selected grains

Derinoba granite

(C)

Kayadibi graniteDacitic dike

(B)

Derinoba granite

Hamurkesen

Formation

(A)

0 1 cm

(D)

Figure 3. Field and hand specimen photographs showing the rock types of the study area. (A) Contact between Hamurkesen Formationand Derinoba granite. (B) Dacitic dike cutting Kayadibi granite. (C) Field photograph from the Derinoba granite. (D) Hand specimenfrom the Derinoba granite.

Dow

nloa

ded

by [

Kar

aden

iz T

ekni

k U

nive

rsite

si]

at 0

2:44

17

Oct

ober

201

2

1780 A. Kaygusuz et al.

were mounted on epoxy resin and polished until halfwaythrough. Cathodoluminescence images were acquired tocheck the internal structures of individual zircon grains andto ensure a better selection of analytical positions.

U–Pb zircon dating was carried out using LA–ICP–MS at the Geologic Lab Center, China University ofGeosciences (Beijing, China). A quadrupole ICP–MS(7500a; Agilent Inc., Santa Clara, CA, USA) was con-nected with a UP-193 solid-state laser (193 nm; ElectroScientific Industries, Inc., Portland, OR, USA) and anautomatic positioning system. The laser spot size wasset to approximately 36 µm, with an energy density of8.5 J/cm2 and repetition rate of 10 Hz. Laser samplingwas according to the following procedure: 5 s pre-ablation,20 s sample-chamber flushing, and 40 s sampling abla-tion. The ablated material was carried into the ICP–MSby a high-purity He gas stream with flux of 0.8 l/min.The entire laser path was fluxed with N2 (15 l/min) andAr (1.15 l/min) to increase energy stability. U–Pb isotopefractionation effects were corrected using zircon 91500(Wiedenbeck et al. 1995) as external standard. Zircon stan-dard TEMORA (417 million years, Black et al. 2003) wasalso used as a secondary standard to monitor the devia-tion of age measurement/calculation. A total of 10 analysesof TEMORA yielded apparent 206Pb/238U ages of 417 to418 million years. Isotopic ratios and element concentra-tions of zircons were calculated using the GLITTER soft-ware (ver. 4.4, Macquarie University, Sydney, Australia).Concordia ages and diagrams were obtained usingIsoplot/Ex (3.0) (Ludwig 2003). Common lead was cor-rected following the method of Andersen (2002).

Electron microprobe analyses on polished thin sectionswere carried out at the New Mexico Institute of Miningand Technology, Socorro, NM, USA, using a CamecaSX-100 electron microprobe with three wavelength-dispersive spectrometers. Samples were examined usingbackscattered electron imagery, and selected minerals werequantitatively analysed. Elements analysed included F, Na,Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Sr, and Ba.An accelerating voltage of 15 kV and probe current of20 nA were used, except for analyses using general glasslabels (i.e. chlorite), which utilized a 10 nA probe current.Peak count numbers of 20 s were used for all elements,except for F (40 s; amph/mica), F (60 s; glass), Cl (40 s), S(30 s), Sr (60 s), and Ba (60 s). Background count numberswere one half the peak count times. A point beam of 1 µmwas used to analyse amphibole, pyroxene, epidote, Fe–Tioxide, and zircon. A slightly defocused (10 µm) beam wasused to analyse feldspar, mica, and chlorite to avoid lossescaused by sodium volatilization (Nielsen and Sigurdsson1981). Analytical results are presented in Tables 1–3.

Sr, Nd, and Pb isotope compositions were measured ona Finnigan MAT 262 multicollector mass spectrometer atthe Institute of Geosciences, Tübingen, Germany. For Sr–Nd isotope analyses, approximately 50 mg of whole-rock

powder was decomposed in 52% HF for 4 days at 140◦Con a hot plate. Digested samples were dried and redis-solved in 6 N HCl; these were dried again and redissolvedin 2.5 N HCl. Sr and Nd were separated by conventional ionexchange techniques, and their isotopic compositions weremeasured on single W and double Re filament configura-tions, respectively. The isotopic ratios were corrected forisotopic mass fractionation by normalizing to 86Sr/88Sr =0.1194 and 146Nd/144Nd = 0.7219. The reproducibility of87Sr/86Sr and 143Nd/144Nd during the period of measure-ment was checked by analyses of NBS 987 Sr and La JollaNd standards, which yielded average values of 0.710235± 0.000015 (2SD, n = 3) and 0.511840 ± 0.000008 (2SD,n = 5), respectively. Total procedural blanks were 20–50 pgfor Sr and 40–66 pg for Nd. The separation and purifi-cation of Pb were carried out on Teflon columns with a100 µm (separation) and 40 µm bed (cleaning) of Bio-Rad AG1-X8 (100–200 mesh) anion exchange resin usingan HBr–HCl ion exchange procedure. Pb was loaded withSi-gel and phosphoric acid into a Re filament and wasanalysed at about 1300◦C in a single-filament mode. A fac-tor of 1‰ per atomic mass unit for instrumental massfractionation was applied to the Pb analyses, using NBSSRM 981 as reference material. The total procedural blanksfor Pb during the measurement period were between 20 and40 pg. Sample reproducibility was estimated at ±0.02,±0.015, and ±0.03 (2σ ) for 206Pb/204Pb, 207Pb/204Pb, and208Pb/204Pb ratios, respectively.

Results

Field relations and petrography

The resulting geological map contains four separate gran-ite bodies, namely, Derinoba, Kayadibi, Sahmetlik, andKızılagaç (Figure 2B). These intrusions form nearly NE–SW-elongated bodies in varying dimensions occupyingthe highest peaks in the region. Generally, these arebounded by the pre-Jurassic volcanic and pyroclasticrocks to the east. Liassic volcanic and pyroclastic rocks(Hamurkesen Formation) unconformably overlie the gran-ite bodies (Figure 3A). In the west, granite bodies thrustover Late Cretaceous volcanic and pyroclastic rocks (Çatakand Kızılkaya Formations).

The Derinoba granite, located about 65 km southwestof Trabzon, forms an E–W-elongated body, with the longaxis extending from northeast to southwest (Figure 2B).This granite body covers an area of approximately 13 km2.In the east, the granite is unconformably overlain byLower Jurassic volcanic and pyroclastic rocks, whereasin the west, the granite thrusts over Late Cretaceous vol-canic and pyroclastic rocks together with their cover rocks(Figure 2B). The Derinoba granite is generally unde-formed, but strongly altered and weathered. Rocks oftenhave a brick red to pink colour, except for strongly chlori-tized zones that are greenish.

Dow

nloa

ded

by [

Kar

aden

iz T

ekni

k U

nive

rsite

si]

at 0

2:44

17

Oct

ober

201

2

International Geology Review 1781

Tabl

e1.

Mic

ropr

obe

anal

yses

ofpl

agio

clas

esfr

omth

eD

erin

oba

and

Kay

adib

igra

nite

s.

Pla

gioc

lase

Roc

kty

pes

Der

inob

agr

anit

esK

ayad

ibig

rani

tes

Sam

ples

T13

8-3

cT

138-

4r

T13

8-5

cT

138-

6r

T13

8-11

cT

138-

12r

T13

5-1

rT

135-

2c

T13

5-7

rT

135-

8c

T13

5-9

rT

135-

10c

M16

-3c

M16

-4c

M16

-5c

M16

-6r

M16

-9c

M16

-10

cS

iO2

68.0

968

.16

68.8

868

.98

65.7

468

.49

68.4

867

.26

67.5

165

.73

67.4

967

.41

67.5

666

.80

66.3

368

.21

67.3

067

.51

Al 2

O3

20.7

419

.83

20.3

120

.41

22.3

721

.09

20.0

221

.41

20.3

021

.39

19.5

620

.27

20.6

720

.68

21.0

520

.97

21.1

720

.80

FeO

T0.

060.

090.

140.

030.

280.

050.

040.

230.

050.

250.

060.

140.

050.

140.

080.

090.

110.

08C

aO0.

770.

270.

300.

140.

620.

870.

190.

280.

410.

550.

200.

270.

561.

160.

660.

841.

230.

65N

a 2O

11.3

211

.16

11.7

111

.60

10.2

511

.46

11.6

210

.97

11.2

510

.51

11.2

411

.36

11.4

011

.07

10.8

211

.34

11.1

511

.25

K2O

0.10

0.11

0.10

0.11

1.18

0.31

0.14

0.90

0.27

1.08

0.13

0.40

0.23

0.28

0.60

0.16

0.17

0.23

BaO

0.02

0.06

0.07

0.00

0.03

0.02

0.00

0.09

0.00

0.00

0.00

0.10

0.00

0.02

0.03

0.05

0.03

0.05

SrO

0.03

0.02

0.01

0.02

0.06

0.07

0.05

0.02

0.00

0.05

0.00

0.04

0.03

0.04

0.03

0.02

0.00

0.05

Tota

l10

1.1

99.7

101.

510

1.3

100.

510

2.4

100.

510

1.2

99.8

99.5

98.7

100.

010

0.5

100.

299

.610

1.7

101.

210

0.6

Cat

ions

onth

eba

sis

ofei

ghto

xyge

nsS

i2.

952.

992.

972.

972.

882.

942.

982.

922.

962.

912.

992.

962.

952.

932.

922.

942.

922.

94A

l1.

061.

021.

031.

041.

151.

071.

031.

101.

051.

111.

021.

051.

061.

071.

091.

071.

081.

07Fe

2+0.

000.

000.

010.

000.

010.

000.

000.

010.

000.

010.

000.

000.

000.

010.

000.

000.

000.

00C

a0.

040.

010.

010.

010.

030.

040.

010.

010.

020.

030.

010.

010.

030.

050.

030.

040.

060.

03N

a0.

950.

950.

980.

970.

870.

950.

980.

920.

960.

900.

960.

970.

960.

940.

920.

950.

940.

95K

0.01

0.01

0.01

0.01

0.07

0.02

0.01

0.05

0.01

0.06

0.01

0.02

0.01

0.02

0.03

0.01

0.01

0.01

Ba

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Sr

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Tota

l5.

004.

995.

014.

995.

015.

025.

005.

025.

005.

024.

995.

015.

015.

015.

015.

015.

015.

01A

n3.

581.

301.

400.

653.

003.

970.

871.

301.

952.

610.

961.

252.

615.

403.

143.

915.

713.

04A

b95

.84

98.0

898

.06

98.7

690

.17

94.3

798

.33

93.6

396

.54

91.2

298

.32

96.5

396

.11

93.0

593

.44

95.2

393

.35

95.6

8O

r0.

580.

620.

530.

596.

831.

660.

805.

081.

516.

170.

722.

221.

281.

553.

430.

860.

941.

28

Not

e:Fe

OT

isto

tali

ron

asFe

O;r

,rim

ofcr

ysta

l;c,

core

ofcr

ysta

l.

Dow

nloa

ded

by [

Kar

aden

iz T

ekni

k U

nive

rsite

si]

at 0

2:44

17

Oct

ober

201

2

1782 A. Kaygusuz et al.

Tabl

e2.

Mic

ropr

obe

anal

yses

ofK

-fel

dspa

rsfr

omth

eD

erin

oba

and

Kay

adib

igra

nite

s.

K-f

elds

par

Roc

kty

pes

Der

inob

agr

anit

esK

ayad

ibig

rani

tes

Sam

ples

T13

8-1

cT

138-

2r

T13

8-14

cT

138-

15r

T13

8-19

cT

138-

20r

T13

5-3

rT

135-

4c

T13

5-5

rT

135-

6c

T13

5-11

rT

135-

12r

M16

-1c

M16

-2r

M16

-7r

M16

-8c

SiO

264

.62

64.7

164

.27

65.2

563

.85

63.7

063

.99

63.9

163

.91

63.7

863

.30

64.0

663

.88

64.0

364

.38

64.1

9A

l 2O

318

.99

18.8

618

.84

19.1

819

.17

19.2

018

.55

18.5

118

.59

18.8

218

.31

18.8

118

.69

18.7

718

.83

18.6

1Fe

OT

0.04

0.05

0.04

0.00

0.01

0.02

0.04

0.08

0.01

0.05

0.00

0.04

0.00

0.04

0.10

0.07

CaO

0.02

0.05

0.00

0.03

0.01

0.60

0.00

0.01

0.00

0.02

0.02

0.05

0.00

0.01

0.00

0.00

Na 2

O0.

300.

400.

000.

610.

260.

290.

690.

530.

350.

630.

340.

430.

360.

310.

430.

47K

2O

16.1

915

.84

16.4

815

.91

16.1

316

.18

16.0

916

.20

16.4

716

.00

16.2

316

.31

16.5

016

.51

16.5

216

.49

BaO

0.18

0.21

0.20

0.21

1.13

0.09

0.16

0.23

0.39

0.49

0.00

0.43

0.33

0.16

0.14

0.05

SrO

0.00

0.02

0.01

0.02

0.05

0.01

0.02

0.00

0.00

0.06

0.03

0.05

0.01

0.02

0.01

0.02

Tota

l10

0.3

100.

199

.810

1.2

100.

610

0.1

99.5

99.5

99.7

99.8

98.2

100.

299

.899

.910

0.4

99.9

Cat

ions

onth

eba

sis

ofei

ghto

xyge

nsS

i2.

982.

982.

982.

982.

962.

952.

982.

982.

982.

972.

982.

972.

972.

972.

972.

98A

l1.

031.

031.

031.

031.

051.

051.

021.

021.

021.

031.

021.

031.

031.

031.

031.

02Fe

2+0.

000.

000.

000.

000.

000.

000.

000.

000.

000.

000.

000.

000.

000.

000.

000.

00C

a0.

000.

000.

000.

000.

000.

030.

000.

000.

000.

000.

000.

000.

000.

000.

000.

00N

a0.

030.

040.

000.

050.

020.

030.

060.

050.

030.

060.

030.

040.

030.

030.

040.

04K

0.95

0.93

0.97

0.93

0.95

0.96

0.96

0.96

0.98

0.95

0.98

0.97

0.98

0.98

0.97

0.98

Ba

0.00

0.00

0.00

0.00

0.02

0.00

0.00

0.00

0.01

0.01

0.00

0.01

0.01

0.00

0.00

0.00

Sr

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Tota

l4.

994.

994.

995.

005.

015.

025.

025.

025.

025.

025.

015.

025.

025.

015.

025.

02A

n0.

080.

240.

010.

170.

042.

950.

020.

050.

000.

110.

120.

270.

010.

040.

020.

00A

b2.

753.

650.

005.

492.

382.

566.

144.

753.

135.

673.

063.

823.

192.

813.

834.

12O

r97

.17

96.1

199

.99

94.3

497

.58

94.5

093

.84

95.2

096

.87

94.2

196

.82

95.9

296

.80

97.1

596

.15

95.8

8

Not

e:Fe

OT

isto

tali

ron

asFe

O;r

,rim

ofcr

ysta

l;c,

core

ofcr

ysta

l.

Dow

nloa

ded

by [

Kar

aden

iz T

ekni

k U

nive

rsite

si]

at 0

2:44

17

Oct

ober

201

2

International Geology Review 1783

Table 3. Microprobe analyses of biotites from the Derinoba and Kayadibi granites.

Biotite

Rock types Derinoba granites Kayadibi granites

Samples T135-1 T135-2 T138-1 T138-2 M16-1 M16-2 T5-1 T5-2SiO2 35.47 36.36 36.58 37.79 35.90 36.10 36.11 37.10TiO2 4.65 3.94 3.87 3.25 4.74 4.00 3.55 3.41Al2O3 13.52 13.11 12.96 13.36 12.78 13.12 13.34 13.20Cr2O3 0.01 0.00 0.01 0.01 0.00 0.02 0.01 0.00FeOT 23.18 24.73 24.94 21.25 23.42 24.43 24.64 22.50MnO 0.35 0.34 0.27 0.28 0.38 0.38 0.29 0.26MgO 10.01 11.25 9.25 10.31 11.76 11.44 11.43 10.62CaO 0.02 0.04 0.02 0.03 0.03 0.01 0.02 0.02Na2O 0.12 0.11 0.12 0.13 0.16 0.09 0.11 0.10K2O 8.24 7.42 8.08 9.06 8.30 8.32 8.02 8.74Total 95.57 97.30 96.10 95.47 97.47 97.91 97.52 95.95

Cations on the basis of 22 oxygensSi 5.50 5.54 5.66 5.80 5.47 5.49 5.51 5.70Ti 0.54 0.45 0.45 0.37 0.54 0.46 0.41 0.39Al 2.47 2.35 2.37 2.42 2.29 2.35 2.40 2.39Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Fe2+ 3.00 3.15 3.23 2.72 2.98 3.10 3.14 2.89Mn 0.05 0.04 0.04 0.04 0.05 0.05 0.04 0.03Mg 2.31 2.55 2.14 2.36 2.67 2.59 2.60 2.43Ca 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00Na 0.04 0.03 0.04 0.04 0.05 0.03 0.03 0.03K 1.63 1.44 1.60 1.77 1.61 1.61 1.56 1.71Total 15.55 15.57 15.52 15.53 15.67 15.69 15.68 15.58Mg/Mg + Fe2+ 0.44 0.45 0.40 0.46 0.47 0.46 0.45 0.46Fe2+/Fe2+ + Mg 0.56 0.55 0.60 0.54 0.53 0.54 0.55 0.54

Note: FeOT is total iron as FeO.

The Kayadibi granites, as well as the two other stocksreferred to as Sahmetlik and Kızılagaç, form small ellip-tical bodies. Each of these bodies has an outcrop area ofapproximately 1 km2 (Figure 2A), overlain unconformablyby Lower Jurassic volcanic and pyroclastic rocks in theeast and thrust over Late Cretaceous volcanic and pyroclas-tic rocks in the west (Figure 2A). All granites mentionedare cut by Late Cretaceous granites and dacitic dikes anddomes (Figure 3B).

Studied samples (i.e. obtained from Derinoba andKayadibi) are medium- to coarse-grained monzogran-ites, share several common petrographic features, andare described together. These samples are composed ofequigranular K-feldspar, quartz, plagioclase, biotite, acces-sory zircon, apatite, allanite, magnetite, and secondaryphases of sericite, chlorite, epidote, clay minerals, carbon-ates, and white mica (Figures 3C and 3D).

Plagioclase forms subhedral to euhedral, normally andreversely zoned prismatic crystals. In some samples, itis altered into sericite and clay minerals and partly intoepidote. Representative mineral analyses of plagioclasecrystals are provided in Table 1. Composition in all samplesis pure albite and varies from An1 to An4 in the Derinobagranite, whereas in the Kayadibi granite, it is slightly lessrich in sodium and ranges from An3 to An6. K-feldspar

forms anhedral, rarely subhedral crystals of orthoclase andperthitic orthoclase. Large K-feldspar oikocrysts containinclusions of abundant plagioclase, biotite, and opaqueminerals. Representative mineral analyses of K-feldsparare presented in Table 2. Compositions range from Or94

to Or99 in the Derinoba granite and Or96 to Or97 in theKayadibi granite (Table 2).

Biotite is euhedral to subhedral, is reddish-brown incolour, and forms small prismatic crystals and lamel-las. In most samples, biotite is strongly chloritizedor partially replaced by prehnite and/or pumpellyite.Biotite sheets are frequently deformed around secondaryprehnite/pumpellyite grains. Primary inclusions in biotiteare magnetite, apatite, and zircon. Representative biotiteanalyses are provided in Table 3. The Mg-number (Mg/Mg+ Fe2+) varies from 0.40 to 0.46 in the Derinoba graniteand from 0.45 to 0.47 in the Kayadibi granite (Table 3).TiO2 contents are relatively high (3.25–4.74 wt.%).

Quartz is anhedral in shape and generally shows undu-lose extinction. It locally forms large grains but also fillsthe interstitial spaces left behind from early-crystallizedplagioclase and mafic minerals.

Apatite is the most common accessory mineral andoccurs as small prismatic and acicular crystals. Allaniteforms euhedral, reddish crystals in all samples. Zircon is

Dow

nloa

ded

by [

Kar

aden

iz T

ekni

k U

nive

rsite

si]

at 0

2:44

17

Oct

ober

201

2

1784 A. Kaygusuz et al.

observed as short euhedral and prismatic crystals. Opaqueminerals are mostly titaniferous magnetites that occur asphenocrysts and microphenocrysts.

Whole-rock chemistry

Major, trace, and REE analyses of representative sam-ples from the Derinoba and Kayadibi granites are givenin Table 4. In the classification diagram of Debon and LeFort (1982), all samples are plotted in the granite field(Figure 4A). In the Rb–Sr–Ba ternary diagram (Tarney andJones 1994), samples are plotted in the field of low Ba–Srgranitoids (not shown here).

Both granites span a narrow compositional range(Table 4, Figure 4A). SiO2 ranges from 75 to 77 wt.%in the Derinoba granite and from 74 to 75 wt.% in theKayadibi granite (Table 4). K2O/Na2O ratios vary between0.98 and 1.45 (Derinoba) and 1.18 and 1.43 (Kayadibi).The aluminium saturation index (ASI) (molar Al2O3/(CaO+ Na2O + K2O)) values of samples from the Derinobaand Kayadibi granites are between 0.95 and 1.35, withan average of 1.14. These figures indicate that the gran-ites are dominantly peraluminous (Table 4, Figure 4B).Both granites show subalkaline affinity and belong to thehigh-K calc-alkaline series (Figure 5A). In the SiO2 ver-sus ASI diagram (Figure 5B), the samples are plotted inthe I- to S-type granite fields. Some altered samples fromthe Derinoba granite portray elevated ASI values. Harkerplots of selected major and trace elements (Figure 5C–5R) show systematic variations in element concentration.The rocks define trends without a compositional gap. CaO,MgO, Fe2O3(T), TiO2, P2O5, Ba, Sr, Th, Ni, and Y con-tents decrease with increasing SiO2 content, whereas K2O,Al2O3, Zr, and Nb increase with increasing SiO2 content;Na2O and Pb are nearly constant (Figure 5C–5R).

In the primitive mantle-normalized trace element dia-grams (Figure 6A–6C), all samples from the Kayadibi andDerinoba granites display marked negative anomalies inBa, Nb, Ta, Sr, P, and Ti, but positive anomalies in Kand partly Pb, which indicate fractionation of plagioclase,K-feldspar, biotite, apatite, and Fe–Ti oxides.

Chondrite-normalized REE patterns of the Kayadibiand Derinoba granite samples (Figure 6D–6F) are gener-ally characterized by concave-upward shapes (Lacn/Ybcn

= 2.7–9.7) and pronounced negative Eu anomalies(Eucn/Eu∗) of 0.11–0.59, whereas the largest Eu-anomaliesappear in the Derinoba granite (Table 4). Comparedwith other Palaeozoic granitoids of the eastern Pontides(Figure 6C and 6F), the trace and REE patterns of theDerinoba and Kayadibi granites resemble those of theGümüshane pluton (Topuz et al. 2010). However, theDerinoba and Kayadibi granites differ from the Gümüshanepluton in terms of the stronger negative Eu anomalies(Figure 6F).

In the (Zr + Nb + Ce + Y) versus FeO∗/MgO tec-tonic discrimination diagram of Whalen et al. (1987), theDerinoba and Kayadibi granites fall within the I-type gran-ite field (Figure 7A). Furthermore, the tectonic discrimina-tion diagram of Batchelor and Bowden (1985) (Figure 7B)suggests a syn- to post-collisional geochemical signaturefor both granites.

Sr–Nd–Pb isotopes

Sr, Nd, and Pb isotope data for the Kayadibi and Derinobagranites are given in Tables 5 and 6 and plotted in Figure 8.Initial Sr, Nd, and Pb isotope ratios are calculated usingRb, Sr, Sm, Nd, U, Th, and Pb concentration data obtainedfrom ICP–AES and MS analyses, with the assumed graniteages of 303 million years (Kayadibi) and 317–311 millionyears (Derinoba) (see below). Samples from the Kayadibiand Derinoba granites show a relatively wide range of ini-tial 87Sr/86Sr ratios (0.6974–0.7079) and a narrow range ofεNd(I) values (–4.6 to –7.1). The corresponding Nd modelages (TDM) of the granites are in the range 1.50–2.15 thou-sand million years. Extremely low (87Sr/86Sr)(I) ratios(0.6974–0.7003) are found in samples, showing evidencefor alteration, which may suggest that the Rb–Sr systemis more severely influenced by hydrothermal alteration orweathering than the Sm–Nd isotope system.

No correlation exists between εNd(I) and (87Sr/86Sr)(I)

but the Derinoba samples display lower εNd(I) val-ues (–7.1 to –6.1) and higher (87Sr/86Sr)(I) ratios(0.7003–0.7079) than the Kayadibi samples [εNd(I) =–4.6 to –6.2, (87Sr/86Sr)(I) = 0.6974–0.703] (Figure 8A).In the SiO2 versus (87Sr/86Sr)(I) and (143Nd/144Nd)(I) dia-grams (Figures 8B and 8C), the samples define nearlyhorizontal trends, indicating fractional crystallization.A slightly positive correlation, however, is shown in the(143Nd/144Nd)(I) versus Nd plot (Figure 8D).

In Figure 8A, the Derinoba and Kayadibi granitesare compared with other Palaeozoic granites from theeastern Pontides. As shown in this plot, the studied sam-ples have similar εNd(I) and (87Sr/86Sr)(I) ratios to thosefrom Gümüshane pluton but lower (87Sr/86Sr)(I) ratios thanthose of the Köse pluton. The Köse samples show a nega-tive correlation between εNd(I) and (87Sr/86Sr)(I), whereasthe Kayadibi, Derinoba, and Gümüshane samples show noobvious correlation between these two parameters.

Samples from the Kayadibi and Derinoba granites havesimilar (207Pb/204Pb)(I) = 15.55–15.62, but have vari-able (206Pb/204Pb)(I) = 17.29–18.0 and (208Pb/204Pb)(I) =36.38–37.67 isotopic compositions (Table 6, Figures 8Eand 8F). In the (207Pb/204Pb)(I) versus (206Pb/204Pb)(I)

diagram (Figure 8E), the samples are plotted to the leftof the geochron and above the Northern HemisphereReference Line (Hart 1984). In the (206Pb/204Pb)(I) versus(207Pb/204Pb)(I) diagram (Figure 8F), the studied samples

Dow

nloa

ded

by [

Kar

aden

iz T

ekni

k U

nive

rsite

si]

at 0

2:44

17

Oct

ober

201

2

International Geology Review 1785

Tabl

e4.

Who

le-r

ock

maj

or(w

t.%),

trac

e(p

pm),

and

RE

E(p

pm)

anal

yses

ofre

pres

enta

tive

sam

ples

from

the

Der

inob

aan

dK

ayad

ibig

rani

tes.

Roc

kty

pes

Der

inob

agr

anit

esK

ayad

ibig

rani

tes

Sam

ples

T13

5M

42T

138

T13

7T

140

M43

M45

T13

6T

134

M40

M41

T1

N15

T5

N12

M16

SiO

274

.66

74.8

274

.95

75.4

275

.45

75.6

675

.72

75.7

675

.83

76.3

276

.53

73.9

574

.05

74.3

374

.68

75.2

9T

iO2

0.13

0.11

0.09

0.09

0.12

0.12

0.10

0.11

0.09

0.06

0.06

0.18

0.16

0.12

0.09

0.11

Al 2

O3

12.6

312

.85

11.8

912

.06

13.3

912

.84

12.7

012

.75

12.7

713

.19

13.0

112

.92

12.9

912

.29

13.0

213

.49

Fe2O

3T

1.68

1.72

1.61

1.42

1.10

1.14

1.08

1.71

1.16

1.46

1.28

2.46

2.38

2.07

1.32

1.25

MnO

0.04

0.04

0.05

0.04

0.02

0.02

0.03

0.03

0.02

0.01

0.01

0.05

0.04

0.03

0.03

0.02

MgO

0.49

0.42

0.46

0.44

0.53

0.48

0.32

0.26

0.38

0.15

0.15

0.72

0.62

0.46

0.43

0.31

CaO

1.34

1.28

1.45

1.06

0.35

0.45

0.30

0.21

0.45

0.19

0.11

1.46

1.27

1.46

0.98

0.51

Na 2

O3.

243.

103.

343.

183.

693.

413.

203.

283.

493.

023.

112.

913.

353.

243.

673.

83K

2O

3.24

3.96

3.74

3.78

3.62

3.79

4.22

4.75

3.90

4.15

4.30

3.51

3.96

4.63

4.56

4.74

P2O

50.

050.

030.

020.

020.

040.

040.

030.

020.

030.

030.

020.

060.

050.

030.

040.

02To

tal

99.4

99.5

99.9

99.0

99.7

99.9

99.0

100.

099

.499

.799

.799

.710

0.0

99.9

99.9

100.

8L

OI

1.90

1.20

2.30

1.50

1.40

1.90

1.30

1.10

1.30

1.10

1.13

1.50

1.10

1.20

1.10

1.20

Ni

1.5

1.3

1.1

0.9

1.1

0.9

0.8

1.0

0.8

0.9

0.8

1.4

1.3

1.0

0.8

1.1

V8.

09.

08.

010

.08.

012

.09.

08.

011

.08.

08.

09.

09.

08.

08.

08.

0C

u1.

61.

82.

52.

30.

92.

52.

73.

32.

63.

43.

41.

31.

41.

01.

28.

4P

b7.

36.

33.

64.

22.

22.

37.

812

.72.

45.

15.

110

.410

.111

.08.

412

.5Z

n23

.024

.024

.027

.08.

030

.026

.028

.031

.02.

02.

018

.016

.09.

012

.014

.0W

0.5

0.6

0.5

0.7

0.8

0.9

0.8

0.9

0.9

1.6

1.6

0.6

0.6

0.6

0.5

0.5

Rb

109.

411

0.2

114.

011

8.0

117.

510

4.1

109.

011

8.0

133.

918

7.0

187.

762

.285

.311

6.2

140.

611

8.5

Ba

677.

061

0.0

543.

053

0.0

320.

052

3.0

532.

055

0.0

505.

038

4.0

373.

066

8.0

630.

080

7.0

610.

051

9.0

Sr

59.1

52.3

39.4

40.3

67.1

43.2

44.2

48.7

37.1

37.3

36.2

120.

480

.365

.281

.758

.8Ta

0.9

1.0

1.1

0.9

1.2

1.0

0.9

1.1

0.9

2.1

1.9

0.4

0.6

1.0

1.1

1.3

Nb

11.9

12.5

14.2

14.3

9.8

14.6

13.8

13.5

13.7

11.9

12.9

8.2

8.4

10.4

13.6

16.5

Hf

5.2

5.3

5.5

5.7

2.8

6.4

4.7

3.8

6.0

2.0

2.2

4.3

4.8

5.2

5.9

6.4

Zr

126.

513

0.3

139.

316

0.0

73.6

200.

012

4.0

131.

318

1.9

95.2

113.

111

7.6

138.

214

8.9

169.

315

9.5

Y26

.628

.432

.930

.320

.731

.731

.230

.928

.521

.321

.432

.542

.141

.140

.539

.8T

h18

.916

.215

.215

.18.

817

.016

.314

.516

.17.

27.

520

.718

.224

.121

.320

.5U

4.0

3.6

3.5

3.4

1.3

3.1

3.0

2.8

3.0

2.9

2.9

1.5

2.6

6.9

4.3

3.5

Ga

16.7

16.9

17.3

17.5

14.1

18.1

17.3

17.2

17.2

15.7

14.7

13.0

14.4

15.3

16.2

19.7

La

26.4

030

.40

31.3

034

.40

27.7

040

.40

30.3

034

.70

36.3

032

.00

37.2

019

.10

21.8

036

.70

37.3

036

.30

Ce

55.9

056

.20

62.9

065

.40

54.6

085

.40

62.3

056

.70

76.2

057

.70

77.7

041

.10

64.3

078

.40

84.4

081

.30

Pr

6.07

6.20

7.80

7.90

6.44

9.10

7.10

6.68

8.21

7.07

8.63

4.89

6.70

8.46

9.42

9.34

Nd

23.1

024

.20

31.3

032

.30

24.4

035

.20

31.3

025

.60

30.7

028

.00

37.8

020

.00

27.0

030

.10

36.2

036

.50

Sm

4.85

4.92

5.76

5.30

4.95

6.66

5.30

5.43

5.07

5.15

4.75

6.47

5.20

6.09

6.50

5.64

Eu

0.84

0.94

1.01

0.92

0.32

0.84

0.64

0.55

0.74

0.15

0.14

0.83

0.72

0.69

0.84

0.65

Gd

7.40

4.72

6.42

6.34

2.90

5.74

4.86

4.32

5.20

2.40

2.48

8.65

8.20

6.32

7.30

7.14

Tb

1.55

1.32

1.42

1.24

0.58

1.00

0.96

0.78

0.90

0.53

0.56

1.43

1.32

1.28

1.25

1.22

(Con

tinu

ed)

Dow

nloa

ded

by [

Kar

aden

iz T

ekni

k U

nive

rsite

si]

at 0

2:44

17

Oct

ober

201

2

1786 A. Kaygusuz et al.

Tabl

e4.

(Con

tinu

ed).

Roc

kty

pes

Der

inob

agr

anit

esK

ayad

ibig

rani

tes

Sam

ples

T13

5M

42T

138

T13

7T

140

M43

M45

T13

6T

134

M40

M41

T1

N15

T5

N12

M16

Dy

6.23

6.85

6.45

6.24

3.39

5.58

4.20

4.50

4.97

3.25

3.41

7.21

6.02

6.73

6.06

6.04

Ho

1.70

1.75

1.65

1.71

0.75

1.11

1.26

1.33

0.99

0.74

0.77

1.64

1.46

1.35

1.52

1.45

Er

4.73

3.98

4.76

3.10

2.33

3.22

3.18

3.10

2.97

2.24

2.38

4.68

4.26

4.20

4.86

4.54

Tm

0.43

0.58

0.71

0.62

0.37

0.49

0.52

0.50

0.45

0.36

0.39

0.57

0.62

0.65

0.71

0.78

Yb

3.90

3.95

4.33

4.20

2.54

3.06

3.10

3.15

2.92

2.54

2.59

4.83

4.62

4.49

4.65

4.57

Lu

0.56

0.50

0.58

0.52

0.38

0.46

0.44

0.47

0.43

0.36

0.39

0.68

0.61

0.62

0.64

0.53

La c

n/L

u cn

4.88

6.30

5.59

6.85

7.55

9.09

7.13

7.64

8.74

9.20

9.88

2.91

3.70

6.13

6.03

7.09

La c

n/S

mcn

3.43

3.89

3.42

4.09

3.52

3.82

3.60

4.02

4.51

3.91

4.93

1.86

2.64

3.79

3.61

4.05

Gd c

n/L

u cn

1.64

1.17

1.37

1.51

0.95

1.55

1.37

1.14

1.50

0.83

0.79

1.58

1.67

1.27

1.42

1.67

La c

n/Y

b cn

4.57

5.20

4.88

5.53

7.37

8.92

6.60

7.44

8.40

8.51

9.71

2.67

3.19

5.52

5.42

5.37

Tb c

n/Y

b cn

1.70

1.43

1.40

1.26

0.98

1.40

1.32

1.06

1.32

0.89

0.92

1.27

1.22

1.22

1.15

1.14

Eu c

n/E

u∗0.

430.

590.

510.

480.

240.

410.

380.

340.

440.

110.

110.

340.

340.

340.

370.

31M

g#22

.58

19.6

322

.22

23.6

632

.52

29.6

322

.86

13.2

024

.68

9.32

10.4

922

.64

20.6

718

.18

24.5

719

.87

AS

I1.

121.

100.

981.

071.

261.

221.

221.

171.

181.

351.

301.

151.

070.

951.

021.

09K

2O

/N

a 2O

1.00

1.28

1.12

1.19

0.98

1.11

1.32

1.45

1.12

1.37

1.38

1.21

1.18

1.43

1.24

1.24

Rb/

Sr

1.85

2.11

2.89

2.93

1.75

2.41

2.47

2.42

3.61

5.01

5.19

0.52

1.06

1.78

1.72

2.02

Sr/

Y2.

221.

841.

201.

333.

241.

361.

421.

581.

301.

751.

693.

701.

911.

592.

021.

48N

b/Ta

13.2

212

.50

12.9

115

.89

8.17

14.6

015

.33

12.2

715

.22

5.67

6.76

20.5

014

.00

10.4

012

.36

12.6

9Z

r/H

f24

.33

24.5

825

.33

28.0

726

.29

31.2

526

.38

34.5

530

.32

47.6

051

.41

27.3

528

.79

28.6

328

.69

24.9

2T

h/U

4.73

4.50

4.34

4.44

6.77

5.48

5.43

5.17

5.37

2.48

2.59

13.8

07.

003.

494.

955.

86

Not

e:Fe

2O

T 3is

tota

lir

onas

Fe2O

3;

LO

Iis

loss

onig

niti

on;

Mg#

(Mg-

num

ber)

=10

MgO

/(M

gO+

Fe2O

T 3);

AS

I=

mol

arA

l 2O

3/(C

aO+

Na 2

O+

K2O

);E

u∗=(

Sm

cn+

Gd c

n)/

2;(L

a cn/L

u cn)=

chon

drit

e-no

rmal

ized

La/

Lu

rati

o,ox

ides

are

give

nin

wt.%

,tra

ceel

emen

tsin

ppm

;AS

I,al

umin

ium

satu

rati

onin

dex.

Dow

nloa

ded

by [

Kar

aden

iz T

ekni

k U

nive

rsite

si]

at 0

2:44

17

Oct

ober

201

2

International Geology Review 1787

40 50 60 70 80 90

SiO2(wt%)

0

5

10

15

Na

2O

+K

2O

(wt%

)

Subalkaline series

Gabbro

Gabbro

icD

iorite

Dio

rite

Tonalit

e

Gra

nodio

rite

GraniteMnzgbr

Mnzdi

MonzonitQmonz

Syenite

Peridot

Gabbro

Foidgabbro

Foidmonzosyenite

Foidolit

Foidmonzogabbro

Quartzolite

(A)

Derinobagr.Kayadibigr.

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

A/CNK

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

A/N

K

Peraluminous

Metaluminous

(B)

Peralkaline

Aluminous

Figure 4. (A) Chemical nomenclature diagram (Debon and Le Fort 1982) for samples from the Derinoba and Kayadibi granites. (B)A/CNK (Al2O3/CaO + Na2O + K2O) versus A/NK (Na2O + K2O) molar diagram showing the range in alumina saturation index (ASI)of Derinoba and Kayadibi granites.

form subparallel trends to the orogen curve (Zartman andDoe 1981).

U–Pb zircon dating

LA–ICP–MS U–Pb zircon dating results are presented inTable 7 and shown in Concordia diagrams (Figure 9).Zircons are colourless to light yellow, with long prismatic,perfectly euhedral, and oscillatory zoning (Figure 10).Zircon grains are mostly fine-grained (63–125 µm) andhave aspect ratios of about 1:3. Inclusions of apatite andinternal fractures are common. All these features indicatethat zircons are of magmatic origin. Some grains are cor-roded and display altered domains. Only the uncorrodedinner parts of the grains are investigated for U–Pb isotopeanalyses. Most analyses give concordant age data. A totalof 23 spots from sample T138 (Derinoba) yield 206Pb/238Uages ranging from 301 to 317 million years, with aweighted mean age of 311.1 ± 2.0 million years (MSWD =1.4) (Table 7, Figure 9A), and 12 spots from another sam-ple of this granite (T135) give 206Pb/238U ages between310 and 325 million years, with a weighted mean age of317.2 ± 3.5 million years (MSWD = 1.7) (Figure 9B).A total of 30 spots from sample M16 (Kayadibi) provide206Pb/238U ages between 300 and 306 million years, with aweighted mean age of 303.8 ± 1.5 million years (MSWD =0.119) (Figure 9C). Thus, Lower Carboniferous ages areestablished for both granites by U–Pb zircon dating, andthese ages are interpreted as magmatic emplacement ages.

Discussion

Age constraints

In previous works, the emplacement age of granitoidsin the eastern Pontides is mainly estimated from contactrelationships, stratigraphic criteria, or biostratigraphic data.Such data, however, are often imprecise or difficult to

obtain due to rock deformation or tectonic displace-ment. Thus, an age reassessment, in the light of newgeochronological data, is essential. Early geochronologicstudies on the Gümüshane and Köse plutons, however,have given ambiguous and inconsistent results between107 and 535 million years (Delaloye et al. 1972; Çogulu1975; Moore et al. 1980; JICA 1986; Bergougnan 1987).More recently, Topuz et al. (2010) reported concor-dant U–Pb zircon and Ar–Ar biotite/hornblende ages of324 and 320 million years, respectively, for granite samplesfrom the Gümüshane pluton. Almost concurrently, Ar–Ar biotite/hornblende/K-feldspar ages between 322 and306 million years have been obtained for the Köse pluton(Dokuz 2011).

Prior to this study, knowledge about the emplacementage of the Kayadibi and Derinoba granites was insufficientfor the reconstruction of their geological history. Fromcontact relationships and stratigraphic criteria, an UpperCretaceous age has been conjectured (Güven 1993). Thenew LA–ICP–MS U–Pb zircon ages of these granites, how-ever, range from 303.8 ± 1.5 million years (MSWD =0.12) to 317.2 ± 3.5 million years (MSWD = 1.7).These ages are more or less coeval with the emplacementage of the Gümüshane and Köse plutons (Topuz et al.2010; Dokuz 2011). Hence, the Derinoba and Kayadibigranites are interpreted as members of a larger coher-ent pluton, referred to here as the eastern Pontide pluton.Remnants of this pluton either extend below the cover ofthe volcanic and volcaniclastic rocks or are now partlyeroded.

Petrogenesis of the Derinoba and Kayadibi granites

Major and trace element compositional variations in theDerinoba and Kayadibi granites suggest that fractionationplayed a major role during the crystallization of the graniticmagmas (Figure 11). Fractionation of feldspar would also

Dow

nloa

ded

by [

Kar

aden

iz T

ekni

k U

nive

rsite

si]

at 0

2:44

17

Oct

ober

201

2

1788 A. Kaygusuz et al.

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Na 2O

(wt.%

)

(C)

73 74 75 76 770.5

1.0

1.5

AS

I

I-tipi

S-tipiPeralumin

Metalumin

(B)

72 74 76 78

SiO2(wt.%)

0.6

0.8

1.0

1.2

1.4

Ni(

ppm

)

(P)1.6

73 74 75 76 77

SiO2(wt.%)

20

25

30

35

40

45

Y(p

pm)

(Q)

73 74 75 76 77

SiO2(wt.%)

8

12

16

20

Nb(

ppm

)

(R)

73 74 75 76 77

40

80

120

160

200

Rb(

ppm

)

(M)

73 74 75 76 770

4

8

12

16

Pb(p

pm)

(N)

73 74 75 76 774

8

12

16

20

24

28

Th(

ppm

)

(O)

73 74 75 76 77

40

80

120

160

200

240

Zr(

ppm

)

(J)

73 74 75 76 77

400

500

600

700

800

900

Ba(

ppm

)

(K)

30073 74 75 76 77

20

40

60

80

100

120

140

Sr(p

pm)

(L)

73 74 75 76 77

0.8

1.2

1.6

2.0

2.4

2.8

Fe2O

3T (

wt.%

)

(G)

73 74 75 76 770.04

0.08

0.12

0.16

0.20T

iO2

(wt.%

)

(H)

73 74 75 76 77

0.02

0.04

0.06

P 2O5(

wt.%

)

(I)

73 74 75 76 77

0.0

0.4

0.8

1.2

1.6

CaO

(wt.%

)

(D)

73 74 75 76 770.0

0.2

0.4

0.6

0.8

MgO

(wt.%

)

(E)

73 74 75 76 7711.6

12.0

12.4

12.8

13.2

13.6

Al 2O

3(w

t.%)

(F)

73 74 75 76 77

0

2

4

6

K2O

(wt.

%)

Medium-K

High-K

Shoshonitic

Low-K

(A)

68 72 76 80

Figure 5. (A–R) Variation diagrams of SiO2 (wt.%) versus major oxides (wt.%) and trace elements (ppm) for samples from the Derinobaand Kayadibi granites. (A) K2O versus SiO2 diagram with field boundaries between medium-K, high-K, and shoshonitic series accordingto Peccerillo and Taylor (1976). (B) ASI versus SiO2 with field boundaries between I-type and S-type according to Chappell and White(1974) and peraluminous and metaluminous fields of Shand (1947). ASI (aluminium saturation index) = molar Al2O3/(Na2O + K2O +CaO). Same symbols as in Figure 4.

Dow

nloa

ded

by [

Kar

aden

iz T

ekni

k U

nive

rsite

si]

at 0

2:44

17

Oct

ober

201

2

International Geology Review 1789

0.1

1.0

10.0

100.0

1000.0

Sam

ple

/prim

itiv

e m

antle

Derinoba granite(A)

Ba U Ta La Pb Sr Nd Hf Eu Dy YbRb Th Nb K Ce Pr P Zr Sm Ti Y Lu

1

10

100

1000

Sam

ple

/chondrite

(F)

Kösepluton

Gümüşhane pluton

La Ce Pr Nd SmEu Gd Tb Dy Ho Er TmYb Lu

0.1

1.0

10.0

100.0

1000.0

Sam

ple

/prim

itiv

em

antle

Kayadibi granite(B)

Ba U Ta La Pb Sr Nd Hf Eu Dy YbRb Th Nb K Ce Pr P Zr Sm Ti Y Lu

0.1

1.0

10.0

100.0

1000.0

Sam

ple

/prim

itiv

e m

antle

Kösepluton

Gümüşhane pluton(C)

Ba U Ta La Pb Sr Nd Hf Eu Dy YbRb Th Nb K Ce Pr P Zr Sm Ti Y Lu

1

10

100

1000

Sam

ple

/chondrite

(D) Derinoba granite

(La/Yb)cn

= 4.6–9.7

La Ce Pr Nd SmEu Gd Tb Dy Ho Er TmYb Lu

La Ce Pr Nd SmEu Gd Tb Dy Ho Er TmYb Lu1

10

100

1000

Sam

ple

/chondrite

(E) Kayadibi granite

(La/Yb)cn

= 2.7–5.5

Figure 6. (A–C) Primitive mantle-normalized trace element patterns (normalizing values from Sun and McDonough 1989) for samplesfrom the Derinoba and Kayadibi granites. (D–F) Chondrite-normalized REE patterns (normalizing values from Taylor and McLennan1985). Symbols as in Figure 4.

FG

OGT

1000100

Zr + Nb + Ce + Y(ppm)

1

10

100

FeO

T/M

gO

A-tipi

(A)

1

2

3

46

1-Mantle fractionates2-Pre-plate collision3-Post-collision uplift4-Late-orogenic5-Anorogenic

0 500 1000 1500 2000 2500 3000

R1 = 4Si–11(Na + K)–2(Fe + Ti)

0

500

1000

1500

2000

2500

R2 =

6C

a +

2M

g +

Al

7

6-Syn-collision7-Post-collision

5

(B)

Figure 7. (A) FeO∗/MgO versus (Zr + Nb + Ce + Y) classification diagram (Whalen et al. 1987) for the Derinoba and Kayadibigranites. (B) R1 versus R2 diagram of Batchelor and Bowden (1985). R1 = 4Si − 11(Na + K) − 2(Fe + Ti); R2 = 6Ca + 2 Mg + Al.Symbols as in Figure 4.

Dow

nloa

ded

by [

Kar

aden

iz T

ekni

k U

nive

rsite

si]

at 0

2:44

17

Oct

ober

201

2

1790 A. Kaygusuz et al.

Tabl

e5.

Sr

and

Nd

isot

ope

data

from

the

Der

inob

aan

dK

ayad

ibig

rani

tes.

Sam

ple

Type

Age

(mil

lion

year

s)R

b(p

pm)

Sr

(ppm

)87

Rb/

86S

r87

Sr/

86S

r2σ

m(87

Sr/

86S

r)(I

)

Sm

(ppm

)N

d(p

pm)

147S

m/

144N

d14

3N

d/14

4N

d2σ

m(14

3N

d/14

4N

d)(I

)εN

d (I)

aT

DM

b

Der

inob

aT

135

Gra

nite

317

109.

4059

.10

5.36

830.

7316

579

0.70

744

4.85

23.1

00.

1275

0.51

2158

100.

5118

9–6

.57

1.65

M43

Gra

nite

317

109.

0045

.50

6.95

100.

7370

039

0.70

564

5.68

26.8

00.

1287

0.51

2181

70.

5119

1–6

.17

1.63

T13

6G

rani

te31

710

8.00

48.7

06.

4346

0.73

6909

90.

7078

84.

4321

.60

0.12

450.

5121

587

0.51

190

–6.4

51.

60T

137

Gra

nite

311

111.

0041

.20

7.81

750.

7372

1512

0.70

262

6.16

30.1

00.

1243

0.51

2179

70.

5119

3–6

.08

1.56

T13

8G

rani

te31

111

4.00

39.4

08.

3957

0.73

7461

120.

7003

07.

7631

.30

0.15

050.

5121

827

0.51

188

–7.0

72.

15

Kay

adib

iT

5G

rani

te30

315

6.20

65.2

06.

9485

0.73

2976

90.

7030

17.

0935

.10

0.12

260.

5121

728

0.51

193

–6.2

31.

55N

12G

rani

te30

314

5.60

64.9

06.

5052

0.73

0215

80.

7021

77.

1635

.70

0.12

180.

5121

959

0.51

195

–5.7

51.

50N

15G

rani

te30

312

8.30

61.1

06.

0872

0.72

7663

90.

7014

28.

1236

.30

0.13

580.

5122

108

0.51

194

–6.0

01.

72M

16G

rani

te30

311

8.50

58.8

05.

8393

0.72

2586

90.

6974

18.

6436

.50

0.14

370.

5123

009

0.51

201

–4.5

51.

72

Not

es:a ε

Nd(

I)va

lues

are

calc

ulat

edba

sed

onpr

esen

t-da

y14

7S

m/

144N

d=

0.19

67an

d14

3N

d/14

4N

d=

0.51

2638

(Jac

obse

nan

dW

asse

rbur

g19

80).

bS

ingl

e-st

age

mod

elag

e(T

DM

),ca

lcul

ated

wit

hde

plet

edm

antl

epr

esen

t-da

ypa

ram

eter

s14

3N

d/14

4N

d=

0.51

3151

and

147S

m/

144N

d=

0.21

9.

Tabl

e6.

Pb

isot

ope

data

from

the

Der

inob

aan

dK

ayad

ibig

rani

tes.

Sam

ple

Type

Age

(mil

lion

year

s)P

b(p

pm)

U(p

pm)

Th

(ppm

)20

6P

b/20

4P

b(20

6P

b/20

4P

b)(I

)20

7P

b/20

4P

b(20

7P

b/20

4P

b)(I

)20

8P

b/20

4P

b(20

8P

b/20

4P

b)(I

)

Der

inob

aT

135

Gra

nite

317

7.30

4.00

18.9

019

.09

17.3

115

.67

15.5

839

.12

36.3

8T

136

Gra

nite

317

12.7

02.

8014

.50

18.7

118

.00

15.6

615

.62

38.8

637

.67

Kay

adib

iT

5G

rani

te30

311

.00

6.90

24.1

019

.24

17.2

915

.65

15.5

539

.09

36.8

8

Dow

nloa

ded

by [

Kar

aden

iz T

ekni

k U

nive

rsite

si]

at 0

2:44

17

Oct

ober

201

2

International Geology Review 1791

(87Sr/86Sr)I

–15

–10

–5

0

5

εNd

(I)

Gümüşhane pluton

Köse pluton

(A)

Kayadibi

Derinoba

0.693 0.696 0.699 0.702 0.705 0.708 0.711 0.714 SiO2(wt%)

0.6800

0.6900

0.7000

0.7100

0.7200

(87S

r/8

6S

r)I

(B)

FC

AFC

74 75 76

SiO2(wt.%)

0.5116

0.5118

0.5120

0.5122

(14

3N

d/1

44N

d) I

(C)

74 75 76

Nd

0.5118

0.5119

0.5119

0.5120

0.5120

0.5120

(14

3N

d/1

44N

d) I

(D)

20 24 28 32 36 40

(206

Pb/204

Pb)I

15.3

15.4

15.5

15.6

15.7

15.8

15.9

16.0

(20

7P

b/2

04P

b) I

UC

LC

EMII

EMI

HIMU

NHRL

Geochron (E)

17 18 19 20 21 22

17 18 19 20 21

(206

Pb/204

Pb)I

15.3

15.4

15.5

15.6

15.7

15.8

(20

7P

b/2

04P

b) I

Upper crust

Orogen

Mantle

Lower crust

(F)

Figure 8. (A) εNd(I) versus (87Sr/86Sr)(I) diagram for the Derinoba and Kayadibi granites. (B–D) (87Sr/86Sr)(I) and (143Nd/144Nd)(I) versusSiO2 and Nd plots, respectively. (E and F) Pb isotope correlation plots of the Derinoba and Kayadibi granites. EMI, enriched mantle typeI (Zindler and Hart 1986); HIMU,– high-µ (µ = 238U/204Pb, Lustrino and Dallai 2003); EMII, enriched mantle type II (enriched in Sr);LC,– lower crust; NHRL, Northern Hemisphere Reference Line (Hart 1984); UC, upper crust. Mantle (MORB), orogen, upper crust (UC),and lower crust (LC) evolution lines are from Zartman and Doe (1981). Symbols as in Figure 4.

result in the depletion of Ba and Sr. Negative Eu anoma-lies and a decrease in Sr with increasing silica (Figure 5L)indicate that plagioclase is an important fractionatingphase. The rocks show similar REE patterns, with a generalincrease of both light and heavy REEs with increasingSiO2 (Figure 6). The magnitude of the negative Eu anoma-lies increases with increasing SiO2 contents, suggestingfractionation of plagioclase for both granites. Fractionationof Fe–Ti oxide may be responsible for the negative anomalyin Ti. The negative anomaly in P is most probably theresult of apatite fractionation (Figure 6). Garnet may havenot been involved in magma genesis (Table 4); chondrite-normalized REE patterns show almost no fractionationbetween middle and heavy REE, and Sr/Y ratios are low(i.e. 1.2–3.7).

The Derinoba and Kayadibi granites are high-K calc-alkaline rocks, and their primitive mantle-normalized

spider diagrams are characterized by pronounced neg-ative Ba, Sr, Ti, and Nb anomalies and enrichmentin Rb, K, and La. These are typical features of syn-orogenic crustal-derived granitoids. Moderate to highRb/Sr ratios (0.5–5.2) and high K2O (3.2–4.8 wt.%) andSiO2 (74–77 wt.%) contents are consistent with the deriva-tion from a metasedimentary or felsic micaceous crustalsource (cf. Van de Flierdt et al. 2003; Jung et al. 2009).Moreover, Nb/Ta ratios vary from 5.7 to 20.5 (averagevalue = 12.7), Zr/Hf from 24.3 to 51.4 (average = 30.5),and Th/U from 2.5 to 13.8 (average = 5.40). Thesegeochemical signatures also suggest the derivation of thesemagmas from the partial melting of crustal rocks.

The ASI values indicate strongly peraluminous com-position, as expected for melts derived by partial meltingof continental crustal rocks. Hence, a derivation fromcrustal sources is apparent. The heterogeneity of the initial

Dow

nloa

ded

by [

Kar

aden

iz T

ekni

k U

nive

rsite

si]

at 0

2:44

17

Oct

ober

201

2

1792 A. Kaygusuz et al.

Tabl

e7.

LA

–IC

P–M

SU

–Pb

zirc

onda

ting

resu

lts

ofth

eD

erin

oba

and

Kay

adib

igra

nite

s.

Mea

sure

dra

tios

Cor

rect

edag

es(m

illi

onye

ars)

Spo

t20

7P

b/20

6P

b1σ

207P

b/23

5U

1σ20

6P

b/23

8U

1σ20

8P

b/23

2T

h1σ

238U

/23

2T

h1σ

207P

b/20

6P

b1σ

207P

b/23

5U

1σ20

6P

b/23

8U

1σ20

8P

b/23

2T

h1σ

Der

inob

aT

138-

010.

054

0.00

173

0.35

40.

0114

40.

048

0.00

069

0.01

60.

0003

31.

532

0.02

357

4730

89

301

432

07

T13

8-02

0.05

30.

0015

10.

366

0.01

043

0.05

0.00

069

0.01

60.

0002

91.

220.

0134

740

316

831

24

315

6T

138-

030.

056

0.00

148

0.37

0.00

989

0.04

80.

0006

60.

013

0.00

024

0.76

20.

0145

435

320

730

24

270

5T

138-

040.

056

0.00

138

0.37

50.

0094

10.

049

0.00

066

0.01

60.

0002

91.

793

0.02

305

107

305

1130

54

305

4T

138-

050.

053

0.00

128

0.35

80.

0087

70.

049

0.00

066

0.01

50.

0002

71.

789

0.02

337

3231

17

307

429

45

T13

8-06

0.05

50.

0017

20.

378

0.01

185

0.05

0.00

071

0.01

60.

0003

31.

523

0.02

413

4532

59

313

432

07

T13

8-08

0.05

30.

0013

40.

362

0.00

935

0.05

0.00

068

0.01

50.

0002

91.

352

0.01

314

3431

47

314

430

86

T13

8-09

0.05

20.

0013

0.35

80.

0090

70.

050.

0006

80.

015

0.00

029

1.90

80.

0229

733

311

731

34

307

6T

138-

100.

052

0.00

134

0.35

90.

0093

40.

050.

0006

80.

016

0.00

031.

847

0.02

294

3531

17

314

431

86

T13

8-11

0.05

50.

0013

80.

372

0.00

956

0.04

90.

0006

70.

015

0.00

029

1.47

40.

0139

634

321

731

14

308

6T

138-

120.

053

0.00

145

0.36

80.

0101

70.

050.

0006

90.

016

0.00

031.

406

0.01

333

3831

88

316

431

26

T13

8-14

0.05

30.

0013

40.

364

0.00

936

0.05

0.00

068

0.01

50.

0002

91.

838

0.02

322

3431

57

314

430

46

T13

8-15

0.05

30.

0013

60.

359

0.00

938

0.04

90.

0006

80.

015

0.00

031.

921

0.02

319

3531

17

310

430

86

T13

8-16

0.05

40.

0014

0.37

10.

0097

10.

050.

0006

80.

016

0.00

031

1.56

20.

0238

035

320

731

24

314

6T

138-

170.

054

0.00

139

0.36

80.

0095

90.

049

0.00

068

0.01

40.

0002

81.

658

0.02

372

3431

87

311

428

96

T13

8-18

0.05

30.

0014

0.36

70.

0097

90.

050.

0006

90.

015

0.00

031.

686

0.02

327

3631

77

316

430

46

T13

8-19

0.05

30.

0014

50.

362

0.00

994

0.04

90.

0006

80.

011

0.00

022

1.13

0.01

339

3831

47

310

421

44

T13

8-20

0.05

40.

0015

80.

365

0.01

077

0.04

90.

0006

90.

015

0.00

032

1.71

80.

0236

841

316

830

94

305

6T

138-

210.

056

0.00

147

0.39

20.

0102

70.

050.

0006

90.

012

0.00

025

1.53

30.

0247

134

336

731

64

248

5T

138-

220.

054

0.00

156

0.37

0.01

076

0.05

0.00

070.

014

0.00

029

0.93

80.

0135

941

320

831

44

282

6T

138-

230.

055

0.00

154

0.38

30.

0107

20.

050.

0007

0.01

50.

0003

21.

884

0.02

416

3832

98

317

430

86

T13

8-26

0.05

40.

0014

70.

358

0.00

980.

048

0.00

067

0.01

40.

0003

1.61

70.

0236

937

311

730

34

291

6T

138-

270.

053

0.00

147

0.36

60.

0101

60.

050.

0007

0.01

50.

0003

32.

071

0.02

333

3831

78

315

430

67

T13

5-01

0.05

40.

0010

70.

373

0.00

777

0.05

0.00

066

0.01

50.

0002

21.

918

0.02

368

2532

26

315

429

84

T13

5-02

0.06

20.

0015

60.

439

0.01

122

0.05

10.

0007

0.02

0.00

037

3.23

40.

0332

495

318

1031

74

317

4T

135-

050.

068

0.00

144

0.47

40.

0104

40.

051

0.00

068

0.01

80.

0002

71.

681

0.02

544

9834

312

315

431

14

T13

5-07

0.05

50.

0012

80.

391

0.00

941

0.05

20.

0007

0.01

70.

0002

92.

388

0.02

305

9132

310

325

432

64

T13

5-10

0.06

20.

0013

10.

430.

0094

90.

051

0.00

067

0.01

80.

0002

82.

155

0.02

364

9332

110

315

431

44

T13

5-13

0.06

0.00

141

0.41

20.

0099

40.

050.

0006

70.

015

0.00

025

1.66

0.02

601

3035

07

313

430

25

T13

5-18

0.05

30.

0012

50.

357

0.00

873

0.04

90.

0006

60.

016

0.00

028

2.27

30.

0231

232

310

731

04

321

6T

135-

190.

056

0.00

121

0.37

90.

0085

30.

050.

0006

60.

015

0.00

025

1.57

30.

0243

527

327

631

24

306

5T

135-

200.

059

0.00

130.

412

0.00

936

0.05

10.

0006

80.

016

0.00

026

1.73

20.

0256

027

350

731

94

317

5T

135-

250.

056

0.00

149

0.39

40.

0106

70.

051

0.00

070.

016

0.00

028

1.03

60.

0143

636

337

832

34

321

6T

135-

260.

055

0.00

135

0.39

40.

0097

90.

052

0.00

070.

016

0.00

029

1.86

0.02

420

3233

77

325

432

96

M16

-01

0.05

40.

0015

30.

360.

0102

20.

048

0.00

066

0.01

60.

0003

21.

752

0.02

364

4031

28

305

432

26

M16

-02

0.05

40.

0013

40.

360.

0089

90.

048

0.00

064

0.01

40.

0002

71.

515

0.02

381

3331

27

303

428

45

M16

-03

0.05

20.

0014

80.

346

0.00

978

0.04

80.

0006

50.

015

0.00

028

0.98

20.

0130

640

302

730

14

300

6M

16-0

40.

053

0.00

189

0.35

0.01

237

0.04

80.

0006

90.

015

0.00

032

1.14

0.01

327

5430

59

302

430

06

(Con

tinu

ed)

Dow

nloa

ded

by [

Kar

aden

iz T

ekni

k U

nive

rsite

si]

at 0

2:44

17

Oct

ober

201

2

International Geology Review 1793

Tabl

e7.

(Con

tinu

ed).

Mea

sure

dra

tios

Cor

rect

edag

es(m

illi

onye

ars)

Spo

t20

7P

b/20

6P

b1σ

207P

b/23

5U

1σ20

6P

b/23

8U

1σ20

8P

b/23

2T

h1σ

238U

/23

2T

h1σ

207P

b/20

6P

b1σ

207P

b/23

5U

1σ20

6P

b/23

8U

1σ20

8P

b/23

2T

h1σ

M16

-05

0.05

30.

0013

40.

351

0.00

893

0.04

80.

0006

50.

016

0.00

031

2.14

20.

0232

334

305

730

34

318

6M

16-0

70.

055

0.00

151

0.36

50.

0100

60.

048

0.00

066

0.01

40.

0002

91.

481

0.01

409

3731

67

303

429

06

M16

-08

0.05

30.

0013

70.

355

0.00

920.

048

0.00

065

0.01

60.

0003

11.

788

0.02

337

3530

97

305

431

26

M16

-09

0.05

30.

0015

80.

352

0.01

052

0.04

80.

0006

70.

015

0.00

032

1.45

80.

0131

543

306

830

54

307

6M

16-1

00.

055

0.00

144

0.36

0.00

951

0.04

80.

0006

50.

015

0.00

031

1.73

90.

0239

235

313

730

24

310

6M

16-1

10.

054

0.00

148

0.36

0.00

984

0.04

80.

0006

60.

014

0.00

028

1.26

50.

0136

937

312

730

44

279

6M

16-1

20.

056

0.00

165

0.37

0.01

093

0.04

80.

0006

70.

016

0.00

035

2.17

80.

0232

010

930

512

303

430

34

M16

-14

0.05

30.

0016

50.

348

0.01

078

0.04

80.

0006

70.

016

0.00

036

1.77

10.

0232

245

303

830

04

325

7M

16-1

50.

052

0.00

139

0.34

70.

0092

50.

048

0.00

066

0.01

60.

0003

21.

825

0.02

293

3630

27

304

431

36

M16

-16

0.05

70.

0018

10.

378

0.01

199

0.04

90.

0006

90.

015

0.00

034

1.38

80.

0147

345

326

930

54

305

7M

16-1

70.

053

0.00

145

0.35

30.

0096

30.

048

0.00

066

0.01

60.

0003

42.

036

0.02

330

3730

77

304

432

87

M16

-18

0.05

30.

0015

40.

355

0.01

026

0.04

90.

0006

70.

016

0.00

035

1.70

70.

0232

741

308

830

64

322

7M

16-1

90.

053

0.00

144

0.35

30.

0095

60.

048

0.00

066

0.01

20.

0002

51.

260.

0132

937

307

730

44

243

5M

16-2

00.

053

0.00

161

0.35

20.

0106

50.

048

0.00

067

0.01

50.

0003

21.

781

0.02

331

4330

68

303

429

56

M16

-21

0.05

40.

0014

40.

358

0.00

958

0.04

80.

0006

60.

015

0.00

031.

653

0.02

365

3631

17

304

429

16

M16

-22

0.05

40.

0019

20.

358

0.01

262

0.04

80.

0007

0.01

60.

0004

53.

657

0.04

366

5331

19

304

432

09

M16

-23

0.05

30.

0014

60.

356

0.00

966

0.04

80.

0006

60.

013

0.00

027

1.57

50.

0234

937

309

730

44

253

5M

16-2

40.

055

0.00

165

0.36

60.

0108

90.

048

0.00

067

0.01

60.

0003

41.

640.

0241

742

317

830

34

311

7M

16-2

50.

053

0.00

145

0.35

20.

0096

20.

048

0.00

066

0.01

50.

0003

21.

346

0.01

319

3830

67

304

429

76

M16

-26

0.05

20.

0018

20.

349

0.01

20.

048

0.00

070.

015

0.00

034

0.96

30.

0130

252

304

930

44

298

7M

16-2

70.

053

0.00

166

0.35

30.

0108

90.

048

0.00

068

0.01

60.

0003

81.

922

0.02

333

4430

78

304

432

68

M16

-28

0.05

40.

0016

0.35

70.

0105

50.

048

0.00

067

0.01

40.

0003

11.

391

0.01

351

4231

08

305

427

76

M16

-29

0.05

60.

0016

80.

377

0.01

115

0.04

90.

0006

80.

015

0.00

034

1.84

80.

0246

141

325

830

64

293

7M

16-3

00.

053

0.00

169

0.35

30.

0111

30.

048

0.00

068

0.01

50.

0003

40.

971

0.01

320

4630

78

305

429

97

Not

es:E

rror

sar

e1σ

.206P

b/23

8U

age

valu

esar

eus

edin

the

text

asth

ew

eigh

ted

mea

n.

Dow

nloa

ded

by [

Kar

aden

iz T

ekni

k U

nive

rsite

si]

at 0

2:44

17

Oct

ober

201

2

1794 A. Kaygusuz et al.

290

300

310

320

330

340

0.046

0.048

0.050

0.052

0.054

207Pb/

235U

206P

b/2

38U

Data point error ellipses are 68.3% conf

Mean = 317.2 ± 3.5 million years,

95% conf. n = 11, MSWD = 1.7

T135 Derinoba granite (B)

290

294

298

302

306

310

314

318

0.0455

0.0465

0.0475

0.0485

0.0495

0.0505

0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46

0.30 0.32 0.34 0.36 0.38 0.40 0.42

207Pb/

235U

206P

b/2

38U

Data point error ellipses are 68.3% conf

Mean = 303.8 ± 1.5 million years

95% conf. n = 28 MSWD = 0.119

M16 Kayadibi granite (C)

290

300

310

320

330

0.045

0.047

0.049

0.051

0.053

0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44

207Pb/

235U

206P

b/2

38U

Data point error ellipses are 68.3% conf

Mean = 311.1 ± 2.0 million years,

95% conf. n = 23, MSWD = 1.4

T138 Derinoba granite (A)

Figure 9. (A–C) Concordia diagrams showing LA–ICP–MS U–Pb zircon dating results from (A and B) Derinoba granite (samplesT138 and T135) and (C) Kayadibi granite (sample M16).

(A) T138 (B) M16

100 μm100 μm

Figure 10. (A and B) Cathodoluminescence images of typical zircons from (A) Derinoba granite (sample T138) and (B) Kayadibi granite(sample M16).

Sr isotope values is also consistent with this interpreta-tion. However, the granites have undergone deformationand alteration to variable degrees. Therefore, a prudentassumption is that the measured Rb/Sr and 87Sr/86Srratios have been modified to a certain extent, at least insome samples. Extremely low (87Sr/86Sr)(I) values (e.g.

0.6974–0.7003) have been found in samples, showing signsof aqueous alteration. Therefore, these values do not pro-vide a significant geological meaning. On the other hand,Nd isotope ratios are known to be more robust duringalteration and provide less ambiguous constraints on theorigin of these rocks. Initial 143Nd/144Nd isotope values

Dow

nloa

ded

by [

Kar

aden

iz T

ekni

k U

nive

rsite

si]

at 0

2:44

17

Oct

ober

201

2

International Geology Review 1795

Sr

10

100

1000

Rb

Pl

Kf

Bi

Cpx Hb

(A)

10 100 1000 10 100 1000

Sr

10

100

1000

Ba

Pl

Kf

Bi

CpxHb (B)

Figure 11. (A and B) Variation of (A) Rb versus Sr and (B) Ba versus Sr. Fractionation vectors were calculated according to the partitioncoefficients listed in Rollinson (1993). Symbols as in Figure 4.

(0.51188–0.51201) of the studied granites are homoge-neous with negative εNd(I) values (–4.6 to –7.1), con-firming the derivation of granitic magma from crustalsources.

Experimental data on high-K calc-alkaline granitoidrocks show that such rocks can be produced by melt-ing different crustal sources (e.g. Roberts and Clemens1993). Furthermore, partial melting yields compositionaldifferences among magmas produced by melting com-mon crustal rocks, such as amphibolites, tonalitic gneisses,metagreywackes, and metapelites under variable meltingconditions (e.g. Patiño-Douce 1999). This compositionalvariation can be visualized in terms of major oxide ratios(Figures 12A–12D) or molar oxide ratios (Figures 12E–12G). The plots in Figures 12A–12F show that partialmelts derived from metapelites and metagreywackes sourcerocks have higher molar (Na2O + K2O)/(FeOT + MgO+ TiO2) and K2O/Na2O ratios as well as lower molarCaO/(MgO + FeOT) and Na2O, relative to those originatedfrom the mafic to intermediate source rocks (Figure 12).Most samples from the Derinoba and Kayadibi granitesplot in the metagreywackes field (Figure 12) and showhigh molar (Na2O + K2O)/(FeOT + MgO + TiO2) andmolar K2O/Na2O ratios but relatively low CaO/(MgO +FeOT). In the Al2O3/TiO2 versus CaO/Na2O diagram(Figure 12H), the granites show varying CaO/Na2O val-ues, which indicate the protolith composition of a mixtureof sandstone and argillaceous rocks. These features, asso-ciated with relatively low Mg-number values (9–33), sug-gest melt production from lower crustal metasedimentarysource rocks. A similar origin is suggested for granophyresfrom the Gümüshane pluton (Topuz et al. 2010).

Geodynamic implications

Hercynian plutonism in Turkey is confined spatially to thePontides, specifically to its eastern portion (Figure 1B).The subduction polarity and geotectonic evolution ofthe eastern Pontide orogenic belt are still controversial.The various models proposed for the subduction polar-ity of the eastern Pontides can be grouped into three:(i) Adamia et al. (1977) and Ustaömer and Robertson

(1996) suggested that the eastern Pontides developed by thenorthward subduction of the Palaeotethys, which was situ-ated to the south of the magmatic arc, from the Palaeozoicuntil the end of the Eocene; (ii) Sengör and Yılmaz(1981) proposed that the Palaeotethys was situated to thenorth of the Pontides, and hence southward subductionoccurred from the Palaeozoic until the Middle Jurassic,whereas northward subduction occurred subsequently fromthe Upper Cretaceous until the end of the Eocene; (iii)Dewey et al. (1973), Bektas et al. (1999), and Eyubogluet al. (2007) suggested that southward subduction contin-ued uninterruptedly from the Palaeozoic until the end ofthe Eocene.

Researchers are likewise debating whether the easternPontides belong to Gondwana or Eurasia (Laurussia)(Sengör et al. 1980; Sengör and Yılmaz 1981; Robertsonand Dixon 1984; Robinson et al. 1995; Okay and Sahintürk1997; Yılmaz et al. 1997; Wehrmann et al. 2010).The oceanic domain between Gondwana and Eurasia(Laurussia) is known as the Palaeotethys. The locationof the eastern Pontides during the late Palaeozoic erais contentious. Some authors have suggested that theeastern Pontides formed part of the active northern mar-gin of Gondwana (Sengör and Yılmaz 1981; Sengör 1990),whereas Okay et al. (2006) and Moix et al. (2007) pro-posed that this block was located at the southern margin ofLaurussia.

Palaeozoic low-P–high-T metamorphic rocks andgranitoids are common throughout the Sakarya zone andin the Caucasus, which form the eastward extension ofthe eastern Pontides (e.g. Hanel et al. 1992; Okay et al.2002; Nzegge et al. 2006; Somin et al. 2006; Treloar et al.2009). On the other hand, Palaeozoic metamorphism ormagmatism has not been reported in the Tauride–Anatolideblock, which has a Neo-Proterozoic crystalline basementoverlain by different sedimentary successions ranging fromMid-Cambrian to Miocene in age. The basement and partsof the overlying successions were strongly deformed andpartly metamorphosed during the Alpine orogeny (Okayet al. 2006, and references therein). Based on the differ-ences in stratigraphy, type, and age of the basement rocks,Topuz et al. (2010) suggested that the Sakarya zone and

Dow

nloa

ded

by [

Kar

aden

iz T

ekni

k U

nive

rsite

si]

at 0

2:44

17

Oct

ober

201

2

1796 A. Kaygusuz et al.

Al2O3/TiO2

0.1

1.0

CaO

/Na 2

O Alps

0.3

50

Lac

HerHim

Psammite-derived

Pelite-derived

(H)

Molar CaO/(MgO + FeOT)

0

1

2

3

4

5

6

Mol

ar K

2O/N

a 2O

Mol

ar K

2O/N

a 2O

MP

MA

MGW

MB

(E)

CaO/(MgO + FeOT)

0

2

4

6

8

10

12

Al 2

O3/

(MgO

+ F

eOT)

MP

MA

MGW

MB

(A)

SiO2(wt.%)

0

20

40

60

80

Mg#

MP

MA

MGW

MB

(B)

Molar CaO/(MgO + FeOT)

0

2

4

6

8

10

Na 2

O(w

t.%)

MP

MA

MGW

MB(F)

ASI

0

1

2

3

4

5

MP

MAMGW

MB

(G)

Na2O + K2O + FeOT + MgO + TiO2

0

2

4

6

8

10

(Na 2

O +

K2O

)/(F

eOT

+ M

gO +

TiO

2)

(C)FP

MGW

AMP

10 100 1000

0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0 50 55 60 65 70 75 80

0.0 0.5 1.0 1.5 2.0

0.5 1.0 1.5 2.0 2.5

6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18

CaO + FeOT + MgO + TiO2

0.0

0.2

0.4

0.6

0.8

1.0

CaO

/(Fe

OT+

MgO

+ T

iO2)

(D)

FP

MGW

AMP

Figure 12. (A–G) Chemical composition of the Derinoba and Kayadibi granites: outlined fields denote compositions of partial meltsobtained in experimental studies by dehydration melting of various bulk compositions. MB, metabasalts; MA, meta-andesites; MGW,metagreywackes; MP, metapelites; FP, felsic pelites; AMP, amphibolites. (H) Al2O3/TiO2 versus CaO/Na2O diagram showing the prove-nance of early Palaeozoic granites in the central-southern Jiangxi Province. Lac, Lachlan fold zone in Australia; Alps, the Alpine orogenicbelt in Europe; Her, Hercynian orogenic belt in Europe; Him, the Himalaya orogenic belt. Data sources: Vielzeuf and Holloway (1988),Patiño Douce and Johnston (1991), Rapp et al. (1991), Gardien et al. (1995), Rapp (1995), Rapp and Watson (1995), Patiño Douce andBeard (1996), Stevens et al. (1997), Skjerlie and Johnston (1996), Patiño Douce (1997), Patiño Douce and McCarthy (1998) and PatiñoDouce (1999). Symbols as in Figure 4.

Dow

nloa

ded

by [

Kar

aden

iz T

ekni

k U

nive

rsite

si]

at 0

2:44

17

Oct

ober

201

2

International Geology Review 1797

the Tauride–Anatolide block formed distinct entities dur-ing the late Palaeozoic to the early Mesozoic. Hence, theeastern Pontides were probably part of Laurussia during thePalaeozoic (Topuz et al. 2010).

The presence of Carboniferous low-P–high-T meta-morphism in the eastern Pontides is regarded as late impactof the Hercynian orogeny and as evidence of a coeval sub-duction zone during the emplacement of the CarboniferousGümüshane pluton (Topuz et al. 2010). However, neitherlow- nor high-P metamorphic rocks have been observedin the area of the Derinoba and Kayadibi granitic bodies.Thus, the present theory is that granites and metamorphicrocks were separated by thrusting after pluton emplacementor the original contact between these lithological units maybe hidden by younger cover units.

Carboniferous Derinoba and Kayadibi granites can beregarded as late-stage magmatic products of the Hercynianorogeny. Moreover, the overall geochemical and isotopicfeatures of the granites, along with the regional geology,favour an emplacement in a continental arc or syn- orpost-collisional setting. Hence, the Derinoba and Kayadibigranites, together with the Gümüshane and Köse plutons,can be interpreted as members of a larger coherent plu-ton, namely, the eastern Pontide pluton. This pluton wasgenerated by the partial melting of a variety of meta-mafic to metafelsic source rocks in the lower continentalcrust. Furthermore, the eastern Pontides are assumed tobe part of Laurussia during the Palaeozoic, and that theCarboniferous period reflects the transition from conti-nental arc setting to a syn- or post-collisional setting.Thus, the crustal melts were probably generated in a syn-or post-collisional setting, although the melting mecha-nism of the lower crust is still a matter of debate. Topuzet al. (2010) suggested that in a post-collisional setting,delamination of the subcontinental lithosphere might haveoccurred, leading to the underplating of mafic rocks. Theseunderplated magmas may have provided the heat nec-essary to melt the existent mafic into relatively felsiclower crustal rocks, resulting in the formation of meta-luminous to peraluminous granitic melts. Under a syn-or post-orogenic condition, these melts intruded into theupper crust, leading to the development of I- and S-typegranites.

Conclusions

Our study for the first time establishes the presence ofHercynian granitoids in the northern zone of the easternPontides. Among these rocks, the Derinoba and Kayadibimedium- to coarse-grained granites form a distinctive con-stituent of the pre-Liassic basement of the eastern Pontides.Based on LA–ICP–MS U–Pb zircon analyses, ages of317.2 ± 3.5 and 311.1 ± 2.0 million years (Derinoba) and303.8 ± 1.5 million years (Kayadibi) are assigned to thesebodies. These ages are coeval with the emplacement agesof the Gümüshane and Köse granites.

These bodies show a high-K calc-alkaline and I- toS-type character. Fractional crystallization processes oper-ated during the evolution of the plutonic rocks withplagioclase, K-feldspar, apatite, and magnetite as the mostimportant fractionating minerals. All rocks define a smallrange of Nd isotope ratios. Nd model ages of the granitesrange from 1.50 to 2.15 thousand million years.

These characteristics, combined with high K2O/Na2O,(Na2O + K2O)/(FeOT + MgO + TiO2), and relativelylow CaO/(MgO + FeOT) ratios, suggest that the Derinobaand Kayadibi granites were generated by the partial melt-ing of lower crustal metasedimentary protoliths in a syn- orpost-collisional setting. The Derinoba and Kayadibi intru-sions, together with the Gümüshane and Köse plutons,can be interpreted as members of a larger coherent plutoncomplex, termed the eastern Pontide pluton.

AcknowledgementsThis research was supported by the Akdeniz University ResearchFund and grant no. 109Y052 from the Turkish ResearchFoundation (TÜBITAK). We appreciate the help of Bin Chenand Elmar Reiter during isotope analyses and Lynn Heizler formicroprobe analyses. Thanks are due to W.G. Ernst and theanonymous reviewer for their comments, which helped to improvethe manuscript. We thank Emre Aydınçakır, Mürsit Öztürk, andMetin Çiftçi for their help in the field.

ReferencesAdamia, S.A., Lordkipanidze, M.B., and Zakariadze, G.S., 1977,

Evolution of an active continental margin as examplified bythe Alpine history of the Caucasus: Tectonophysics, v. 40,p. 183–199.

Altherr, R., Topuz, G., Siebel, W., Sen, C., Meyer, H.P., Satir, M.,and Lahaye, Y., 2008, Geochemical and Sr–Nd–Pb isotopiccharacteristics of Paleocene plagioleucitites from the easternPontides (NE Turkey): Lithos, v. 105, p. 149–161.

Andersen, T., 2002, Correction of common lead in U–Pb analysesthat do not report 204Pb: Chemical Geology, v. 192, p. 59–79.

Arslan, M., and Aslan, Z., 2006, Mineralogy, petrography andwhole rock geochemistry of the Tertiary granitic intrusions inthe eastern Pontides, Turkey: Journal of Asian Earth Sciences,v. 27, p. 177–193.

Arslan, M., Sen, C., Aliyazıcıoglu, I., Kaygusuz, A., and Aslan,Z., 2000, Trabzon ve Gümüshane yörelerinde (KD, Türkiye)yüzeylenen Eosen (?) volkanitlerinin karsılastırmalı jeolojisi,mineralojisi ve petrolojisi [Comparative geology, mineralogyand petrology of Eocene (?) volcanics in Trabzon andGümüshane areas (NE, Turkey)]: Yerbilimleri ve MadencilikKongresi Bildiriler Kitabi, v. 1, p. 39–53 (in Turkish withEnglish abstract).

Arslan, M., Tüysüz, N., Korkmaz, S., and Kurt, H., 1997,Geochemistry and petrogenesis of the eastern Pontide vol-canic rocks, northeast Turkey: Chemie der Erde, v. 57,p. 157–187.

Aydın, F., 2004, Mineral chemistry, petrology and petrogenesisof the Degirmendere Valley volcanics (Trabzon-Esiroglu,NE-Turkey) [Unpublished Ph.D. thesis]: Trabzon, KaradenizTechnical University.

Batchelor, B., and Bowden, P., 1985, Petrogenetic interpreta-tion of granitoid rock series using multicationic parameters:Chemical Geology, v. 48, p. 43–55.

Dow

nloa

ded

by [

Kar

aden

iz T

ekni

k U

nive

rsite

si]

at 0

2:44

17

Oct

ober

201

2

1798 A. Kaygusuz et al.

Bektas, O., Sen, C., Atıcı, Y., and Köprübası, N., 1999, Migrationof the Upper Cretaceous subduction-related volcanism towardthe back-arc basin of the eastern Pontide magmatic arc (NETurkey): Geological Journal, v. 34, p. 95–106.

Bektas, O., Van, A., and Boynukalın, S., 1987, Jurassic volcan-ism and its geotectonics in the eastern Pontides (NE Turkey):Geological Bulletin of Turkey, v. 30, p. 9–18.

Bergougnan, H., 1987, Etudes geologiques dans l’est Anatolien:Mem. des Sci. De la Terre [These de Doctorat D’etat 86–33]:Paris, Universite Pierre, et Marie Curie.

Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis,D.W., Korsch, R.J., and Foudoulis, C., 2003, TEMORA 1: Anew zircon standard for Phanerozoic U–Pb geochronology:Chemical Geology, v. 200, p. 155–170.

Boztug, D., Erçin, A.I., Kuruçelik, M.K., Göç, D., Kömür, I., andIskenderoglu, A., 2006, Geochemical characteristics of thecomposite Kaçkar batholith generated in a Neo-Tethyan con-vergence system, eastern Pontides, Turkey: Journal of AsianEarth Sciences, v. 27, p. 286–302.

Boztug, D., and Harlavan, Y., 2008, K–Ar ages of granitoidsunravel the stages of Neo-Tethyan convergence in the easternPontides and central Anatolia, Turkey: International Journalof Earth Sciences, v. 97, p. 585–599.

Boztug, D., Jonckheere, R., Wagner, G.A., and Yegingil, Z., 2004,Slow Senonian and fast Palaeocene–Early Eocene uplift ofthe granitoids in the Central Eastern Pontides, Turkey: Apatitefission-track results: Tectonophysics, v. 382, p. 213–228.

Chappell, B.W., and White, A.J.R., 1974, Two contrasting granitetypes: Pacific Geology, v. 8, p. 173–174.

Çogulu, E., 1975, Gümüshane ve Rize Granitik PlutonlarınınMukayeseli Petrojeolojik ve Jeokronolojik Etüdü[Petrogeologic and geochronologic investigation ofGümüshane and Rize granitic plutons and their comparison][Unpublished dissertation thesis]: Istanbul, IstanbulTechnical University.

Debon, F., and Le Fort, P., 1982, A chemical–mineralogicalclassification of common plutonic rocks and associations:Transactions of the Royal Society of Edinburgh: EarthSciences, v. 73, p. 135–149.

Delaloye, M., Çogulu, E., and Chessex, R., 1972, Etudegéochronometrique des massifs cristallins de Rize et deGümüshane, Pontides Orientales (Turquie): Archives desSciences Physiques et Naturelles, v. 25, Suppl. 7, p. 43–52.

Dewey, J.F., Pitman, W.C., Ryan, W.B.F., and Bonnin, J.,1973, Plate tectonics and evolution of the Alpine system:Geological Society of America Bulletin, v. 84, p. 3137–3180.

Dokuz, A., 2011, A slab detachment and delamination modelfor the generation of Carboniferous high-potassium I-typemagmatism in the eastern Pontides, NE Turkey: The Kösecomposite pluton: Gondwana Research, v. 19, p. 926–944.

Eyuboglu, Y., Bektas, O., and Pul, D., 2007, Mid-Cretaceousolistostromal ophiolitic melange developed in the back-arcbasin of the eastern Pontide magmatic arc, northeast Turkey:International Geology Review, v. 49, p. 1103–1126.

Eyuboglu, Y., Dilek, Y., Bozkurt, E., Bektas, O., Rojay, B., andSen, C., 2010, Structure and geochemistry of an Alaskan-typeultramafic-mafic complex in the eastern Pontides, NE Turkey:Gondwana Research, v. 18, p. 230–252.

Eyuboglu, Y., Santosh, M., Dudas, F.O., Chung, S.L., andAkaryalı, E., 2011, Migrating magmatism in a continentalarc: Geodynamics of the eastern Mediterranean revisited:Journal of Geodynamics, v. 52, p. 2–15.

Gardien, V., Thompson, A.B., Grujic, D., and Ulmer, P., 1995,Experimental melting of biotite + plagioclase + quartz ±muscovite assemblages and implications for crustal melting:Journal of Geophysical Research, v. 100, p. 15581–15591.

Güven, I.H., 1993, 1/250,000-scale geological and metallo-genical map of the eastern Black Sea Region: Trabzon,Publications of Mineral Research and Exploration Instituteof Turkey (MTA).

Hanel, M., Gurbanov, A.G., and Lippolt, H.J., 1992, Age and gen-esis of granitoids from the main-range and Bechasyn zones ofthe western Great Caucasus: Neues Jahrbuch für MineralogieMonatshefte, v. 1992, p. 529–544.

Hart, S.R., 1984, A large scale isotope anomaly in the SouthernHemisphere mantle: Science, v. 309, p. 753–757.

Ilbeyli, N., 2008, Geochemical characteristics of theSebinkarahisar granitoids in the eastern Pontides, northeastTurkey: Petrogenesis and tectonic implications: InternationalGeology Review, v. 50, p. 563–582.

Jacobsen, S.B., and Wasserburg, G.J., 1980, Sm–Nd isotopic evo-lution of chondrites: Earth Planetary Science Letters, v. 50,p. 139–155.

JICA, 1986, The Republic of Turkey report on the cooperativemineral exploration of Gümüshane area, consolidated report:Japan Int. Coop. Agency, 146 p.

Jung, S., Masberg, P., Mihm, D., and Hoernes, S., 2009, Partialmelting of diverse crustal sources – Constraints from Sr–Nd–O isotope compositions of quartz diorite–granodiorite–leucogranite associations (Kaoko Belt, Namibia): Lithos,v. 111, p. 236–251.

Karslı, O., Chen, B., Aydın, F., and Sen, C., 2007, Geochemicaland Sr–Nd–Pb isotopic compositions of the Eocene Dölekand Sarıçiçek plutons, Eastern Turkey: Implications formagma interaction in the genesis of high-K calc-alkalinegranitoids in a post-collision extensional setting: Lithos,v. 98, p. 67–96.

Karslı, O., Dokuz, A., Uysal, I., Aydın, F., Chen, B.,Kandemir, R., and Wijbrans, J., 2010, Relative contribu-tions of crust and mantle to generation of Campanianhigh-K calc-alkaline I-type granitoids in a subduction set-ting, with special reference to the Harsit pluton, easternTurkey: Contributions to Mineralogy and Petrology, v. 160,p. 467–487.

Kaygusuz, A., and Aydınçakır, E., 2009, Mineralogy, whole-rock and Sr–Nd isotope geochemistry of mafic microgran-ular enclaves in Cretaceous Dagbası granitoids, easternPontides, NE Turkey: Evidence of magma mixing, min-gling and chemical equilibration: Chemie der Erde, v. 69,p. 247–277.

Kaygusuz, A., Chen, B., Aslan, Z., Siebel, W., and Sen, C., 2009,U–Pb zircon SHRIMP ages, geochemical and Sr–Nd isotopiccompositions of the Early Cretaceous I-type Sarıosman plu-ton, eastern Pontides, NE Turkey: Turkish Journal of EarthSciences, v. 18, p. 549–581.

Kaygusuz, A., Siebel, W., Ilbeyli, N., Arslan, M., Satır, M., andSen, C., 2010, Insight into magma genesis at convergentplate margins – A case study from the eastern Pontides (NETurkey): Neues Jahrbuch für Mineralogie Abhandlungen,v. 187, no. 3, p. 265–287.

Kaygusuz, A., Siebel, W., Sen, C., and Satır, M., 2008,Petrochemistry and petrology of I-type granitoids in anarc setting: The composite Torul pluton, eastern Pontides,NE Turkey: International Journal of Earth Sciences, v. 97,p. 739–764.

Ketin, I., 1966, Anadolunun tektonik birlikleri [Tectonic units ofAnatolia]: MTA Dergisi, v. 66, p. 22–34.

Korkmaz, S., Tüysüz, N., Er, M., Musaoglu, A., and Keskin,I., 1995, Stratigraphy of the eastern Pontides, NE Turkey,in Erler, A., et al., eds., Proceedings of the InternationalSymposium of the Geology of the Black Sea Region,September 7–11, p. 59–69.

Dow

nloa

ded

by [

Kar

aden

iz T

ekni

k U

nive

rsite

si]

at 0

2:44

17

Oct

ober

201

2

International Geology Review 1799

Ludwig, K.R., 2003, User’s manual for Isoplot 3.0: Ageochronological toolkit for Microsoft Excel: BerkeleyGeochronology Center, Special Publication 4, p. 1–71.

Lustrino, M., and Dallai, L., 2003, On the origin of EM-I end-member: Neues Jahrbuch für Mineralogie Abhandlungen,v. 179, no. 1, p. 85–100.

Moix, P., Beccaletto, L., Kozur, H.W., Hochard, C., Rosselet, F.,and Stampfli, G.M., 2007, A new classification of the Turkishterranes and sutures and its implication for the paleotectonichistory of the region: Tectonophysics, v. 451, p. 7–39.

Moore, W.J., Mckee, E.H., and Akıncı Ö., 1980, Chemistry andchronology of plutonic rocks in the Pontid mountains, north-ern Turkey, in Symposium of European Copper Deposits,Belgrade, p. 209–216.

Nielsen, C.H., and Sigurdsson, H., 1981, Quantitative methodsfor electron microprobe analysis of sodium in natural andsynthetic glasses: American Mineralogist, v. 66, p. 547–552.

Nzegge, O.M., Satır, M., Siebel, W., and Taubald, H., 2006,Geochemical and isotopic constraints on the genesis of theLate Paleozoic Deliktas and Sivrikaya granites from theKastamonu granitoid belt (Central Pontides, Turkey): NeuesJahrbuch für Mineralogie Abhandlungen, v. 183, p. 27–10.

Okay, A.I., Monod, O., and Monié, P., 2002, Triassic blueschistsand eclogites from northwest Turkey: Vestiges of the Paleo-Tethyan subduction: Lithos, v. 64, p. 155–178.

Okay, A.I., and Sahintürk, Ö., 1997, Geology of the easternPontides, in Robinson, A.G., ed., Regional and petroleumgeology of the Black Sea and surrounding region: AAPGMemoir 68, p. 291–311.

Okay, A.I., Satır, M., and Siebel, W., 2006, Pre-Alpide orogenicevents in the eastern Mediterranean region. European litho-sphere dynamics:Geological Society of London, Memoirs,v. 32, p. 389–405.

Özsayar, T., Pelin, S., and Gedikoglu, A., 1981, Dogu Pontidler’deKretase [Cretaceous in the eastern Pontides]: KTU YerBilimleri Dergisi, v. 1, p. 65–14.

Patiño Douce, A.E., 1997, Generation of metaluminous A-typegranites by low-pressure melting of calc-alkaline granitoids:Geology, v. 25, p. 743–746.

Patiño Douce, A.E., 1999, What do experiments tell us aboutthe relative contributions of crust and mantle to the ori-gin of granitic magmas?, in Castro, A., Fernandez, C., andVigneresse, J.L., eds., Understanding granites: Integratingnew and classical techniques:Geological Society of London,Special Publications 168, p. 55–75.

Patiño Douce, A.E., and Beard, J.S., 1996, Effects of P, f (O2)and Mg/Fe ratio on dehydration melting of model meta-greywackes: Journal of Petrology, v. 37, p. 999–1024.

Patiño Douce, A.E., and Johnston, A.D., 1991, Phase equilibriaand melt productivity in the pelite system: Implications forthe origin of peraluminous granitoids and aluminous gran-ulites: Contributions to Mineralogy and Petrology, v. 107,p. 202–218.

Patiño Douce, A.E., and McCarthy, T.C., 1998, Melting ofcrustal rocks during continental collision and subduction, inHacker, B.R., and Liou, J.G., eds., When continents collide:Geodynamics and geochemistry of ultra-high pressure rocks:Dordrecht, Kluwer Academic Publishers, p. 27–55.

Peccerillo, A., and Taylor, J.R., 1976, Geochemistry of upperCretaceous volcanic rocks Pontid chain, northern Turkey:Bulletin of Volcanology, v. 39, p. 557–569.

Rapp, R.P., 1995, Amphibole-out phase boundary in partiallymelted metabasalt, its control over liquid fraction and com-position, and source permeability: Journal of GeophysicalResearch, v. 100, p. 15601–15610.

Rapp, R.P., and Watson, E.B., 1995, Dehydration melting ofmetabasalt at 8–32 kbar: Implications for continental growthand crust-mantle recycling: Journal of Petrology, v. 36,p. 891–931.

Rapp, R.P., Watson, E.B., and Miller, C.F., 1991, Partial melt-ing of amphibolite eclogite and the origin of Archeantrondhjemites and tonalities: Precambrian Research, v. 51,p. 1–25.

Roberts, M.P., and Clemens, J.D., 1993, Origin of high-potassium,calc-alkaline, I-type granitoids: Geology, v. 21, p. 825–828.

Robertson, A.H.F., and Dixon, J.E., 1984, Introduction: Aspectsof the geological evolution of the eastern Mediterranean, inDixon, J.E., and Robertson, A.H.F., eds., The geological evo-lution of the eastern Mediterranean: Geological Society ofLondon, Special Publications 17, p. 1–74.

Robinson, A.G., Banks, C.J., Rutherford, M.M., and Hirst, J.P.P.,1995, Stratigraphic and structural development of the easternPontides, Turkey: Journal of the Geological Society, London,v. 152, p. 861–872.

Rollinson, H., 1993, Using geochemical data: Evaluation, presen-tation, interpretation: Oxford, Longman Group UK Ltd.

Sen, C., 2007, Jurassic volcanism in the eastern Pontides: Is itrift related or subduction related? Turkish Journal of EarthSciences, v. 16, p. 523–539.

Sen, C., Arslan, M., and Van, A., 1998, Geochemical and petro-logical characteristics of the eastern Pontide Eocene (?) alka-line volcanic province, NE Turkey: Turkish Journal of EarthSciences, v. 7, p. 231–239.

Sengör, A.M.C., 1990, A new model for the late Palaeozoic–Mesozoic tectonic evolution of Iran and implications forOman, in Robertson, A.H.F., Searle, M.P., and Ries, A.C.,eds., The geology and tectonics of the Oman region:Geological Society of London, Special Publications 49,p. 797–831.

Sengör, A.M.C., Özeren, S., Genç, T., and Zor, E., 2003, EastAnatolian high plateau as a mantle-supported, north–southshortened domal structure: Geophysical Research Letters,v. 30, no. 24, p. 8045.

Sengör, A.M.C., and Yılmaz, Y., 1981, Tethyan evolutionof Turkey: A plate tectonic approach: Tectonophysics,v. 75, p. 181–241.

Sengör, A.M.C., Yılmaz, Y., and Ketin, I., 1980, Remnantsof Pre-Late Jurassic ocean in northern Turkey: Fragmentsof Permian-Triassic Paleo-Tethys: Geological Society ofAmerica Bulletin, v. 91, p. 599–609.

Shand, S.J., 1947, Eruptive rocks. Their genesis, composition,classification and their relation to ore-deposits (third edition):New York, John Wiley & Sons.

Sipahi, F., 2011, Formation of skarns at Gümüshane(Northeastern Turkey): Neues Jahrbuch für Mineralogie-Abhandlungen, v. 188/2, p. 169–190.

Skjerlie, K.P., and Johnston, A.D., 1996, Vapour-absent meltingfrom 10 to 20 kbar of crustal rocks that contain multiplehydrous phases: Implications for anatexis in the deep to verydeep continental crust and active continental margins: Journalof Petrology, v. 37, p. 661–691.

Somin, M.L., Kotov, A.B., Sal’nikova, E.B., Levchenkov, A.O.,Pis’mennyi, A.N., and Yakovleva, S.Z., 2006, Paleozoicrocks in infrastructure of the metamorphic core, the GreaterCaucasus Main Range Zone: Stratigraphy and GeologicalCorrelation, v. 14, p. 475–485.

Stevens, G., Clemens, J.D., and Droop, G.T.R., 1997, Melt pro-duction during granulite facies anatexis: Experimental datafrom ‘primitive’ metasedimentary protoliths: Contributionsto Mineralogy and Petrology, v. 128, p. 352–370.

Dow

nloa

ded

by [

Kar

aden

iz T

ekni

k U

nive

rsite

si]

at 0

2:44

17

Oct

ober

201

2

1800 A. Kaygusuz et al.

Sun, S.S., and Mcdonough, W.F., 1989, Chemical and isotopicsystematics of oceanic basalts: Implications for mantle com-position and processes, in Saunders, A.D., and Norry, M.J.,eds., Magmatism in the ocean basins: Geological Society ofLondon, Special Publications 42, p. 313–345.

Tarney, J., and Jones, C.E., 1994, Trace element geochemistry oforogenic igneous rocks and crustal growth models: Journal ofthe Geological Society of London, v. 151, p. 855–868.

Taylor, S.R., and McLennan, S.M., 1985, The continental crust:Its composition and evolution: Oxford, Blackwell.

Temizel, I., and Arslan, M., 2009, Mineral chemistry andpetrochemistry of post-collisional Tertiary mafic to felsiccogenetic volcanics in the Ulubey (Ordu) Area, easternPontides, NE Turkey: Turkish Journal of Earth Sciences,v. 18, p. 29–53.

Temizel, I., Arslan, M., Ruffet, G., and Peucat, J.J., 2012,Petrochemistry, geochronology and Sr–Nd isotopic system-atics of the Tertiary collisional and post-collisional volcanicrocks from the Ulubey (Ordu) area, eastern Pontide, NETurkey: Implications for extension-related origin and mantlesource characteristics: Lithos, v. 28, p. 126–147.

Tokel, S., 1977, Dogu Karadeniz Bölgesi’nde Eosen yaslı kalkalkalen andezitler ve jeotektonizma: Türkiye Jeoloji KurumuBülteni, v. 20, p. 49–54.

Topuz, G., Altherr, R., Kalt, A., Satır, M., Werner, O., andSchwarz, W.H., 2004, Aluminous granulites from the Pulurcomplex, NE Turkey: A case of partial melting, efficient meltextraction and crystallization: Lithos, v. 72, p. 183–207.

Topuz, G., Altherr, R., Schwarz, W.H., Siebel, W., Satır,M., and Dokuz, A., 2005, Post-collisional plutonism withadakite-like signatures: The Eocene Saraycık granodiorite(Eastern Pontides, Turkey): Contributions to Mineralogy andPetrology, v. 15, p. 441–455.

Topuz, G., Altherr, R., Siebel, W., Schwarz, W.H., Zack, T.,Hasözbek, A., Barth, M., Satır, M., and Sen, C., 2010,Carboniferous high-potassium I-type granitoid magmatism inthe eastern Pontides: The Gümüshane pluton (NE Turkey):Lithos, v. 116, p. 92–110.

Treloar, P.J., Mayringer, F., Finger, F., Gerdes, A., and Shengalia,D., 2009, New age data from the Dzirula Massif, Georgia:Implications for Variscan evolution of the Caucasus, in IIndInternational Symposium on the Geology of the Black SeaRegion, 5–9 October 2009, Ankara, Turkey, Abstract book,p. 204–205.

Ustaömer, T., and Robertson, A.H.F., 1996, Paleotethyan tectonicevolution of the north Tethyan margin in the central PontidesN Turkey, in Erler, A., Ercan, T., Bingöl, E., and Örçen, S.,eds., International Symposium on the Geology of the BlackSea Region Proceedings-I, Ankara, p. 24–33.

Van de Flierdt, T., Hoernes, S., Jung, S., Masberg, P.,Hoffer, E., Schaltegger, U., and Friedrichsen, H., 2003,Lower crustal melting and the role of open-system pro-cesses in the genesis of syn-orogenic quartz diorite–granite–leucogranite associations: Constraints from Sr–Nd–O isotopes from the Bandombaai Complex, Namibia: Lithos,v. 67, p. 205–226.

Vielzeuf, D., and Holloway, J.R., 1988, Experimental determi-nations of the fluid-absent melting reactions in the peliticsystem: Contributions to Mineralogy and Petrology, v. 98,p. 257–276.

Wehrmann, A., Yılmaz, I., Yalçın, M.N., Wilde, V., Schindler,E., Weddige, K., Demirtas, G.S., Özkan, R., Nazik, A.,Nalcıoglu, G., Kozlu, H., Karslıoglu, Ö., Jansen, U., Ertug,K., Brocke, R., and Bozdogan, N., 2010, Devonian shallow-water sequences from the north Gondwana coastal mar-gin (central and eastern Taurides, Turkey): Sedimentology,facies and global events: Gondwana Research, v. 17,p. 546–560.

Whalen, J.B., Currie, K.L., and Chappell, B.W., 1987, A-typegranites: Geochemical characteristics, discrimination andpetrogenesis: Contributions to Mineralogy and Petrology,v. 95, p. 407–419.

Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M.,Oberli, F., Vonquadt, A., Roddick, J.C., and Speigel, W., 1995,Three natural zircon standards for U–Th–Pb, Lu–Hf, trace-element and REE analyses: Geostandard Newsletter, v. 19,p. 1–23.

Yegingil, Z., Boztug, D., Er, M., Oddone, M., and Bigazzi, G.,2002, Timing of neotectonic fracturing by fission-track dat-ing of obsidian in-filling faults in the Ikizdere-Rize area,NE Black Sea region Turkey: Terra Nova, v. 14, no. 3,p. 169–174.

Yılmaz, A., Adamia, S., Chabukiani, A., Chkhotua, T., Erdogan,K., Tuzcu, S., and Karabiyikoglu, M., 2000, Structural cor-relation of the southern Transcaucasus (Georgia)–easternPontides (Turkey), in Bozkurt, E., Winchester, J.A., andPiper, J.D.A., eds., Tectonics and magmatism in Turkey andsurrounding area: Geological Society of London, SpecialPublications 173, p. 171–182.

Yılmaz, C., and Korkmaz, S., 1999, Basin development inthe eastern Pontides, Jurassic to Cretaceous, NE Turkey:Zentralblatt für geologie und palaöntologie, Teil I, H. 10–12,p. 1485–1494.

Yılmaz, S., and Boztug, D., 1996, Space and time relationsof three plutonic phases in the eastern Pontides, Turkey:International Geological Review, v. 38, p. 935–956.

Yılmaz, Y., 1972, Petrology and structure of the Gümüshanegranite and surrounding rocks, north-eastern Anatolia[Unpublished Ph.D. thesis]: UK, University of London.

Yılmaz, Y., 1974, Geochemical study of the Gümüshane granite:Istanbul Üniversitesi: Fen Fakültesi mecmuasi Seri B, v. 39,p. 173–204.

Yılmaz, Y., Tüysüz, O., Yigitbas, E., Genç, S.C., and Sengör,A.M.C., 1997, Geology and tectonic evolution of thePontides, Regional and petroleum geology of the Black Seaand surrounding region: AAPG Memoir 68, p. 183–226.

Yılmaz-Sahin, S., 2005, Transition from arc- to post-collisionextensional setting revealed by K–Ar dating and petrology:An example from the granitoids of the eastern Pontideigneous terrane, Araklı-Trabzon, NE Turkey: GeologicalJournal, v. 40, p. 425–440.

Yücel, C., Arslan, M., Temizel, I., and Abdioglu, E., 2011,Whole-rock chemostratigraphy of diverse magma series inthe Tertiary alkaline volcanics of Trabzon–Giresun area, NETurkey: Goldschmidt Conference Abstracts, MineralogicalMagazine, p. 2237.

Zartman, R.E., and Doe, B.R., 1981, Plumbotectonics. Themodel: Tectonophysics, v. 75, p. 135–162.

Zindler, A., and Hart, S.R., 1986, Chemical geodynamics: AnnualReview of Earth and Planetary Sciences, v. 14, p. 493–571.

Dow

nloa

ded

by [

Kar

aden

iz T

ekni

k U

nive

rsite

si]

at 0

2:44

17

Oct

ober

201

2


Recommended