+ All Categories
Home > Documents > Highly heterogeneous lithospheric mantle beneath the Central Zone of the North China Craton evolved...

Highly heterogeneous lithospheric mantle beneath the Central Zone of the North China Craton evolved...

Date post: 10-Dec-2023
Category:
Upload: independent
View: 0 times
Download: 0 times
Share this document with a friend
11
Highly heterogeneous lithospheric mantle beneath the Central Zone of the North China Craton evolved from Archean mantle through diverse melt refertilization Yan-Jie Tang , Hong-Fu Zhang, Ji-Feng Ying, Ben-Xun Su, Zhu-Yin Chu, Yan Xiao, Xin-Miao Zhao State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China abstract article info Article history: Received 30 September 2011 Received in revised form 14 December 2011 Accepted 21 January 2012 Available online xxxx Keywords: Archean Lithospheric mantle Peridotite xenolith Geochemistry North China Craton High-Mg# peridotite xenoliths in the Cenozoic Hebi basalts from the North China Craton have refractory min- eral compositions (Fo > 91.5) and highly heterogeneous SrNd isotopic compositions ( 87 Sr/ 86 Sr = 0.70310.7048, 143 Nd/ 144 Nd = 0.51300.5118) ranging from MORB-like to EM1-type mantle, which are similar to those of peridotites from Archean cratons. Thus, the high-Mg# peridotites may represent relics of the ancient lithospheric mantle. Published ReOs isotopic data for Cenozoic basalt-borne xenoliths show T RD ages of 3.01.5 Ga for the peridotites from Hebi (the center of the craton), 2.20 Ga for those from Hannuoba and Jining (north margin of the craton), and 2.60 Ga for those from Fanshi and Yangyuan (midway between the center and north margin of the craton). In situ ReOs data of suldes in Hannuoba peridotites suggest that whole- rock ReOs model ages represent mixtures of multiple generations of suldes with varying Os isotopic com- positions. These observations indicate that initial lithospheric mantle beneath the Central Zone of the North China Craton formed during the Archean and was refertilized by multiple melt additions after its formation. The refertilization became more intensive from the interior to the margin of the craton, leading to the high heterogeneity of the lithospheric mantle: more ancient and refractory peridotites with highly variable SrNd isotopic compositions in the interior, and more young and fertile peridotites with depleted SrNd isotopic composition in the margin. Our data, coupled with published petrological and geochemical data of peridotites from the Central Zone of the North China Craton, suggest that the lithospheric mantle beneath this region is highly heterogeneous, likely produced by refertilization of Archean mantle via multiple additions of melts/ uids, which were closely related to the Paleoproterozoic collision between the Eastern and the Western Blocks and subsequent circum-craton subduction events. © 2012 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved. 1. Introduction Characterization of subcontinental lithospheric mantle has made contributions to our understanding of the formation and secular evo- lution of continents. Mantle xenoliths entrained in mantle-derived magmas are direct samples of lithospheric mantle and record wealth of information about the formation and evolution of the lithospheric mantle. Many investigations based on mantle xenoliths have shown that the North China Craton (NCC) has been severely destroyed dur- ing the Phanerozoic (e.g., Fan and Menzies, 1992; Grifn et al., 1992; Menzies et al., 1993; Grifn et al., 1998; Menzies and Xu, 1998; Fan et al., 2000; Xu, 2001; Wu et al., 2006; Zhang et al., 2007; Zheng et al., 2007; Xu et al., 2008a; Zhang et al., 2009; Xu et al., 2010). Diamond inclusions, mantle xenoliths and minerals xenocrysts in the Ordovician kimberlites indicate that the lithospheric mantle beneath the NCC was thick (about 200 km), cool (geotherms 3640 mW/m 2 ), and typically Archean in compositions prior to the Paleozoic. However, the Tertiary basalt-borne xenoliths reveal the presence of thin (b 80 km), hot (50105 mW/m 2 ) and fertile litho- sphere in the Cenozoic (Fan and Menzies, 1992; Menzies et al., 1993; Grifn et al., 1998; Menzies and Xu, 1998; Xu et al., 1998; Zheng et al., 1998; Fan et al., 2000; Xu, 2001; Gao et al., 2002; Zhang et al., 2009). This suggests the great changes in compositions and character of the lithospheric mantle during the Phanerozoic. Coupled with the changes is the widespread MesozoicCenozoic magmatism (Zhou and Armstrong, 1982; Zhang et al., 2002; Yang et al., 2003; Zhang et al., 2003, 2004). Geochronological and geochemi- cal studies of the igneous rocks and their mantle xenoliths have pro- vided valuable information on the timing and mechanism of destruction of the NCC (e.g., O'Reilly et al., 2001; Xu, 2001; Gao et al., 2002; Zhang et al., 2002; Rudnick et al., 2004; Xu et al., 2004; Wu et al., 2006; Zheng et al., 2006; Menzies et al., 2007; Zhang et al., 2010a). However, the mechanism and process of the destruction are still subjects of considerable debate. It should be noted that the NCC is divided into the Eastern and Western Blocks, separated by a Central Zone, and most of the above studies were based on the Eastern Block of the NCC (Fig. 1). Com- pared to the tectonothermal reactivation of the eastern NCC since Gondwana Research xxx (2012) xxxxxx Corresponding author. P.O. Box 9825, Beijing 100029, China. Tel.: +86 10 82998536; fax: + 86 10 62010846. E-mail address: [email protected] (Y.-J. Tang). GR-00780; No of Pages 11 1342-937X/$ see front matter © 2012 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.gr.2012.01.006 Contents lists available at SciVerse ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr Please cite this article as: Tang, Y.-J., et al., Highly heterogeneous lithospheric mantle beneath the Central Zone of the North China Craton evolved from Archean mantle through di..., Gondwana Res. (2012), doi:10.1016/j.gr.2012.01.006
Transcript

Gondwana Research xxx (2012) xxxndashxxx

GR-00780 No of Pages 11

Contents lists available at SciVerse ScienceDirect

Gondwana Research

j ourna l homepage wwwe lsev ie r com locate gr

Highly heterogeneous lithospheric mantle beneath the Central Zone of the NorthChina Craton evolved from Archean mantle through diverse melt refertilization

Yan-Jie Tang Hong-Fu Zhang Ji-Feng Ying Ben-Xun Su Zhu-Yin Chu Yan Xiao Xin-Miao ZhaoState Key Laboratory of Lithospheric Evolution Institute of Geology and Geophysics Chinese Academy of Sciences PO Box 9825 Beijing 100029 China

Corresponding author PO Box 9825 Beijing 182998536 fax +86 10 62010846

E-mail address tangyanjiemailigcasaccn (Y-J Ta

1342-937X$ ndash see front matter copy 2012 International Adoi101016jgr201201006

Please cite this article as Tang Y-J et alevolved from Archean mantle through di

a b s t r a c t

a r t i c l e i n f o

Article historyReceived 30 September 2011Received in revised form 14 December 2011Accepted 21 January 2012Available online xxxx

KeywordsArcheanLithospheric mantlePeridotite xenolithGeochemistryNorth China Craton

High-Mg peridotite xenoliths in the Cenozoic Hebi basalts from the North China Craton have refractory min-eral compositions (Fogt915) and highly heterogeneous SrndashNd isotopic compositions (87Sr86Sr=07031ndash07048 143Nd144Nd=05130ndash05118) ranging from MORB-like to EM1-type mantle which are similar tothose of peridotites from Archean cratons Thus the high-Mg peridotites may represent relics of the ancientlithospheric mantle Published RendashOs isotopic data for Cenozoic basalt-borne xenoliths show TRD ages of 30ndash15 Ga for the peridotites from Hebi (the center of the craton) 22ndash0 Ga for those from Hannuoba and Jining(north margin of the craton) and 26ndash0 Ga for those from Fanshi and Yangyuan (midway between the centerand north margin of the craton) In situ RendashOs data of sulfides in Hannuoba peridotites suggest that whole-rock RendashOs model ages represent mixtures of multiple generations of sulfides with varying Os isotopic com-positions These observations indicate that initial lithospheric mantle beneath the Central Zone of the NorthChina Craton formed during the Archean and was refertilized by multiple melt additions after its formationThe refertilization became more intensive from the interior to the margin of the craton leading to the highheterogeneity of the lithospheric mantle more ancient and refractory peridotites with highly variable SrndashNd isotopic compositions in the interior and more young and fertile peridotites with depleted SrndashNd isotopiccomposition in the margin Our data coupled with published petrological and geochemical data of peridotitesfrom the Central Zone of the North China Craton suggest that the lithospheric mantle beneath this region ishighly heterogeneous likely produced by refertilization of Archean mantle via multiple additions of meltsfluids which were closely related to the Paleoproterozoic collision between the Eastern and the WesternBlocks and subsequent circum-craton subduction events

copy 2012 International Association for Gondwana Research Published by Elsevier BV All rights reserved

1 Introduction

Characterization of subcontinental lithospheric mantle has madecontributions to our understanding of the formation and secular evo-lution of continents Mantle xenoliths entrained in mantle-derivedmagmas are direct samples of lithospheric mantle and record wealthof information about the formation and evolution of the lithosphericmantle Many investigations based on mantle xenoliths have shownthat the North China Craton (NCC) has been severely destroyed dur-ing the Phanerozoic (eg Fan and Menzies 1992 Griffin et al1992 Menzies et al 1993 Griffin et al 1998 Menzies and Xu1998 Fan et al 2000 Xu 2001 Wu et al 2006 Zhang et al 2007Zheng et al 2007 Xu et al 2008a Zhang et al 2009 Xu et al2010) Diamond inclusions mantle xenoliths and minerals xenocrystsin the Ordovician kimberlites indicate that the lithospheric mantlebeneath the NCC was thick (about 200 km) cool (geotherms36ndash40 mWm2) and typically Archean in compositions prior to the

00029 China Tel +86 10

ng)

ssociation for Gondwana Research

Highly heterogeneous lithosGondwana Res (2012) doi

Paleozoic However the Tertiary basalt-borne xenoliths reveal thepresence of thin (b80 km) hot (50ndash105 mWm2) and fertile litho-sphere in the Cenozoic (Fan and Menzies 1992 Menzies et al1993 Griffin et al 1998 Menzies and Xu 1998 Xu et al 1998Zheng et al 1998 Fan et al 2000 Xu 2001 Gao et al 2002Zhang et al 2009) This suggests the great changes in compositionsand character of the lithospheric mantle during the PhanerozoicCoupled with the changes is the widespread MesozoicndashCenozoicmagmatism (Zhou and Armstrong 1982 Zhang et al 2002 Yang etal 2003 Zhang et al 2003 2004) Geochronological and geochemi-cal studies of the igneous rocks and their mantle xenoliths have pro-vided valuable information on the timing and mechanism ofdestruction of the NCC (eg OReilly et al 2001 Xu 2001 Gao etal 2002 Zhang et al 2002 Rudnick et al 2004 Xu et al 2004Wu et al 2006 Zheng et al 2006 Menzies et al 2007 Zhang etal 2010a) However the mechanism and process of the destructionare still subjects of considerable debate

It should be noted that the NCC is divided into the Eastern andWestern Blocks separated by a Central Zone and most of the abovestudies were based on the Eastern Block of the NCC (Fig 1) Com-pared to the tectonothermal reactivation of the eastern NCC since

Published by Elsevier BV All rights reserved

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

Mesozoic intrusive rocks

Cenozoic basalt

Paleozoic Kimberlites

Archean rocks

Paleoproterozoic rocks

Central Zone

WesternBlock Eastern Block

Qinling-Dabie orogenic Belt

Su

LuU

HP

Bel

t

-

Fuxian

Fanshi

Hebi

Qixia

Longgang

Kuandian

Hannuoba

Nuumlshan

OrdosBlock

Yinshan Block

Khondalite Belt

Jining

YangyuanDatong

Fushan

Ya ngtze Craton

Mengyin

Changle

110deg E 115deg E 120deg E

110deg E 115deg E 120deg E

0 200 400 km

125deg E

40deg N

35deg N

40deg N

35deg N

Beijing

Bohai Sea

Tanl

uF

ault

Yellow Sea

Tianshan-Inner Mongolia-Daxingrsquo anling orogen

Inner Mongolia Suture Zone

Xiyang-Pingding

Shatuo

NSGL

Fig 1 Geologic and tectonic map of the North China Craton revised after Zhao et al (2000 2008) and Santosh (2010) showing the distributions of the main tectonic subdivisionsrocks of different ages and mantle xenolith localities mentioned in the text The NSGL represents the NorthndashSouth Gravity Lineament (Ma 1989)

2 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

the Mesozoic the Western Block remains relatively stable since thePrecambrian with only few magmatic activities Thus the CentralZone is the transitional zone of Phanerozoic magmatism as well ascrustal elevation morphology lithospheric thickness and gravityanomalies from the Eastern to the Western Block (Ma 1989 Griffinet al 1998 Menzies and Xu 1998) Therefore understanding the na-ture and evolution of the mantle lithosphere beneath the CentralZone is crucial to unravel mechanism and processes of destructionof the NCC However these aspects of the Central Zone are not well-constrained

In this paper we report the petrological and SrndashNd isotopic com-positions of peridotite xenoliths from Hebi County Henan Provincewhich tectonically located in the east edge of the Central Zone(Fig 1) Our main aim is to further constrain the nature and originof the lithospheric mantle beneath the Central Zone by reviewingthe data available for mantle xenoliths from the Central Zone of theNCC Our study will provide an insight into the destruction of the NCC

2 Geologic setting

The NCC is one of the Archean continental nuclei in the world andcomprises three subdivisions (Fig 1) ie the Eastern Block the Cen-tral Zone and the Western Block (Zhao et al 2000 Santosh 2010Kusky 2011) The Western Block is composed of the Yinshan Blockand the Ordos Block which were joined by the eastndashwest trendingInner Mongolia Suture Zone at ~195 Ga (Santosh 2010 Zhao et al2010a) This suture zone is also termed Khondalite Belt (Zhao et al

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

2010a) with dominant lithology of graphitendashgarnetndashsillimantiegneiss garnet quartzite felsic paragneiss calc-silicate rock and mar-ble The basement of the Western Block mainly consists ofgranulite-facies tonalitic trondhjemitic and granodioritic (TTG)gneisses and charnockites which are unconformably overlain by Ar-chean to Paleoproterozoic metasedimentary belts (Zhao et al2000) Paleoproterozoic ultrahigh temperature metamorphism hasbeen observed in the Western Block (Santosh et al 2007a 2007b2009 2011) The basement of the Eastern Block primarily consistsof Archean TTG gneisses granitoids granitic gneisses and supracrus-tal rocks (Zhao et al 2000)

The Central Zone is also called Trans-North China Orogen roughlynorthndashsouth trending across the NCC (Fig 1) It consists of 25ndash27 GaTTG gneisses greenschist facies mafic rocks amphibolites high-pressure granulites and retrograded eclogites (Zhao et al 2000Zhang et al 2006 Zhai and Santosh 2011) This orogen was formedby the collision between the Eastern and the Western Blocks at about185 Ga (Zhao et al 2000 2010a Santosh 2010) marking the forma-tion of the NCC although the subduction polarity and the amalgam-ation timing of the various blocks remain debated (Kroumlner et al2005 Santosh 2010 Zhao et al 2010b Kusky 2011)

TheWestern Block remains relatively stable since the Precambrianand the lithosphere of this block is about 200 km thick In contrastthe Eastern Block has experienced widespread tectono-thermal reac-tivation since the Late Mesozoic as manifested by the emplacementof voluminous Late Mesozoic granites mafic intrusions and volcanicrocks (Zhang et al 2002 2003 Yang et al 2003 Zhang et al

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

Table 1Mineral modes (vol) of the Hebi peridotites

Sample Olivine Opx Cpx Spinel

05HB68 69 27 3 105HB70 79 18 1 205HB72 81 16 1 2HB1120 77 22 0 1HB1121 77 21 2 0HB1122 73 24 1 2HB1125 67 30 1 2HB1126 71 27 1 105HB09 75 23 2 0HB1128 70 29 0 1

3Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

2004) and extensive Cenozoic basalts (Zhou and Armstrong 1982Fan et al 2000 Tang et al 2006 Zhang et al 2011) Ordovician dia-mondiferous kimberlites occur mainly in the Mengyin County Shan-dong Province and the Fuxian County Liaoning Province in theEastern Block (Fig 1) (Dobbs et al 1994) The lithosphere in these lo-calities was cool and thick at the time of emplacement (Menzies et al1993 Griffin et al 1998) with highly refractory compositions inmantle peridotites indicating the existence of an Archean lithospher-ic keel beneath the Eastern Block at least until the kimberlite em-placement (Gao et al 2002 Zheng et al 2006 Zhang et al 20082009) In contrast the Cenozoic basalts sampled a shallower and hot-ter lithosphere with predominantly fertile compositions as mani-fested by the mantle peridotites (Fan et al 2000 Zheng et al2001 Rudnick et al 2004 Zhang et al 2009) consistent with thegeophysical observation of a thin lithosphere (80ndash60 km) in the East-ern Block (Yuan 1996 Griffin et al 1998 Chen et al 2006) Theseobservations suggest that the destruction of the NCC mainly occurredin the Eastern Block during the Phanerozoic

The NEE-trending Northndashsouth Gravity Lineament (NSGL Fig 1)runs over 3500 km from south China to northeast China It is a zoneabout 100 km wide in which the Bouguer anomaly decreases rapidlyfrom minus100 mGal in the west to minus40 mGal in the east (Ma 1989)This gravity gradient roughly overlaps the Central Zone To the eastof the gravity lineament the Eastern Block is characterized by a thincrust and lithosphere high heat flow and weak negative to positiveregional Bouguer anomalies to the west of the gravity lineamentthe Ordos nucleus has a thick crust and lithosphere low heat flowand strong negative Bouguer anomalies (Ma 1989 Yuan 1996)The Hebi area of Henan province lies east of the gravity lineamentand tectonically in the east edge of the Central Zone Both Neogenebasalts and CretaceousndashEogene barren kimberlites occur in the HebiOlivine nephelinites are in 10 km south of Hebi city and have eruptionages of 40ndash43 Ma The nephelinites contain abundant mantle xeno-liths and megacrysts (up to 5 cm across) of garnet and pyroxene(Zheng et al 2001) The kimberlites occur 6 km west of Hebi cityand contain rare altered dunite and lherzolite xenoliths (Griffin etal 1998)

3 Sample description and previous studies

Peridotite xenoliths in the Hebi Neogene olivine nephelinites arevery fresh and belong to the Cr-diopside suite (Wilshire andShervais 1975) They range from 1 to 8 cm in diameter with majorityabout 2 to 6 cm The petrology major- and trace-element RendashOs Liand Fe isotopic compositions of peridotite xenoliths from the Hebihave been studied previously (Zheng et al 2001 2007 Xu et al2008b Zhao et al 2010c Liu et al 2011 Tang et al 2011) TheHebi peridotite xenoliths are dominant harzburgites with minor lher-zolites They can be divided into two groups based on the forsteriteproportion in olivine (Fo) a low-Mg group (Fob91) and a high-Mg group (Foge91) The low-Mg peridotites are fertile (rich in ba-saltic components such as Al2O3 Na2O and CaO) in mineral composi-tions typical of Phanerozoic mantle The high-Mg peridotitesconsist of highly refractory harzburgite (Al2O3 contentb15) andcpx-poor (cpx volb5) lherzolites with coarse-grained and por-phyroclastic structures compositionally similar to xenoliths in kim-berlites from Archean cratons Thus the high-Mg xenoliths havebeen interpreted as relics of the Archean cratonic mantle beneaththe NCC (Zheng et al 2001) and RendashOs isotopic data of the perido-tites and their sulfides give Archean melt-extraction ages of 25ndash30 Ga (Zheng et al 2007 Xu et al 2008a) Li and Fe isotopic compo-sitions of the Hebi peridotites suggest that the ancient lithosphericmantle beneath the Hebi experienced multistage metasomatism(Zhao et al 2010c Tang et al 2011)

In this study ten spinel-facies harzburgite xenoliths were selectedfor mineral chemical and SrndashNd isotopic analyses These samples are

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

very fresh and 4ndash6 cm in diameter with high modal opx (17ndash32)and minor cpx contents (b4 Table 1) Cpx is absent in some xeno-liths Most of the samples have coarse-grained structures and the ol-ivine and opx grains are generally 3ndash6 mm in diameter withmaximum up to 10 mm Porphyroclastic structures are also observedin these samples with coarse olivine porphyroclasts in a matrix offine-grained recrystallizedsecondary minerals Siliceous aluminum-and alkali-rich glasses with fine-grained cpx phenocrysts are com-mon in patches and small veins Phlogopites are not observed inthese samples

4 Analytical methods

The xenoliths were sawn from their lava hosts and the cut surfaceswere abraded with quartz to remove any possible contaminationfrom the saw blade The samples were crushed and sieved for mineralseparation Opx and cpx separates were handpicked under a binocu-lar microscope to a purity of gt99

Mineral modal contents have been determined by point-countingmore than 1000 points in each thin section (Table 1) Major elementcompositions of minerals in the peridotite xenoliths were measuredat the Institute of Geology and Geophysics Chinese Academy of Sci-ences using a JEOL JXA8100 electron probe microanalyzer (EPMA)The operating conditions were as follows accelerating voltage of15 kV 10 nA beam current 5 μm beam spot and 10ndash30 s countingtime Natural minerals and synthetic oxides were used for standardcalibration and a program based on the ZAF procedure was used fordata correction The precisions of all analyzed elements are betterthan 15 based on multiple analyses of different grains within asample

Sr and Nd isotope compositions of cpx and opx separates from thexenoliths were determined at the Institute of Geology and Geophys-ics The mineral separates were washed with 6 M HCl for 12 h andthen ground to 200ndash400 mesh using an agate mortar before isotopicanalysis Analytical details for sample digestion column separationand mass spectrometric measurement procedures are described inChu et al (2009a 2009b) About 30ndash100 mg of cpx and 300ndash400 mgof opx powder was weighed into Teflon vials and appropriateamounts of mixed 87Rbndash84Sr and 149Smndash150Nd spikes were addedThe samples were dissolved using a mixed acid of HF and HClO4 ona hotplate at 120 degC for more than 1 week After the samples werecompletely dissolved the solutions were dried on hotplate at 130ndash180 degC to remove the HF and HClO4 The sample residues were re-dissolved in 4 ml of 6 M HCl and then dried again Finally thesamples were dissolved in 2 ml of the 3 H3BO3 in 25 M HCl Thesolutions were loaded onto pre-conditioned AG 50Wtimes12 columnsfor separation Rb and Sr were stripped with 5 M HCl and Nd andSm were stripped with 014 M and 04 M HCl respectively The RbSr Nd and Sm were completely separated in our experiments

The RbndashSr and SmndashNd isotopic analyses were performed on anIsoProbe-T thermal ionization mass spectrometer (GV instrumentsEngland) Measured 87Sr86Sr and 143Nd144Nd ratios were corrected

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

4 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

for mass-fractionation using 86Sr88Sr=01194 and 146Nd144Nd=07219 respectively During the period of data collection themeasured values for the NBS-987 Sr standard and the JNdi-1 Ndstandard were 86Sr88Sr=0710245plusmn16 (2 s n=8) and 143Nd144Nd=0512117plusmn10 (2 s n=8) respectively The USGS referencematerial BCR-2 was measured to monitor the accuracy of the analyticalprocedures Our results are 4655 ppm Rb 3393 ppm Sr 87Sr86Sr=0704986plusmn13 (2 s) 6543 ppm Sm 2860 ppm Nd and 143Nd144Nd=0512641plusmn16 (2 s) These values are comparable with thereported reference values 455ndash485 ppm Rb 312ndash355 ppm Sr 87Sr86Sr=0704958ndash0705027 641ndash663 ppm Sm 267ndash299 ppm Ndand 143Nd144Nd=0512633ndash0512644 (GeoREM httpgeoremmpch-mainzgwdgde) The procedural blanks were 10 49 10 and19 pg for Rb Sr Sm and Nd respectively which were less than 01 ofthe amount of samples loaded

5 Results

51 Major elements

Olivine opx cpx and spinel in these peridotites xenoliths are ho-mogeneous (2 sb02) in major elemental compositions based on thedetermination of individual phases between core and rim The aver-age composition of 4ndash5 point analyses is presented in Table 2 Oliv-ines in the xenoliths have high Fo (915ndash927) and low MnO(average 01) and NiO (average 04) contents Opx minerals havehigh Mg ranging from 919 to 927 low Al2O3 (20ndash34) and CaO(03ndash11) contents Cpx minerals have Mg varying from 921 to932 Al2O3 of 30ndash46 and Cr2O3 of 11ndash22 (Table 2) Mineralmodal contents (Fig 2) and chemical compositions (Figs 3ndash5) aresimilar to those of published high-Mg peridotites from the Hebi(Zheng et al 2001 Tang et al 2011) harzburgite xenoliths entrainedin the Cenozoic Fanshi (Tang et al 2008 2011) and Yangyuan basalts(Xu et al 2008b) and Mesozoic Fushan diorites (Xu et al 2010) inthe Central Zone of the NCC (Fig 1) which were interpreted as theresidues of ancient lithospheric mantle

52 SrndashNd isotopic composition

Sr and Nd isotopic compositions of cpx and opx in the Hebi perido-tites are given in Table 3 and illustrated in Fig 6 They show a largevariation ranging from MORB-like to high 87Sr86Sr (up to 07044)and very low 143Nd144Nd (down to 05118) Two samples display ex-tremely low 143Nd144Nd ratios relative to its Sr isotope ratios havingthe signature of EM1-typemantle (Fig 6) One sample falls within thefield for the Mesozoic lithospheric mantle constrained by peridotitexenoliths (Xu et al 2010) and mafic rocks (Zhang et al 2004Wang et al 2006) from the Central Zone of the NCC (Fig 6) In con-trast the cpx separates have higher Sr (mostgt100 ppm) and Nd(mostgt2 ppm) contents and relatively lower 87Sr86Sr ratios(070309ndash070415) than the opx (Srb10 ppm Ndb03 ppm 87Sr86Sr=070353ndash070483) The opx are generally higher in Rb contentsand RbSr ratios than the coexisting cpx

6 Discussion

61 Major element geochemistry and origin

Typical Archean cratonic mantle is generally composed of highlyrefractory (Fogt925) harzburgites and cpx-poor lherzolites (Boyd1989) which are highly depleted in basaltic components due tohigh-degree melt extraction In contrast most Proterozoic and Phan-erozoic lithospheric mantle worldwide are moderately depleted com-pared with primitive mantle (OReilly et al 2001 Beyer et al 2006)The Hebi peridotites studied here have high Fo (915ndash927) and thusare affiliated to the high-Mg group (Fogt91 Zheng et al 2001)

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Their mineral modes are similar to those from the Archean Kaapvaalcraton South Africa (Fig 2) and are plotted in the fields for the peri-dotite xenoliths from the Archean Siberian and Kaapvaal cratons(Fig 3) (Griffin et al 2003) and from the Paleozoic diamondiferouskimberlites in the NCC due to their refractory mineral compositionshigh Fo and low MnO in olivine (Fig 4) high Mg and low Al2O3 inopx and cpx (Fig 5) These characteristics are similar to those pub-lished for the Hebi high-Mg peridotites Fushan and Fanshi harzbur-gites some Yangyuan peridotites and olivine xenocrysts from theMesozoic and Cenozoic basaltic rocks in the Central Zone whichwere considered as residues of the Archean lithospheric mantle(Zheng et al 2001 Tang et al 2004 Zheng et al 2006 Tang et al2008 Xu et al 2008b Xu et al 2010 Ying et al 2010 Liu et al2011 Tang et al 2011)

Therefore the Hebi harzburgites represent residues of Archeanlithospheric mantle beneath this region Most of them have Folower than that of typical Archean cratonic mantle (Fogt925 Boyd1989) indicating that the harzburgites were likely modified bymeltndashrock reaction similar to those from the Archean cratons ofKaapvaal and Siberia rather than the products of simple melt extrac-tion (Kelemen et al 1998 Zhang 2009)

62 SrndashNd isotopic compositions and mantle processes

The most striking character of SrndashNd isotopic compositions of cpxin the Hebi harzburgites is the extreme heterogeneity They display alarge variation ranging from depleted-mantle to EM1-endmembercompositions similar to those of peridotites from ancient cratoniclithospheric mantle worldwide (Fig 6) Since the changes in RbSrand SmNd ratios caused by mantle metasomatism will with timeproduce extreme isotopic heterogeneity the cpx likely evolved fromthe mixing of a MORB-like lithospheric composition with severalenriched components related to meltfluid influx (Frey and Green1974) Meltfluid derived from recycled or subducted materials mayhave considerable ranges in SrNd ratios and isotopic compositionsThis is evidenced by the large variations of isotopic compositions inthe Late Mesozoic lavas of andesites dacites and adakites (Zhang etal 2003 Gao et al 2004) and Hannuoba pyroxenite xenoliths (Xu2002) that involved recycled crustal components As a result the in-flux of recycled materials may account for the spread of the data(Fig 6)

Two samples show an EM1-like isotopic signature of the Mesozoiclithospheric mantle beneath the same region (Fig 6) that was consid-ered to have been previously modified by silica-rich melts releasedfrom subducted materials (Wang et al 2006 Tang et al 2008) Thesubduction may be related to the Paleoproterozoic collision betweenthe Eastern and the Western Blocks (Zhao et al 2000 Santosh et al2010) because there is no evidence showing any collision in the inte-rior of the NCC during the Phanerozoic The EM1-typemantle beneaththe Central Zone is also evidenced by the isotopic compositions of pe-ridotite xenoliths from the Cenozoic Fanshi and Yangyuan basalts(Ma and Xu 2006 Tang et al 2007 2008 Xu et al 2008b) indicat-ing a secular evolution of the subcontinental lithospheric mantle Thisconclusion is also supported by the modeling calculations of the evo-lution of 143Nd144Nd with time in the xenoliths assumed to havebeen modified by recycled crustal materials at 18 Ga (Fig 7) There-fore the enriched isotopic compositions in the Hebi harzburgitesmay reflect ancient enrichment processes of the Archean lithosphericmantle

Some of the Hebi harzburgites have MORB-like SrndashNd isotopiccompositions of cpx (Fig 6) indicating that these peridotites weremodified by recent asthenospheric meltndashperidotite reaction (Zhang2009) which is consistent with their relatively low Fo values(Fig 8) and high concentrations of heavy rear earth elements as ob-served in the Fanshi peridotites (Tang et al 2008) As stated abovethe harzburgites are considered to be the relics of Archean

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

Table 2Major elemental compositions (wt) of minerals in Hebi mantle xenoliths

Sample Mineral SiO2 MgO FeO CaO Al2O3 Cr2O3 Na2O NiO MnO TiO2 Total Mg

05HB68 Ol 4142 4970 797 007 006 003 001 035 012 002 998 91805HB70 Ol 4161 4991 765 007 000 001 000 040 010 000 998 92105HB72 Ol 4162 5011 814 010 000 007 000 037 012 000 1005 917HB1120 Ol 4144 4973 771 011 004 001 001 044 011 002 996 921HB1121 Ol 4138 5036 805 011 003 002 002 040 011 000 1005 918HB1122 Ol 4170 4969 782 009 001 003 001 038 009 001 998 920HB1125 Ol 4116 4927 807 011 000 000 003 031 012 001 991 917HB1126 Ol 4202 4997 836 006 000 001 000 043 011 000 1010 91505HB09 Ol 4156 5029 792 008 003 000 000 040 012 000 1004 920HB1128 Ol 4208 5099 727 000 003 000 000 046 007 000 1009 92705HB68 Opx 5628 3288 496 107 317 082 002 013 015 000 995 92305HB70 Opx 5615 3268 504 102 300 077 003 014 014 000 990 92105HB72 Opx 5589 3299 481 096 344 091 013 013 013 002 994 925HB1120 Opx 5654 3308 522 107 303 083 004 014 007 003 1000 919HB1121 Opx 5606 3304 484 097 316 084 005 010 013 001 992 925HB1122 Opx 5636 3323 500 099 273 075 011 004 013 000 994 923HB1125 Opx 5649 3349 478 084 274 083 007 011 008 000 994 927HB1126 Opx 5715 3333 517 056 257 061 012 010 011 000 997 92105HB09 Opx 5624 3349 503 099 278 084 002 012 011 001 996 923HB1128 Opx 5749 3478 493 029 195 028 005 011 012 001 1000 92705HB68 Cpx 5258 1717 243 2127 323 107 042 005 006 005 983 92705HB70 Cpx 5313 1695 226 2120 306 117 039 003 013 002 983 93105HB72 Cpx 5282 1579 236 1919 455 166 166 004 009 034 985 923HB1120 Cpx 5280 1702 241 2096 309 136 049 008 008 009 984 927HB1121 Cpx 5305 1681 221 2103 301 125 054 007 008 009 981 932HB1122 Cpx 5324 1689 242 2054 300 134 076 008 005 022 985 926HB1125 Cpx 5293 1732 242 2133 260 127 047 004 002 005 984 928HB1126 Cpx 5402 1504 231 1900 366 223 222 006 009 034 990 921

Mg=100timesmol Mg2+(Mg2++Fe2+)

5Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

lithospheric mantle Therefore the depleted isotopic compositions re-flect the effect of reaction between old peridotites andasthenosphere-derived melt (Fig 6)

Refractory peridotite (high Fo) should be lower in RbSr andhigher in SmNd than primitive mantle due to the more incompatibil-ity of Rb than Sr and Nd than Sm during partial melting (Adam andGreen 2006) and thus be lower in 87Sr86Sr and higher 143Nd144Ndratios than fertile peridotite (low Fo) and primitive mantle This iscompletely opposite to the observation that olivine Fo in the Cenozoicbasalt-borne peridotite xenoliths from the Central Zone positivelycorrelate with Sr isotope ratios and negatively correlate with Nd iso-tope ratios (Fig 8) Therefore the correlations between SrndashNd

HebiFushanKaapvaal

Ol

Olivine web

Webster

Orthopyroxenite

Lherzolite

Opx

Hebi+Fushan

Garnet-facies mantlexenoliths from

Kaapvaal craton

Fanshi+Daton

On-

crat

on

Central NCC

YangyuaFanshiDatong

Oliv

ine

orth

opyr

oxen

ite H

arzb

urgi

te

Fig 2 Petrological classification of peridotites On-craton and off-craton peridotite xenolithxenoliths) and kimberlite-borne garnet-facies mantle xenoliths from the Kaapvaal cratonborne xenoliths from ocean basins (ie deep lithosphere) are similar to those from easternData sources Fushan (Xu et al 2010) Hebi (Zheng et al 2001 2005 Liu et al 2011 TangTang et al 2011) Datong (Liu et al 2011) Jining (Liu et al 2011 Zhang et al in press) Yan2000 Rudnick et al 2004 Tang et al 2007 Liu et al 2011)

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

isotopic compositions and olivine Fo first discussed in the Hannuobaperidotites (Zhang et al 2009) likely reflect different-degree referti-lization of originally refractory precursors through reaction withasthenosphere-derived melts (Tang et al 2008 Zhang et al 2009)

Compilation of Sr and Nd isotopic compositions of peridotites re-veals that very few samples from ancient cratonic mantle keep thecharacteristics of ancient melt residues although their major-element compositions reflect an origin as melt residues (Menzies1990 Pearson 1999) For example Nd isotopes in peridotite xeno-liths (Fig 6) from global cratons range from high 143Nd144Nd ratiosindicative of long-term parentndashdaughter depletion to low 143Nd144Nd ratios requiring ancient parentndashdaughter enrichment

Wehrlite

Olivine clinopyroxenitesterite

ite

Clinopyroxenite

Off-craton

Cpx

Dunite

g+Yangyuan Jining+Hannuoba

Shallow oceaniclithosphere

Deep oceaniclithosphere

HannuobaOceanic

Jining

North margin of the NCC

n

s shallow (abyssal ophiolitic peridotites) and deep oceanic lithosphere (basalt-borne South Africa are from Fan et al (2000) and references therein The lsquodeeprsquo basalt-Chinaet al 2011 and this study) Fanshi (Tang et al 2008 Xu et al 2008b Liu et al 2011gyuan (Xu et al 2008b Liu et al 2011) and Hannuoba (Song and Frey 1989 Fan et al

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

90 80 70 60 50

89

91

93

95

88

90

92

94

40100

Modal olivine ()

Oliv

ine

Fo

Melt metasomatism

Mean Archean

Archean

Mean ProterOceanic trend

Proterozoic

Mean high-Tlherzolites

Mean Tecton

ldquoPyroliterdquo

HebiFushan

HannuobaJiningYangyuan

FanshiDatong

Phlogopite metasomCentralNCC

Northmargin

Fig 3 Modal olivine vs Fo contents plot showing the mean compositions of ArchonProton and Tecton subcontinental lithospheric mantle and high-T sheared lherzolitexenoliths from kimberlites Two large arrows illustrate the effect of shallowphlogopite-related metasomatism and the melt-related metasomatism responsiblefor the composition of the sheared xenoliths (Smith et al 1991) The oceanic trend isthe compositional trend from fertile lherzolite to depleted oceanic harzburgite (Boyd1989)The base chart is from Griffin et al (2003) Data sources are as in Fig 2

0 2 4 6 889

91

93

95

88

90

92

94

0 2 4 6 8

Al2O3 (wt)

HebiFushan

HannuobaJiningYangyuan

FanshiDatong

Opx

Cpx

Mg

Mg

Refractory (central NCC)

Fertile(north margin of NCC)

Refractory(central NCC)

Fertile(north margin)

6 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Consequently the greatly heterogeneous isotopic compositions in thelithospheric mantle beneath the Central Zone reflect the diversity inparentndashdaughter elemental fractionation in minerals coupled withancient multiple-stage histories of melt depletion and subsequentrefertilization through melt influx This is also supported by the ele-mental and isotopic characteristics of coexisting opx and cpx in theHebi peridotites (Table 3 Fig 6) which are similar to those in the

HebiFushan

DatongFansi

YangyuanJiningHannuoba

Mn

O

000

010

020

005

015

91 9587 89 93

Paleozoic

Cenozoic

Olivine Fo

025

Ceno XenocrystsMeso Xenocrysts

CentralNCC

Northmargin

Fig 4 Fo vs MnO of olivine from the peridotites compared with olivine xenocrysts inthe Cenozoic XiyangndashPingding basalts (Tang et al 2004) and Mesozoic Shatuo gabbros(Ying et al 2010) and peridotite xenoliths entrained in the Paleozoic kimberlites andCenozoic basalts on the eastern NCC (Zheng et al 1998 2001) Data sources in additionto those designated in Fig 2 include Hannuoba data from Fan and Hooper (1991) andChen et al (2001)

Fig 5 Mg vs Al2O3 of opx and cpx in the mantle xenoliths from the Central Zone andthe West Block of the NCC Data sources are as in Fig 3

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Fanshi peridotites indicating multiple meltfluidndashperidotite interac-tions (Tang et al 2011)

63 RendashOs isotopic data and nature of the lithospheric mantle

The RendashOs system has proven to be particularly useful in tracingthe geochemical evolution of mantle rocks and in defining the chro-nology of mantle differentiation (Walker et al 1989 Shirey andWalker 1998) Nevertheless an increasing number of studies havefound that the RendashOs system in cratonic peridotites can be disturbedby peridotitendashmelt reaction especially when reaction preceded erup-tion by large time intervals (Pearson et al 1998 Alard et al 2002Zhang et al 2008 2009)

Sulfides from a mantle peridotite that underwent melt depletionand refertilization events may have a wide range of RendashOs modelages reflecting different generations of ldquooldrdquo sulfides (residual aftermelt depletion) and later sulfide melts (interstitial sulfides relatedto meltfluid metasomatism) (Pearson et al 1999 2002 Alard etal 2002 Aulbach et al 2004 Griffin et al 2004 Xu et al 2008aZhang et al 2008 2009 Harvey et al 2010) This implies that thebulk-rock Re and Os budget will be controlled by the relative contri-butions from these sulfide populations which are dependent onmeltrock ratios and the degree of S-saturation of the percolatingmelt during the refertilization of lithosphere (Reisberg et al 2005

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

702 702704 706705 708703 704706 710707 712

5140 5140

5115

5115

5110

5120

5120

5125

5125

5130

5130

51355135

87Sr86Sr 87Sr 86Sr

143 N

d14

4 Nd

a b

Fanshibasalts

DM+EMMixing

YangyuanDMMORB

Globalon-craton

Globaloff-craton

07154

Hannuoba

FushanFanshi harzFanshi lherz

Hebi CpxHebi Opx Oceanic

EM1

EM1

Hebibasalts

Mesozoiclithosperic mantle

Mesozoiclithosperic mantle

Kaapvaal

Jining

Fig 6 (a) Sr and Nd isotope ratios in cpx and opx from the peridotites together with the published data for peridotite xenolithsData sources in addition to this study cpx in peridotite xenoliths from Hannuoba (Song and Frey 1989 Tatsumoto et al 1992 Fan et al 2000 Rudnick et al 2004 Tang et al2011) Fanshi (Tang et al 2008 Xu et al 2008b Tang et al 2011) Yangyuan (Ma and Xu 2006 Xu et al 2008b) Jining peridotites (Zhang et al in press) and the Kaapvaal cratonSouth Africa (Menzies andMurthy 1980) Mesozoic lithospheric mantle beneath the Central Zone of the NCC (Zhang et al 2004Wang et al 2006 Xu et al 2010) Cenozoic Fanshiand Hebi host basalts (Tang et al 2006 2011 unpublished data) DM MORB and EM1 (Zindler and Hart 1986) The field roughly drawn denotes the DM-EM1 mixing trend(b) Oceanic peridotites and mantle peridotites from global on- and off-craton locations (Fan et al 2000 and references therein)

7Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Zhang et al 2009 Xiao and Zhang 2011) As a result melt percola-tion could lead to significant changes in the Os isotopic compositionsof the refertilized peridotites Thus whole-rock Os isotope composi-tions reflect the mixtures of different generations of sulfides There-fore the significant variability in Os isotopic compositions ofsulfides within individual peridotite samples calls into question thesignificance of many published whole-rock ldquodepletion agesrdquo(Pearson et al 2002)

RendashOs isotopic ages in the peridotite xenoliths from the NCC varygreatly with Re-depletion model ages (TRD) ranging from 0 to 30 Gaand RendashOs model ages (TMA) of 0ndash35 Ga (Fig 9) For example mostof the Hannuoba peridotites have Proterozoic whole-rock RendashOsmodel ages resembling the Cenozoic basaltndashhost peridotites fromother localities on the North China Craton (Fig 9) However the insitu TRD and TMA model ages of sulfides in the Hannuoba samplesshow a larger range from Archean to Phanerozoic model ages than

Table 3Sr and Nd isotopic compositions of cpx and opx in the peridotite xenoliths

Sample Rb (ppm) Sr (ppm) Sm (ppm) Nd (ppm) 87R

Cpx05HB68 0003 144 0355 472 0005HB70 0030 567 0308 197 0005HB72 0660 315 401 209 00HB1120 0041 768 0133 096 00HB1121 0000 167 0247 225 00HB1122 0004 266 0909 843 00HB1125 0003 161 0506 588 00HB1126 0004 479 665 269 00

Opx05HB68 0013 137 0005HB70 0010 127 0019 0073 0005HB72 0017 285 0063 0207 00HB1120 0007 149 00HB1121 0013 137 00HB1122 0011 137 0010 0094 00HB1125 0015 991 00HB1126 0035 425 0073 0231 0005HB09 0039 199 0451 0070 00HB1128 0081 877 0070 0325 00

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

the whole-rock ages of the peridotites strongly indicating that thewhole-rock ages are not the true formation ages of the peridotitesbut the mixing ages of multiple generations of sulfides (Pearson etal 2002 Griffin et al 2004 Xu et al 2008a Zhang et al 2009)The TRD ages of these peridotites apparently correlate with olivineFo (Fig 9) which is traditionally explained as melting trend (Griffinet al 2004) Alternatively this correlation could also reflect the reac-tion trend of a depleted residue with asthenosphere-derived melts(Zhang et al 2009) The refertilization of peridotites could lowerthe Fo of olivine (Zhang 2005 Griffin et al 2009) and result in thepositive correlations between Re abundances and Al2O3 and Yb con-tents in the peridotites by additions of Fe Al Yb and Re (Zhang etal 2009) Therefore the correlation between TRD ages and olivineFo may reflect the combined results of partial melting and refertiliza-tion processes and the latter lowered the TRD ages of the peridotitesdue to the additions of Re and less radiogenic Os or younger sulfide

b86Sr 87Sr86Sr 2σ 147Sm144Nd 143Nd144Nd 2σ

001 0703092 10 00456 0512942 9015 0703359 10 00944 0513004 7006 0703246 10 01160 0513039 6015 0704151 8 00841 0511825 8000 0703862 8 00665 0512144 12000 0703312 7 00652 0512758 7001 0703242 8 00521 0512960 10000 0703715 14 01494 0512896 9

276 0703529 10234 0703454 15 01604 0513005 7172 0703560 10 01844 0513003 24144 0704055 11277 0703891 10230 0704394 35 00664 0512655 12045 0704829 10241 0703576 13 01921 0512920 8561 0704215 17 39155 0512795 7268 0703655 11 01293 0512907 7

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

5140

5115

5110

5120

5125

5130

5135

89 91 92 9390Olivine Fo

0702

0703

0704

0705

0706

87S

r86

Sr

HebiFushanFanshiYangyuanHannuoba

Mesozoic

Mesozoic

North margin

Central NCC

North margin

Central NCC

143 N

d14

4 Nd

Fig 8 Olivine Fo vs Sr and Nd isotope ratios in cpx from the peridotites Data sourcesare as in Fig 6

200 3010

0509

0511

0512

0513

Time before present (Ga)

143 N

d14

4 Nd

0510

Depleted mantle

HB1120 ( 147144Sm Nd=00665)

t=18

Continental crustDM-old crustmixing

FS6-29 ( 147

144Sm Nd=00936)

Fig 7 The evolution of 143Nd144Nd with time in the HB1120 (this study) and sampleFS6ndash29 (Xu et al 2010) DM-old crust mixing represents the assumed modification ofthe samples by recycled crustal materials at 18 Ga The 143Nd144Nd of the samples at18 Ga were calculated based on the decay constant of 147Sm (654times10minus12) 143Nd144Nd of chondrite (0512638) and the measured 143Nd144Nd and Sm and Nd contentsof the samples

8 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

introduction which could obliterate the evidence of old ages (Griffinet al 2004)

The RendashOs isotopic data of Paleozoic kimberlite-borne xenolithsdemonstrated that Archean lithospheric mantle existed beneath theeastern NCC during the Paleozoic (Gao et al 2002 Wu et al 2006Zhang et al 2008 Chu et al 2009b) However most of the peridotitexenoliths hosted by the Cenozoic basalts have Proterozoic TRD andTMA ages with only a few xenoliths having Phanerozoic ages(Fig 9) The scarcity of Archean TRD ages may reflect that nearly allthe Archean lithospheric mantle beneath the eastern NCC has beenreplaced (Gao et al 2002 Wu et al 2006 Chu et al 2009b) or refer-tilized by multiple-stage influx of melts (Xu et al 2008a Zhang et al2008 2009 Xiao and Zhang 2011) In contrast some peridotites inthe Mesozoic and Cenozoic basaltic rocks in the Central Zone of theNCC have whole-rock (Xu et al 2008b) or sulfide (Zheng et al2007 Xu et al 2008a) TRD ages of Archean reflecting the existenceof Archean mantle beneath this region However the wide range inTRD ages observed in single peridotite and their sulfides may reflectprogressive modification of the lithospheric mantle by fertile mate-rials (Xu et al 2008a) as is well documented for the peridotitesfrom other regions of the world (Pearson et al 1999 2002 Alard etal 2002 Griffin et al 2004 Harvey et al 2010) As a result theTRD ages for most of the samples from the North China Craton may re-flect the mixing of different-generation sulfides generated by referti-lization processes

As a result most of the peridotite xenoliths from the Central Zoneincluding Hebi Fushan Fanshi Yangyuan Datong Jining and Han-nuoba localities are relatively fertile in compositions (Figs 3ndash5) andbear a resemblance to the ldquooceanicrdquo lithosphere (Fan et al 2000)but they are likely the fragments of refertilized Archean lithosphericmantle

64 Constraints on the destruction of the NCC

The mineralogy elemental and isotopic geochemistry of peridotitexenoliths entrained in the Mesozoic and Cenozoic igneous rocks fromthe NCC indicate that the present lithospheric mantle beneath theCentral Zone is highly heterogeneous which is likely produced from

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

an Archean lithosphere by refertilization via multistage additions ofmelt The early-stage melt may be derived from recycled crustal ma-terials and the later-stage melt be mainly derived from the astheno-sphere The refertilization processes could mask even totallyobliterate the Archean refractory signatures of parts of the litho-sphere and rejuvenate the Archean mantle by lowering the RendashOsmodel ages of refertilized peridotites (Zhang et al 2008 2009 Xiaoand Zhang 2011)

The peridotites from Fushan and Hebi in the central NCC are main-ly refractory harzburgites with minor lherzolites (Fig 2) Their ex-tremely variable SrndashNd isotopic ratios (Fig 6) and ArcheanndashPaleoproterozoic TRD ages (Fig 9) reflect low-degree modification ofthe Archean lithospheric mantle beneath the central NCC In contrastthe peridotites from the Hannuoba and Jining in the northern marginof the craton are almost fertile lherzolites (Fig 5) with depleted SrndashNd isotopic compositions (Figs 6 and 8) and ProterozoicndashPhanerozoicTRD ages (Fig 9) indicating high-degree refertilization of the mantlelithosphere (Tang et al 2008 Zhang et al 2009 in press) One peri-dotite from Jining has radiogenic 87Sr86Sr (up to 0707 Fig 6) likelyimplying the modification of oceanic crust (Zhang et al in press)This is consistent with the observation of Santosh (2010) providingevidence for imbrication of oceanic plate lithostratigraphy from theInner Mongolia suture zone (Fig 1)

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

88

89

90

91

92

93

TRD (Ga)

TM

A (

Ga) 20

25

30

35

15

10

05

95

0 05 10 15 20 25 30

Oliv

ine

Fo

TMA0 1 3

Sulfide

In basalt

In kimberlite

EasternBlockIn basalt

CentralZone

Hebi

HebiFushanFanshiDatongYangyuanJiningHannuoba

Reaction trend

Melting trend

Archean

Northmargin

Phanerozoic Proterozoic

PM

CentralNCC

Sulfide Hannuoba

In basalt easternIn kimber eastern

Sulfide Hebi

2

Fig 9 Diagrams of TMA and Fo of olivine vs TRD model ages of peridotite xenoliths andin situ analyses of sulfides from the NCC Inset shows histogram of the TMA agesData sources in addition to this study Hannuoba peridotites (Gao et al 2002 Xia etal 2004 Zhang et al 2009 Liu et al 2011) Fushan Datong and Hebi peridotites (Liuet al 2011) Jining (Liu et al 2011 Zhang et al in press) Fanshi and Yangyuan pe-ridotites (Xu et al 2008b Liu et al 2011) In situ ages of sulfides in Hannuoba andHebi peridotites (Zheng et al 2007 Xu et al 2008a) peridotite xenoliths entrainedin the Cenozoic basalts (Gao et al 2002 Wu et al 2003 2006 Chu et al 2009b) andPaleozoic kimberlites from the NCC (Gao et al 2002 Wu et al 2006 Zhang et al 2008Chu et al 2009b)

9Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Compared to the Hannuoba peridotites the Yangyuan and Fanshixenoliths are mainly lherzolites with minor harzburgite and haveenriched SrndashNd isotopic compositions and ArcheanndashPhanerozoic TRDages implying relatively low-degree modification of the lithosphericmantle Therefore the spatially petrologic and geochemical variationsof xenoliths suggest that the refertilization of ancient lithosphericmantle by melt additions became stronger from the interior to thenorth margin of the NCC (Zhang 2009) (Figs 2ndash9)

For the whole North China Craton it experienced a series ofsubductioncollision events as evidenced by the Paleozoic to TriassicQinlingndashDabie ultrahigh-pressure belt in south (Li et al 1993) theTianshanndashInner MongoliandashDaxinganling orogen in north (Xiao etal 2003 Zhang et al 2003) and the MesozoicndashCenozoic subductionof Pacific plate in east These events could intensively modify thesubcontinental lithospheric mantle by igneous refertilization viamultistage peridotitendashmelt reactions (Zhang et al 2002 2003 Xuet al 2008a Zhang et al 2009 Zhang et al 2010a 2010b Tanget al 2011 2012) leading to the highly heterogeneity of the mantle

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

7 Conclusions

Mineral element and SrndashNd isotopic compositions of the perido-tite xenoliths from the Cenozoic Hebi basalts in the Central Zone ofthe NCC coupled with previously published petrologic and isotopicdata of mantle xenoliths from the eastern NCC allow us to draw thefollowing conclusions

(1) The Hebi harzburgite xenoliths are refractory in mineral com-positions and highly variable in mineral SrndashNd isotopic compo-sitions ranging from MORB-like to EM1-type mantle They arethe residues of Archean lithospheric mantle beneath thisregion

(2) The present lithospheric mantle beneath the Central Zone ofthe NCC is highly heterogeneous in mineral and geochemicalcompositions likely produced by refertilization via multipleadditions of melts

(3) The refertilization of the lithospheric mantle became strongerfrom the interior to the margin of the craton which was closelyrelated to multiple subductioncollision events of circum-craton plates

Acknowledgments

Wewould like to express our gratitude to Qian Mao and Yu-GuangMa for their assistance with EPMA analyses and Jing-Hui Guo withisotopic analyses at the State Key Laboratory of Lithospheric Evolu-tion Institute of Geology and Geophysics Chinese Academy of Sci-ences We gratefully acknowledge the constructive reviews of SAulbach and an anonymous reviewer and editorial handling by Edi-tors which helped us to improve the presentation This work was fi-nancially supported by the National Science Foundation of China(Grants 91014007 41073028 and 40773026)

References

Adam J Green T 2006 Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt 1 Experimental results andthe investigation of controls on partitioning behaviour Contributions to Mineralo-gy and Petrology 152 1ndash17

Alard O Griffin WL Pearson NJ Lorand JP OReilly SY 2002 New insights intothe RendashOs systematics of sub-continental lithospheric mantle from in situ analysisof sulphides Earth and Planetary Science Letters 203 651ndash663

Aulbach S Griffin WL OReilly SY McCandless TE 2004 Genesis and evolution ofthe lithospheric mantle beneath the Buffalo Head Terrane Alberta (Canada) Lithos77 413ndash451

Beyer EE Griffin WL OReilly SY 2006 Transformation of Archaean lithosphericmantle by refertilization evidence from exposed peridotites in the Western GneissRegion Norway Journal of Petrology 47 1611ndash1636

Boyd FR 1989 Compositional distinction between oceanic and cratonic lithosphereEarth and Planetary Science Letters 96 15ndash26

Chen SH OReilly SY Zhou XH Griffin WL Zhang GH Sun M Feng JL ZhangM 2001 Thermal and petrological structure of the lithosphere beneath HannuobaSinondashKorean Craton China evidence from xenoliths Lithos 56 267ndash301

Chen L Zheng T Xu W 2006 A thinned lithospheric image of the Tanlu Fault Zoneeastern China constructed from wave equation based receiver function migrationJournal of Geophysical Research 111 B09312 doi1010292005jb003974

Chu ZY Chen FK Yang YH Guo JH 2009a Precise determination of Sm Nd con-centrations and Nd isotopic compositions at the nanogram level in geological sam-ples by thermal ionization mass spectrometry Journal of Analytical AtomicSpectrometry 24 1534ndash1544

Chu ZY Wu FY Walker RJ Rudnick RL Pitcher L Puchtel IS Yang YH WildeSA 2009b Temporal evolution of the lithospheric mantle beneath the easternNorth China Craton Journal of Petrology 50 1857ndash1898

Dobbs PN Duncan DJ Hu S Shee SR Colgan E Brown MA Smith CB AllsoppHL 1994 The geology of the Mengyin kimberlites Shandong China In MeyerHOA Leonardos OH (Eds) Diamonds Characterization Genesis and Explora-tion Proceedings of the 5th International Kimberlite Conference CPRM Brasiliapp 106ndash115

Fan QC Hooper PR 1991 The Cenozoic basaltic rocks of eastern China petrologyand chemical composition Journal of Petrology 32 765ndash810

Fan WM Menzies MA 1992 Destruction of aged lower lithosphere and accretion ofasthenosphere mantle beneath eastern China Geotectonica et Metallogenia 16171ndash180

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

10 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Fan WM Zhang HF Baker J Jarvis KE Mason PRD Menzies MA 2000 On andoff the north China craton where is the Archaean keel Journal of Petrology 41933ndash950

Frey FA Green DH 1974 The mineralogy geochemistry and origin of Iherzolite in-clusions in Victorian basanites Geochimica et Cosmochimica Acta 38 1023ndash1059

Gao S Rudnick RL Carlson RW McDonough WF Liu YS 2002 RendashOs evidencefor replacement of ancient mantle lithosphere beneath the North China cratonEarth and Planetary Science Letters 198 307ndash322

Gao S Rudnick RL Yuan HL Liu XM Liu YS Xu WL Ling WL Ayers J WangXC Wang QH 2004 Recycling lower continental crust in the North China cratonNature 432 892ndash897

Griffin WL OReilly SY Ryan CG 1992 Composition and thermal structure of thelithosphere beneath South Africa Siberia and China proton microprobe studiesInternational Symposium on Cenozoic Volcanic Rocks and Deep-seated Xenolithsof China and its Environs Beijing pp 65ndash66

Griffin WL Zhang AD OReilly SY Ryan CG 1998 Phanerozoic evolution of thelithosphere beneath the SinondashKorean Craton In Flower MFJ Chung SL LoCH Lee TY (Eds) Mantle Dynamics and Plate Interactions in East Asia AmericanGeophysical Union Washington DC pp 107ndash126

Griffin WL OReilly SY Abe N Aulbach S Davies RM Pearson NJ Doyle BJKivi K 2003 The origin and evolution of Archean lithospheric mantle Precambri-an Research 127 19ndash41

Griffin WL Graham S OReilly SY Pearson NJ 2004 Lithosphere evolution be-neath the Kaapvaal Craton RendashOs systematics of sulfides in mantle-derived peri-dotites Chemical Geology 208 89ndash118

Griffin WL OReilly SY Afonso JC Begg GC 2009 The composition and evolutionof lithospheric mantle a re-evaluation and its tectonic implications Journal of Pe-trology 50 1185ndash1204

Harvey J Gannoun A Burton KW Schiano P Rogers NW Alard O 2010 Unravel-ling the effects of melt depletion and secondary infiltration on mantle RendashOs iso-topes beneath the French Massif Central Geochimica et Cosmochimica Acta 74293ndash320

Kelemen PB Hart SR Bernstein S 1998 Silica enrichment in the continental uppermantle via meltrock reaction Earth and Planetary Science Letters 164 387ndash406

Kroumlner A Wilde SA Li JH Wang KY 2005 Ages and evolution of a Late Archean toPaleoproterozoic upper to lower crustal section in the WutaishanHengshanFup-ing terrain of northern China Journal of Asian Earth Sciences 24 577ndash595

Kusky TM 2011 Geophysical and geological tests of tectonic models of the NorthChina Craton Gondwana Research 20 26ndash35

Li SG Xiao YL Liou DL Chen YZ Ge NJ Zhang ZQ Sun SS Cong BL ZhangRY Hart SR Wang SS 1993 Collision of the North China and Yangtze Blocksand formation of coesite-bearing eclogite-timing and processes Chemical Geology109 89ndash111

Liu J Rudnick RL Walker RJ Gao S Wu FY Piccoli PM Yuan H Xu WL XuYG 2011 Mapping lithospheric boundaries using Os isotopes of mantle xenolithsan example from the North China Craton Geochimica et Cosmochimica Acta 753881ndash3902

Ma X 1989 Atlas of Active Faults in China Seismologic Press BeijingMa JL Xu YG 2006 Old EM1-type enriched mantle under the middle North China

Craton as indicated by Sr and Nd isotopes of mantle xenoliths from YangyuanHebei Province Chinese Science Bulletin 51 1343ndash1349

Menzies MA 1990 Effects of small volume melts Nature 343 312ndash313Menzies M Murthy VR 1980 Enriched mantle Nd and Sr isotopes in diopsides from

kimberlite nodules Nature 283 634ndash636Menzies MA Xu YG 1998 Geodynamics of the North China Craton In Flower

MFJ Chung SL Lo CH Lee TY (Eds) Mantle Dynamics and Plate Interactionsin East Asia American Geophysical Union Washington DC pp 155ndash165

Menzies MA Fan WM Zhang M 1993 Palaeozoic and Cenozoic lithoprobes andthe loss of gt120 km of Archaean lithosphere SinondashKorean craton China InPrichard HM Alabaster T Harris NBW Neary CR (Eds) Magmatic Processesand Plate Tectonics Geological Society of London Special Publication pp 71ndash81

Menzies M Xu YG Zhang HF Fan WM 2007 Integration of geology geophysicsand geochemistry a key to understanding the North China Craton Lithos 96 1ndash21

OReilly SY Griffin WL Poudjom YH Morgan P 2001 Are lithosphere forever Track-ing changes in subcontinental lithospheric mantle through time GSA Today 11 4ndash10

Pearson DG 1999 Evolution of cratonic lithospheric mantle an isotopic perspectiveIn Fei Y Berka CM Mysen BO (Eds) Mantle Petrology Field Observations andHigh-Pressure Experimentation A Tribute to Francis R (Joe) Boyd The Geochemi-cal Society Special Publication pp 57ndash78

Pearson DG Shirey SB Harris JW Carlson RW 1998 Sulphide inclusions in dia-monds from the Koffiefontein kimberlite S Africa constraints on diamond agesand mantle RendashOs systematics Earth and Planetary Science Letters 160 311ndash326

Pearson DG Shirey SB Bulanova GP Carlson RW Milledge HJ 1999 RendashOs iso-tope measurements of single sulfide inclusions in a Siberian diamond and its nitro-gen aggregation systematics Geochimica et Cosmochimica Acta 63 703ndash711

Pearson NJ Alard O Griffin WL Jackson SE OReilly SY 2002 In situ measure-ment of RendashOs isotopes in mantle sulfides by laser ablation multicollector-inductively coupled plasma mass spectrometry analytical methods and prelimi-nary results Geochimica et Cosmochimica Acta 66 1037ndash1050

Reisberg L Zhi XC Lorand JP Wagner C Peng ZC Zimmermann C 2005 RendashOsand S systematics of spinel peridotite xenoliths from east central China evidencefor contrasting effects of melt percolation Earth and Planetary Science Letters239 286ndash308

Rudnick RL Gao S Ling WL Liu YS McDonough WF 2004 Petrology and geo-chemistry of spinel peridotite xenoliths from Hannuoba and Qixia North ChinaCraton Lithos 77 609ndash637

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Santosh M 2010 Assembling North China Craton within the Columbia superconti-nent the role of double-sided subduction Precambrian Research 178 149ndash167

Santosh M Tsunogae T Li JH Liu SJ 2007a Discovery of sapphirine-bearing MgndashAl granulites in the North China Craton implications for Paleoproterozoic ultra-high temperature metamorphism Gondwana Research 11 263ndash285

Santosh M Wilde SA Li JH 2007b Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton evidence from SHRIMPUndashPb zircon geochronology Precambrian Research 159 178ndash196

Santosh M Sajeev K Li JH Liu SJ Itaya T 2009 Counterclockwise exhumation ofa hot orogen the Paleoproterozoic ultrahigh-temperature granulites in the NorthChina Craton Lithos 110 140ndash152

Santosh M Zhao D Kusky T 2010 Mantle dynamics of the Paleoproterozoic NorthChina Craton a perspective based on seismic tomography Journal of Geodynamics49 39ndash53

Santosh M Liu SJ Tsunogae T Li JH 2011 Paleoproterozoic ultrahigh-temperature granulites in the North China Craton implications for tectonic modelson extreme crustal metamorphism Precambrian Research doi101016jprecamres201110051003

Shirey SB Walker RJ 1998 The RendashOs isotopic system in cosmochemistry and igne-ous geochemistry Annual Reviews of Earth and Planetary Sciences 26 425ndash500

Smith D Griffin WL Ryan CG Sie SH 1991 Trace-element zonation in garnetsfrom the thumb mdash heating and melt infiltration below the Colorado Plateau Con-tributions to Mineralogy and Petrology 107 60ndash79

Song Y Frey FA 1989 Geochemistry of peridotite xenoliths in basalt from Hannuobaeastern China implications for subcontinental mantle heterogeneity Geochimica etCosmochimica Acta 53 97ndash113

Tang YJ Zhang HF Ying JF 2004 High-Mg olivine xenocrysts entrained in Cenozoicbasalts in central Taihang Mountains relicts of old lithospheric mantle Acta Petrolo-gica Sinica 20 1243ndash1252

Tang YJ Zhang HF Ying JF 2006 Asthenospherendashlithospheric mantle interactionin an extensional regime implication from the geochemistry of Cenozoic basaltsfrom Taihang Mountains North China Craton Chemical Geology 233 309ndash327

Tang YJ Zhang HF Nakamura E Moriguti T Kobayashi K Ying JF 2007 Lithiumisotopic systematics of peridotite xenoliths from Hannuoba North China Cratonimplications for meltndashrock interaction in the considerably thinned lithosphericmantle Geochimica et Cosmochimica Acta 71 4327ndash4341

Tang YJ Zhang HF Ying JF Zhang J Liu XM 2008 Refertilization of ancient lith-ospheric mantle beneath the central North China Craton evidence from petrologyand geochemistry of peridotite xenoliths Lithos 101 435ndash452

Tang YJ Zhang HF Nakamura E Ying JF 2011 Multistage meltfluidndashperidotiteinteractions in the refertilized lithospheric mantle beneath the North China Cra-ton constraints from the LindashSrndashNd isotopic disequilibrium between minerals ofperidotite xenoliths Contributions to Mineralogy and Petrology 161 845ndash861

Tang YJ Zhang HF Deloule E Su BX Ying JF Xiao Y Hu Y 2012 Slab-derivedlithium isotopic signatures in mantle xenoliths from northeastern North China Cra-ton Lithos doi101016jlithos201112001

Tatsumoto M Basu AR Huang WK Wang JW Xie GH 1992 Sr Nd and Pb iso-topes of ultramafic xenoliths in volcanic-rocks of eastern China enriched compo-nents EMI and EMII in subcontinental lithosphere Earth and Planetary ScienceLetters 113 107ndash128

Walker RJ Carlson RW Shirey SB Boyd FR 1989 Os Sr Nd and Pb isotope sys-tematics of southern African peridotite xenoliths implications for the chemicalevolution of subcontinental mantle Geochimica et Cosmochimica Acta 531583ndash1595

Wang YJ Fan WM Zhang HF Peng TP 2006 Early Cretaceous gabbroic rocksfrom the Taihang Mountains implications for a paleosubduction-related litho-spheric mantle beneath the central North China Craton Lithos 86 281ndash302

Wilshire HG Shervais JW 1975 Al-augite and Cr-diopside ultramafic xenoliths inbasaltic rocks from western United States Physics and Chemistry of the Earth 9257ndash272

Wu FY Walker RJ Ren XW Sun DY Zhou XH 2003 Osmium isotopic con-straints on the age of lithospheric mantle beneath northeastern China ChemicalGeology 196 107ndash129

Wu FY Walker RJ Yang YH Yuan HL Yang JH 2006 The chemicalndashtemporalevolution of lithospheric mantle underlying the North China Craton Geochimicaet Cosmochimica Acta 70 5013ndash5034

Xia QX Zhi XC Meng Q Zheng L Peng ZC 2004 The trace element and RendashOsisotopic geochemistry of mantle-derived peridotite xenoliths from Hannuoba na-ture and age of SCLM beneath the area Acta Petrologica Sinica 20 1215ndash1224 (inChinese with English abstract)

Xiao Y Zhang HF 2011 Effects of melt percolation on platinum group elements andRendashOs systematics of peridotites from the TanndashLu fault zone eastern North ChinaCraton Journal of the Geological Society of London 168 1201ndash1214

Xiao WJ Windley B Hao J Zhai MG 2003 Accretion leading to collision and thePermian Solonker suture Inner Mongolia China termination of the CentralAsian orogenic belt Tectonics 22 doi1010292202 TC001484

Xu YG 2001 Thermo-tectonic destruction of the Archean lithospheric keel beneaththe SinondashKorean Craton in China evidence timing and mechanism Physics andChemistry of the Earth (A) 26 747ndash757

Xu YG 2002 Evidence for crustal components in the mantle and constraints on crustalrecycling mechanisms pyroxenite xenoliths from Hannuoba North China ChemicalGeology 182 301ndash322

Xu XS OReilly SY Griffin WL Zhou XM Huang XL 1998 The nature of the Ce-nozoic lithosphere of Nushan eastern China In Flower MFJ Chung SL Lo CHLee TY (Eds) Mantle Dynamics and Plate Interactions in East Asia AmericanGeophysical Union Washington DC pp 167ndash196

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

11Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Xu YG Chung SL Ma JL Shi LB 2004 Contrasting Cenozoic lithospheric evolutionand architecture in the western and eastern SinondashKorean craton constrains fromgeochemistry of basalts and mantle xenoliths Journal of Geology 112 593ndash605

Xu XS Griffin WL OReilly SY Pearson NJ Geng HY Zheng JP 2008a RendashOsisotopes of sulfides in mantle xenoliths from eastern China progressive modifica-tion of lithospheric mantle Lithos 102 43ndash64

Xu YG Blusztajn J Ma JL Suzuki K Liu JF Hart SR 2008b Late Archean to earlyProterozoic lithospheric mantle beneath the western North China craton SrndashNdndashOs isotopes of peridotite xenoliths from Yangyuan and Fansi Lithos 102 25ndash42

Xu W Yang D Gao S Pei F Yu Y 2010 Geochemistry of peridotite xenoliths inEarly Cretaceous high-Mg diorites from the Central Orogenic Block of the NorthChina Craton the nature of Mesozoic lithospheric mantle and constraints on lith-ospheric thinning Chemical Geology 270 257ndash273

Yang JH Wu FY Wilde SA 2003 A review of the geodynamic setting of large-scaleLate Mesozoic gold mineralization in the North China craton an association withlithospheric thinning Ore Geology Reviews 23 125ndash152

Ying JF Zhang HF Tang YJ 2010 Zoned olivine xenocrysts in a late Mesozoic gab-bro from the southern Taihang Mountains implications for old lithospheric mantlebeneath the central North China Craton Geological Magazine 147 161ndash170

Yuan XC 1996 Atlas of Geophysics in China Geological Publishing House BeijingZhai MG Santosh M 2011 The early Precambrian odyssey of the North China Craton a

synoptic overview Gondwana Research 20 6ndash25Zhang HF 2005 Transformation of lithospheric mantle through peridotitendashmelt reac-

tion a case of SinondashKorean craton Earth and Planetary Science Letters 237768ndash780

Zhang HF 2009 Peridotitendashmelt interaction a key point for the destruction of cra-tonic lithospheric mantle Chinese Science Bulletin 54 3417ndash3437

Zhang HF Sun M Zhou XH Fan WM Zhai MG Ying JF 2002 Mesozoic litho-sphere destruction beneath the North China Craton evidence from major- trace-element and SrndashNdndashPb isotope studies of Fangcheng basalts Contributions to Min-eralogy and Petrology 144 241ndash253

Zhang HF Sun M Zhou XH Zhou MF Fan WM Zheng JP 2003 Secular evolu-tion of the lithosphere beneath the eastern North China Craton evidence fromMe-sozoic basalts and high-Mg andesites Geochimica et Cosmochimica Acta 674373ndash4387

Zhang HF Sun M Zhou MF Fan WM Zhou XH Zhai MG 2004 Highly hetero-geneous late Mesozoic lithospheric mantle beneath the north China Craton evi-dence from SrndashNdndashPb isotopic systematics of mafic igneous rocks GeologicalMagazine 141 55ndash62

Zhang J Zhao GC Sun M Wilde SA Li SZ Liu SW 2006 High-pressure maficgranulites in the Trans-North China Orogen tectonic significance and age Gond-wana Research 9 349ndash362

Zhang HF Nakamura E Kobayashi K Zhang J Ying JF Tang YJ Niu LF 2007Transformation of subcontinental lithospheric mantle through peridotitendashmelt re-action evidence from a highly fertile mantle xenolith from the North China cratonInternational Geology Review 49 658ndash679

Zhang HF Goldstein S Zhou XH Sun M Zheng JP Cai Y 2008 Evolution of sub-continental lithospheric mantle beneath eastern China RendashOs isotopic evidencefrom mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts Contribu-tions to Mineralogy and Petrology 155 271ndash293

Zhang HF Goldstein SL Zhou XH Sun M Cai Y 2009 Comprehensive refertiliza-tion of lithospheric mantle beneath the North China Craton further OsndashSrndashNd iso-topic constraints Journal of the Geological Society of London 166 249ndash259

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Zhang HF Deloule E Tang YJ Ying JF 2010a Meltrock interaction in remains ofrefertilized Archean lithospheric mantle in Jiaodong Peninsula North China Cra-ton Li isotopic evidence Contributions to Mineralogy and Petrology 160 261ndash277

Zhang HF Nakamura E Kobayashi K Ying JF Tang YJ 2010b Recycled crustalmelt injection into lithospheric mantle implication from cumulative compositeand pyroxenite xenoliths International Journal of Earth Sciences 99 1167ndash1186

Zhang HF Ying JF Tang YJ Li XH Feng C Santosh M 2011 Phanerozoic reacti-vation of the Archean North China Craton through episodic magmatism evidencefrom zircon UndashPb geochronology and Hf isotopes from the Liaodong PeninsulaGondwana Research 19 446ndash459

Zhang HF Sun YL Tang YJ Xiao Y Zhang WH Zhao XM Santosh M MenziesMA in press Melt-peridotite interaction in the Pre-cambrian mantle beneath thewestern North China Craton Petrology geochemistry and Sr Nd and Re isotopesLithos doi101016jlithos201201027

Zhao GC Cawood PA Wilde SA Sun M 2000 Metamorphism of basement rocksin the Central Zone of the North China craton implications for Paleoproterozoictectonic evolution Precambrian Research 103 55ndash88

Zhao GC Wilde SA Sun M Li SZ Li XP Zhang J 2008 SHRIMP UndashPb zircon agesof granitoid rocks in the Luumlliang Complex implications for the accretion and evo-lution of the Trans-North China Orogen Precambrian Research 160 213ndash226

Zhao GC Wilde SA Guo JH Cawood PA Sun M Li XP 2010a Single zircongrains record two Paleoproterozoic collisional events in the North China CratonPrecambrian Research 177 266ndash276

Zhao GC Wilde SA Zhang J 2010b New evidence from seismic imaging for sub-duction during assembly of the North China craton comment Geology 38 e206

Zhao XM Zhang HF Zhu XK Tang SH Tang YJ 2010c Iron isotope variations inspinel peridotite xenoliths from North China Craton implications for mantle meta-somatism Contributions to Mineralogy and Petrology 160 1ndash14

Zheng JP OReilly SY Griffin WL Lu FX Zhang M 1998 Nature and evolution ofCenozoic lithospheric mantle beneath Shandong peninsula SinondashKorean cratoneastern China International Geology Review 40 471ndash499

Zheng JP OReilly SY Griffin WL Lu FX Zhang M Pearson NJ 2001 Relict re-fractory mantle beneath the eastern North China block significance for lithosphereevolution Lithos 57 43ndash66

Zheng JP Griffin WL OReilly SY Liou JG Zhang RY Lu FX 2005 Late MesozoicndashEocene mantle replacement beneath the eastern North China craton evidence fromthe Paleozoic and Cenozoic peridotite xenoliths International Geology Review 47457ndash472

Zheng JP Griffin WL OReilly SY Yang JS Li TF Zhang M Zhang RY Liou JG2006 Mineral chemistry of peridotites from Paleozoic Mesozoic and Cenozoic litho-sphere constraints on mantle evolution beneath eastern China Journal of Petrology47 2233ndash2256

Zheng JP Griffin WL OReilly SY Yu CM Zhang HF Pearson N Zhang M 2007Mechanism and timing of lithospheric modification and replacement beneath theeastern North China Craton peridotitic xenoliths from the 100 Ma Fuxin basaltsand a regional synthesis Geochimica et Cosmochimica Acta 71 5203ndash5225

Zhou XH Armstrong RL 1982 Cenozoic volcanic rocks of eastern China mdash secularand geographic trends in chemistry and strontium isotopic composition Earthand Planetary Science Letters 58 301ndash329

Zindler A Hart SR 1986 Chemical geodynamics Annual Reviews of Earth and Plane-tary Sciences 14 493ndash571

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

Mesozoic intrusive rocks

Cenozoic basalt

Paleozoic Kimberlites

Archean rocks

Paleoproterozoic rocks

Central Zone

WesternBlock Eastern Block

Qinling-Dabie orogenic Belt

Su

LuU

HP

Bel

t

-

Fuxian

Fanshi

Hebi

Qixia

Longgang

Kuandian

Hannuoba

Nuumlshan

OrdosBlock

Yinshan Block

Khondalite Belt

Jining

YangyuanDatong

Fushan

Ya ngtze Craton

Mengyin

Changle

110deg E 115deg E 120deg E

110deg E 115deg E 120deg E

0 200 400 km

125deg E

40deg N

35deg N

40deg N

35deg N

Beijing

Bohai Sea

Tanl

uF

ault

Yellow Sea

Tianshan-Inner Mongolia-Daxingrsquo anling orogen

Inner Mongolia Suture Zone

Xiyang-Pingding

Shatuo

NSGL

Fig 1 Geologic and tectonic map of the North China Craton revised after Zhao et al (2000 2008) and Santosh (2010) showing the distributions of the main tectonic subdivisionsrocks of different ages and mantle xenolith localities mentioned in the text The NSGL represents the NorthndashSouth Gravity Lineament (Ma 1989)

2 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

the Mesozoic the Western Block remains relatively stable since thePrecambrian with only few magmatic activities Thus the CentralZone is the transitional zone of Phanerozoic magmatism as well ascrustal elevation morphology lithospheric thickness and gravityanomalies from the Eastern to the Western Block (Ma 1989 Griffinet al 1998 Menzies and Xu 1998) Therefore understanding the na-ture and evolution of the mantle lithosphere beneath the CentralZone is crucial to unravel mechanism and processes of destructionof the NCC However these aspects of the Central Zone are not well-constrained

In this paper we report the petrological and SrndashNd isotopic com-positions of peridotite xenoliths from Hebi County Henan Provincewhich tectonically located in the east edge of the Central Zone(Fig 1) Our main aim is to further constrain the nature and originof the lithospheric mantle beneath the Central Zone by reviewingthe data available for mantle xenoliths from the Central Zone of theNCC Our study will provide an insight into the destruction of the NCC

2 Geologic setting

The NCC is one of the Archean continental nuclei in the world andcomprises three subdivisions (Fig 1) ie the Eastern Block the Cen-tral Zone and the Western Block (Zhao et al 2000 Santosh 2010Kusky 2011) The Western Block is composed of the Yinshan Blockand the Ordos Block which were joined by the eastndashwest trendingInner Mongolia Suture Zone at ~195 Ga (Santosh 2010 Zhao et al2010a) This suture zone is also termed Khondalite Belt (Zhao et al

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

2010a) with dominant lithology of graphitendashgarnetndashsillimantiegneiss garnet quartzite felsic paragneiss calc-silicate rock and mar-ble The basement of the Western Block mainly consists ofgranulite-facies tonalitic trondhjemitic and granodioritic (TTG)gneisses and charnockites which are unconformably overlain by Ar-chean to Paleoproterozoic metasedimentary belts (Zhao et al2000) Paleoproterozoic ultrahigh temperature metamorphism hasbeen observed in the Western Block (Santosh et al 2007a 2007b2009 2011) The basement of the Eastern Block primarily consistsof Archean TTG gneisses granitoids granitic gneisses and supracrus-tal rocks (Zhao et al 2000)

The Central Zone is also called Trans-North China Orogen roughlynorthndashsouth trending across the NCC (Fig 1) It consists of 25ndash27 GaTTG gneisses greenschist facies mafic rocks amphibolites high-pressure granulites and retrograded eclogites (Zhao et al 2000Zhang et al 2006 Zhai and Santosh 2011) This orogen was formedby the collision between the Eastern and the Western Blocks at about185 Ga (Zhao et al 2000 2010a Santosh 2010) marking the forma-tion of the NCC although the subduction polarity and the amalgam-ation timing of the various blocks remain debated (Kroumlner et al2005 Santosh 2010 Zhao et al 2010b Kusky 2011)

TheWestern Block remains relatively stable since the Precambrianand the lithosphere of this block is about 200 km thick In contrastthe Eastern Block has experienced widespread tectono-thermal reac-tivation since the Late Mesozoic as manifested by the emplacementof voluminous Late Mesozoic granites mafic intrusions and volcanicrocks (Zhang et al 2002 2003 Yang et al 2003 Zhang et al

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

Table 1Mineral modes (vol) of the Hebi peridotites

Sample Olivine Opx Cpx Spinel

05HB68 69 27 3 105HB70 79 18 1 205HB72 81 16 1 2HB1120 77 22 0 1HB1121 77 21 2 0HB1122 73 24 1 2HB1125 67 30 1 2HB1126 71 27 1 105HB09 75 23 2 0HB1128 70 29 0 1

3Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

2004) and extensive Cenozoic basalts (Zhou and Armstrong 1982Fan et al 2000 Tang et al 2006 Zhang et al 2011) Ordovician dia-mondiferous kimberlites occur mainly in the Mengyin County Shan-dong Province and the Fuxian County Liaoning Province in theEastern Block (Fig 1) (Dobbs et al 1994) The lithosphere in these lo-calities was cool and thick at the time of emplacement (Menzies et al1993 Griffin et al 1998) with highly refractory compositions inmantle peridotites indicating the existence of an Archean lithospher-ic keel beneath the Eastern Block at least until the kimberlite em-placement (Gao et al 2002 Zheng et al 2006 Zhang et al 20082009) In contrast the Cenozoic basalts sampled a shallower and hot-ter lithosphere with predominantly fertile compositions as mani-fested by the mantle peridotites (Fan et al 2000 Zheng et al2001 Rudnick et al 2004 Zhang et al 2009) consistent with thegeophysical observation of a thin lithosphere (80ndash60 km) in the East-ern Block (Yuan 1996 Griffin et al 1998 Chen et al 2006) Theseobservations suggest that the destruction of the NCC mainly occurredin the Eastern Block during the Phanerozoic

The NEE-trending Northndashsouth Gravity Lineament (NSGL Fig 1)runs over 3500 km from south China to northeast China It is a zoneabout 100 km wide in which the Bouguer anomaly decreases rapidlyfrom minus100 mGal in the west to minus40 mGal in the east (Ma 1989)This gravity gradient roughly overlaps the Central Zone To the eastof the gravity lineament the Eastern Block is characterized by a thincrust and lithosphere high heat flow and weak negative to positiveregional Bouguer anomalies to the west of the gravity lineamentthe Ordos nucleus has a thick crust and lithosphere low heat flowand strong negative Bouguer anomalies (Ma 1989 Yuan 1996)The Hebi area of Henan province lies east of the gravity lineamentand tectonically in the east edge of the Central Zone Both Neogenebasalts and CretaceousndashEogene barren kimberlites occur in the HebiOlivine nephelinites are in 10 km south of Hebi city and have eruptionages of 40ndash43 Ma The nephelinites contain abundant mantle xeno-liths and megacrysts (up to 5 cm across) of garnet and pyroxene(Zheng et al 2001) The kimberlites occur 6 km west of Hebi cityand contain rare altered dunite and lherzolite xenoliths (Griffin etal 1998)

3 Sample description and previous studies

Peridotite xenoliths in the Hebi Neogene olivine nephelinites arevery fresh and belong to the Cr-diopside suite (Wilshire andShervais 1975) They range from 1 to 8 cm in diameter with majorityabout 2 to 6 cm The petrology major- and trace-element RendashOs Liand Fe isotopic compositions of peridotite xenoliths from the Hebihave been studied previously (Zheng et al 2001 2007 Xu et al2008b Zhao et al 2010c Liu et al 2011 Tang et al 2011) TheHebi peridotite xenoliths are dominant harzburgites with minor lher-zolites They can be divided into two groups based on the forsteriteproportion in olivine (Fo) a low-Mg group (Fob91) and a high-Mg group (Foge91) The low-Mg peridotites are fertile (rich in ba-saltic components such as Al2O3 Na2O and CaO) in mineral composi-tions typical of Phanerozoic mantle The high-Mg peridotitesconsist of highly refractory harzburgite (Al2O3 contentb15) andcpx-poor (cpx volb5) lherzolites with coarse-grained and por-phyroclastic structures compositionally similar to xenoliths in kim-berlites from Archean cratons Thus the high-Mg xenoliths havebeen interpreted as relics of the Archean cratonic mantle beneaththe NCC (Zheng et al 2001) and RendashOs isotopic data of the perido-tites and their sulfides give Archean melt-extraction ages of 25ndash30 Ga (Zheng et al 2007 Xu et al 2008a) Li and Fe isotopic compo-sitions of the Hebi peridotites suggest that the ancient lithosphericmantle beneath the Hebi experienced multistage metasomatism(Zhao et al 2010c Tang et al 2011)

In this study ten spinel-facies harzburgite xenoliths were selectedfor mineral chemical and SrndashNd isotopic analyses These samples are

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

very fresh and 4ndash6 cm in diameter with high modal opx (17ndash32)and minor cpx contents (b4 Table 1) Cpx is absent in some xeno-liths Most of the samples have coarse-grained structures and the ol-ivine and opx grains are generally 3ndash6 mm in diameter withmaximum up to 10 mm Porphyroclastic structures are also observedin these samples with coarse olivine porphyroclasts in a matrix offine-grained recrystallizedsecondary minerals Siliceous aluminum-and alkali-rich glasses with fine-grained cpx phenocrysts are com-mon in patches and small veins Phlogopites are not observed inthese samples

4 Analytical methods

The xenoliths were sawn from their lava hosts and the cut surfaceswere abraded with quartz to remove any possible contaminationfrom the saw blade The samples were crushed and sieved for mineralseparation Opx and cpx separates were handpicked under a binocu-lar microscope to a purity of gt99

Mineral modal contents have been determined by point-countingmore than 1000 points in each thin section (Table 1) Major elementcompositions of minerals in the peridotite xenoliths were measuredat the Institute of Geology and Geophysics Chinese Academy of Sci-ences using a JEOL JXA8100 electron probe microanalyzer (EPMA)The operating conditions were as follows accelerating voltage of15 kV 10 nA beam current 5 μm beam spot and 10ndash30 s countingtime Natural minerals and synthetic oxides were used for standardcalibration and a program based on the ZAF procedure was used fordata correction The precisions of all analyzed elements are betterthan 15 based on multiple analyses of different grains within asample

Sr and Nd isotope compositions of cpx and opx separates from thexenoliths were determined at the Institute of Geology and Geophys-ics The mineral separates were washed with 6 M HCl for 12 h andthen ground to 200ndash400 mesh using an agate mortar before isotopicanalysis Analytical details for sample digestion column separationand mass spectrometric measurement procedures are described inChu et al (2009a 2009b) About 30ndash100 mg of cpx and 300ndash400 mgof opx powder was weighed into Teflon vials and appropriateamounts of mixed 87Rbndash84Sr and 149Smndash150Nd spikes were addedThe samples were dissolved using a mixed acid of HF and HClO4 ona hotplate at 120 degC for more than 1 week After the samples werecompletely dissolved the solutions were dried on hotplate at 130ndash180 degC to remove the HF and HClO4 The sample residues were re-dissolved in 4 ml of 6 M HCl and then dried again Finally thesamples were dissolved in 2 ml of the 3 H3BO3 in 25 M HCl Thesolutions were loaded onto pre-conditioned AG 50Wtimes12 columnsfor separation Rb and Sr were stripped with 5 M HCl and Nd andSm were stripped with 014 M and 04 M HCl respectively The RbSr Nd and Sm were completely separated in our experiments

The RbndashSr and SmndashNd isotopic analyses were performed on anIsoProbe-T thermal ionization mass spectrometer (GV instrumentsEngland) Measured 87Sr86Sr and 143Nd144Nd ratios were corrected

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

4 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

for mass-fractionation using 86Sr88Sr=01194 and 146Nd144Nd=07219 respectively During the period of data collection themeasured values for the NBS-987 Sr standard and the JNdi-1 Ndstandard were 86Sr88Sr=0710245plusmn16 (2 s n=8) and 143Nd144Nd=0512117plusmn10 (2 s n=8) respectively The USGS referencematerial BCR-2 was measured to monitor the accuracy of the analyticalprocedures Our results are 4655 ppm Rb 3393 ppm Sr 87Sr86Sr=0704986plusmn13 (2 s) 6543 ppm Sm 2860 ppm Nd and 143Nd144Nd=0512641plusmn16 (2 s) These values are comparable with thereported reference values 455ndash485 ppm Rb 312ndash355 ppm Sr 87Sr86Sr=0704958ndash0705027 641ndash663 ppm Sm 267ndash299 ppm Ndand 143Nd144Nd=0512633ndash0512644 (GeoREM httpgeoremmpch-mainzgwdgde) The procedural blanks were 10 49 10 and19 pg for Rb Sr Sm and Nd respectively which were less than 01 ofthe amount of samples loaded

5 Results

51 Major elements

Olivine opx cpx and spinel in these peridotites xenoliths are ho-mogeneous (2 sb02) in major elemental compositions based on thedetermination of individual phases between core and rim The aver-age composition of 4ndash5 point analyses is presented in Table 2 Oliv-ines in the xenoliths have high Fo (915ndash927) and low MnO(average 01) and NiO (average 04) contents Opx minerals havehigh Mg ranging from 919 to 927 low Al2O3 (20ndash34) and CaO(03ndash11) contents Cpx minerals have Mg varying from 921 to932 Al2O3 of 30ndash46 and Cr2O3 of 11ndash22 (Table 2) Mineralmodal contents (Fig 2) and chemical compositions (Figs 3ndash5) aresimilar to those of published high-Mg peridotites from the Hebi(Zheng et al 2001 Tang et al 2011) harzburgite xenoliths entrainedin the Cenozoic Fanshi (Tang et al 2008 2011) and Yangyuan basalts(Xu et al 2008b) and Mesozoic Fushan diorites (Xu et al 2010) inthe Central Zone of the NCC (Fig 1) which were interpreted as theresidues of ancient lithospheric mantle

52 SrndashNd isotopic composition

Sr and Nd isotopic compositions of cpx and opx in the Hebi perido-tites are given in Table 3 and illustrated in Fig 6 They show a largevariation ranging from MORB-like to high 87Sr86Sr (up to 07044)and very low 143Nd144Nd (down to 05118) Two samples display ex-tremely low 143Nd144Nd ratios relative to its Sr isotope ratios havingthe signature of EM1-typemantle (Fig 6) One sample falls within thefield for the Mesozoic lithospheric mantle constrained by peridotitexenoliths (Xu et al 2010) and mafic rocks (Zhang et al 2004Wang et al 2006) from the Central Zone of the NCC (Fig 6) In con-trast the cpx separates have higher Sr (mostgt100 ppm) and Nd(mostgt2 ppm) contents and relatively lower 87Sr86Sr ratios(070309ndash070415) than the opx (Srb10 ppm Ndb03 ppm 87Sr86Sr=070353ndash070483) The opx are generally higher in Rb contentsand RbSr ratios than the coexisting cpx

6 Discussion

61 Major element geochemistry and origin

Typical Archean cratonic mantle is generally composed of highlyrefractory (Fogt925) harzburgites and cpx-poor lherzolites (Boyd1989) which are highly depleted in basaltic components due tohigh-degree melt extraction In contrast most Proterozoic and Phan-erozoic lithospheric mantle worldwide are moderately depleted com-pared with primitive mantle (OReilly et al 2001 Beyer et al 2006)The Hebi peridotites studied here have high Fo (915ndash927) and thusare affiliated to the high-Mg group (Fogt91 Zheng et al 2001)

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Their mineral modes are similar to those from the Archean Kaapvaalcraton South Africa (Fig 2) and are plotted in the fields for the peri-dotite xenoliths from the Archean Siberian and Kaapvaal cratons(Fig 3) (Griffin et al 2003) and from the Paleozoic diamondiferouskimberlites in the NCC due to their refractory mineral compositionshigh Fo and low MnO in olivine (Fig 4) high Mg and low Al2O3 inopx and cpx (Fig 5) These characteristics are similar to those pub-lished for the Hebi high-Mg peridotites Fushan and Fanshi harzbur-gites some Yangyuan peridotites and olivine xenocrysts from theMesozoic and Cenozoic basaltic rocks in the Central Zone whichwere considered as residues of the Archean lithospheric mantle(Zheng et al 2001 Tang et al 2004 Zheng et al 2006 Tang et al2008 Xu et al 2008b Xu et al 2010 Ying et al 2010 Liu et al2011 Tang et al 2011)

Therefore the Hebi harzburgites represent residues of Archeanlithospheric mantle beneath this region Most of them have Folower than that of typical Archean cratonic mantle (Fogt925 Boyd1989) indicating that the harzburgites were likely modified bymeltndashrock reaction similar to those from the Archean cratons ofKaapvaal and Siberia rather than the products of simple melt extrac-tion (Kelemen et al 1998 Zhang 2009)

62 SrndashNd isotopic compositions and mantle processes

The most striking character of SrndashNd isotopic compositions of cpxin the Hebi harzburgites is the extreme heterogeneity They display alarge variation ranging from depleted-mantle to EM1-endmembercompositions similar to those of peridotites from ancient cratoniclithospheric mantle worldwide (Fig 6) Since the changes in RbSrand SmNd ratios caused by mantle metasomatism will with timeproduce extreme isotopic heterogeneity the cpx likely evolved fromthe mixing of a MORB-like lithospheric composition with severalenriched components related to meltfluid influx (Frey and Green1974) Meltfluid derived from recycled or subducted materials mayhave considerable ranges in SrNd ratios and isotopic compositionsThis is evidenced by the large variations of isotopic compositions inthe Late Mesozoic lavas of andesites dacites and adakites (Zhang etal 2003 Gao et al 2004) and Hannuoba pyroxenite xenoliths (Xu2002) that involved recycled crustal components As a result the in-flux of recycled materials may account for the spread of the data(Fig 6)

Two samples show an EM1-like isotopic signature of the Mesozoiclithospheric mantle beneath the same region (Fig 6) that was consid-ered to have been previously modified by silica-rich melts releasedfrom subducted materials (Wang et al 2006 Tang et al 2008) Thesubduction may be related to the Paleoproterozoic collision betweenthe Eastern and the Western Blocks (Zhao et al 2000 Santosh et al2010) because there is no evidence showing any collision in the inte-rior of the NCC during the Phanerozoic The EM1-typemantle beneaththe Central Zone is also evidenced by the isotopic compositions of pe-ridotite xenoliths from the Cenozoic Fanshi and Yangyuan basalts(Ma and Xu 2006 Tang et al 2007 2008 Xu et al 2008b) indicat-ing a secular evolution of the subcontinental lithospheric mantle Thisconclusion is also supported by the modeling calculations of the evo-lution of 143Nd144Nd with time in the xenoliths assumed to havebeen modified by recycled crustal materials at 18 Ga (Fig 7) There-fore the enriched isotopic compositions in the Hebi harzburgitesmay reflect ancient enrichment processes of the Archean lithosphericmantle

Some of the Hebi harzburgites have MORB-like SrndashNd isotopiccompositions of cpx (Fig 6) indicating that these peridotites weremodified by recent asthenospheric meltndashperidotite reaction (Zhang2009) which is consistent with their relatively low Fo values(Fig 8) and high concentrations of heavy rear earth elements as ob-served in the Fanshi peridotites (Tang et al 2008) As stated abovethe harzburgites are considered to be the relics of Archean

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

Table 2Major elemental compositions (wt) of minerals in Hebi mantle xenoliths

Sample Mineral SiO2 MgO FeO CaO Al2O3 Cr2O3 Na2O NiO MnO TiO2 Total Mg

05HB68 Ol 4142 4970 797 007 006 003 001 035 012 002 998 91805HB70 Ol 4161 4991 765 007 000 001 000 040 010 000 998 92105HB72 Ol 4162 5011 814 010 000 007 000 037 012 000 1005 917HB1120 Ol 4144 4973 771 011 004 001 001 044 011 002 996 921HB1121 Ol 4138 5036 805 011 003 002 002 040 011 000 1005 918HB1122 Ol 4170 4969 782 009 001 003 001 038 009 001 998 920HB1125 Ol 4116 4927 807 011 000 000 003 031 012 001 991 917HB1126 Ol 4202 4997 836 006 000 001 000 043 011 000 1010 91505HB09 Ol 4156 5029 792 008 003 000 000 040 012 000 1004 920HB1128 Ol 4208 5099 727 000 003 000 000 046 007 000 1009 92705HB68 Opx 5628 3288 496 107 317 082 002 013 015 000 995 92305HB70 Opx 5615 3268 504 102 300 077 003 014 014 000 990 92105HB72 Opx 5589 3299 481 096 344 091 013 013 013 002 994 925HB1120 Opx 5654 3308 522 107 303 083 004 014 007 003 1000 919HB1121 Opx 5606 3304 484 097 316 084 005 010 013 001 992 925HB1122 Opx 5636 3323 500 099 273 075 011 004 013 000 994 923HB1125 Opx 5649 3349 478 084 274 083 007 011 008 000 994 927HB1126 Opx 5715 3333 517 056 257 061 012 010 011 000 997 92105HB09 Opx 5624 3349 503 099 278 084 002 012 011 001 996 923HB1128 Opx 5749 3478 493 029 195 028 005 011 012 001 1000 92705HB68 Cpx 5258 1717 243 2127 323 107 042 005 006 005 983 92705HB70 Cpx 5313 1695 226 2120 306 117 039 003 013 002 983 93105HB72 Cpx 5282 1579 236 1919 455 166 166 004 009 034 985 923HB1120 Cpx 5280 1702 241 2096 309 136 049 008 008 009 984 927HB1121 Cpx 5305 1681 221 2103 301 125 054 007 008 009 981 932HB1122 Cpx 5324 1689 242 2054 300 134 076 008 005 022 985 926HB1125 Cpx 5293 1732 242 2133 260 127 047 004 002 005 984 928HB1126 Cpx 5402 1504 231 1900 366 223 222 006 009 034 990 921

Mg=100timesmol Mg2+(Mg2++Fe2+)

5Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

lithospheric mantle Therefore the depleted isotopic compositions re-flect the effect of reaction between old peridotites andasthenosphere-derived melt (Fig 6)

Refractory peridotite (high Fo) should be lower in RbSr andhigher in SmNd than primitive mantle due to the more incompatibil-ity of Rb than Sr and Nd than Sm during partial melting (Adam andGreen 2006) and thus be lower in 87Sr86Sr and higher 143Nd144Ndratios than fertile peridotite (low Fo) and primitive mantle This iscompletely opposite to the observation that olivine Fo in the Cenozoicbasalt-borne peridotite xenoliths from the Central Zone positivelycorrelate with Sr isotope ratios and negatively correlate with Nd iso-tope ratios (Fig 8) Therefore the correlations between SrndashNd

HebiFushanKaapvaal

Ol

Olivine web

Webster

Orthopyroxenite

Lherzolite

Opx

Hebi+Fushan

Garnet-facies mantlexenoliths from

Kaapvaal craton

Fanshi+Daton

On-

crat

on

Central NCC

YangyuaFanshiDatong

Oliv

ine

orth

opyr

oxen

ite H

arzb

urgi

te

Fig 2 Petrological classification of peridotites On-craton and off-craton peridotite xenolithxenoliths) and kimberlite-borne garnet-facies mantle xenoliths from the Kaapvaal cratonborne xenoliths from ocean basins (ie deep lithosphere) are similar to those from easternData sources Fushan (Xu et al 2010) Hebi (Zheng et al 2001 2005 Liu et al 2011 TangTang et al 2011) Datong (Liu et al 2011) Jining (Liu et al 2011 Zhang et al in press) Yan2000 Rudnick et al 2004 Tang et al 2007 Liu et al 2011)

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

isotopic compositions and olivine Fo first discussed in the Hannuobaperidotites (Zhang et al 2009) likely reflect different-degree referti-lization of originally refractory precursors through reaction withasthenosphere-derived melts (Tang et al 2008 Zhang et al 2009)

Compilation of Sr and Nd isotopic compositions of peridotites re-veals that very few samples from ancient cratonic mantle keep thecharacteristics of ancient melt residues although their major-element compositions reflect an origin as melt residues (Menzies1990 Pearson 1999) For example Nd isotopes in peridotite xeno-liths (Fig 6) from global cratons range from high 143Nd144Nd ratiosindicative of long-term parentndashdaughter depletion to low 143Nd144Nd ratios requiring ancient parentndashdaughter enrichment

Wehrlite

Olivine clinopyroxenitesterite

ite

Clinopyroxenite

Off-craton

Cpx

Dunite

g+Yangyuan Jining+Hannuoba

Shallow oceaniclithosphere

Deep oceaniclithosphere

HannuobaOceanic

Jining

North margin of the NCC

n

s shallow (abyssal ophiolitic peridotites) and deep oceanic lithosphere (basalt-borne South Africa are from Fan et al (2000) and references therein The lsquodeeprsquo basalt-Chinaet al 2011 and this study) Fanshi (Tang et al 2008 Xu et al 2008b Liu et al 2011gyuan (Xu et al 2008b Liu et al 2011) and Hannuoba (Song and Frey 1989 Fan et al

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

90 80 70 60 50

89

91

93

95

88

90

92

94

40100

Modal olivine ()

Oliv

ine

Fo

Melt metasomatism

Mean Archean

Archean

Mean ProterOceanic trend

Proterozoic

Mean high-Tlherzolites

Mean Tecton

ldquoPyroliterdquo

HebiFushan

HannuobaJiningYangyuan

FanshiDatong

Phlogopite metasomCentralNCC

Northmargin

Fig 3 Modal olivine vs Fo contents plot showing the mean compositions of ArchonProton and Tecton subcontinental lithospheric mantle and high-T sheared lherzolitexenoliths from kimberlites Two large arrows illustrate the effect of shallowphlogopite-related metasomatism and the melt-related metasomatism responsiblefor the composition of the sheared xenoliths (Smith et al 1991) The oceanic trend isthe compositional trend from fertile lherzolite to depleted oceanic harzburgite (Boyd1989)The base chart is from Griffin et al (2003) Data sources are as in Fig 2

0 2 4 6 889

91

93

95

88

90

92

94

0 2 4 6 8

Al2O3 (wt)

HebiFushan

HannuobaJiningYangyuan

FanshiDatong

Opx

Cpx

Mg

Mg

Refractory (central NCC)

Fertile(north margin of NCC)

Refractory(central NCC)

Fertile(north margin)

6 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Consequently the greatly heterogeneous isotopic compositions in thelithospheric mantle beneath the Central Zone reflect the diversity inparentndashdaughter elemental fractionation in minerals coupled withancient multiple-stage histories of melt depletion and subsequentrefertilization through melt influx This is also supported by the ele-mental and isotopic characteristics of coexisting opx and cpx in theHebi peridotites (Table 3 Fig 6) which are similar to those in the

HebiFushan

DatongFansi

YangyuanJiningHannuoba

Mn

O

000

010

020

005

015

91 9587 89 93

Paleozoic

Cenozoic

Olivine Fo

025

Ceno XenocrystsMeso Xenocrysts

CentralNCC

Northmargin

Fig 4 Fo vs MnO of olivine from the peridotites compared with olivine xenocrysts inthe Cenozoic XiyangndashPingding basalts (Tang et al 2004) and Mesozoic Shatuo gabbros(Ying et al 2010) and peridotite xenoliths entrained in the Paleozoic kimberlites andCenozoic basalts on the eastern NCC (Zheng et al 1998 2001) Data sources in additionto those designated in Fig 2 include Hannuoba data from Fan and Hooper (1991) andChen et al (2001)

Fig 5 Mg vs Al2O3 of opx and cpx in the mantle xenoliths from the Central Zone andthe West Block of the NCC Data sources are as in Fig 3

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Fanshi peridotites indicating multiple meltfluidndashperidotite interac-tions (Tang et al 2011)

63 RendashOs isotopic data and nature of the lithospheric mantle

The RendashOs system has proven to be particularly useful in tracingthe geochemical evolution of mantle rocks and in defining the chro-nology of mantle differentiation (Walker et al 1989 Shirey andWalker 1998) Nevertheless an increasing number of studies havefound that the RendashOs system in cratonic peridotites can be disturbedby peridotitendashmelt reaction especially when reaction preceded erup-tion by large time intervals (Pearson et al 1998 Alard et al 2002Zhang et al 2008 2009)

Sulfides from a mantle peridotite that underwent melt depletionand refertilization events may have a wide range of RendashOs modelages reflecting different generations of ldquooldrdquo sulfides (residual aftermelt depletion) and later sulfide melts (interstitial sulfides relatedto meltfluid metasomatism) (Pearson et al 1999 2002 Alard etal 2002 Aulbach et al 2004 Griffin et al 2004 Xu et al 2008aZhang et al 2008 2009 Harvey et al 2010) This implies that thebulk-rock Re and Os budget will be controlled by the relative contri-butions from these sulfide populations which are dependent onmeltrock ratios and the degree of S-saturation of the percolatingmelt during the refertilization of lithosphere (Reisberg et al 2005

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

702 702704 706705 708703 704706 710707 712

5140 5140

5115

5115

5110

5120

5120

5125

5125

5130

5130

51355135

87Sr86Sr 87Sr 86Sr

143 N

d14

4 Nd

a b

Fanshibasalts

DM+EMMixing

YangyuanDMMORB

Globalon-craton

Globaloff-craton

07154

Hannuoba

FushanFanshi harzFanshi lherz

Hebi CpxHebi Opx Oceanic

EM1

EM1

Hebibasalts

Mesozoiclithosperic mantle

Mesozoiclithosperic mantle

Kaapvaal

Jining

Fig 6 (a) Sr and Nd isotope ratios in cpx and opx from the peridotites together with the published data for peridotite xenolithsData sources in addition to this study cpx in peridotite xenoliths from Hannuoba (Song and Frey 1989 Tatsumoto et al 1992 Fan et al 2000 Rudnick et al 2004 Tang et al2011) Fanshi (Tang et al 2008 Xu et al 2008b Tang et al 2011) Yangyuan (Ma and Xu 2006 Xu et al 2008b) Jining peridotites (Zhang et al in press) and the Kaapvaal cratonSouth Africa (Menzies andMurthy 1980) Mesozoic lithospheric mantle beneath the Central Zone of the NCC (Zhang et al 2004Wang et al 2006 Xu et al 2010) Cenozoic Fanshiand Hebi host basalts (Tang et al 2006 2011 unpublished data) DM MORB and EM1 (Zindler and Hart 1986) The field roughly drawn denotes the DM-EM1 mixing trend(b) Oceanic peridotites and mantle peridotites from global on- and off-craton locations (Fan et al 2000 and references therein)

7Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Zhang et al 2009 Xiao and Zhang 2011) As a result melt percola-tion could lead to significant changes in the Os isotopic compositionsof the refertilized peridotites Thus whole-rock Os isotope composi-tions reflect the mixtures of different generations of sulfides There-fore the significant variability in Os isotopic compositions ofsulfides within individual peridotite samples calls into question thesignificance of many published whole-rock ldquodepletion agesrdquo(Pearson et al 2002)

RendashOs isotopic ages in the peridotite xenoliths from the NCC varygreatly with Re-depletion model ages (TRD) ranging from 0 to 30 Gaand RendashOs model ages (TMA) of 0ndash35 Ga (Fig 9) For example mostof the Hannuoba peridotites have Proterozoic whole-rock RendashOsmodel ages resembling the Cenozoic basaltndashhost peridotites fromother localities on the North China Craton (Fig 9) However the insitu TRD and TMA model ages of sulfides in the Hannuoba samplesshow a larger range from Archean to Phanerozoic model ages than

Table 3Sr and Nd isotopic compositions of cpx and opx in the peridotite xenoliths

Sample Rb (ppm) Sr (ppm) Sm (ppm) Nd (ppm) 87R

Cpx05HB68 0003 144 0355 472 0005HB70 0030 567 0308 197 0005HB72 0660 315 401 209 00HB1120 0041 768 0133 096 00HB1121 0000 167 0247 225 00HB1122 0004 266 0909 843 00HB1125 0003 161 0506 588 00HB1126 0004 479 665 269 00

Opx05HB68 0013 137 0005HB70 0010 127 0019 0073 0005HB72 0017 285 0063 0207 00HB1120 0007 149 00HB1121 0013 137 00HB1122 0011 137 0010 0094 00HB1125 0015 991 00HB1126 0035 425 0073 0231 0005HB09 0039 199 0451 0070 00HB1128 0081 877 0070 0325 00

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

the whole-rock ages of the peridotites strongly indicating that thewhole-rock ages are not the true formation ages of the peridotitesbut the mixing ages of multiple generations of sulfides (Pearson etal 2002 Griffin et al 2004 Xu et al 2008a Zhang et al 2009)The TRD ages of these peridotites apparently correlate with olivineFo (Fig 9) which is traditionally explained as melting trend (Griffinet al 2004) Alternatively this correlation could also reflect the reac-tion trend of a depleted residue with asthenosphere-derived melts(Zhang et al 2009) The refertilization of peridotites could lowerthe Fo of olivine (Zhang 2005 Griffin et al 2009) and result in thepositive correlations between Re abundances and Al2O3 and Yb con-tents in the peridotites by additions of Fe Al Yb and Re (Zhang etal 2009) Therefore the correlation between TRD ages and olivineFo may reflect the combined results of partial melting and refertiliza-tion processes and the latter lowered the TRD ages of the peridotitesdue to the additions of Re and less radiogenic Os or younger sulfide

b86Sr 87Sr86Sr 2σ 147Sm144Nd 143Nd144Nd 2σ

001 0703092 10 00456 0512942 9015 0703359 10 00944 0513004 7006 0703246 10 01160 0513039 6015 0704151 8 00841 0511825 8000 0703862 8 00665 0512144 12000 0703312 7 00652 0512758 7001 0703242 8 00521 0512960 10000 0703715 14 01494 0512896 9

276 0703529 10234 0703454 15 01604 0513005 7172 0703560 10 01844 0513003 24144 0704055 11277 0703891 10230 0704394 35 00664 0512655 12045 0704829 10241 0703576 13 01921 0512920 8561 0704215 17 39155 0512795 7268 0703655 11 01293 0512907 7

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

5140

5115

5110

5120

5125

5130

5135

89 91 92 9390Olivine Fo

0702

0703

0704

0705

0706

87S

r86

Sr

HebiFushanFanshiYangyuanHannuoba

Mesozoic

Mesozoic

North margin

Central NCC

North margin

Central NCC

143 N

d14

4 Nd

Fig 8 Olivine Fo vs Sr and Nd isotope ratios in cpx from the peridotites Data sourcesare as in Fig 6

200 3010

0509

0511

0512

0513

Time before present (Ga)

143 N

d14

4 Nd

0510

Depleted mantle

HB1120 ( 147144Sm Nd=00665)

t=18

Continental crustDM-old crustmixing

FS6-29 ( 147

144Sm Nd=00936)

Fig 7 The evolution of 143Nd144Nd with time in the HB1120 (this study) and sampleFS6ndash29 (Xu et al 2010) DM-old crust mixing represents the assumed modification ofthe samples by recycled crustal materials at 18 Ga The 143Nd144Nd of the samples at18 Ga were calculated based on the decay constant of 147Sm (654times10minus12) 143Nd144Nd of chondrite (0512638) and the measured 143Nd144Nd and Sm and Nd contentsof the samples

8 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

introduction which could obliterate the evidence of old ages (Griffinet al 2004)

The RendashOs isotopic data of Paleozoic kimberlite-borne xenolithsdemonstrated that Archean lithospheric mantle existed beneath theeastern NCC during the Paleozoic (Gao et al 2002 Wu et al 2006Zhang et al 2008 Chu et al 2009b) However most of the peridotitexenoliths hosted by the Cenozoic basalts have Proterozoic TRD andTMA ages with only a few xenoliths having Phanerozoic ages(Fig 9) The scarcity of Archean TRD ages may reflect that nearly allthe Archean lithospheric mantle beneath the eastern NCC has beenreplaced (Gao et al 2002 Wu et al 2006 Chu et al 2009b) or refer-tilized by multiple-stage influx of melts (Xu et al 2008a Zhang et al2008 2009 Xiao and Zhang 2011) In contrast some peridotites inthe Mesozoic and Cenozoic basaltic rocks in the Central Zone of theNCC have whole-rock (Xu et al 2008b) or sulfide (Zheng et al2007 Xu et al 2008a) TRD ages of Archean reflecting the existenceof Archean mantle beneath this region However the wide range inTRD ages observed in single peridotite and their sulfides may reflectprogressive modification of the lithospheric mantle by fertile mate-rials (Xu et al 2008a) as is well documented for the peridotitesfrom other regions of the world (Pearson et al 1999 2002 Alard etal 2002 Griffin et al 2004 Harvey et al 2010) As a result theTRD ages for most of the samples from the North China Craton may re-flect the mixing of different-generation sulfides generated by referti-lization processes

As a result most of the peridotite xenoliths from the Central Zoneincluding Hebi Fushan Fanshi Yangyuan Datong Jining and Han-nuoba localities are relatively fertile in compositions (Figs 3ndash5) andbear a resemblance to the ldquooceanicrdquo lithosphere (Fan et al 2000)but they are likely the fragments of refertilized Archean lithosphericmantle

64 Constraints on the destruction of the NCC

The mineralogy elemental and isotopic geochemistry of peridotitexenoliths entrained in the Mesozoic and Cenozoic igneous rocks fromthe NCC indicate that the present lithospheric mantle beneath theCentral Zone is highly heterogeneous which is likely produced from

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

an Archean lithosphere by refertilization via multistage additions ofmelt The early-stage melt may be derived from recycled crustal ma-terials and the later-stage melt be mainly derived from the astheno-sphere The refertilization processes could mask even totallyobliterate the Archean refractory signatures of parts of the litho-sphere and rejuvenate the Archean mantle by lowering the RendashOsmodel ages of refertilized peridotites (Zhang et al 2008 2009 Xiaoand Zhang 2011)

The peridotites from Fushan and Hebi in the central NCC are main-ly refractory harzburgites with minor lherzolites (Fig 2) Their ex-tremely variable SrndashNd isotopic ratios (Fig 6) and ArcheanndashPaleoproterozoic TRD ages (Fig 9) reflect low-degree modification ofthe Archean lithospheric mantle beneath the central NCC In contrastthe peridotites from the Hannuoba and Jining in the northern marginof the craton are almost fertile lherzolites (Fig 5) with depleted SrndashNd isotopic compositions (Figs 6 and 8) and ProterozoicndashPhanerozoicTRD ages (Fig 9) indicating high-degree refertilization of the mantlelithosphere (Tang et al 2008 Zhang et al 2009 in press) One peri-dotite from Jining has radiogenic 87Sr86Sr (up to 0707 Fig 6) likelyimplying the modification of oceanic crust (Zhang et al in press)This is consistent with the observation of Santosh (2010) providingevidence for imbrication of oceanic plate lithostratigraphy from theInner Mongolia suture zone (Fig 1)

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

88

89

90

91

92

93

TRD (Ga)

TM

A (

Ga) 20

25

30

35

15

10

05

95

0 05 10 15 20 25 30

Oliv

ine

Fo

TMA0 1 3

Sulfide

In basalt

In kimberlite

EasternBlockIn basalt

CentralZone

Hebi

HebiFushanFanshiDatongYangyuanJiningHannuoba

Reaction trend

Melting trend

Archean

Northmargin

Phanerozoic Proterozoic

PM

CentralNCC

Sulfide Hannuoba

In basalt easternIn kimber eastern

Sulfide Hebi

2

Fig 9 Diagrams of TMA and Fo of olivine vs TRD model ages of peridotite xenoliths andin situ analyses of sulfides from the NCC Inset shows histogram of the TMA agesData sources in addition to this study Hannuoba peridotites (Gao et al 2002 Xia etal 2004 Zhang et al 2009 Liu et al 2011) Fushan Datong and Hebi peridotites (Liuet al 2011) Jining (Liu et al 2011 Zhang et al in press) Fanshi and Yangyuan pe-ridotites (Xu et al 2008b Liu et al 2011) In situ ages of sulfides in Hannuoba andHebi peridotites (Zheng et al 2007 Xu et al 2008a) peridotite xenoliths entrainedin the Cenozoic basalts (Gao et al 2002 Wu et al 2003 2006 Chu et al 2009b) andPaleozoic kimberlites from the NCC (Gao et al 2002 Wu et al 2006 Zhang et al 2008Chu et al 2009b)

9Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Compared to the Hannuoba peridotites the Yangyuan and Fanshixenoliths are mainly lherzolites with minor harzburgite and haveenriched SrndashNd isotopic compositions and ArcheanndashPhanerozoic TRDages implying relatively low-degree modification of the lithosphericmantle Therefore the spatially petrologic and geochemical variationsof xenoliths suggest that the refertilization of ancient lithosphericmantle by melt additions became stronger from the interior to thenorth margin of the NCC (Zhang 2009) (Figs 2ndash9)

For the whole North China Craton it experienced a series ofsubductioncollision events as evidenced by the Paleozoic to TriassicQinlingndashDabie ultrahigh-pressure belt in south (Li et al 1993) theTianshanndashInner MongoliandashDaxinganling orogen in north (Xiao etal 2003 Zhang et al 2003) and the MesozoicndashCenozoic subductionof Pacific plate in east These events could intensively modify thesubcontinental lithospheric mantle by igneous refertilization viamultistage peridotitendashmelt reactions (Zhang et al 2002 2003 Xuet al 2008a Zhang et al 2009 Zhang et al 2010a 2010b Tanget al 2011 2012) leading to the highly heterogeneity of the mantle

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

7 Conclusions

Mineral element and SrndashNd isotopic compositions of the perido-tite xenoliths from the Cenozoic Hebi basalts in the Central Zone ofthe NCC coupled with previously published petrologic and isotopicdata of mantle xenoliths from the eastern NCC allow us to draw thefollowing conclusions

(1) The Hebi harzburgite xenoliths are refractory in mineral com-positions and highly variable in mineral SrndashNd isotopic compo-sitions ranging from MORB-like to EM1-type mantle They arethe residues of Archean lithospheric mantle beneath thisregion

(2) The present lithospheric mantle beneath the Central Zone ofthe NCC is highly heterogeneous in mineral and geochemicalcompositions likely produced by refertilization via multipleadditions of melts

(3) The refertilization of the lithospheric mantle became strongerfrom the interior to the margin of the craton which was closelyrelated to multiple subductioncollision events of circum-craton plates

Acknowledgments

Wewould like to express our gratitude to Qian Mao and Yu-GuangMa for their assistance with EPMA analyses and Jing-Hui Guo withisotopic analyses at the State Key Laboratory of Lithospheric Evolu-tion Institute of Geology and Geophysics Chinese Academy of Sci-ences We gratefully acknowledge the constructive reviews of SAulbach and an anonymous reviewer and editorial handling by Edi-tors which helped us to improve the presentation This work was fi-nancially supported by the National Science Foundation of China(Grants 91014007 41073028 and 40773026)

References

Adam J Green T 2006 Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt 1 Experimental results andthe investigation of controls on partitioning behaviour Contributions to Mineralo-gy and Petrology 152 1ndash17

Alard O Griffin WL Pearson NJ Lorand JP OReilly SY 2002 New insights intothe RendashOs systematics of sub-continental lithospheric mantle from in situ analysisof sulphides Earth and Planetary Science Letters 203 651ndash663

Aulbach S Griffin WL OReilly SY McCandless TE 2004 Genesis and evolution ofthe lithospheric mantle beneath the Buffalo Head Terrane Alberta (Canada) Lithos77 413ndash451

Beyer EE Griffin WL OReilly SY 2006 Transformation of Archaean lithosphericmantle by refertilization evidence from exposed peridotites in the Western GneissRegion Norway Journal of Petrology 47 1611ndash1636

Boyd FR 1989 Compositional distinction between oceanic and cratonic lithosphereEarth and Planetary Science Letters 96 15ndash26

Chen SH OReilly SY Zhou XH Griffin WL Zhang GH Sun M Feng JL ZhangM 2001 Thermal and petrological structure of the lithosphere beneath HannuobaSinondashKorean Craton China evidence from xenoliths Lithos 56 267ndash301

Chen L Zheng T Xu W 2006 A thinned lithospheric image of the Tanlu Fault Zoneeastern China constructed from wave equation based receiver function migrationJournal of Geophysical Research 111 B09312 doi1010292005jb003974

Chu ZY Chen FK Yang YH Guo JH 2009a Precise determination of Sm Nd con-centrations and Nd isotopic compositions at the nanogram level in geological sam-ples by thermal ionization mass spectrometry Journal of Analytical AtomicSpectrometry 24 1534ndash1544

Chu ZY Wu FY Walker RJ Rudnick RL Pitcher L Puchtel IS Yang YH WildeSA 2009b Temporal evolution of the lithospheric mantle beneath the easternNorth China Craton Journal of Petrology 50 1857ndash1898

Dobbs PN Duncan DJ Hu S Shee SR Colgan E Brown MA Smith CB AllsoppHL 1994 The geology of the Mengyin kimberlites Shandong China In MeyerHOA Leonardos OH (Eds) Diamonds Characterization Genesis and Explora-tion Proceedings of the 5th International Kimberlite Conference CPRM Brasiliapp 106ndash115

Fan QC Hooper PR 1991 The Cenozoic basaltic rocks of eastern China petrologyand chemical composition Journal of Petrology 32 765ndash810

Fan WM Menzies MA 1992 Destruction of aged lower lithosphere and accretion ofasthenosphere mantle beneath eastern China Geotectonica et Metallogenia 16171ndash180

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

10 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Fan WM Zhang HF Baker J Jarvis KE Mason PRD Menzies MA 2000 On andoff the north China craton where is the Archaean keel Journal of Petrology 41933ndash950

Frey FA Green DH 1974 The mineralogy geochemistry and origin of Iherzolite in-clusions in Victorian basanites Geochimica et Cosmochimica Acta 38 1023ndash1059

Gao S Rudnick RL Carlson RW McDonough WF Liu YS 2002 RendashOs evidencefor replacement of ancient mantle lithosphere beneath the North China cratonEarth and Planetary Science Letters 198 307ndash322

Gao S Rudnick RL Yuan HL Liu XM Liu YS Xu WL Ling WL Ayers J WangXC Wang QH 2004 Recycling lower continental crust in the North China cratonNature 432 892ndash897

Griffin WL OReilly SY Ryan CG 1992 Composition and thermal structure of thelithosphere beneath South Africa Siberia and China proton microprobe studiesInternational Symposium on Cenozoic Volcanic Rocks and Deep-seated Xenolithsof China and its Environs Beijing pp 65ndash66

Griffin WL Zhang AD OReilly SY Ryan CG 1998 Phanerozoic evolution of thelithosphere beneath the SinondashKorean Craton In Flower MFJ Chung SL LoCH Lee TY (Eds) Mantle Dynamics and Plate Interactions in East Asia AmericanGeophysical Union Washington DC pp 107ndash126

Griffin WL OReilly SY Abe N Aulbach S Davies RM Pearson NJ Doyle BJKivi K 2003 The origin and evolution of Archean lithospheric mantle Precambri-an Research 127 19ndash41

Griffin WL Graham S OReilly SY Pearson NJ 2004 Lithosphere evolution be-neath the Kaapvaal Craton RendashOs systematics of sulfides in mantle-derived peri-dotites Chemical Geology 208 89ndash118

Griffin WL OReilly SY Afonso JC Begg GC 2009 The composition and evolutionof lithospheric mantle a re-evaluation and its tectonic implications Journal of Pe-trology 50 1185ndash1204

Harvey J Gannoun A Burton KW Schiano P Rogers NW Alard O 2010 Unravel-ling the effects of melt depletion and secondary infiltration on mantle RendashOs iso-topes beneath the French Massif Central Geochimica et Cosmochimica Acta 74293ndash320

Kelemen PB Hart SR Bernstein S 1998 Silica enrichment in the continental uppermantle via meltrock reaction Earth and Planetary Science Letters 164 387ndash406

Kroumlner A Wilde SA Li JH Wang KY 2005 Ages and evolution of a Late Archean toPaleoproterozoic upper to lower crustal section in the WutaishanHengshanFup-ing terrain of northern China Journal of Asian Earth Sciences 24 577ndash595

Kusky TM 2011 Geophysical and geological tests of tectonic models of the NorthChina Craton Gondwana Research 20 26ndash35

Li SG Xiao YL Liou DL Chen YZ Ge NJ Zhang ZQ Sun SS Cong BL ZhangRY Hart SR Wang SS 1993 Collision of the North China and Yangtze Blocksand formation of coesite-bearing eclogite-timing and processes Chemical Geology109 89ndash111

Liu J Rudnick RL Walker RJ Gao S Wu FY Piccoli PM Yuan H Xu WL XuYG 2011 Mapping lithospheric boundaries using Os isotopes of mantle xenolithsan example from the North China Craton Geochimica et Cosmochimica Acta 753881ndash3902

Ma X 1989 Atlas of Active Faults in China Seismologic Press BeijingMa JL Xu YG 2006 Old EM1-type enriched mantle under the middle North China

Craton as indicated by Sr and Nd isotopes of mantle xenoliths from YangyuanHebei Province Chinese Science Bulletin 51 1343ndash1349

Menzies MA 1990 Effects of small volume melts Nature 343 312ndash313Menzies M Murthy VR 1980 Enriched mantle Nd and Sr isotopes in diopsides from

kimberlite nodules Nature 283 634ndash636Menzies MA Xu YG 1998 Geodynamics of the North China Craton In Flower

MFJ Chung SL Lo CH Lee TY (Eds) Mantle Dynamics and Plate Interactionsin East Asia American Geophysical Union Washington DC pp 155ndash165

Menzies MA Fan WM Zhang M 1993 Palaeozoic and Cenozoic lithoprobes andthe loss of gt120 km of Archaean lithosphere SinondashKorean craton China InPrichard HM Alabaster T Harris NBW Neary CR (Eds) Magmatic Processesand Plate Tectonics Geological Society of London Special Publication pp 71ndash81

Menzies M Xu YG Zhang HF Fan WM 2007 Integration of geology geophysicsand geochemistry a key to understanding the North China Craton Lithos 96 1ndash21

OReilly SY Griffin WL Poudjom YH Morgan P 2001 Are lithosphere forever Track-ing changes in subcontinental lithospheric mantle through time GSA Today 11 4ndash10

Pearson DG 1999 Evolution of cratonic lithospheric mantle an isotopic perspectiveIn Fei Y Berka CM Mysen BO (Eds) Mantle Petrology Field Observations andHigh-Pressure Experimentation A Tribute to Francis R (Joe) Boyd The Geochemi-cal Society Special Publication pp 57ndash78

Pearson DG Shirey SB Harris JW Carlson RW 1998 Sulphide inclusions in dia-monds from the Koffiefontein kimberlite S Africa constraints on diamond agesand mantle RendashOs systematics Earth and Planetary Science Letters 160 311ndash326

Pearson DG Shirey SB Bulanova GP Carlson RW Milledge HJ 1999 RendashOs iso-tope measurements of single sulfide inclusions in a Siberian diamond and its nitro-gen aggregation systematics Geochimica et Cosmochimica Acta 63 703ndash711

Pearson NJ Alard O Griffin WL Jackson SE OReilly SY 2002 In situ measure-ment of RendashOs isotopes in mantle sulfides by laser ablation multicollector-inductively coupled plasma mass spectrometry analytical methods and prelimi-nary results Geochimica et Cosmochimica Acta 66 1037ndash1050

Reisberg L Zhi XC Lorand JP Wagner C Peng ZC Zimmermann C 2005 RendashOsand S systematics of spinel peridotite xenoliths from east central China evidencefor contrasting effects of melt percolation Earth and Planetary Science Letters239 286ndash308

Rudnick RL Gao S Ling WL Liu YS McDonough WF 2004 Petrology and geo-chemistry of spinel peridotite xenoliths from Hannuoba and Qixia North ChinaCraton Lithos 77 609ndash637

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Santosh M 2010 Assembling North China Craton within the Columbia superconti-nent the role of double-sided subduction Precambrian Research 178 149ndash167

Santosh M Tsunogae T Li JH Liu SJ 2007a Discovery of sapphirine-bearing MgndashAl granulites in the North China Craton implications for Paleoproterozoic ultra-high temperature metamorphism Gondwana Research 11 263ndash285

Santosh M Wilde SA Li JH 2007b Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton evidence from SHRIMPUndashPb zircon geochronology Precambrian Research 159 178ndash196

Santosh M Sajeev K Li JH Liu SJ Itaya T 2009 Counterclockwise exhumation ofa hot orogen the Paleoproterozoic ultrahigh-temperature granulites in the NorthChina Craton Lithos 110 140ndash152

Santosh M Zhao D Kusky T 2010 Mantle dynamics of the Paleoproterozoic NorthChina Craton a perspective based on seismic tomography Journal of Geodynamics49 39ndash53

Santosh M Liu SJ Tsunogae T Li JH 2011 Paleoproterozoic ultrahigh-temperature granulites in the North China Craton implications for tectonic modelson extreme crustal metamorphism Precambrian Research doi101016jprecamres201110051003

Shirey SB Walker RJ 1998 The RendashOs isotopic system in cosmochemistry and igne-ous geochemistry Annual Reviews of Earth and Planetary Sciences 26 425ndash500

Smith D Griffin WL Ryan CG Sie SH 1991 Trace-element zonation in garnetsfrom the thumb mdash heating and melt infiltration below the Colorado Plateau Con-tributions to Mineralogy and Petrology 107 60ndash79

Song Y Frey FA 1989 Geochemistry of peridotite xenoliths in basalt from Hannuobaeastern China implications for subcontinental mantle heterogeneity Geochimica etCosmochimica Acta 53 97ndash113

Tang YJ Zhang HF Ying JF 2004 High-Mg olivine xenocrysts entrained in Cenozoicbasalts in central Taihang Mountains relicts of old lithospheric mantle Acta Petrolo-gica Sinica 20 1243ndash1252

Tang YJ Zhang HF Ying JF 2006 Asthenospherendashlithospheric mantle interactionin an extensional regime implication from the geochemistry of Cenozoic basaltsfrom Taihang Mountains North China Craton Chemical Geology 233 309ndash327

Tang YJ Zhang HF Nakamura E Moriguti T Kobayashi K Ying JF 2007 Lithiumisotopic systematics of peridotite xenoliths from Hannuoba North China Cratonimplications for meltndashrock interaction in the considerably thinned lithosphericmantle Geochimica et Cosmochimica Acta 71 4327ndash4341

Tang YJ Zhang HF Ying JF Zhang J Liu XM 2008 Refertilization of ancient lith-ospheric mantle beneath the central North China Craton evidence from petrologyand geochemistry of peridotite xenoliths Lithos 101 435ndash452

Tang YJ Zhang HF Nakamura E Ying JF 2011 Multistage meltfluidndashperidotiteinteractions in the refertilized lithospheric mantle beneath the North China Cra-ton constraints from the LindashSrndashNd isotopic disequilibrium between minerals ofperidotite xenoliths Contributions to Mineralogy and Petrology 161 845ndash861

Tang YJ Zhang HF Deloule E Su BX Ying JF Xiao Y Hu Y 2012 Slab-derivedlithium isotopic signatures in mantle xenoliths from northeastern North China Cra-ton Lithos doi101016jlithos201112001

Tatsumoto M Basu AR Huang WK Wang JW Xie GH 1992 Sr Nd and Pb iso-topes of ultramafic xenoliths in volcanic-rocks of eastern China enriched compo-nents EMI and EMII in subcontinental lithosphere Earth and Planetary ScienceLetters 113 107ndash128

Walker RJ Carlson RW Shirey SB Boyd FR 1989 Os Sr Nd and Pb isotope sys-tematics of southern African peridotite xenoliths implications for the chemicalevolution of subcontinental mantle Geochimica et Cosmochimica Acta 531583ndash1595

Wang YJ Fan WM Zhang HF Peng TP 2006 Early Cretaceous gabbroic rocksfrom the Taihang Mountains implications for a paleosubduction-related litho-spheric mantle beneath the central North China Craton Lithos 86 281ndash302

Wilshire HG Shervais JW 1975 Al-augite and Cr-diopside ultramafic xenoliths inbasaltic rocks from western United States Physics and Chemistry of the Earth 9257ndash272

Wu FY Walker RJ Ren XW Sun DY Zhou XH 2003 Osmium isotopic con-straints on the age of lithospheric mantle beneath northeastern China ChemicalGeology 196 107ndash129

Wu FY Walker RJ Yang YH Yuan HL Yang JH 2006 The chemicalndashtemporalevolution of lithospheric mantle underlying the North China Craton Geochimicaet Cosmochimica Acta 70 5013ndash5034

Xia QX Zhi XC Meng Q Zheng L Peng ZC 2004 The trace element and RendashOsisotopic geochemistry of mantle-derived peridotite xenoliths from Hannuoba na-ture and age of SCLM beneath the area Acta Petrologica Sinica 20 1215ndash1224 (inChinese with English abstract)

Xiao Y Zhang HF 2011 Effects of melt percolation on platinum group elements andRendashOs systematics of peridotites from the TanndashLu fault zone eastern North ChinaCraton Journal of the Geological Society of London 168 1201ndash1214

Xiao WJ Windley B Hao J Zhai MG 2003 Accretion leading to collision and thePermian Solonker suture Inner Mongolia China termination of the CentralAsian orogenic belt Tectonics 22 doi1010292202 TC001484

Xu YG 2001 Thermo-tectonic destruction of the Archean lithospheric keel beneaththe SinondashKorean Craton in China evidence timing and mechanism Physics andChemistry of the Earth (A) 26 747ndash757

Xu YG 2002 Evidence for crustal components in the mantle and constraints on crustalrecycling mechanisms pyroxenite xenoliths from Hannuoba North China ChemicalGeology 182 301ndash322

Xu XS OReilly SY Griffin WL Zhou XM Huang XL 1998 The nature of the Ce-nozoic lithosphere of Nushan eastern China In Flower MFJ Chung SL Lo CHLee TY (Eds) Mantle Dynamics and Plate Interactions in East Asia AmericanGeophysical Union Washington DC pp 167ndash196

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

11Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Xu YG Chung SL Ma JL Shi LB 2004 Contrasting Cenozoic lithospheric evolutionand architecture in the western and eastern SinondashKorean craton constrains fromgeochemistry of basalts and mantle xenoliths Journal of Geology 112 593ndash605

Xu XS Griffin WL OReilly SY Pearson NJ Geng HY Zheng JP 2008a RendashOsisotopes of sulfides in mantle xenoliths from eastern China progressive modifica-tion of lithospheric mantle Lithos 102 43ndash64

Xu YG Blusztajn J Ma JL Suzuki K Liu JF Hart SR 2008b Late Archean to earlyProterozoic lithospheric mantle beneath the western North China craton SrndashNdndashOs isotopes of peridotite xenoliths from Yangyuan and Fansi Lithos 102 25ndash42

Xu W Yang D Gao S Pei F Yu Y 2010 Geochemistry of peridotite xenoliths inEarly Cretaceous high-Mg diorites from the Central Orogenic Block of the NorthChina Craton the nature of Mesozoic lithospheric mantle and constraints on lith-ospheric thinning Chemical Geology 270 257ndash273

Yang JH Wu FY Wilde SA 2003 A review of the geodynamic setting of large-scaleLate Mesozoic gold mineralization in the North China craton an association withlithospheric thinning Ore Geology Reviews 23 125ndash152

Ying JF Zhang HF Tang YJ 2010 Zoned olivine xenocrysts in a late Mesozoic gab-bro from the southern Taihang Mountains implications for old lithospheric mantlebeneath the central North China Craton Geological Magazine 147 161ndash170

Yuan XC 1996 Atlas of Geophysics in China Geological Publishing House BeijingZhai MG Santosh M 2011 The early Precambrian odyssey of the North China Craton a

synoptic overview Gondwana Research 20 6ndash25Zhang HF 2005 Transformation of lithospheric mantle through peridotitendashmelt reac-

tion a case of SinondashKorean craton Earth and Planetary Science Letters 237768ndash780

Zhang HF 2009 Peridotitendashmelt interaction a key point for the destruction of cra-tonic lithospheric mantle Chinese Science Bulletin 54 3417ndash3437

Zhang HF Sun M Zhou XH Fan WM Zhai MG Ying JF 2002 Mesozoic litho-sphere destruction beneath the North China Craton evidence from major- trace-element and SrndashNdndashPb isotope studies of Fangcheng basalts Contributions to Min-eralogy and Petrology 144 241ndash253

Zhang HF Sun M Zhou XH Zhou MF Fan WM Zheng JP 2003 Secular evolu-tion of the lithosphere beneath the eastern North China Craton evidence fromMe-sozoic basalts and high-Mg andesites Geochimica et Cosmochimica Acta 674373ndash4387

Zhang HF Sun M Zhou MF Fan WM Zhou XH Zhai MG 2004 Highly hetero-geneous late Mesozoic lithospheric mantle beneath the north China Craton evi-dence from SrndashNdndashPb isotopic systematics of mafic igneous rocks GeologicalMagazine 141 55ndash62

Zhang J Zhao GC Sun M Wilde SA Li SZ Liu SW 2006 High-pressure maficgranulites in the Trans-North China Orogen tectonic significance and age Gond-wana Research 9 349ndash362

Zhang HF Nakamura E Kobayashi K Zhang J Ying JF Tang YJ Niu LF 2007Transformation of subcontinental lithospheric mantle through peridotitendashmelt re-action evidence from a highly fertile mantle xenolith from the North China cratonInternational Geology Review 49 658ndash679

Zhang HF Goldstein S Zhou XH Sun M Zheng JP Cai Y 2008 Evolution of sub-continental lithospheric mantle beneath eastern China RendashOs isotopic evidencefrom mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts Contribu-tions to Mineralogy and Petrology 155 271ndash293

Zhang HF Goldstein SL Zhou XH Sun M Cai Y 2009 Comprehensive refertiliza-tion of lithospheric mantle beneath the North China Craton further OsndashSrndashNd iso-topic constraints Journal of the Geological Society of London 166 249ndash259

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Zhang HF Deloule E Tang YJ Ying JF 2010a Meltrock interaction in remains ofrefertilized Archean lithospheric mantle in Jiaodong Peninsula North China Cra-ton Li isotopic evidence Contributions to Mineralogy and Petrology 160 261ndash277

Zhang HF Nakamura E Kobayashi K Ying JF Tang YJ 2010b Recycled crustalmelt injection into lithospheric mantle implication from cumulative compositeand pyroxenite xenoliths International Journal of Earth Sciences 99 1167ndash1186

Zhang HF Ying JF Tang YJ Li XH Feng C Santosh M 2011 Phanerozoic reacti-vation of the Archean North China Craton through episodic magmatism evidencefrom zircon UndashPb geochronology and Hf isotopes from the Liaodong PeninsulaGondwana Research 19 446ndash459

Zhang HF Sun YL Tang YJ Xiao Y Zhang WH Zhao XM Santosh M MenziesMA in press Melt-peridotite interaction in the Pre-cambrian mantle beneath thewestern North China Craton Petrology geochemistry and Sr Nd and Re isotopesLithos doi101016jlithos201201027

Zhao GC Cawood PA Wilde SA Sun M 2000 Metamorphism of basement rocksin the Central Zone of the North China craton implications for Paleoproterozoictectonic evolution Precambrian Research 103 55ndash88

Zhao GC Wilde SA Sun M Li SZ Li XP Zhang J 2008 SHRIMP UndashPb zircon agesof granitoid rocks in the Luumlliang Complex implications for the accretion and evo-lution of the Trans-North China Orogen Precambrian Research 160 213ndash226

Zhao GC Wilde SA Guo JH Cawood PA Sun M Li XP 2010a Single zircongrains record two Paleoproterozoic collisional events in the North China CratonPrecambrian Research 177 266ndash276

Zhao GC Wilde SA Zhang J 2010b New evidence from seismic imaging for sub-duction during assembly of the North China craton comment Geology 38 e206

Zhao XM Zhang HF Zhu XK Tang SH Tang YJ 2010c Iron isotope variations inspinel peridotite xenoliths from North China Craton implications for mantle meta-somatism Contributions to Mineralogy and Petrology 160 1ndash14

Zheng JP OReilly SY Griffin WL Lu FX Zhang M 1998 Nature and evolution ofCenozoic lithospheric mantle beneath Shandong peninsula SinondashKorean cratoneastern China International Geology Review 40 471ndash499

Zheng JP OReilly SY Griffin WL Lu FX Zhang M Pearson NJ 2001 Relict re-fractory mantle beneath the eastern North China block significance for lithosphereevolution Lithos 57 43ndash66

Zheng JP Griffin WL OReilly SY Liou JG Zhang RY Lu FX 2005 Late MesozoicndashEocene mantle replacement beneath the eastern North China craton evidence fromthe Paleozoic and Cenozoic peridotite xenoliths International Geology Review 47457ndash472

Zheng JP Griffin WL OReilly SY Yang JS Li TF Zhang M Zhang RY Liou JG2006 Mineral chemistry of peridotites from Paleozoic Mesozoic and Cenozoic litho-sphere constraints on mantle evolution beneath eastern China Journal of Petrology47 2233ndash2256

Zheng JP Griffin WL OReilly SY Yu CM Zhang HF Pearson N Zhang M 2007Mechanism and timing of lithospheric modification and replacement beneath theeastern North China Craton peridotitic xenoliths from the 100 Ma Fuxin basaltsand a regional synthesis Geochimica et Cosmochimica Acta 71 5203ndash5225

Zhou XH Armstrong RL 1982 Cenozoic volcanic rocks of eastern China mdash secularand geographic trends in chemistry and strontium isotopic composition Earthand Planetary Science Letters 58 301ndash329

Zindler A Hart SR 1986 Chemical geodynamics Annual Reviews of Earth and Plane-tary Sciences 14 493ndash571

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

Table 1Mineral modes (vol) of the Hebi peridotites

Sample Olivine Opx Cpx Spinel

05HB68 69 27 3 105HB70 79 18 1 205HB72 81 16 1 2HB1120 77 22 0 1HB1121 77 21 2 0HB1122 73 24 1 2HB1125 67 30 1 2HB1126 71 27 1 105HB09 75 23 2 0HB1128 70 29 0 1

3Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

2004) and extensive Cenozoic basalts (Zhou and Armstrong 1982Fan et al 2000 Tang et al 2006 Zhang et al 2011) Ordovician dia-mondiferous kimberlites occur mainly in the Mengyin County Shan-dong Province and the Fuxian County Liaoning Province in theEastern Block (Fig 1) (Dobbs et al 1994) The lithosphere in these lo-calities was cool and thick at the time of emplacement (Menzies et al1993 Griffin et al 1998) with highly refractory compositions inmantle peridotites indicating the existence of an Archean lithospher-ic keel beneath the Eastern Block at least until the kimberlite em-placement (Gao et al 2002 Zheng et al 2006 Zhang et al 20082009) In contrast the Cenozoic basalts sampled a shallower and hot-ter lithosphere with predominantly fertile compositions as mani-fested by the mantle peridotites (Fan et al 2000 Zheng et al2001 Rudnick et al 2004 Zhang et al 2009) consistent with thegeophysical observation of a thin lithosphere (80ndash60 km) in the East-ern Block (Yuan 1996 Griffin et al 1998 Chen et al 2006) Theseobservations suggest that the destruction of the NCC mainly occurredin the Eastern Block during the Phanerozoic

The NEE-trending Northndashsouth Gravity Lineament (NSGL Fig 1)runs over 3500 km from south China to northeast China It is a zoneabout 100 km wide in which the Bouguer anomaly decreases rapidlyfrom minus100 mGal in the west to minus40 mGal in the east (Ma 1989)This gravity gradient roughly overlaps the Central Zone To the eastof the gravity lineament the Eastern Block is characterized by a thincrust and lithosphere high heat flow and weak negative to positiveregional Bouguer anomalies to the west of the gravity lineamentthe Ordos nucleus has a thick crust and lithosphere low heat flowand strong negative Bouguer anomalies (Ma 1989 Yuan 1996)The Hebi area of Henan province lies east of the gravity lineamentand tectonically in the east edge of the Central Zone Both Neogenebasalts and CretaceousndashEogene barren kimberlites occur in the HebiOlivine nephelinites are in 10 km south of Hebi city and have eruptionages of 40ndash43 Ma The nephelinites contain abundant mantle xeno-liths and megacrysts (up to 5 cm across) of garnet and pyroxene(Zheng et al 2001) The kimberlites occur 6 km west of Hebi cityand contain rare altered dunite and lherzolite xenoliths (Griffin etal 1998)

3 Sample description and previous studies

Peridotite xenoliths in the Hebi Neogene olivine nephelinites arevery fresh and belong to the Cr-diopside suite (Wilshire andShervais 1975) They range from 1 to 8 cm in diameter with majorityabout 2 to 6 cm The petrology major- and trace-element RendashOs Liand Fe isotopic compositions of peridotite xenoliths from the Hebihave been studied previously (Zheng et al 2001 2007 Xu et al2008b Zhao et al 2010c Liu et al 2011 Tang et al 2011) TheHebi peridotite xenoliths are dominant harzburgites with minor lher-zolites They can be divided into two groups based on the forsteriteproportion in olivine (Fo) a low-Mg group (Fob91) and a high-Mg group (Foge91) The low-Mg peridotites are fertile (rich in ba-saltic components such as Al2O3 Na2O and CaO) in mineral composi-tions typical of Phanerozoic mantle The high-Mg peridotitesconsist of highly refractory harzburgite (Al2O3 contentb15) andcpx-poor (cpx volb5) lherzolites with coarse-grained and por-phyroclastic structures compositionally similar to xenoliths in kim-berlites from Archean cratons Thus the high-Mg xenoliths havebeen interpreted as relics of the Archean cratonic mantle beneaththe NCC (Zheng et al 2001) and RendashOs isotopic data of the perido-tites and their sulfides give Archean melt-extraction ages of 25ndash30 Ga (Zheng et al 2007 Xu et al 2008a) Li and Fe isotopic compo-sitions of the Hebi peridotites suggest that the ancient lithosphericmantle beneath the Hebi experienced multistage metasomatism(Zhao et al 2010c Tang et al 2011)

In this study ten spinel-facies harzburgite xenoliths were selectedfor mineral chemical and SrndashNd isotopic analyses These samples are

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

very fresh and 4ndash6 cm in diameter with high modal opx (17ndash32)and minor cpx contents (b4 Table 1) Cpx is absent in some xeno-liths Most of the samples have coarse-grained structures and the ol-ivine and opx grains are generally 3ndash6 mm in diameter withmaximum up to 10 mm Porphyroclastic structures are also observedin these samples with coarse olivine porphyroclasts in a matrix offine-grained recrystallizedsecondary minerals Siliceous aluminum-and alkali-rich glasses with fine-grained cpx phenocrysts are com-mon in patches and small veins Phlogopites are not observed inthese samples

4 Analytical methods

The xenoliths were sawn from their lava hosts and the cut surfaceswere abraded with quartz to remove any possible contaminationfrom the saw blade The samples were crushed and sieved for mineralseparation Opx and cpx separates were handpicked under a binocu-lar microscope to a purity of gt99

Mineral modal contents have been determined by point-countingmore than 1000 points in each thin section (Table 1) Major elementcompositions of minerals in the peridotite xenoliths were measuredat the Institute of Geology and Geophysics Chinese Academy of Sci-ences using a JEOL JXA8100 electron probe microanalyzer (EPMA)The operating conditions were as follows accelerating voltage of15 kV 10 nA beam current 5 μm beam spot and 10ndash30 s countingtime Natural minerals and synthetic oxides were used for standardcalibration and a program based on the ZAF procedure was used fordata correction The precisions of all analyzed elements are betterthan 15 based on multiple analyses of different grains within asample

Sr and Nd isotope compositions of cpx and opx separates from thexenoliths were determined at the Institute of Geology and Geophys-ics The mineral separates were washed with 6 M HCl for 12 h andthen ground to 200ndash400 mesh using an agate mortar before isotopicanalysis Analytical details for sample digestion column separationand mass spectrometric measurement procedures are described inChu et al (2009a 2009b) About 30ndash100 mg of cpx and 300ndash400 mgof opx powder was weighed into Teflon vials and appropriateamounts of mixed 87Rbndash84Sr and 149Smndash150Nd spikes were addedThe samples were dissolved using a mixed acid of HF and HClO4 ona hotplate at 120 degC for more than 1 week After the samples werecompletely dissolved the solutions were dried on hotplate at 130ndash180 degC to remove the HF and HClO4 The sample residues were re-dissolved in 4 ml of 6 M HCl and then dried again Finally thesamples were dissolved in 2 ml of the 3 H3BO3 in 25 M HCl Thesolutions were loaded onto pre-conditioned AG 50Wtimes12 columnsfor separation Rb and Sr were stripped with 5 M HCl and Nd andSm were stripped with 014 M and 04 M HCl respectively The RbSr Nd and Sm were completely separated in our experiments

The RbndashSr and SmndashNd isotopic analyses were performed on anIsoProbe-T thermal ionization mass spectrometer (GV instrumentsEngland) Measured 87Sr86Sr and 143Nd144Nd ratios were corrected

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

4 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

for mass-fractionation using 86Sr88Sr=01194 and 146Nd144Nd=07219 respectively During the period of data collection themeasured values for the NBS-987 Sr standard and the JNdi-1 Ndstandard were 86Sr88Sr=0710245plusmn16 (2 s n=8) and 143Nd144Nd=0512117plusmn10 (2 s n=8) respectively The USGS referencematerial BCR-2 was measured to monitor the accuracy of the analyticalprocedures Our results are 4655 ppm Rb 3393 ppm Sr 87Sr86Sr=0704986plusmn13 (2 s) 6543 ppm Sm 2860 ppm Nd and 143Nd144Nd=0512641plusmn16 (2 s) These values are comparable with thereported reference values 455ndash485 ppm Rb 312ndash355 ppm Sr 87Sr86Sr=0704958ndash0705027 641ndash663 ppm Sm 267ndash299 ppm Ndand 143Nd144Nd=0512633ndash0512644 (GeoREM httpgeoremmpch-mainzgwdgde) The procedural blanks were 10 49 10 and19 pg for Rb Sr Sm and Nd respectively which were less than 01 ofthe amount of samples loaded

5 Results

51 Major elements

Olivine opx cpx and spinel in these peridotites xenoliths are ho-mogeneous (2 sb02) in major elemental compositions based on thedetermination of individual phases between core and rim The aver-age composition of 4ndash5 point analyses is presented in Table 2 Oliv-ines in the xenoliths have high Fo (915ndash927) and low MnO(average 01) and NiO (average 04) contents Opx minerals havehigh Mg ranging from 919 to 927 low Al2O3 (20ndash34) and CaO(03ndash11) contents Cpx minerals have Mg varying from 921 to932 Al2O3 of 30ndash46 and Cr2O3 of 11ndash22 (Table 2) Mineralmodal contents (Fig 2) and chemical compositions (Figs 3ndash5) aresimilar to those of published high-Mg peridotites from the Hebi(Zheng et al 2001 Tang et al 2011) harzburgite xenoliths entrainedin the Cenozoic Fanshi (Tang et al 2008 2011) and Yangyuan basalts(Xu et al 2008b) and Mesozoic Fushan diorites (Xu et al 2010) inthe Central Zone of the NCC (Fig 1) which were interpreted as theresidues of ancient lithospheric mantle

52 SrndashNd isotopic composition

Sr and Nd isotopic compositions of cpx and opx in the Hebi perido-tites are given in Table 3 and illustrated in Fig 6 They show a largevariation ranging from MORB-like to high 87Sr86Sr (up to 07044)and very low 143Nd144Nd (down to 05118) Two samples display ex-tremely low 143Nd144Nd ratios relative to its Sr isotope ratios havingthe signature of EM1-typemantle (Fig 6) One sample falls within thefield for the Mesozoic lithospheric mantle constrained by peridotitexenoliths (Xu et al 2010) and mafic rocks (Zhang et al 2004Wang et al 2006) from the Central Zone of the NCC (Fig 6) In con-trast the cpx separates have higher Sr (mostgt100 ppm) and Nd(mostgt2 ppm) contents and relatively lower 87Sr86Sr ratios(070309ndash070415) than the opx (Srb10 ppm Ndb03 ppm 87Sr86Sr=070353ndash070483) The opx are generally higher in Rb contentsand RbSr ratios than the coexisting cpx

6 Discussion

61 Major element geochemistry and origin

Typical Archean cratonic mantle is generally composed of highlyrefractory (Fogt925) harzburgites and cpx-poor lherzolites (Boyd1989) which are highly depleted in basaltic components due tohigh-degree melt extraction In contrast most Proterozoic and Phan-erozoic lithospheric mantle worldwide are moderately depleted com-pared with primitive mantle (OReilly et al 2001 Beyer et al 2006)The Hebi peridotites studied here have high Fo (915ndash927) and thusare affiliated to the high-Mg group (Fogt91 Zheng et al 2001)

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Their mineral modes are similar to those from the Archean Kaapvaalcraton South Africa (Fig 2) and are plotted in the fields for the peri-dotite xenoliths from the Archean Siberian and Kaapvaal cratons(Fig 3) (Griffin et al 2003) and from the Paleozoic diamondiferouskimberlites in the NCC due to their refractory mineral compositionshigh Fo and low MnO in olivine (Fig 4) high Mg and low Al2O3 inopx and cpx (Fig 5) These characteristics are similar to those pub-lished for the Hebi high-Mg peridotites Fushan and Fanshi harzbur-gites some Yangyuan peridotites and olivine xenocrysts from theMesozoic and Cenozoic basaltic rocks in the Central Zone whichwere considered as residues of the Archean lithospheric mantle(Zheng et al 2001 Tang et al 2004 Zheng et al 2006 Tang et al2008 Xu et al 2008b Xu et al 2010 Ying et al 2010 Liu et al2011 Tang et al 2011)

Therefore the Hebi harzburgites represent residues of Archeanlithospheric mantle beneath this region Most of them have Folower than that of typical Archean cratonic mantle (Fogt925 Boyd1989) indicating that the harzburgites were likely modified bymeltndashrock reaction similar to those from the Archean cratons ofKaapvaal and Siberia rather than the products of simple melt extrac-tion (Kelemen et al 1998 Zhang 2009)

62 SrndashNd isotopic compositions and mantle processes

The most striking character of SrndashNd isotopic compositions of cpxin the Hebi harzburgites is the extreme heterogeneity They display alarge variation ranging from depleted-mantle to EM1-endmembercompositions similar to those of peridotites from ancient cratoniclithospheric mantle worldwide (Fig 6) Since the changes in RbSrand SmNd ratios caused by mantle metasomatism will with timeproduce extreme isotopic heterogeneity the cpx likely evolved fromthe mixing of a MORB-like lithospheric composition with severalenriched components related to meltfluid influx (Frey and Green1974) Meltfluid derived from recycled or subducted materials mayhave considerable ranges in SrNd ratios and isotopic compositionsThis is evidenced by the large variations of isotopic compositions inthe Late Mesozoic lavas of andesites dacites and adakites (Zhang etal 2003 Gao et al 2004) and Hannuoba pyroxenite xenoliths (Xu2002) that involved recycled crustal components As a result the in-flux of recycled materials may account for the spread of the data(Fig 6)

Two samples show an EM1-like isotopic signature of the Mesozoiclithospheric mantle beneath the same region (Fig 6) that was consid-ered to have been previously modified by silica-rich melts releasedfrom subducted materials (Wang et al 2006 Tang et al 2008) Thesubduction may be related to the Paleoproterozoic collision betweenthe Eastern and the Western Blocks (Zhao et al 2000 Santosh et al2010) because there is no evidence showing any collision in the inte-rior of the NCC during the Phanerozoic The EM1-typemantle beneaththe Central Zone is also evidenced by the isotopic compositions of pe-ridotite xenoliths from the Cenozoic Fanshi and Yangyuan basalts(Ma and Xu 2006 Tang et al 2007 2008 Xu et al 2008b) indicat-ing a secular evolution of the subcontinental lithospheric mantle Thisconclusion is also supported by the modeling calculations of the evo-lution of 143Nd144Nd with time in the xenoliths assumed to havebeen modified by recycled crustal materials at 18 Ga (Fig 7) There-fore the enriched isotopic compositions in the Hebi harzburgitesmay reflect ancient enrichment processes of the Archean lithosphericmantle

Some of the Hebi harzburgites have MORB-like SrndashNd isotopiccompositions of cpx (Fig 6) indicating that these peridotites weremodified by recent asthenospheric meltndashperidotite reaction (Zhang2009) which is consistent with their relatively low Fo values(Fig 8) and high concentrations of heavy rear earth elements as ob-served in the Fanshi peridotites (Tang et al 2008) As stated abovethe harzburgites are considered to be the relics of Archean

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

Table 2Major elemental compositions (wt) of minerals in Hebi mantle xenoliths

Sample Mineral SiO2 MgO FeO CaO Al2O3 Cr2O3 Na2O NiO MnO TiO2 Total Mg

05HB68 Ol 4142 4970 797 007 006 003 001 035 012 002 998 91805HB70 Ol 4161 4991 765 007 000 001 000 040 010 000 998 92105HB72 Ol 4162 5011 814 010 000 007 000 037 012 000 1005 917HB1120 Ol 4144 4973 771 011 004 001 001 044 011 002 996 921HB1121 Ol 4138 5036 805 011 003 002 002 040 011 000 1005 918HB1122 Ol 4170 4969 782 009 001 003 001 038 009 001 998 920HB1125 Ol 4116 4927 807 011 000 000 003 031 012 001 991 917HB1126 Ol 4202 4997 836 006 000 001 000 043 011 000 1010 91505HB09 Ol 4156 5029 792 008 003 000 000 040 012 000 1004 920HB1128 Ol 4208 5099 727 000 003 000 000 046 007 000 1009 92705HB68 Opx 5628 3288 496 107 317 082 002 013 015 000 995 92305HB70 Opx 5615 3268 504 102 300 077 003 014 014 000 990 92105HB72 Opx 5589 3299 481 096 344 091 013 013 013 002 994 925HB1120 Opx 5654 3308 522 107 303 083 004 014 007 003 1000 919HB1121 Opx 5606 3304 484 097 316 084 005 010 013 001 992 925HB1122 Opx 5636 3323 500 099 273 075 011 004 013 000 994 923HB1125 Opx 5649 3349 478 084 274 083 007 011 008 000 994 927HB1126 Opx 5715 3333 517 056 257 061 012 010 011 000 997 92105HB09 Opx 5624 3349 503 099 278 084 002 012 011 001 996 923HB1128 Opx 5749 3478 493 029 195 028 005 011 012 001 1000 92705HB68 Cpx 5258 1717 243 2127 323 107 042 005 006 005 983 92705HB70 Cpx 5313 1695 226 2120 306 117 039 003 013 002 983 93105HB72 Cpx 5282 1579 236 1919 455 166 166 004 009 034 985 923HB1120 Cpx 5280 1702 241 2096 309 136 049 008 008 009 984 927HB1121 Cpx 5305 1681 221 2103 301 125 054 007 008 009 981 932HB1122 Cpx 5324 1689 242 2054 300 134 076 008 005 022 985 926HB1125 Cpx 5293 1732 242 2133 260 127 047 004 002 005 984 928HB1126 Cpx 5402 1504 231 1900 366 223 222 006 009 034 990 921

Mg=100timesmol Mg2+(Mg2++Fe2+)

5Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

lithospheric mantle Therefore the depleted isotopic compositions re-flect the effect of reaction between old peridotites andasthenosphere-derived melt (Fig 6)

Refractory peridotite (high Fo) should be lower in RbSr andhigher in SmNd than primitive mantle due to the more incompatibil-ity of Rb than Sr and Nd than Sm during partial melting (Adam andGreen 2006) and thus be lower in 87Sr86Sr and higher 143Nd144Ndratios than fertile peridotite (low Fo) and primitive mantle This iscompletely opposite to the observation that olivine Fo in the Cenozoicbasalt-borne peridotite xenoliths from the Central Zone positivelycorrelate with Sr isotope ratios and negatively correlate with Nd iso-tope ratios (Fig 8) Therefore the correlations between SrndashNd

HebiFushanKaapvaal

Ol

Olivine web

Webster

Orthopyroxenite

Lherzolite

Opx

Hebi+Fushan

Garnet-facies mantlexenoliths from

Kaapvaal craton

Fanshi+Daton

On-

crat

on

Central NCC

YangyuaFanshiDatong

Oliv

ine

orth

opyr

oxen

ite H

arzb

urgi

te

Fig 2 Petrological classification of peridotites On-craton and off-craton peridotite xenolithxenoliths) and kimberlite-borne garnet-facies mantle xenoliths from the Kaapvaal cratonborne xenoliths from ocean basins (ie deep lithosphere) are similar to those from easternData sources Fushan (Xu et al 2010) Hebi (Zheng et al 2001 2005 Liu et al 2011 TangTang et al 2011) Datong (Liu et al 2011) Jining (Liu et al 2011 Zhang et al in press) Yan2000 Rudnick et al 2004 Tang et al 2007 Liu et al 2011)

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

isotopic compositions and olivine Fo first discussed in the Hannuobaperidotites (Zhang et al 2009) likely reflect different-degree referti-lization of originally refractory precursors through reaction withasthenosphere-derived melts (Tang et al 2008 Zhang et al 2009)

Compilation of Sr and Nd isotopic compositions of peridotites re-veals that very few samples from ancient cratonic mantle keep thecharacteristics of ancient melt residues although their major-element compositions reflect an origin as melt residues (Menzies1990 Pearson 1999) For example Nd isotopes in peridotite xeno-liths (Fig 6) from global cratons range from high 143Nd144Nd ratiosindicative of long-term parentndashdaughter depletion to low 143Nd144Nd ratios requiring ancient parentndashdaughter enrichment

Wehrlite

Olivine clinopyroxenitesterite

ite

Clinopyroxenite

Off-craton

Cpx

Dunite

g+Yangyuan Jining+Hannuoba

Shallow oceaniclithosphere

Deep oceaniclithosphere

HannuobaOceanic

Jining

North margin of the NCC

n

s shallow (abyssal ophiolitic peridotites) and deep oceanic lithosphere (basalt-borne South Africa are from Fan et al (2000) and references therein The lsquodeeprsquo basalt-Chinaet al 2011 and this study) Fanshi (Tang et al 2008 Xu et al 2008b Liu et al 2011gyuan (Xu et al 2008b Liu et al 2011) and Hannuoba (Song and Frey 1989 Fan et al

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

90 80 70 60 50

89

91

93

95

88

90

92

94

40100

Modal olivine ()

Oliv

ine

Fo

Melt metasomatism

Mean Archean

Archean

Mean ProterOceanic trend

Proterozoic

Mean high-Tlherzolites

Mean Tecton

ldquoPyroliterdquo

HebiFushan

HannuobaJiningYangyuan

FanshiDatong

Phlogopite metasomCentralNCC

Northmargin

Fig 3 Modal olivine vs Fo contents plot showing the mean compositions of ArchonProton and Tecton subcontinental lithospheric mantle and high-T sheared lherzolitexenoliths from kimberlites Two large arrows illustrate the effect of shallowphlogopite-related metasomatism and the melt-related metasomatism responsiblefor the composition of the sheared xenoliths (Smith et al 1991) The oceanic trend isthe compositional trend from fertile lherzolite to depleted oceanic harzburgite (Boyd1989)The base chart is from Griffin et al (2003) Data sources are as in Fig 2

0 2 4 6 889

91

93

95

88

90

92

94

0 2 4 6 8

Al2O3 (wt)

HebiFushan

HannuobaJiningYangyuan

FanshiDatong

Opx

Cpx

Mg

Mg

Refractory (central NCC)

Fertile(north margin of NCC)

Refractory(central NCC)

Fertile(north margin)

6 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Consequently the greatly heterogeneous isotopic compositions in thelithospheric mantle beneath the Central Zone reflect the diversity inparentndashdaughter elemental fractionation in minerals coupled withancient multiple-stage histories of melt depletion and subsequentrefertilization through melt influx This is also supported by the ele-mental and isotopic characteristics of coexisting opx and cpx in theHebi peridotites (Table 3 Fig 6) which are similar to those in the

HebiFushan

DatongFansi

YangyuanJiningHannuoba

Mn

O

000

010

020

005

015

91 9587 89 93

Paleozoic

Cenozoic

Olivine Fo

025

Ceno XenocrystsMeso Xenocrysts

CentralNCC

Northmargin

Fig 4 Fo vs MnO of olivine from the peridotites compared with olivine xenocrysts inthe Cenozoic XiyangndashPingding basalts (Tang et al 2004) and Mesozoic Shatuo gabbros(Ying et al 2010) and peridotite xenoliths entrained in the Paleozoic kimberlites andCenozoic basalts on the eastern NCC (Zheng et al 1998 2001) Data sources in additionto those designated in Fig 2 include Hannuoba data from Fan and Hooper (1991) andChen et al (2001)

Fig 5 Mg vs Al2O3 of opx and cpx in the mantle xenoliths from the Central Zone andthe West Block of the NCC Data sources are as in Fig 3

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Fanshi peridotites indicating multiple meltfluidndashperidotite interac-tions (Tang et al 2011)

63 RendashOs isotopic data and nature of the lithospheric mantle

The RendashOs system has proven to be particularly useful in tracingthe geochemical evolution of mantle rocks and in defining the chro-nology of mantle differentiation (Walker et al 1989 Shirey andWalker 1998) Nevertheless an increasing number of studies havefound that the RendashOs system in cratonic peridotites can be disturbedby peridotitendashmelt reaction especially when reaction preceded erup-tion by large time intervals (Pearson et al 1998 Alard et al 2002Zhang et al 2008 2009)

Sulfides from a mantle peridotite that underwent melt depletionand refertilization events may have a wide range of RendashOs modelages reflecting different generations of ldquooldrdquo sulfides (residual aftermelt depletion) and later sulfide melts (interstitial sulfides relatedto meltfluid metasomatism) (Pearson et al 1999 2002 Alard etal 2002 Aulbach et al 2004 Griffin et al 2004 Xu et al 2008aZhang et al 2008 2009 Harvey et al 2010) This implies that thebulk-rock Re and Os budget will be controlled by the relative contri-butions from these sulfide populations which are dependent onmeltrock ratios and the degree of S-saturation of the percolatingmelt during the refertilization of lithosphere (Reisberg et al 2005

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

702 702704 706705 708703 704706 710707 712

5140 5140

5115

5115

5110

5120

5120

5125

5125

5130

5130

51355135

87Sr86Sr 87Sr 86Sr

143 N

d14

4 Nd

a b

Fanshibasalts

DM+EMMixing

YangyuanDMMORB

Globalon-craton

Globaloff-craton

07154

Hannuoba

FushanFanshi harzFanshi lherz

Hebi CpxHebi Opx Oceanic

EM1

EM1

Hebibasalts

Mesozoiclithosperic mantle

Mesozoiclithosperic mantle

Kaapvaal

Jining

Fig 6 (a) Sr and Nd isotope ratios in cpx and opx from the peridotites together with the published data for peridotite xenolithsData sources in addition to this study cpx in peridotite xenoliths from Hannuoba (Song and Frey 1989 Tatsumoto et al 1992 Fan et al 2000 Rudnick et al 2004 Tang et al2011) Fanshi (Tang et al 2008 Xu et al 2008b Tang et al 2011) Yangyuan (Ma and Xu 2006 Xu et al 2008b) Jining peridotites (Zhang et al in press) and the Kaapvaal cratonSouth Africa (Menzies andMurthy 1980) Mesozoic lithospheric mantle beneath the Central Zone of the NCC (Zhang et al 2004Wang et al 2006 Xu et al 2010) Cenozoic Fanshiand Hebi host basalts (Tang et al 2006 2011 unpublished data) DM MORB and EM1 (Zindler and Hart 1986) The field roughly drawn denotes the DM-EM1 mixing trend(b) Oceanic peridotites and mantle peridotites from global on- and off-craton locations (Fan et al 2000 and references therein)

7Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Zhang et al 2009 Xiao and Zhang 2011) As a result melt percola-tion could lead to significant changes in the Os isotopic compositionsof the refertilized peridotites Thus whole-rock Os isotope composi-tions reflect the mixtures of different generations of sulfides There-fore the significant variability in Os isotopic compositions ofsulfides within individual peridotite samples calls into question thesignificance of many published whole-rock ldquodepletion agesrdquo(Pearson et al 2002)

RendashOs isotopic ages in the peridotite xenoliths from the NCC varygreatly with Re-depletion model ages (TRD) ranging from 0 to 30 Gaand RendashOs model ages (TMA) of 0ndash35 Ga (Fig 9) For example mostof the Hannuoba peridotites have Proterozoic whole-rock RendashOsmodel ages resembling the Cenozoic basaltndashhost peridotites fromother localities on the North China Craton (Fig 9) However the insitu TRD and TMA model ages of sulfides in the Hannuoba samplesshow a larger range from Archean to Phanerozoic model ages than

Table 3Sr and Nd isotopic compositions of cpx and opx in the peridotite xenoliths

Sample Rb (ppm) Sr (ppm) Sm (ppm) Nd (ppm) 87R

Cpx05HB68 0003 144 0355 472 0005HB70 0030 567 0308 197 0005HB72 0660 315 401 209 00HB1120 0041 768 0133 096 00HB1121 0000 167 0247 225 00HB1122 0004 266 0909 843 00HB1125 0003 161 0506 588 00HB1126 0004 479 665 269 00

Opx05HB68 0013 137 0005HB70 0010 127 0019 0073 0005HB72 0017 285 0063 0207 00HB1120 0007 149 00HB1121 0013 137 00HB1122 0011 137 0010 0094 00HB1125 0015 991 00HB1126 0035 425 0073 0231 0005HB09 0039 199 0451 0070 00HB1128 0081 877 0070 0325 00

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

the whole-rock ages of the peridotites strongly indicating that thewhole-rock ages are not the true formation ages of the peridotitesbut the mixing ages of multiple generations of sulfides (Pearson etal 2002 Griffin et al 2004 Xu et al 2008a Zhang et al 2009)The TRD ages of these peridotites apparently correlate with olivineFo (Fig 9) which is traditionally explained as melting trend (Griffinet al 2004) Alternatively this correlation could also reflect the reac-tion trend of a depleted residue with asthenosphere-derived melts(Zhang et al 2009) The refertilization of peridotites could lowerthe Fo of olivine (Zhang 2005 Griffin et al 2009) and result in thepositive correlations between Re abundances and Al2O3 and Yb con-tents in the peridotites by additions of Fe Al Yb and Re (Zhang etal 2009) Therefore the correlation between TRD ages and olivineFo may reflect the combined results of partial melting and refertiliza-tion processes and the latter lowered the TRD ages of the peridotitesdue to the additions of Re and less radiogenic Os or younger sulfide

b86Sr 87Sr86Sr 2σ 147Sm144Nd 143Nd144Nd 2σ

001 0703092 10 00456 0512942 9015 0703359 10 00944 0513004 7006 0703246 10 01160 0513039 6015 0704151 8 00841 0511825 8000 0703862 8 00665 0512144 12000 0703312 7 00652 0512758 7001 0703242 8 00521 0512960 10000 0703715 14 01494 0512896 9

276 0703529 10234 0703454 15 01604 0513005 7172 0703560 10 01844 0513003 24144 0704055 11277 0703891 10230 0704394 35 00664 0512655 12045 0704829 10241 0703576 13 01921 0512920 8561 0704215 17 39155 0512795 7268 0703655 11 01293 0512907 7

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

5140

5115

5110

5120

5125

5130

5135

89 91 92 9390Olivine Fo

0702

0703

0704

0705

0706

87S

r86

Sr

HebiFushanFanshiYangyuanHannuoba

Mesozoic

Mesozoic

North margin

Central NCC

North margin

Central NCC

143 N

d14

4 Nd

Fig 8 Olivine Fo vs Sr and Nd isotope ratios in cpx from the peridotites Data sourcesare as in Fig 6

200 3010

0509

0511

0512

0513

Time before present (Ga)

143 N

d14

4 Nd

0510

Depleted mantle

HB1120 ( 147144Sm Nd=00665)

t=18

Continental crustDM-old crustmixing

FS6-29 ( 147

144Sm Nd=00936)

Fig 7 The evolution of 143Nd144Nd with time in the HB1120 (this study) and sampleFS6ndash29 (Xu et al 2010) DM-old crust mixing represents the assumed modification ofthe samples by recycled crustal materials at 18 Ga The 143Nd144Nd of the samples at18 Ga were calculated based on the decay constant of 147Sm (654times10minus12) 143Nd144Nd of chondrite (0512638) and the measured 143Nd144Nd and Sm and Nd contentsof the samples

8 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

introduction which could obliterate the evidence of old ages (Griffinet al 2004)

The RendashOs isotopic data of Paleozoic kimberlite-borne xenolithsdemonstrated that Archean lithospheric mantle existed beneath theeastern NCC during the Paleozoic (Gao et al 2002 Wu et al 2006Zhang et al 2008 Chu et al 2009b) However most of the peridotitexenoliths hosted by the Cenozoic basalts have Proterozoic TRD andTMA ages with only a few xenoliths having Phanerozoic ages(Fig 9) The scarcity of Archean TRD ages may reflect that nearly allthe Archean lithospheric mantle beneath the eastern NCC has beenreplaced (Gao et al 2002 Wu et al 2006 Chu et al 2009b) or refer-tilized by multiple-stage influx of melts (Xu et al 2008a Zhang et al2008 2009 Xiao and Zhang 2011) In contrast some peridotites inthe Mesozoic and Cenozoic basaltic rocks in the Central Zone of theNCC have whole-rock (Xu et al 2008b) or sulfide (Zheng et al2007 Xu et al 2008a) TRD ages of Archean reflecting the existenceof Archean mantle beneath this region However the wide range inTRD ages observed in single peridotite and their sulfides may reflectprogressive modification of the lithospheric mantle by fertile mate-rials (Xu et al 2008a) as is well documented for the peridotitesfrom other regions of the world (Pearson et al 1999 2002 Alard etal 2002 Griffin et al 2004 Harvey et al 2010) As a result theTRD ages for most of the samples from the North China Craton may re-flect the mixing of different-generation sulfides generated by referti-lization processes

As a result most of the peridotite xenoliths from the Central Zoneincluding Hebi Fushan Fanshi Yangyuan Datong Jining and Han-nuoba localities are relatively fertile in compositions (Figs 3ndash5) andbear a resemblance to the ldquooceanicrdquo lithosphere (Fan et al 2000)but they are likely the fragments of refertilized Archean lithosphericmantle

64 Constraints on the destruction of the NCC

The mineralogy elemental and isotopic geochemistry of peridotitexenoliths entrained in the Mesozoic and Cenozoic igneous rocks fromthe NCC indicate that the present lithospheric mantle beneath theCentral Zone is highly heterogeneous which is likely produced from

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

an Archean lithosphere by refertilization via multistage additions ofmelt The early-stage melt may be derived from recycled crustal ma-terials and the later-stage melt be mainly derived from the astheno-sphere The refertilization processes could mask even totallyobliterate the Archean refractory signatures of parts of the litho-sphere and rejuvenate the Archean mantle by lowering the RendashOsmodel ages of refertilized peridotites (Zhang et al 2008 2009 Xiaoand Zhang 2011)

The peridotites from Fushan and Hebi in the central NCC are main-ly refractory harzburgites with minor lherzolites (Fig 2) Their ex-tremely variable SrndashNd isotopic ratios (Fig 6) and ArcheanndashPaleoproterozoic TRD ages (Fig 9) reflect low-degree modification ofthe Archean lithospheric mantle beneath the central NCC In contrastthe peridotites from the Hannuoba and Jining in the northern marginof the craton are almost fertile lherzolites (Fig 5) with depleted SrndashNd isotopic compositions (Figs 6 and 8) and ProterozoicndashPhanerozoicTRD ages (Fig 9) indicating high-degree refertilization of the mantlelithosphere (Tang et al 2008 Zhang et al 2009 in press) One peri-dotite from Jining has radiogenic 87Sr86Sr (up to 0707 Fig 6) likelyimplying the modification of oceanic crust (Zhang et al in press)This is consistent with the observation of Santosh (2010) providingevidence for imbrication of oceanic plate lithostratigraphy from theInner Mongolia suture zone (Fig 1)

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

88

89

90

91

92

93

TRD (Ga)

TM

A (

Ga) 20

25

30

35

15

10

05

95

0 05 10 15 20 25 30

Oliv

ine

Fo

TMA0 1 3

Sulfide

In basalt

In kimberlite

EasternBlockIn basalt

CentralZone

Hebi

HebiFushanFanshiDatongYangyuanJiningHannuoba

Reaction trend

Melting trend

Archean

Northmargin

Phanerozoic Proterozoic

PM

CentralNCC

Sulfide Hannuoba

In basalt easternIn kimber eastern

Sulfide Hebi

2

Fig 9 Diagrams of TMA and Fo of olivine vs TRD model ages of peridotite xenoliths andin situ analyses of sulfides from the NCC Inset shows histogram of the TMA agesData sources in addition to this study Hannuoba peridotites (Gao et al 2002 Xia etal 2004 Zhang et al 2009 Liu et al 2011) Fushan Datong and Hebi peridotites (Liuet al 2011) Jining (Liu et al 2011 Zhang et al in press) Fanshi and Yangyuan pe-ridotites (Xu et al 2008b Liu et al 2011) In situ ages of sulfides in Hannuoba andHebi peridotites (Zheng et al 2007 Xu et al 2008a) peridotite xenoliths entrainedin the Cenozoic basalts (Gao et al 2002 Wu et al 2003 2006 Chu et al 2009b) andPaleozoic kimberlites from the NCC (Gao et al 2002 Wu et al 2006 Zhang et al 2008Chu et al 2009b)

9Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Compared to the Hannuoba peridotites the Yangyuan and Fanshixenoliths are mainly lherzolites with minor harzburgite and haveenriched SrndashNd isotopic compositions and ArcheanndashPhanerozoic TRDages implying relatively low-degree modification of the lithosphericmantle Therefore the spatially petrologic and geochemical variationsof xenoliths suggest that the refertilization of ancient lithosphericmantle by melt additions became stronger from the interior to thenorth margin of the NCC (Zhang 2009) (Figs 2ndash9)

For the whole North China Craton it experienced a series ofsubductioncollision events as evidenced by the Paleozoic to TriassicQinlingndashDabie ultrahigh-pressure belt in south (Li et al 1993) theTianshanndashInner MongoliandashDaxinganling orogen in north (Xiao etal 2003 Zhang et al 2003) and the MesozoicndashCenozoic subductionof Pacific plate in east These events could intensively modify thesubcontinental lithospheric mantle by igneous refertilization viamultistage peridotitendashmelt reactions (Zhang et al 2002 2003 Xuet al 2008a Zhang et al 2009 Zhang et al 2010a 2010b Tanget al 2011 2012) leading to the highly heterogeneity of the mantle

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

7 Conclusions

Mineral element and SrndashNd isotopic compositions of the perido-tite xenoliths from the Cenozoic Hebi basalts in the Central Zone ofthe NCC coupled with previously published petrologic and isotopicdata of mantle xenoliths from the eastern NCC allow us to draw thefollowing conclusions

(1) The Hebi harzburgite xenoliths are refractory in mineral com-positions and highly variable in mineral SrndashNd isotopic compo-sitions ranging from MORB-like to EM1-type mantle They arethe residues of Archean lithospheric mantle beneath thisregion

(2) The present lithospheric mantle beneath the Central Zone ofthe NCC is highly heterogeneous in mineral and geochemicalcompositions likely produced by refertilization via multipleadditions of melts

(3) The refertilization of the lithospheric mantle became strongerfrom the interior to the margin of the craton which was closelyrelated to multiple subductioncollision events of circum-craton plates

Acknowledgments

Wewould like to express our gratitude to Qian Mao and Yu-GuangMa for their assistance with EPMA analyses and Jing-Hui Guo withisotopic analyses at the State Key Laboratory of Lithospheric Evolu-tion Institute of Geology and Geophysics Chinese Academy of Sci-ences We gratefully acknowledge the constructive reviews of SAulbach and an anonymous reviewer and editorial handling by Edi-tors which helped us to improve the presentation This work was fi-nancially supported by the National Science Foundation of China(Grants 91014007 41073028 and 40773026)

References

Adam J Green T 2006 Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt 1 Experimental results andthe investigation of controls on partitioning behaviour Contributions to Mineralo-gy and Petrology 152 1ndash17

Alard O Griffin WL Pearson NJ Lorand JP OReilly SY 2002 New insights intothe RendashOs systematics of sub-continental lithospheric mantle from in situ analysisof sulphides Earth and Planetary Science Letters 203 651ndash663

Aulbach S Griffin WL OReilly SY McCandless TE 2004 Genesis and evolution ofthe lithospheric mantle beneath the Buffalo Head Terrane Alberta (Canada) Lithos77 413ndash451

Beyer EE Griffin WL OReilly SY 2006 Transformation of Archaean lithosphericmantle by refertilization evidence from exposed peridotites in the Western GneissRegion Norway Journal of Petrology 47 1611ndash1636

Boyd FR 1989 Compositional distinction between oceanic and cratonic lithosphereEarth and Planetary Science Letters 96 15ndash26

Chen SH OReilly SY Zhou XH Griffin WL Zhang GH Sun M Feng JL ZhangM 2001 Thermal and petrological structure of the lithosphere beneath HannuobaSinondashKorean Craton China evidence from xenoliths Lithos 56 267ndash301

Chen L Zheng T Xu W 2006 A thinned lithospheric image of the Tanlu Fault Zoneeastern China constructed from wave equation based receiver function migrationJournal of Geophysical Research 111 B09312 doi1010292005jb003974

Chu ZY Chen FK Yang YH Guo JH 2009a Precise determination of Sm Nd con-centrations and Nd isotopic compositions at the nanogram level in geological sam-ples by thermal ionization mass spectrometry Journal of Analytical AtomicSpectrometry 24 1534ndash1544

Chu ZY Wu FY Walker RJ Rudnick RL Pitcher L Puchtel IS Yang YH WildeSA 2009b Temporal evolution of the lithospheric mantle beneath the easternNorth China Craton Journal of Petrology 50 1857ndash1898

Dobbs PN Duncan DJ Hu S Shee SR Colgan E Brown MA Smith CB AllsoppHL 1994 The geology of the Mengyin kimberlites Shandong China In MeyerHOA Leonardos OH (Eds) Diamonds Characterization Genesis and Explora-tion Proceedings of the 5th International Kimberlite Conference CPRM Brasiliapp 106ndash115

Fan QC Hooper PR 1991 The Cenozoic basaltic rocks of eastern China petrologyand chemical composition Journal of Petrology 32 765ndash810

Fan WM Menzies MA 1992 Destruction of aged lower lithosphere and accretion ofasthenosphere mantle beneath eastern China Geotectonica et Metallogenia 16171ndash180

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

10 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Fan WM Zhang HF Baker J Jarvis KE Mason PRD Menzies MA 2000 On andoff the north China craton where is the Archaean keel Journal of Petrology 41933ndash950

Frey FA Green DH 1974 The mineralogy geochemistry and origin of Iherzolite in-clusions in Victorian basanites Geochimica et Cosmochimica Acta 38 1023ndash1059

Gao S Rudnick RL Carlson RW McDonough WF Liu YS 2002 RendashOs evidencefor replacement of ancient mantle lithosphere beneath the North China cratonEarth and Planetary Science Letters 198 307ndash322

Gao S Rudnick RL Yuan HL Liu XM Liu YS Xu WL Ling WL Ayers J WangXC Wang QH 2004 Recycling lower continental crust in the North China cratonNature 432 892ndash897

Griffin WL OReilly SY Ryan CG 1992 Composition and thermal structure of thelithosphere beneath South Africa Siberia and China proton microprobe studiesInternational Symposium on Cenozoic Volcanic Rocks and Deep-seated Xenolithsof China and its Environs Beijing pp 65ndash66

Griffin WL Zhang AD OReilly SY Ryan CG 1998 Phanerozoic evolution of thelithosphere beneath the SinondashKorean Craton In Flower MFJ Chung SL LoCH Lee TY (Eds) Mantle Dynamics and Plate Interactions in East Asia AmericanGeophysical Union Washington DC pp 107ndash126

Griffin WL OReilly SY Abe N Aulbach S Davies RM Pearson NJ Doyle BJKivi K 2003 The origin and evolution of Archean lithospheric mantle Precambri-an Research 127 19ndash41

Griffin WL Graham S OReilly SY Pearson NJ 2004 Lithosphere evolution be-neath the Kaapvaal Craton RendashOs systematics of sulfides in mantle-derived peri-dotites Chemical Geology 208 89ndash118

Griffin WL OReilly SY Afonso JC Begg GC 2009 The composition and evolutionof lithospheric mantle a re-evaluation and its tectonic implications Journal of Pe-trology 50 1185ndash1204

Harvey J Gannoun A Burton KW Schiano P Rogers NW Alard O 2010 Unravel-ling the effects of melt depletion and secondary infiltration on mantle RendashOs iso-topes beneath the French Massif Central Geochimica et Cosmochimica Acta 74293ndash320

Kelemen PB Hart SR Bernstein S 1998 Silica enrichment in the continental uppermantle via meltrock reaction Earth and Planetary Science Letters 164 387ndash406

Kroumlner A Wilde SA Li JH Wang KY 2005 Ages and evolution of a Late Archean toPaleoproterozoic upper to lower crustal section in the WutaishanHengshanFup-ing terrain of northern China Journal of Asian Earth Sciences 24 577ndash595

Kusky TM 2011 Geophysical and geological tests of tectonic models of the NorthChina Craton Gondwana Research 20 26ndash35

Li SG Xiao YL Liou DL Chen YZ Ge NJ Zhang ZQ Sun SS Cong BL ZhangRY Hart SR Wang SS 1993 Collision of the North China and Yangtze Blocksand formation of coesite-bearing eclogite-timing and processes Chemical Geology109 89ndash111

Liu J Rudnick RL Walker RJ Gao S Wu FY Piccoli PM Yuan H Xu WL XuYG 2011 Mapping lithospheric boundaries using Os isotopes of mantle xenolithsan example from the North China Craton Geochimica et Cosmochimica Acta 753881ndash3902

Ma X 1989 Atlas of Active Faults in China Seismologic Press BeijingMa JL Xu YG 2006 Old EM1-type enriched mantle under the middle North China

Craton as indicated by Sr and Nd isotopes of mantle xenoliths from YangyuanHebei Province Chinese Science Bulletin 51 1343ndash1349

Menzies MA 1990 Effects of small volume melts Nature 343 312ndash313Menzies M Murthy VR 1980 Enriched mantle Nd and Sr isotopes in diopsides from

kimberlite nodules Nature 283 634ndash636Menzies MA Xu YG 1998 Geodynamics of the North China Craton In Flower

MFJ Chung SL Lo CH Lee TY (Eds) Mantle Dynamics and Plate Interactionsin East Asia American Geophysical Union Washington DC pp 155ndash165

Menzies MA Fan WM Zhang M 1993 Palaeozoic and Cenozoic lithoprobes andthe loss of gt120 km of Archaean lithosphere SinondashKorean craton China InPrichard HM Alabaster T Harris NBW Neary CR (Eds) Magmatic Processesand Plate Tectonics Geological Society of London Special Publication pp 71ndash81

Menzies M Xu YG Zhang HF Fan WM 2007 Integration of geology geophysicsand geochemistry a key to understanding the North China Craton Lithos 96 1ndash21

OReilly SY Griffin WL Poudjom YH Morgan P 2001 Are lithosphere forever Track-ing changes in subcontinental lithospheric mantle through time GSA Today 11 4ndash10

Pearson DG 1999 Evolution of cratonic lithospheric mantle an isotopic perspectiveIn Fei Y Berka CM Mysen BO (Eds) Mantle Petrology Field Observations andHigh-Pressure Experimentation A Tribute to Francis R (Joe) Boyd The Geochemi-cal Society Special Publication pp 57ndash78

Pearson DG Shirey SB Harris JW Carlson RW 1998 Sulphide inclusions in dia-monds from the Koffiefontein kimberlite S Africa constraints on diamond agesand mantle RendashOs systematics Earth and Planetary Science Letters 160 311ndash326

Pearson DG Shirey SB Bulanova GP Carlson RW Milledge HJ 1999 RendashOs iso-tope measurements of single sulfide inclusions in a Siberian diamond and its nitro-gen aggregation systematics Geochimica et Cosmochimica Acta 63 703ndash711

Pearson NJ Alard O Griffin WL Jackson SE OReilly SY 2002 In situ measure-ment of RendashOs isotopes in mantle sulfides by laser ablation multicollector-inductively coupled plasma mass spectrometry analytical methods and prelimi-nary results Geochimica et Cosmochimica Acta 66 1037ndash1050

Reisberg L Zhi XC Lorand JP Wagner C Peng ZC Zimmermann C 2005 RendashOsand S systematics of spinel peridotite xenoliths from east central China evidencefor contrasting effects of melt percolation Earth and Planetary Science Letters239 286ndash308

Rudnick RL Gao S Ling WL Liu YS McDonough WF 2004 Petrology and geo-chemistry of spinel peridotite xenoliths from Hannuoba and Qixia North ChinaCraton Lithos 77 609ndash637

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Santosh M 2010 Assembling North China Craton within the Columbia superconti-nent the role of double-sided subduction Precambrian Research 178 149ndash167

Santosh M Tsunogae T Li JH Liu SJ 2007a Discovery of sapphirine-bearing MgndashAl granulites in the North China Craton implications for Paleoproterozoic ultra-high temperature metamorphism Gondwana Research 11 263ndash285

Santosh M Wilde SA Li JH 2007b Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton evidence from SHRIMPUndashPb zircon geochronology Precambrian Research 159 178ndash196

Santosh M Sajeev K Li JH Liu SJ Itaya T 2009 Counterclockwise exhumation ofa hot orogen the Paleoproterozoic ultrahigh-temperature granulites in the NorthChina Craton Lithos 110 140ndash152

Santosh M Zhao D Kusky T 2010 Mantle dynamics of the Paleoproterozoic NorthChina Craton a perspective based on seismic tomography Journal of Geodynamics49 39ndash53

Santosh M Liu SJ Tsunogae T Li JH 2011 Paleoproterozoic ultrahigh-temperature granulites in the North China Craton implications for tectonic modelson extreme crustal metamorphism Precambrian Research doi101016jprecamres201110051003

Shirey SB Walker RJ 1998 The RendashOs isotopic system in cosmochemistry and igne-ous geochemistry Annual Reviews of Earth and Planetary Sciences 26 425ndash500

Smith D Griffin WL Ryan CG Sie SH 1991 Trace-element zonation in garnetsfrom the thumb mdash heating and melt infiltration below the Colorado Plateau Con-tributions to Mineralogy and Petrology 107 60ndash79

Song Y Frey FA 1989 Geochemistry of peridotite xenoliths in basalt from Hannuobaeastern China implications for subcontinental mantle heterogeneity Geochimica etCosmochimica Acta 53 97ndash113

Tang YJ Zhang HF Ying JF 2004 High-Mg olivine xenocrysts entrained in Cenozoicbasalts in central Taihang Mountains relicts of old lithospheric mantle Acta Petrolo-gica Sinica 20 1243ndash1252

Tang YJ Zhang HF Ying JF 2006 Asthenospherendashlithospheric mantle interactionin an extensional regime implication from the geochemistry of Cenozoic basaltsfrom Taihang Mountains North China Craton Chemical Geology 233 309ndash327

Tang YJ Zhang HF Nakamura E Moriguti T Kobayashi K Ying JF 2007 Lithiumisotopic systematics of peridotite xenoliths from Hannuoba North China Cratonimplications for meltndashrock interaction in the considerably thinned lithosphericmantle Geochimica et Cosmochimica Acta 71 4327ndash4341

Tang YJ Zhang HF Ying JF Zhang J Liu XM 2008 Refertilization of ancient lith-ospheric mantle beneath the central North China Craton evidence from petrologyand geochemistry of peridotite xenoliths Lithos 101 435ndash452

Tang YJ Zhang HF Nakamura E Ying JF 2011 Multistage meltfluidndashperidotiteinteractions in the refertilized lithospheric mantle beneath the North China Cra-ton constraints from the LindashSrndashNd isotopic disequilibrium between minerals ofperidotite xenoliths Contributions to Mineralogy and Petrology 161 845ndash861

Tang YJ Zhang HF Deloule E Su BX Ying JF Xiao Y Hu Y 2012 Slab-derivedlithium isotopic signatures in mantle xenoliths from northeastern North China Cra-ton Lithos doi101016jlithos201112001

Tatsumoto M Basu AR Huang WK Wang JW Xie GH 1992 Sr Nd and Pb iso-topes of ultramafic xenoliths in volcanic-rocks of eastern China enriched compo-nents EMI and EMII in subcontinental lithosphere Earth and Planetary ScienceLetters 113 107ndash128

Walker RJ Carlson RW Shirey SB Boyd FR 1989 Os Sr Nd and Pb isotope sys-tematics of southern African peridotite xenoliths implications for the chemicalevolution of subcontinental mantle Geochimica et Cosmochimica Acta 531583ndash1595

Wang YJ Fan WM Zhang HF Peng TP 2006 Early Cretaceous gabbroic rocksfrom the Taihang Mountains implications for a paleosubduction-related litho-spheric mantle beneath the central North China Craton Lithos 86 281ndash302

Wilshire HG Shervais JW 1975 Al-augite and Cr-diopside ultramafic xenoliths inbasaltic rocks from western United States Physics and Chemistry of the Earth 9257ndash272

Wu FY Walker RJ Ren XW Sun DY Zhou XH 2003 Osmium isotopic con-straints on the age of lithospheric mantle beneath northeastern China ChemicalGeology 196 107ndash129

Wu FY Walker RJ Yang YH Yuan HL Yang JH 2006 The chemicalndashtemporalevolution of lithospheric mantle underlying the North China Craton Geochimicaet Cosmochimica Acta 70 5013ndash5034

Xia QX Zhi XC Meng Q Zheng L Peng ZC 2004 The trace element and RendashOsisotopic geochemistry of mantle-derived peridotite xenoliths from Hannuoba na-ture and age of SCLM beneath the area Acta Petrologica Sinica 20 1215ndash1224 (inChinese with English abstract)

Xiao Y Zhang HF 2011 Effects of melt percolation on platinum group elements andRendashOs systematics of peridotites from the TanndashLu fault zone eastern North ChinaCraton Journal of the Geological Society of London 168 1201ndash1214

Xiao WJ Windley B Hao J Zhai MG 2003 Accretion leading to collision and thePermian Solonker suture Inner Mongolia China termination of the CentralAsian orogenic belt Tectonics 22 doi1010292202 TC001484

Xu YG 2001 Thermo-tectonic destruction of the Archean lithospheric keel beneaththe SinondashKorean Craton in China evidence timing and mechanism Physics andChemistry of the Earth (A) 26 747ndash757

Xu YG 2002 Evidence for crustal components in the mantle and constraints on crustalrecycling mechanisms pyroxenite xenoliths from Hannuoba North China ChemicalGeology 182 301ndash322

Xu XS OReilly SY Griffin WL Zhou XM Huang XL 1998 The nature of the Ce-nozoic lithosphere of Nushan eastern China In Flower MFJ Chung SL Lo CHLee TY (Eds) Mantle Dynamics and Plate Interactions in East Asia AmericanGeophysical Union Washington DC pp 167ndash196

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

11Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Xu YG Chung SL Ma JL Shi LB 2004 Contrasting Cenozoic lithospheric evolutionand architecture in the western and eastern SinondashKorean craton constrains fromgeochemistry of basalts and mantle xenoliths Journal of Geology 112 593ndash605

Xu XS Griffin WL OReilly SY Pearson NJ Geng HY Zheng JP 2008a RendashOsisotopes of sulfides in mantle xenoliths from eastern China progressive modifica-tion of lithospheric mantle Lithos 102 43ndash64

Xu YG Blusztajn J Ma JL Suzuki K Liu JF Hart SR 2008b Late Archean to earlyProterozoic lithospheric mantle beneath the western North China craton SrndashNdndashOs isotopes of peridotite xenoliths from Yangyuan and Fansi Lithos 102 25ndash42

Xu W Yang D Gao S Pei F Yu Y 2010 Geochemistry of peridotite xenoliths inEarly Cretaceous high-Mg diorites from the Central Orogenic Block of the NorthChina Craton the nature of Mesozoic lithospheric mantle and constraints on lith-ospheric thinning Chemical Geology 270 257ndash273

Yang JH Wu FY Wilde SA 2003 A review of the geodynamic setting of large-scaleLate Mesozoic gold mineralization in the North China craton an association withlithospheric thinning Ore Geology Reviews 23 125ndash152

Ying JF Zhang HF Tang YJ 2010 Zoned olivine xenocrysts in a late Mesozoic gab-bro from the southern Taihang Mountains implications for old lithospheric mantlebeneath the central North China Craton Geological Magazine 147 161ndash170

Yuan XC 1996 Atlas of Geophysics in China Geological Publishing House BeijingZhai MG Santosh M 2011 The early Precambrian odyssey of the North China Craton a

synoptic overview Gondwana Research 20 6ndash25Zhang HF 2005 Transformation of lithospheric mantle through peridotitendashmelt reac-

tion a case of SinondashKorean craton Earth and Planetary Science Letters 237768ndash780

Zhang HF 2009 Peridotitendashmelt interaction a key point for the destruction of cra-tonic lithospheric mantle Chinese Science Bulletin 54 3417ndash3437

Zhang HF Sun M Zhou XH Fan WM Zhai MG Ying JF 2002 Mesozoic litho-sphere destruction beneath the North China Craton evidence from major- trace-element and SrndashNdndashPb isotope studies of Fangcheng basalts Contributions to Min-eralogy and Petrology 144 241ndash253

Zhang HF Sun M Zhou XH Zhou MF Fan WM Zheng JP 2003 Secular evolu-tion of the lithosphere beneath the eastern North China Craton evidence fromMe-sozoic basalts and high-Mg andesites Geochimica et Cosmochimica Acta 674373ndash4387

Zhang HF Sun M Zhou MF Fan WM Zhou XH Zhai MG 2004 Highly hetero-geneous late Mesozoic lithospheric mantle beneath the north China Craton evi-dence from SrndashNdndashPb isotopic systematics of mafic igneous rocks GeologicalMagazine 141 55ndash62

Zhang J Zhao GC Sun M Wilde SA Li SZ Liu SW 2006 High-pressure maficgranulites in the Trans-North China Orogen tectonic significance and age Gond-wana Research 9 349ndash362

Zhang HF Nakamura E Kobayashi K Zhang J Ying JF Tang YJ Niu LF 2007Transformation of subcontinental lithospheric mantle through peridotitendashmelt re-action evidence from a highly fertile mantle xenolith from the North China cratonInternational Geology Review 49 658ndash679

Zhang HF Goldstein S Zhou XH Sun M Zheng JP Cai Y 2008 Evolution of sub-continental lithospheric mantle beneath eastern China RendashOs isotopic evidencefrom mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts Contribu-tions to Mineralogy and Petrology 155 271ndash293

Zhang HF Goldstein SL Zhou XH Sun M Cai Y 2009 Comprehensive refertiliza-tion of lithospheric mantle beneath the North China Craton further OsndashSrndashNd iso-topic constraints Journal of the Geological Society of London 166 249ndash259

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Zhang HF Deloule E Tang YJ Ying JF 2010a Meltrock interaction in remains ofrefertilized Archean lithospheric mantle in Jiaodong Peninsula North China Cra-ton Li isotopic evidence Contributions to Mineralogy and Petrology 160 261ndash277

Zhang HF Nakamura E Kobayashi K Ying JF Tang YJ 2010b Recycled crustalmelt injection into lithospheric mantle implication from cumulative compositeand pyroxenite xenoliths International Journal of Earth Sciences 99 1167ndash1186

Zhang HF Ying JF Tang YJ Li XH Feng C Santosh M 2011 Phanerozoic reacti-vation of the Archean North China Craton through episodic magmatism evidencefrom zircon UndashPb geochronology and Hf isotopes from the Liaodong PeninsulaGondwana Research 19 446ndash459

Zhang HF Sun YL Tang YJ Xiao Y Zhang WH Zhao XM Santosh M MenziesMA in press Melt-peridotite interaction in the Pre-cambrian mantle beneath thewestern North China Craton Petrology geochemistry and Sr Nd and Re isotopesLithos doi101016jlithos201201027

Zhao GC Cawood PA Wilde SA Sun M 2000 Metamorphism of basement rocksin the Central Zone of the North China craton implications for Paleoproterozoictectonic evolution Precambrian Research 103 55ndash88

Zhao GC Wilde SA Sun M Li SZ Li XP Zhang J 2008 SHRIMP UndashPb zircon agesof granitoid rocks in the Luumlliang Complex implications for the accretion and evo-lution of the Trans-North China Orogen Precambrian Research 160 213ndash226

Zhao GC Wilde SA Guo JH Cawood PA Sun M Li XP 2010a Single zircongrains record two Paleoproterozoic collisional events in the North China CratonPrecambrian Research 177 266ndash276

Zhao GC Wilde SA Zhang J 2010b New evidence from seismic imaging for sub-duction during assembly of the North China craton comment Geology 38 e206

Zhao XM Zhang HF Zhu XK Tang SH Tang YJ 2010c Iron isotope variations inspinel peridotite xenoliths from North China Craton implications for mantle meta-somatism Contributions to Mineralogy and Petrology 160 1ndash14

Zheng JP OReilly SY Griffin WL Lu FX Zhang M 1998 Nature and evolution ofCenozoic lithospheric mantle beneath Shandong peninsula SinondashKorean cratoneastern China International Geology Review 40 471ndash499

Zheng JP OReilly SY Griffin WL Lu FX Zhang M Pearson NJ 2001 Relict re-fractory mantle beneath the eastern North China block significance for lithosphereevolution Lithos 57 43ndash66

Zheng JP Griffin WL OReilly SY Liou JG Zhang RY Lu FX 2005 Late MesozoicndashEocene mantle replacement beneath the eastern North China craton evidence fromthe Paleozoic and Cenozoic peridotite xenoliths International Geology Review 47457ndash472

Zheng JP Griffin WL OReilly SY Yang JS Li TF Zhang M Zhang RY Liou JG2006 Mineral chemistry of peridotites from Paleozoic Mesozoic and Cenozoic litho-sphere constraints on mantle evolution beneath eastern China Journal of Petrology47 2233ndash2256

Zheng JP Griffin WL OReilly SY Yu CM Zhang HF Pearson N Zhang M 2007Mechanism and timing of lithospheric modification and replacement beneath theeastern North China Craton peridotitic xenoliths from the 100 Ma Fuxin basaltsand a regional synthesis Geochimica et Cosmochimica Acta 71 5203ndash5225

Zhou XH Armstrong RL 1982 Cenozoic volcanic rocks of eastern China mdash secularand geographic trends in chemistry and strontium isotopic composition Earthand Planetary Science Letters 58 301ndash329

Zindler A Hart SR 1986 Chemical geodynamics Annual Reviews of Earth and Plane-tary Sciences 14 493ndash571

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

4 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

for mass-fractionation using 86Sr88Sr=01194 and 146Nd144Nd=07219 respectively During the period of data collection themeasured values for the NBS-987 Sr standard and the JNdi-1 Ndstandard were 86Sr88Sr=0710245plusmn16 (2 s n=8) and 143Nd144Nd=0512117plusmn10 (2 s n=8) respectively The USGS referencematerial BCR-2 was measured to monitor the accuracy of the analyticalprocedures Our results are 4655 ppm Rb 3393 ppm Sr 87Sr86Sr=0704986plusmn13 (2 s) 6543 ppm Sm 2860 ppm Nd and 143Nd144Nd=0512641plusmn16 (2 s) These values are comparable with thereported reference values 455ndash485 ppm Rb 312ndash355 ppm Sr 87Sr86Sr=0704958ndash0705027 641ndash663 ppm Sm 267ndash299 ppm Ndand 143Nd144Nd=0512633ndash0512644 (GeoREM httpgeoremmpch-mainzgwdgde) The procedural blanks were 10 49 10 and19 pg for Rb Sr Sm and Nd respectively which were less than 01 ofthe amount of samples loaded

5 Results

51 Major elements

Olivine opx cpx and spinel in these peridotites xenoliths are ho-mogeneous (2 sb02) in major elemental compositions based on thedetermination of individual phases between core and rim The aver-age composition of 4ndash5 point analyses is presented in Table 2 Oliv-ines in the xenoliths have high Fo (915ndash927) and low MnO(average 01) and NiO (average 04) contents Opx minerals havehigh Mg ranging from 919 to 927 low Al2O3 (20ndash34) and CaO(03ndash11) contents Cpx minerals have Mg varying from 921 to932 Al2O3 of 30ndash46 and Cr2O3 of 11ndash22 (Table 2) Mineralmodal contents (Fig 2) and chemical compositions (Figs 3ndash5) aresimilar to those of published high-Mg peridotites from the Hebi(Zheng et al 2001 Tang et al 2011) harzburgite xenoliths entrainedin the Cenozoic Fanshi (Tang et al 2008 2011) and Yangyuan basalts(Xu et al 2008b) and Mesozoic Fushan diorites (Xu et al 2010) inthe Central Zone of the NCC (Fig 1) which were interpreted as theresidues of ancient lithospheric mantle

52 SrndashNd isotopic composition

Sr and Nd isotopic compositions of cpx and opx in the Hebi perido-tites are given in Table 3 and illustrated in Fig 6 They show a largevariation ranging from MORB-like to high 87Sr86Sr (up to 07044)and very low 143Nd144Nd (down to 05118) Two samples display ex-tremely low 143Nd144Nd ratios relative to its Sr isotope ratios havingthe signature of EM1-typemantle (Fig 6) One sample falls within thefield for the Mesozoic lithospheric mantle constrained by peridotitexenoliths (Xu et al 2010) and mafic rocks (Zhang et al 2004Wang et al 2006) from the Central Zone of the NCC (Fig 6) In con-trast the cpx separates have higher Sr (mostgt100 ppm) and Nd(mostgt2 ppm) contents and relatively lower 87Sr86Sr ratios(070309ndash070415) than the opx (Srb10 ppm Ndb03 ppm 87Sr86Sr=070353ndash070483) The opx are generally higher in Rb contentsand RbSr ratios than the coexisting cpx

6 Discussion

61 Major element geochemistry and origin

Typical Archean cratonic mantle is generally composed of highlyrefractory (Fogt925) harzburgites and cpx-poor lherzolites (Boyd1989) which are highly depleted in basaltic components due tohigh-degree melt extraction In contrast most Proterozoic and Phan-erozoic lithospheric mantle worldwide are moderately depleted com-pared with primitive mantle (OReilly et al 2001 Beyer et al 2006)The Hebi peridotites studied here have high Fo (915ndash927) and thusare affiliated to the high-Mg group (Fogt91 Zheng et al 2001)

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Their mineral modes are similar to those from the Archean Kaapvaalcraton South Africa (Fig 2) and are plotted in the fields for the peri-dotite xenoliths from the Archean Siberian and Kaapvaal cratons(Fig 3) (Griffin et al 2003) and from the Paleozoic diamondiferouskimberlites in the NCC due to their refractory mineral compositionshigh Fo and low MnO in olivine (Fig 4) high Mg and low Al2O3 inopx and cpx (Fig 5) These characteristics are similar to those pub-lished for the Hebi high-Mg peridotites Fushan and Fanshi harzbur-gites some Yangyuan peridotites and olivine xenocrysts from theMesozoic and Cenozoic basaltic rocks in the Central Zone whichwere considered as residues of the Archean lithospheric mantle(Zheng et al 2001 Tang et al 2004 Zheng et al 2006 Tang et al2008 Xu et al 2008b Xu et al 2010 Ying et al 2010 Liu et al2011 Tang et al 2011)

Therefore the Hebi harzburgites represent residues of Archeanlithospheric mantle beneath this region Most of them have Folower than that of typical Archean cratonic mantle (Fogt925 Boyd1989) indicating that the harzburgites were likely modified bymeltndashrock reaction similar to those from the Archean cratons ofKaapvaal and Siberia rather than the products of simple melt extrac-tion (Kelemen et al 1998 Zhang 2009)

62 SrndashNd isotopic compositions and mantle processes

The most striking character of SrndashNd isotopic compositions of cpxin the Hebi harzburgites is the extreme heterogeneity They display alarge variation ranging from depleted-mantle to EM1-endmembercompositions similar to those of peridotites from ancient cratoniclithospheric mantle worldwide (Fig 6) Since the changes in RbSrand SmNd ratios caused by mantle metasomatism will with timeproduce extreme isotopic heterogeneity the cpx likely evolved fromthe mixing of a MORB-like lithospheric composition with severalenriched components related to meltfluid influx (Frey and Green1974) Meltfluid derived from recycled or subducted materials mayhave considerable ranges in SrNd ratios and isotopic compositionsThis is evidenced by the large variations of isotopic compositions inthe Late Mesozoic lavas of andesites dacites and adakites (Zhang etal 2003 Gao et al 2004) and Hannuoba pyroxenite xenoliths (Xu2002) that involved recycled crustal components As a result the in-flux of recycled materials may account for the spread of the data(Fig 6)

Two samples show an EM1-like isotopic signature of the Mesozoiclithospheric mantle beneath the same region (Fig 6) that was consid-ered to have been previously modified by silica-rich melts releasedfrom subducted materials (Wang et al 2006 Tang et al 2008) Thesubduction may be related to the Paleoproterozoic collision betweenthe Eastern and the Western Blocks (Zhao et al 2000 Santosh et al2010) because there is no evidence showing any collision in the inte-rior of the NCC during the Phanerozoic The EM1-typemantle beneaththe Central Zone is also evidenced by the isotopic compositions of pe-ridotite xenoliths from the Cenozoic Fanshi and Yangyuan basalts(Ma and Xu 2006 Tang et al 2007 2008 Xu et al 2008b) indicat-ing a secular evolution of the subcontinental lithospheric mantle Thisconclusion is also supported by the modeling calculations of the evo-lution of 143Nd144Nd with time in the xenoliths assumed to havebeen modified by recycled crustal materials at 18 Ga (Fig 7) There-fore the enriched isotopic compositions in the Hebi harzburgitesmay reflect ancient enrichment processes of the Archean lithosphericmantle

Some of the Hebi harzburgites have MORB-like SrndashNd isotopiccompositions of cpx (Fig 6) indicating that these peridotites weremodified by recent asthenospheric meltndashperidotite reaction (Zhang2009) which is consistent with their relatively low Fo values(Fig 8) and high concentrations of heavy rear earth elements as ob-served in the Fanshi peridotites (Tang et al 2008) As stated abovethe harzburgites are considered to be the relics of Archean

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

Table 2Major elemental compositions (wt) of minerals in Hebi mantle xenoliths

Sample Mineral SiO2 MgO FeO CaO Al2O3 Cr2O3 Na2O NiO MnO TiO2 Total Mg

05HB68 Ol 4142 4970 797 007 006 003 001 035 012 002 998 91805HB70 Ol 4161 4991 765 007 000 001 000 040 010 000 998 92105HB72 Ol 4162 5011 814 010 000 007 000 037 012 000 1005 917HB1120 Ol 4144 4973 771 011 004 001 001 044 011 002 996 921HB1121 Ol 4138 5036 805 011 003 002 002 040 011 000 1005 918HB1122 Ol 4170 4969 782 009 001 003 001 038 009 001 998 920HB1125 Ol 4116 4927 807 011 000 000 003 031 012 001 991 917HB1126 Ol 4202 4997 836 006 000 001 000 043 011 000 1010 91505HB09 Ol 4156 5029 792 008 003 000 000 040 012 000 1004 920HB1128 Ol 4208 5099 727 000 003 000 000 046 007 000 1009 92705HB68 Opx 5628 3288 496 107 317 082 002 013 015 000 995 92305HB70 Opx 5615 3268 504 102 300 077 003 014 014 000 990 92105HB72 Opx 5589 3299 481 096 344 091 013 013 013 002 994 925HB1120 Opx 5654 3308 522 107 303 083 004 014 007 003 1000 919HB1121 Opx 5606 3304 484 097 316 084 005 010 013 001 992 925HB1122 Opx 5636 3323 500 099 273 075 011 004 013 000 994 923HB1125 Opx 5649 3349 478 084 274 083 007 011 008 000 994 927HB1126 Opx 5715 3333 517 056 257 061 012 010 011 000 997 92105HB09 Opx 5624 3349 503 099 278 084 002 012 011 001 996 923HB1128 Opx 5749 3478 493 029 195 028 005 011 012 001 1000 92705HB68 Cpx 5258 1717 243 2127 323 107 042 005 006 005 983 92705HB70 Cpx 5313 1695 226 2120 306 117 039 003 013 002 983 93105HB72 Cpx 5282 1579 236 1919 455 166 166 004 009 034 985 923HB1120 Cpx 5280 1702 241 2096 309 136 049 008 008 009 984 927HB1121 Cpx 5305 1681 221 2103 301 125 054 007 008 009 981 932HB1122 Cpx 5324 1689 242 2054 300 134 076 008 005 022 985 926HB1125 Cpx 5293 1732 242 2133 260 127 047 004 002 005 984 928HB1126 Cpx 5402 1504 231 1900 366 223 222 006 009 034 990 921

Mg=100timesmol Mg2+(Mg2++Fe2+)

5Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

lithospheric mantle Therefore the depleted isotopic compositions re-flect the effect of reaction between old peridotites andasthenosphere-derived melt (Fig 6)

Refractory peridotite (high Fo) should be lower in RbSr andhigher in SmNd than primitive mantle due to the more incompatibil-ity of Rb than Sr and Nd than Sm during partial melting (Adam andGreen 2006) and thus be lower in 87Sr86Sr and higher 143Nd144Ndratios than fertile peridotite (low Fo) and primitive mantle This iscompletely opposite to the observation that olivine Fo in the Cenozoicbasalt-borne peridotite xenoliths from the Central Zone positivelycorrelate with Sr isotope ratios and negatively correlate with Nd iso-tope ratios (Fig 8) Therefore the correlations between SrndashNd

HebiFushanKaapvaal

Ol

Olivine web

Webster

Orthopyroxenite

Lherzolite

Opx

Hebi+Fushan

Garnet-facies mantlexenoliths from

Kaapvaal craton

Fanshi+Daton

On-

crat

on

Central NCC

YangyuaFanshiDatong

Oliv

ine

orth

opyr

oxen

ite H

arzb

urgi

te

Fig 2 Petrological classification of peridotites On-craton and off-craton peridotite xenolithxenoliths) and kimberlite-borne garnet-facies mantle xenoliths from the Kaapvaal cratonborne xenoliths from ocean basins (ie deep lithosphere) are similar to those from easternData sources Fushan (Xu et al 2010) Hebi (Zheng et al 2001 2005 Liu et al 2011 TangTang et al 2011) Datong (Liu et al 2011) Jining (Liu et al 2011 Zhang et al in press) Yan2000 Rudnick et al 2004 Tang et al 2007 Liu et al 2011)

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

isotopic compositions and olivine Fo first discussed in the Hannuobaperidotites (Zhang et al 2009) likely reflect different-degree referti-lization of originally refractory precursors through reaction withasthenosphere-derived melts (Tang et al 2008 Zhang et al 2009)

Compilation of Sr and Nd isotopic compositions of peridotites re-veals that very few samples from ancient cratonic mantle keep thecharacteristics of ancient melt residues although their major-element compositions reflect an origin as melt residues (Menzies1990 Pearson 1999) For example Nd isotopes in peridotite xeno-liths (Fig 6) from global cratons range from high 143Nd144Nd ratiosindicative of long-term parentndashdaughter depletion to low 143Nd144Nd ratios requiring ancient parentndashdaughter enrichment

Wehrlite

Olivine clinopyroxenitesterite

ite

Clinopyroxenite

Off-craton

Cpx

Dunite

g+Yangyuan Jining+Hannuoba

Shallow oceaniclithosphere

Deep oceaniclithosphere

HannuobaOceanic

Jining

North margin of the NCC

n

s shallow (abyssal ophiolitic peridotites) and deep oceanic lithosphere (basalt-borne South Africa are from Fan et al (2000) and references therein The lsquodeeprsquo basalt-Chinaet al 2011 and this study) Fanshi (Tang et al 2008 Xu et al 2008b Liu et al 2011gyuan (Xu et al 2008b Liu et al 2011) and Hannuoba (Song and Frey 1989 Fan et al

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

90 80 70 60 50

89

91

93

95

88

90

92

94

40100

Modal olivine ()

Oliv

ine

Fo

Melt metasomatism

Mean Archean

Archean

Mean ProterOceanic trend

Proterozoic

Mean high-Tlherzolites

Mean Tecton

ldquoPyroliterdquo

HebiFushan

HannuobaJiningYangyuan

FanshiDatong

Phlogopite metasomCentralNCC

Northmargin

Fig 3 Modal olivine vs Fo contents plot showing the mean compositions of ArchonProton and Tecton subcontinental lithospheric mantle and high-T sheared lherzolitexenoliths from kimberlites Two large arrows illustrate the effect of shallowphlogopite-related metasomatism and the melt-related metasomatism responsiblefor the composition of the sheared xenoliths (Smith et al 1991) The oceanic trend isthe compositional trend from fertile lherzolite to depleted oceanic harzburgite (Boyd1989)The base chart is from Griffin et al (2003) Data sources are as in Fig 2

0 2 4 6 889

91

93

95

88

90

92

94

0 2 4 6 8

Al2O3 (wt)

HebiFushan

HannuobaJiningYangyuan

FanshiDatong

Opx

Cpx

Mg

Mg

Refractory (central NCC)

Fertile(north margin of NCC)

Refractory(central NCC)

Fertile(north margin)

6 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Consequently the greatly heterogeneous isotopic compositions in thelithospheric mantle beneath the Central Zone reflect the diversity inparentndashdaughter elemental fractionation in minerals coupled withancient multiple-stage histories of melt depletion and subsequentrefertilization through melt influx This is also supported by the ele-mental and isotopic characteristics of coexisting opx and cpx in theHebi peridotites (Table 3 Fig 6) which are similar to those in the

HebiFushan

DatongFansi

YangyuanJiningHannuoba

Mn

O

000

010

020

005

015

91 9587 89 93

Paleozoic

Cenozoic

Olivine Fo

025

Ceno XenocrystsMeso Xenocrysts

CentralNCC

Northmargin

Fig 4 Fo vs MnO of olivine from the peridotites compared with olivine xenocrysts inthe Cenozoic XiyangndashPingding basalts (Tang et al 2004) and Mesozoic Shatuo gabbros(Ying et al 2010) and peridotite xenoliths entrained in the Paleozoic kimberlites andCenozoic basalts on the eastern NCC (Zheng et al 1998 2001) Data sources in additionto those designated in Fig 2 include Hannuoba data from Fan and Hooper (1991) andChen et al (2001)

Fig 5 Mg vs Al2O3 of opx and cpx in the mantle xenoliths from the Central Zone andthe West Block of the NCC Data sources are as in Fig 3

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Fanshi peridotites indicating multiple meltfluidndashperidotite interac-tions (Tang et al 2011)

63 RendashOs isotopic data and nature of the lithospheric mantle

The RendashOs system has proven to be particularly useful in tracingthe geochemical evolution of mantle rocks and in defining the chro-nology of mantle differentiation (Walker et al 1989 Shirey andWalker 1998) Nevertheless an increasing number of studies havefound that the RendashOs system in cratonic peridotites can be disturbedby peridotitendashmelt reaction especially when reaction preceded erup-tion by large time intervals (Pearson et al 1998 Alard et al 2002Zhang et al 2008 2009)

Sulfides from a mantle peridotite that underwent melt depletionand refertilization events may have a wide range of RendashOs modelages reflecting different generations of ldquooldrdquo sulfides (residual aftermelt depletion) and later sulfide melts (interstitial sulfides relatedto meltfluid metasomatism) (Pearson et al 1999 2002 Alard etal 2002 Aulbach et al 2004 Griffin et al 2004 Xu et al 2008aZhang et al 2008 2009 Harvey et al 2010) This implies that thebulk-rock Re and Os budget will be controlled by the relative contri-butions from these sulfide populations which are dependent onmeltrock ratios and the degree of S-saturation of the percolatingmelt during the refertilization of lithosphere (Reisberg et al 2005

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

702 702704 706705 708703 704706 710707 712

5140 5140

5115

5115

5110

5120

5120

5125

5125

5130

5130

51355135

87Sr86Sr 87Sr 86Sr

143 N

d14

4 Nd

a b

Fanshibasalts

DM+EMMixing

YangyuanDMMORB

Globalon-craton

Globaloff-craton

07154

Hannuoba

FushanFanshi harzFanshi lherz

Hebi CpxHebi Opx Oceanic

EM1

EM1

Hebibasalts

Mesozoiclithosperic mantle

Mesozoiclithosperic mantle

Kaapvaal

Jining

Fig 6 (a) Sr and Nd isotope ratios in cpx and opx from the peridotites together with the published data for peridotite xenolithsData sources in addition to this study cpx in peridotite xenoliths from Hannuoba (Song and Frey 1989 Tatsumoto et al 1992 Fan et al 2000 Rudnick et al 2004 Tang et al2011) Fanshi (Tang et al 2008 Xu et al 2008b Tang et al 2011) Yangyuan (Ma and Xu 2006 Xu et al 2008b) Jining peridotites (Zhang et al in press) and the Kaapvaal cratonSouth Africa (Menzies andMurthy 1980) Mesozoic lithospheric mantle beneath the Central Zone of the NCC (Zhang et al 2004Wang et al 2006 Xu et al 2010) Cenozoic Fanshiand Hebi host basalts (Tang et al 2006 2011 unpublished data) DM MORB and EM1 (Zindler and Hart 1986) The field roughly drawn denotes the DM-EM1 mixing trend(b) Oceanic peridotites and mantle peridotites from global on- and off-craton locations (Fan et al 2000 and references therein)

7Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Zhang et al 2009 Xiao and Zhang 2011) As a result melt percola-tion could lead to significant changes in the Os isotopic compositionsof the refertilized peridotites Thus whole-rock Os isotope composi-tions reflect the mixtures of different generations of sulfides There-fore the significant variability in Os isotopic compositions ofsulfides within individual peridotite samples calls into question thesignificance of many published whole-rock ldquodepletion agesrdquo(Pearson et al 2002)

RendashOs isotopic ages in the peridotite xenoliths from the NCC varygreatly with Re-depletion model ages (TRD) ranging from 0 to 30 Gaand RendashOs model ages (TMA) of 0ndash35 Ga (Fig 9) For example mostof the Hannuoba peridotites have Proterozoic whole-rock RendashOsmodel ages resembling the Cenozoic basaltndashhost peridotites fromother localities on the North China Craton (Fig 9) However the insitu TRD and TMA model ages of sulfides in the Hannuoba samplesshow a larger range from Archean to Phanerozoic model ages than

Table 3Sr and Nd isotopic compositions of cpx and opx in the peridotite xenoliths

Sample Rb (ppm) Sr (ppm) Sm (ppm) Nd (ppm) 87R

Cpx05HB68 0003 144 0355 472 0005HB70 0030 567 0308 197 0005HB72 0660 315 401 209 00HB1120 0041 768 0133 096 00HB1121 0000 167 0247 225 00HB1122 0004 266 0909 843 00HB1125 0003 161 0506 588 00HB1126 0004 479 665 269 00

Opx05HB68 0013 137 0005HB70 0010 127 0019 0073 0005HB72 0017 285 0063 0207 00HB1120 0007 149 00HB1121 0013 137 00HB1122 0011 137 0010 0094 00HB1125 0015 991 00HB1126 0035 425 0073 0231 0005HB09 0039 199 0451 0070 00HB1128 0081 877 0070 0325 00

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

the whole-rock ages of the peridotites strongly indicating that thewhole-rock ages are not the true formation ages of the peridotitesbut the mixing ages of multiple generations of sulfides (Pearson etal 2002 Griffin et al 2004 Xu et al 2008a Zhang et al 2009)The TRD ages of these peridotites apparently correlate with olivineFo (Fig 9) which is traditionally explained as melting trend (Griffinet al 2004) Alternatively this correlation could also reflect the reac-tion trend of a depleted residue with asthenosphere-derived melts(Zhang et al 2009) The refertilization of peridotites could lowerthe Fo of olivine (Zhang 2005 Griffin et al 2009) and result in thepositive correlations between Re abundances and Al2O3 and Yb con-tents in the peridotites by additions of Fe Al Yb and Re (Zhang etal 2009) Therefore the correlation between TRD ages and olivineFo may reflect the combined results of partial melting and refertiliza-tion processes and the latter lowered the TRD ages of the peridotitesdue to the additions of Re and less radiogenic Os or younger sulfide

b86Sr 87Sr86Sr 2σ 147Sm144Nd 143Nd144Nd 2σ

001 0703092 10 00456 0512942 9015 0703359 10 00944 0513004 7006 0703246 10 01160 0513039 6015 0704151 8 00841 0511825 8000 0703862 8 00665 0512144 12000 0703312 7 00652 0512758 7001 0703242 8 00521 0512960 10000 0703715 14 01494 0512896 9

276 0703529 10234 0703454 15 01604 0513005 7172 0703560 10 01844 0513003 24144 0704055 11277 0703891 10230 0704394 35 00664 0512655 12045 0704829 10241 0703576 13 01921 0512920 8561 0704215 17 39155 0512795 7268 0703655 11 01293 0512907 7

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

5140

5115

5110

5120

5125

5130

5135

89 91 92 9390Olivine Fo

0702

0703

0704

0705

0706

87S

r86

Sr

HebiFushanFanshiYangyuanHannuoba

Mesozoic

Mesozoic

North margin

Central NCC

North margin

Central NCC

143 N

d14

4 Nd

Fig 8 Olivine Fo vs Sr and Nd isotope ratios in cpx from the peridotites Data sourcesare as in Fig 6

200 3010

0509

0511

0512

0513

Time before present (Ga)

143 N

d14

4 Nd

0510

Depleted mantle

HB1120 ( 147144Sm Nd=00665)

t=18

Continental crustDM-old crustmixing

FS6-29 ( 147

144Sm Nd=00936)

Fig 7 The evolution of 143Nd144Nd with time in the HB1120 (this study) and sampleFS6ndash29 (Xu et al 2010) DM-old crust mixing represents the assumed modification ofthe samples by recycled crustal materials at 18 Ga The 143Nd144Nd of the samples at18 Ga were calculated based on the decay constant of 147Sm (654times10minus12) 143Nd144Nd of chondrite (0512638) and the measured 143Nd144Nd and Sm and Nd contentsof the samples

8 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

introduction which could obliterate the evidence of old ages (Griffinet al 2004)

The RendashOs isotopic data of Paleozoic kimberlite-borne xenolithsdemonstrated that Archean lithospheric mantle existed beneath theeastern NCC during the Paleozoic (Gao et al 2002 Wu et al 2006Zhang et al 2008 Chu et al 2009b) However most of the peridotitexenoliths hosted by the Cenozoic basalts have Proterozoic TRD andTMA ages with only a few xenoliths having Phanerozoic ages(Fig 9) The scarcity of Archean TRD ages may reflect that nearly allthe Archean lithospheric mantle beneath the eastern NCC has beenreplaced (Gao et al 2002 Wu et al 2006 Chu et al 2009b) or refer-tilized by multiple-stage influx of melts (Xu et al 2008a Zhang et al2008 2009 Xiao and Zhang 2011) In contrast some peridotites inthe Mesozoic and Cenozoic basaltic rocks in the Central Zone of theNCC have whole-rock (Xu et al 2008b) or sulfide (Zheng et al2007 Xu et al 2008a) TRD ages of Archean reflecting the existenceof Archean mantle beneath this region However the wide range inTRD ages observed in single peridotite and their sulfides may reflectprogressive modification of the lithospheric mantle by fertile mate-rials (Xu et al 2008a) as is well documented for the peridotitesfrom other regions of the world (Pearson et al 1999 2002 Alard etal 2002 Griffin et al 2004 Harvey et al 2010) As a result theTRD ages for most of the samples from the North China Craton may re-flect the mixing of different-generation sulfides generated by referti-lization processes

As a result most of the peridotite xenoliths from the Central Zoneincluding Hebi Fushan Fanshi Yangyuan Datong Jining and Han-nuoba localities are relatively fertile in compositions (Figs 3ndash5) andbear a resemblance to the ldquooceanicrdquo lithosphere (Fan et al 2000)but they are likely the fragments of refertilized Archean lithosphericmantle

64 Constraints on the destruction of the NCC

The mineralogy elemental and isotopic geochemistry of peridotitexenoliths entrained in the Mesozoic and Cenozoic igneous rocks fromthe NCC indicate that the present lithospheric mantle beneath theCentral Zone is highly heterogeneous which is likely produced from

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

an Archean lithosphere by refertilization via multistage additions ofmelt The early-stage melt may be derived from recycled crustal ma-terials and the later-stage melt be mainly derived from the astheno-sphere The refertilization processes could mask even totallyobliterate the Archean refractory signatures of parts of the litho-sphere and rejuvenate the Archean mantle by lowering the RendashOsmodel ages of refertilized peridotites (Zhang et al 2008 2009 Xiaoand Zhang 2011)

The peridotites from Fushan and Hebi in the central NCC are main-ly refractory harzburgites with minor lherzolites (Fig 2) Their ex-tremely variable SrndashNd isotopic ratios (Fig 6) and ArcheanndashPaleoproterozoic TRD ages (Fig 9) reflect low-degree modification ofthe Archean lithospheric mantle beneath the central NCC In contrastthe peridotites from the Hannuoba and Jining in the northern marginof the craton are almost fertile lherzolites (Fig 5) with depleted SrndashNd isotopic compositions (Figs 6 and 8) and ProterozoicndashPhanerozoicTRD ages (Fig 9) indicating high-degree refertilization of the mantlelithosphere (Tang et al 2008 Zhang et al 2009 in press) One peri-dotite from Jining has radiogenic 87Sr86Sr (up to 0707 Fig 6) likelyimplying the modification of oceanic crust (Zhang et al in press)This is consistent with the observation of Santosh (2010) providingevidence for imbrication of oceanic plate lithostratigraphy from theInner Mongolia suture zone (Fig 1)

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

88

89

90

91

92

93

TRD (Ga)

TM

A (

Ga) 20

25

30

35

15

10

05

95

0 05 10 15 20 25 30

Oliv

ine

Fo

TMA0 1 3

Sulfide

In basalt

In kimberlite

EasternBlockIn basalt

CentralZone

Hebi

HebiFushanFanshiDatongYangyuanJiningHannuoba

Reaction trend

Melting trend

Archean

Northmargin

Phanerozoic Proterozoic

PM

CentralNCC

Sulfide Hannuoba

In basalt easternIn kimber eastern

Sulfide Hebi

2

Fig 9 Diagrams of TMA and Fo of olivine vs TRD model ages of peridotite xenoliths andin situ analyses of sulfides from the NCC Inset shows histogram of the TMA agesData sources in addition to this study Hannuoba peridotites (Gao et al 2002 Xia etal 2004 Zhang et al 2009 Liu et al 2011) Fushan Datong and Hebi peridotites (Liuet al 2011) Jining (Liu et al 2011 Zhang et al in press) Fanshi and Yangyuan pe-ridotites (Xu et al 2008b Liu et al 2011) In situ ages of sulfides in Hannuoba andHebi peridotites (Zheng et al 2007 Xu et al 2008a) peridotite xenoliths entrainedin the Cenozoic basalts (Gao et al 2002 Wu et al 2003 2006 Chu et al 2009b) andPaleozoic kimberlites from the NCC (Gao et al 2002 Wu et al 2006 Zhang et al 2008Chu et al 2009b)

9Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Compared to the Hannuoba peridotites the Yangyuan and Fanshixenoliths are mainly lherzolites with minor harzburgite and haveenriched SrndashNd isotopic compositions and ArcheanndashPhanerozoic TRDages implying relatively low-degree modification of the lithosphericmantle Therefore the spatially petrologic and geochemical variationsof xenoliths suggest that the refertilization of ancient lithosphericmantle by melt additions became stronger from the interior to thenorth margin of the NCC (Zhang 2009) (Figs 2ndash9)

For the whole North China Craton it experienced a series ofsubductioncollision events as evidenced by the Paleozoic to TriassicQinlingndashDabie ultrahigh-pressure belt in south (Li et al 1993) theTianshanndashInner MongoliandashDaxinganling orogen in north (Xiao etal 2003 Zhang et al 2003) and the MesozoicndashCenozoic subductionof Pacific plate in east These events could intensively modify thesubcontinental lithospheric mantle by igneous refertilization viamultistage peridotitendashmelt reactions (Zhang et al 2002 2003 Xuet al 2008a Zhang et al 2009 Zhang et al 2010a 2010b Tanget al 2011 2012) leading to the highly heterogeneity of the mantle

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

7 Conclusions

Mineral element and SrndashNd isotopic compositions of the perido-tite xenoliths from the Cenozoic Hebi basalts in the Central Zone ofthe NCC coupled with previously published petrologic and isotopicdata of mantle xenoliths from the eastern NCC allow us to draw thefollowing conclusions

(1) The Hebi harzburgite xenoliths are refractory in mineral com-positions and highly variable in mineral SrndashNd isotopic compo-sitions ranging from MORB-like to EM1-type mantle They arethe residues of Archean lithospheric mantle beneath thisregion

(2) The present lithospheric mantle beneath the Central Zone ofthe NCC is highly heterogeneous in mineral and geochemicalcompositions likely produced by refertilization via multipleadditions of melts

(3) The refertilization of the lithospheric mantle became strongerfrom the interior to the margin of the craton which was closelyrelated to multiple subductioncollision events of circum-craton plates

Acknowledgments

Wewould like to express our gratitude to Qian Mao and Yu-GuangMa for their assistance with EPMA analyses and Jing-Hui Guo withisotopic analyses at the State Key Laboratory of Lithospheric Evolu-tion Institute of Geology and Geophysics Chinese Academy of Sci-ences We gratefully acknowledge the constructive reviews of SAulbach and an anonymous reviewer and editorial handling by Edi-tors which helped us to improve the presentation This work was fi-nancially supported by the National Science Foundation of China(Grants 91014007 41073028 and 40773026)

References

Adam J Green T 2006 Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt 1 Experimental results andthe investigation of controls on partitioning behaviour Contributions to Mineralo-gy and Petrology 152 1ndash17

Alard O Griffin WL Pearson NJ Lorand JP OReilly SY 2002 New insights intothe RendashOs systematics of sub-continental lithospheric mantle from in situ analysisof sulphides Earth and Planetary Science Letters 203 651ndash663

Aulbach S Griffin WL OReilly SY McCandless TE 2004 Genesis and evolution ofthe lithospheric mantle beneath the Buffalo Head Terrane Alberta (Canada) Lithos77 413ndash451

Beyer EE Griffin WL OReilly SY 2006 Transformation of Archaean lithosphericmantle by refertilization evidence from exposed peridotites in the Western GneissRegion Norway Journal of Petrology 47 1611ndash1636

Boyd FR 1989 Compositional distinction between oceanic and cratonic lithosphereEarth and Planetary Science Letters 96 15ndash26

Chen SH OReilly SY Zhou XH Griffin WL Zhang GH Sun M Feng JL ZhangM 2001 Thermal and petrological structure of the lithosphere beneath HannuobaSinondashKorean Craton China evidence from xenoliths Lithos 56 267ndash301

Chen L Zheng T Xu W 2006 A thinned lithospheric image of the Tanlu Fault Zoneeastern China constructed from wave equation based receiver function migrationJournal of Geophysical Research 111 B09312 doi1010292005jb003974

Chu ZY Chen FK Yang YH Guo JH 2009a Precise determination of Sm Nd con-centrations and Nd isotopic compositions at the nanogram level in geological sam-ples by thermal ionization mass spectrometry Journal of Analytical AtomicSpectrometry 24 1534ndash1544

Chu ZY Wu FY Walker RJ Rudnick RL Pitcher L Puchtel IS Yang YH WildeSA 2009b Temporal evolution of the lithospheric mantle beneath the easternNorth China Craton Journal of Petrology 50 1857ndash1898

Dobbs PN Duncan DJ Hu S Shee SR Colgan E Brown MA Smith CB AllsoppHL 1994 The geology of the Mengyin kimberlites Shandong China In MeyerHOA Leonardos OH (Eds) Diamonds Characterization Genesis and Explora-tion Proceedings of the 5th International Kimberlite Conference CPRM Brasiliapp 106ndash115

Fan QC Hooper PR 1991 The Cenozoic basaltic rocks of eastern China petrologyand chemical composition Journal of Petrology 32 765ndash810

Fan WM Menzies MA 1992 Destruction of aged lower lithosphere and accretion ofasthenosphere mantle beneath eastern China Geotectonica et Metallogenia 16171ndash180

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

10 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Fan WM Zhang HF Baker J Jarvis KE Mason PRD Menzies MA 2000 On andoff the north China craton where is the Archaean keel Journal of Petrology 41933ndash950

Frey FA Green DH 1974 The mineralogy geochemistry and origin of Iherzolite in-clusions in Victorian basanites Geochimica et Cosmochimica Acta 38 1023ndash1059

Gao S Rudnick RL Carlson RW McDonough WF Liu YS 2002 RendashOs evidencefor replacement of ancient mantle lithosphere beneath the North China cratonEarth and Planetary Science Letters 198 307ndash322

Gao S Rudnick RL Yuan HL Liu XM Liu YS Xu WL Ling WL Ayers J WangXC Wang QH 2004 Recycling lower continental crust in the North China cratonNature 432 892ndash897

Griffin WL OReilly SY Ryan CG 1992 Composition and thermal structure of thelithosphere beneath South Africa Siberia and China proton microprobe studiesInternational Symposium on Cenozoic Volcanic Rocks and Deep-seated Xenolithsof China and its Environs Beijing pp 65ndash66

Griffin WL Zhang AD OReilly SY Ryan CG 1998 Phanerozoic evolution of thelithosphere beneath the SinondashKorean Craton In Flower MFJ Chung SL LoCH Lee TY (Eds) Mantle Dynamics and Plate Interactions in East Asia AmericanGeophysical Union Washington DC pp 107ndash126

Griffin WL OReilly SY Abe N Aulbach S Davies RM Pearson NJ Doyle BJKivi K 2003 The origin and evolution of Archean lithospheric mantle Precambri-an Research 127 19ndash41

Griffin WL Graham S OReilly SY Pearson NJ 2004 Lithosphere evolution be-neath the Kaapvaal Craton RendashOs systematics of sulfides in mantle-derived peri-dotites Chemical Geology 208 89ndash118

Griffin WL OReilly SY Afonso JC Begg GC 2009 The composition and evolutionof lithospheric mantle a re-evaluation and its tectonic implications Journal of Pe-trology 50 1185ndash1204

Harvey J Gannoun A Burton KW Schiano P Rogers NW Alard O 2010 Unravel-ling the effects of melt depletion and secondary infiltration on mantle RendashOs iso-topes beneath the French Massif Central Geochimica et Cosmochimica Acta 74293ndash320

Kelemen PB Hart SR Bernstein S 1998 Silica enrichment in the continental uppermantle via meltrock reaction Earth and Planetary Science Letters 164 387ndash406

Kroumlner A Wilde SA Li JH Wang KY 2005 Ages and evolution of a Late Archean toPaleoproterozoic upper to lower crustal section in the WutaishanHengshanFup-ing terrain of northern China Journal of Asian Earth Sciences 24 577ndash595

Kusky TM 2011 Geophysical and geological tests of tectonic models of the NorthChina Craton Gondwana Research 20 26ndash35

Li SG Xiao YL Liou DL Chen YZ Ge NJ Zhang ZQ Sun SS Cong BL ZhangRY Hart SR Wang SS 1993 Collision of the North China and Yangtze Blocksand formation of coesite-bearing eclogite-timing and processes Chemical Geology109 89ndash111

Liu J Rudnick RL Walker RJ Gao S Wu FY Piccoli PM Yuan H Xu WL XuYG 2011 Mapping lithospheric boundaries using Os isotopes of mantle xenolithsan example from the North China Craton Geochimica et Cosmochimica Acta 753881ndash3902

Ma X 1989 Atlas of Active Faults in China Seismologic Press BeijingMa JL Xu YG 2006 Old EM1-type enriched mantle under the middle North China

Craton as indicated by Sr and Nd isotopes of mantle xenoliths from YangyuanHebei Province Chinese Science Bulletin 51 1343ndash1349

Menzies MA 1990 Effects of small volume melts Nature 343 312ndash313Menzies M Murthy VR 1980 Enriched mantle Nd and Sr isotopes in diopsides from

kimberlite nodules Nature 283 634ndash636Menzies MA Xu YG 1998 Geodynamics of the North China Craton In Flower

MFJ Chung SL Lo CH Lee TY (Eds) Mantle Dynamics and Plate Interactionsin East Asia American Geophysical Union Washington DC pp 155ndash165

Menzies MA Fan WM Zhang M 1993 Palaeozoic and Cenozoic lithoprobes andthe loss of gt120 km of Archaean lithosphere SinondashKorean craton China InPrichard HM Alabaster T Harris NBW Neary CR (Eds) Magmatic Processesand Plate Tectonics Geological Society of London Special Publication pp 71ndash81

Menzies M Xu YG Zhang HF Fan WM 2007 Integration of geology geophysicsand geochemistry a key to understanding the North China Craton Lithos 96 1ndash21

OReilly SY Griffin WL Poudjom YH Morgan P 2001 Are lithosphere forever Track-ing changes in subcontinental lithospheric mantle through time GSA Today 11 4ndash10

Pearson DG 1999 Evolution of cratonic lithospheric mantle an isotopic perspectiveIn Fei Y Berka CM Mysen BO (Eds) Mantle Petrology Field Observations andHigh-Pressure Experimentation A Tribute to Francis R (Joe) Boyd The Geochemi-cal Society Special Publication pp 57ndash78

Pearson DG Shirey SB Harris JW Carlson RW 1998 Sulphide inclusions in dia-monds from the Koffiefontein kimberlite S Africa constraints on diamond agesand mantle RendashOs systematics Earth and Planetary Science Letters 160 311ndash326

Pearson DG Shirey SB Bulanova GP Carlson RW Milledge HJ 1999 RendashOs iso-tope measurements of single sulfide inclusions in a Siberian diamond and its nitro-gen aggregation systematics Geochimica et Cosmochimica Acta 63 703ndash711

Pearson NJ Alard O Griffin WL Jackson SE OReilly SY 2002 In situ measure-ment of RendashOs isotopes in mantle sulfides by laser ablation multicollector-inductively coupled plasma mass spectrometry analytical methods and prelimi-nary results Geochimica et Cosmochimica Acta 66 1037ndash1050

Reisberg L Zhi XC Lorand JP Wagner C Peng ZC Zimmermann C 2005 RendashOsand S systematics of spinel peridotite xenoliths from east central China evidencefor contrasting effects of melt percolation Earth and Planetary Science Letters239 286ndash308

Rudnick RL Gao S Ling WL Liu YS McDonough WF 2004 Petrology and geo-chemistry of spinel peridotite xenoliths from Hannuoba and Qixia North ChinaCraton Lithos 77 609ndash637

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Santosh M 2010 Assembling North China Craton within the Columbia superconti-nent the role of double-sided subduction Precambrian Research 178 149ndash167

Santosh M Tsunogae T Li JH Liu SJ 2007a Discovery of sapphirine-bearing MgndashAl granulites in the North China Craton implications for Paleoproterozoic ultra-high temperature metamorphism Gondwana Research 11 263ndash285

Santosh M Wilde SA Li JH 2007b Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton evidence from SHRIMPUndashPb zircon geochronology Precambrian Research 159 178ndash196

Santosh M Sajeev K Li JH Liu SJ Itaya T 2009 Counterclockwise exhumation ofa hot orogen the Paleoproterozoic ultrahigh-temperature granulites in the NorthChina Craton Lithos 110 140ndash152

Santosh M Zhao D Kusky T 2010 Mantle dynamics of the Paleoproterozoic NorthChina Craton a perspective based on seismic tomography Journal of Geodynamics49 39ndash53

Santosh M Liu SJ Tsunogae T Li JH 2011 Paleoproterozoic ultrahigh-temperature granulites in the North China Craton implications for tectonic modelson extreme crustal metamorphism Precambrian Research doi101016jprecamres201110051003

Shirey SB Walker RJ 1998 The RendashOs isotopic system in cosmochemistry and igne-ous geochemistry Annual Reviews of Earth and Planetary Sciences 26 425ndash500

Smith D Griffin WL Ryan CG Sie SH 1991 Trace-element zonation in garnetsfrom the thumb mdash heating and melt infiltration below the Colorado Plateau Con-tributions to Mineralogy and Petrology 107 60ndash79

Song Y Frey FA 1989 Geochemistry of peridotite xenoliths in basalt from Hannuobaeastern China implications for subcontinental mantle heterogeneity Geochimica etCosmochimica Acta 53 97ndash113

Tang YJ Zhang HF Ying JF 2004 High-Mg olivine xenocrysts entrained in Cenozoicbasalts in central Taihang Mountains relicts of old lithospheric mantle Acta Petrolo-gica Sinica 20 1243ndash1252

Tang YJ Zhang HF Ying JF 2006 Asthenospherendashlithospheric mantle interactionin an extensional regime implication from the geochemistry of Cenozoic basaltsfrom Taihang Mountains North China Craton Chemical Geology 233 309ndash327

Tang YJ Zhang HF Nakamura E Moriguti T Kobayashi K Ying JF 2007 Lithiumisotopic systematics of peridotite xenoliths from Hannuoba North China Cratonimplications for meltndashrock interaction in the considerably thinned lithosphericmantle Geochimica et Cosmochimica Acta 71 4327ndash4341

Tang YJ Zhang HF Ying JF Zhang J Liu XM 2008 Refertilization of ancient lith-ospheric mantle beneath the central North China Craton evidence from petrologyand geochemistry of peridotite xenoliths Lithos 101 435ndash452

Tang YJ Zhang HF Nakamura E Ying JF 2011 Multistage meltfluidndashperidotiteinteractions in the refertilized lithospheric mantle beneath the North China Cra-ton constraints from the LindashSrndashNd isotopic disequilibrium between minerals ofperidotite xenoliths Contributions to Mineralogy and Petrology 161 845ndash861

Tang YJ Zhang HF Deloule E Su BX Ying JF Xiao Y Hu Y 2012 Slab-derivedlithium isotopic signatures in mantle xenoliths from northeastern North China Cra-ton Lithos doi101016jlithos201112001

Tatsumoto M Basu AR Huang WK Wang JW Xie GH 1992 Sr Nd and Pb iso-topes of ultramafic xenoliths in volcanic-rocks of eastern China enriched compo-nents EMI and EMII in subcontinental lithosphere Earth and Planetary ScienceLetters 113 107ndash128

Walker RJ Carlson RW Shirey SB Boyd FR 1989 Os Sr Nd and Pb isotope sys-tematics of southern African peridotite xenoliths implications for the chemicalevolution of subcontinental mantle Geochimica et Cosmochimica Acta 531583ndash1595

Wang YJ Fan WM Zhang HF Peng TP 2006 Early Cretaceous gabbroic rocksfrom the Taihang Mountains implications for a paleosubduction-related litho-spheric mantle beneath the central North China Craton Lithos 86 281ndash302

Wilshire HG Shervais JW 1975 Al-augite and Cr-diopside ultramafic xenoliths inbasaltic rocks from western United States Physics and Chemistry of the Earth 9257ndash272

Wu FY Walker RJ Ren XW Sun DY Zhou XH 2003 Osmium isotopic con-straints on the age of lithospheric mantle beneath northeastern China ChemicalGeology 196 107ndash129

Wu FY Walker RJ Yang YH Yuan HL Yang JH 2006 The chemicalndashtemporalevolution of lithospheric mantle underlying the North China Craton Geochimicaet Cosmochimica Acta 70 5013ndash5034

Xia QX Zhi XC Meng Q Zheng L Peng ZC 2004 The trace element and RendashOsisotopic geochemistry of mantle-derived peridotite xenoliths from Hannuoba na-ture and age of SCLM beneath the area Acta Petrologica Sinica 20 1215ndash1224 (inChinese with English abstract)

Xiao Y Zhang HF 2011 Effects of melt percolation on platinum group elements andRendashOs systematics of peridotites from the TanndashLu fault zone eastern North ChinaCraton Journal of the Geological Society of London 168 1201ndash1214

Xiao WJ Windley B Hao J Zhai MG 2003 Accretion leading to collision and thePermian Solonker suture Inner Mongolia China termination of the CentralAsian orogenic belt Tectonics 22 doi1010292202 TC001484

Xu YG 2001 Thermo-tectonic destruction of the Archean lithospheric keel beneaththe SinondashKorean Craton in China evidence timing and mechanism Physics andChemistry of the Earth (A) 26 747ndash757

Xu YG 2002 Evidence for crustal components in the mantle and constraints on crustalrecycling mechanisms pyroxenite xenoliths from Hannuoba North China ChemicalGeology 182 301ndash322

Xu XS OReilly SY Griffin WL Zhou XM Huang XL 1998 The nature of the Ce-nozoic lithosphere of Nushan eastern China In Flower MFJ Chung SL Lo CHLee TY (Eds) Mantle Dynamics and Plate Interactions in East Asia AmericanGeophysical Union Washington DC pp 167ndash196

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

11Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Xu YG Chung SL Ma JL Shi LB 2004 Contrasting Cenozoic lithospheric evolutionand architecture in the western and eastern SinondashKorean craton constrains fromgeochemistry of basalts and mantle xenoliths Journal of Geology 112 593ndash605

Xu XS Griffin WL OReilly SY Pearson NJ Geng HY Zheng JP 2008a RendashOsisotopes of sulfides in mantle xenoliths from eastern China progressive modifica-tion of lithospheric mantle Lithos 102 43ndash64

Xu YG Blusztajn J Ma JL Suzuki K Liu JF Hart SR 2008b Late Archean to earlyProterozoic lithospheric mantle beneath the western North China craton SrndashNdndashOs isotopes of peridotite xenoliths from Yangyuan and Fansi Lithos 102 25ndash42

Xu W Yang D Gao S Pei F Yu Y 2010 Geochemistry of peridotite xenoliths inEarly Cretaceous high-Mg diorites from the Central Orogenic Block of the NorthChina Craton the nature of Mesozoic lithospheric mantle and constraints on lith-ospheric thinning Chemical Geology 270 257ndash273

Yang JH Wu FY Wilde SA 2003 A review of the geodynamic setting of large-scaleLate Mesozoic gold mineralization in the North China craton an association withlithospheric thinning Ore Geology Reviews 23 125ndash152

Ying JF Zhang HF Tang YJ 2010 Zoned olivine xenocrysts in a late Mesozoic gab-bro from the southern Taihang Mountains implications for old lithospheric mantlebeneath the central North China Craton Geological Magazine 147 161ndash170

Yuan XC 1996 Atlas of Geophysics in China Geological Publishing House BeijingZhai MG Santosh M 2011 The early Precambrian odyssey of the North China Craton a

synoptic overview Gondwana Research 20 6ndash25Zhang HF 2005 Transformation of lithospheric mantle through peridotitendashmelt reac-

tion a case of SinondashKorean craton Earth and Planetary Science Letters 237768ndash780

Zhang HF 2009 Peridotitendashmelt interaction a key point for the destruction of cra-tonic lithospheric mantle Chinese Science Bulletin 54 3417ndash3437

Zhang HF Sun M Zhou XH Fan WM Zhai MG Ying JF 2002 Mesozoic litho-sphere destruction beneath the North China Craton evidence from major- trace-element and SrndashNdndashPb isotope studies of Fangcheng basalts Contributions to Min-eralogy and Petrology 144 241ndash253

Zhang HF Sun M Zhou XH Zhou MF Fan WM Zheng JP 2003 Secular evolu-tion of the lithosphere beneath the eastern North China Craton evidence fromMe-sozoic basalts and high-Mg andesites Geochimica et Cosmochimica Acta 674373ndash4387

Zhang HF Sun M Zhou MF Fan WM Zhou XH Zhai MG 2004 Highly hetero-geneous late Mesozoic lithospheric mantle beneath the north China Craton evi-dence from SrndashNdndashPb isotopic systematics of mafic igneous rocks GeologicalMagazine 141 55ndash62

Zhang J Zhao GC Sun M Wilde SA Li SZ Liu SW 2006 High-pressure maficgranulites in the Trans-North China Orogen tectonic significance and age Gond-wana Research 9 349ndash362

Zhang HF Nakamura E Kobayashi K Zhang J Ying JF Tang YJ Niu LF 2007Transformation of subcontinental lithospheric mantle through peridotitendashmelt re-action evidence from a highly fertile mantle xenolith from the North China cratonInternational Geology Review 49 658ndash679

Zhang HF Goldstein S Zhou XH Sun M Zheng JP Cai Y 2008 Evolution of sub-continental lithospheric mantle beneath eastern China RendashOs isotopic evidencefrom mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts Contribu-tions to Mineralogy and Petrology 155 271ndash293

Zhang HF Goldstein SL Zhou XH Sun M Cai Y 2009 Comprehensive refertiliza-tion of lithospheric mantle beneath the North China Craton further OsndashSrndashNd iso-topic constraints Journal of the Geological Society of London 166 249ndash259

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Zhang HF Deloule E Tang YJ Ying JF 2010a Meltrock interaction in remains ofrefertilized Archean lithospheric mantle in Jiaodong Peninsula North China Cra-ton Li isotopic evidence Contributions to Mineralogy and Petrology 160 261ndash277

Zhang HF Nakamura E Kobayashi K Ying JF Tang YJ 2010b Recycled crustalmelt injection into lithospheric mantle implication from cumulative compositeand pyroxenite xenoliths International Journal of Earth Sciences 99 1167ndash1186

Zhang HF Ying JF Tang YJ Li XH Feng C Santosh M 2011 Phanerozoic reacti-vation of the Archean North China Craton through episodic magmatism evidencefrom zircon UndashPb geochronology and Hf isotopes from the Liaodong PeninsulaGondwana Research 19 446ndash459

Zhang HF Sun YL Tang YJ Xiao Y Zhang WH Zhao XM Santosh M MenziesMA in press Melt-peridotite interaction in the Pre-cambrian mantle beneath thewestern North China Craton Petrology geochemistry and Sr Nd and Re isotopesLithos doi101016jlithos201201027

Zhao GC Cawood PA Wilde SA Sun M 2000 Metamorphism of basement rocksin the Central Zone of the North China craton implications for Paleoproterozoictectonic evolution Precambrian Research 103 55ndash88

Zhao GC Wilde SA Sun M Li SZ Li XP Zhang J 2008 SHRIMP UndashPb zircon agesof granitoid rocks in the Luumlliang Complex implications for the accretion and evo-lution of the Trans-North China Orogen Precambrian Research 160 213ndash226

Zhao GC Wilde SA Guo JH Cawood PA Sun M Li XP 2010a Single zircongrains record two Paleoproterozoic collisional events in the North China CratonPrecambrian Research 177 266ndash276

Zhao GC Wilde SA Zhang J 2010b New evidence from seismic imaging for sub-duction during assembly of the North China craton comment Geology 38 e206

Zhao XM Zhang HF Zhu XK Tang SH Tang YJ 2010c Iron isotope variations inspinel peridotite xenoliths from North China Craton implications for mantle meta-somatism Contributions to Mineralogy and Petrology 160 1ndash14

Zheng JP OReilly SY Griffin WL Lu FX Zhang M 1998 Nature and evolution ofCenozoic lithospheric mantle beneath Shandong peninsula SinondashKorean cratoneastern China International Geology Review 40 471ndash499

Zheng JP OReilly SY Griffin WL Lu FX Zhang M Pearson NJ 2001 Relict re-fractory mantle beneath the eastern North China block significance for lithosphereevolution Lithos 57 43ndash66

Zheng JP Griffin WL OReilly SY Liou JG Zhang RY Lu FX 2005 Late MesozoicndashEocene mantle replacement beneath the eastern North China craton evidence fromthe Paleozoic and Cenozoic peridotite xenoliths International Geology Review 47457ndash472

Zheng JP Griffin WL OReilly SY Yang JS Li TF Zhang M Zhang RY Liou JG2006 Mineral chemistry of peridotites from Paleozoic Mesozoic and Cenozoic litho-sphere constraints on mantle evolution beneath eastern China Journal of Petrology47 2233ndash2256

Zheng JP Griffin WL OReilly SY Yu CM Zhang HF Pearson N Zhang M 2007Mechanism and timing of lithospheric modification and replacement beneath theeastern North China Craton peridotitic xenoliths from the 100 Ma Fuxin basaltsand a regional synthesis Geochimica et Cosmochimica Acta 71 5203ndash5225

Zhou XH Armstrong RL 1982 Cenozoic volcanic rocks of eastern China mdash secularand geographic trends in chemistry and strontium isotopic composition Earthand Planetary Science Letters 58 301ndash329

Zindler A Hart SR 1986 Chemical geodynamics Annual Reviews of Earth and Plane-tary Sciences 14 493ndash571

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

Table 2Major elemental compositions (wt) of minerals in Hebi mantle xenoliths

Sample Mineral SiO2 MgO FeO CaO Al2O3 Cr2O3 Na2O NiO MnO TiO2 Total Mg

05HB68 Ol 4142 4970 797 007 006 003 001 035 012 002 998 91805HB70 Ol 4161 4991 765 007 000 001 000 040 010 000 998 92105HB72 Ol 4162 5011 814 010 000 007 000 037 012 000 1005 917HB1120 Ol 4144 4973 771 011 004 001 001 044 011 002 996 921HB1121 Ol 4138 5036 805 011 003 002 002 040 011 000 1005 918HB1122 Ol 4170 4969 782 009 001 003 001 038 009 001 998 920HB1125 Ol 4116 4927 807 011 000 000 003 031 012 001 991 917HB1126 Ol 4202 4997 836 006 000 001 000 043 011 000 1010 91505HB09 Ol 4156 5029 792 008 003 000 000 040 012 000 1004 920HB1128 Ol 4208 5099 727 000 003 000 000 046 007 000 1009 92705HB68 Opx 5628 3288 496 107 317 082 002 013 015 000 995 92305HB70 Opx 5615 3268 504 102 300 077 003 014 014 000 990 92105HB72 Opx 5589 3299 481 096 344 091 013 013 013 002 994 925HB1120 Opx 5654 3308 522 107 303 083 004 014 007 003 1000 919HB1121 Opx 5606 3304 484 097 316 084 005 010 013 001 992 925HB1122 Opx 5636 3323 500 099 273 075 011 004 013 000 994 923HB1125 Opx 5649 3349 478 084 274 083 007 011 008 000 994 927HB1126 Opx 5715 3333 517 056 257 061 012 010 011 000 997 92105HB09 Opx 5624 3349 503 099 278 084 002 012 011 001 996 923HB1128 Opx 5749 3478 493 029 195 028 005 011 012 001 1000 92705HB68 Cpx 5258 1717 243 2127 323 107 042 005 006 005 983 92705HB70 Cpx 5313 1695 226 2120 306 117 039 003 013 002 983 93105HB72 Cpx 5282 1579 236 1919 455 166 166 004 009 034 985 923HB1120 Cpx 5280 1702 241 2096 309 136 049 008 008 009 984 927HB1121 Cpx 5305 1681 221 2103 301 125 054 007 008 009 981 932HB1122 Cpx 5324 1689 242 2054 300 134 076 008 005 022 985 926HB1125 Cpx 5293 1732 242 2133 260 127 047 004 002 005 984 928HB1126 Cpx 5402 1504 231 1900 366 223 222 006 009 034 990 921

Mg=100timesmol Mg2+(Mg2++Fe2+)

5Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

lithospheric mantle Therefore the depleted isotopic compositions re-flect the effect of reaction between old peridotites andasthenosphere-derived melt (Fig 6)

Refractory peridotite (high Fo) should be lower in RbSr andhigher in SmNd than primitive mantle due to the more incompatibil-ity of Rb than Sr and Nd than Sm during partial melting (Adam andGreen 2006) and thus be lower in 87Sr86Sr and higher 143Nd144Ndratios than fertile peridotite (low Fo) and primitive mantle This iscompletely opposite to the observation that olivine Fo in the Cenozoicbasalt-borne peridotite xenoliths from the Central Zone positivelycorrelate with Sr isotope ratios and negatively correlate with Nd iso-tope ratios (Fig 8) Therefore the correlations between SrndashNd

HebiFushanKaapvaal

Ol

Olivine web

Webster

Orthopyroxenite

Lherzolite

Opx

Hebi+Fushan

Garnet-facies mantlexenoliths from

Kaapvaal craton

Fanshi+Daton

On-

crat

on

Central NCC

YangyuaFanshiDatong

Oliv

ine

orth

opyr

oxen

ite H

arzb

urgi

te

Fig 2 Petrological classification of peridotites On-craton and off-craton peridotite xenolithxenoliths) and kimberlite-borne garnet-facies mantle xenoliths from the Kaapvaal cratonborne xenoliths from ocean basins (ie deep lithosphere) are similar to those from easternData sources Fushan (Xu et al 2010) Hebi (Zheng et al 2001 2005 Liu et al 2011 TangTang et al 2011) Datong (Liu et al 2011) Jining (Liu et al 2011 Zhang et al in press) Yan2000 Rudnick et al 2004 Tang et al 2007 Liu et al 2011)

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

isotopic compositions and olivine Fo first discussed in the Hannuobaperidotites (Zhang et al 2009) likely reflect different-degree referti-lization of originally refractory precursors through reaction withasthenosphere-derived melts (Tang et al 2008 Zhang et al 2009)

Compilation of Sr and Nd isotopic compositions of peridotites re-veals that very few samples from ancient cratonic mantle keep thecharacteristics of ancient melt residues although their major-element compositions reflect an origin as melt residues (Menzies1990 Pearson 1999) For example Nd isotopes in peridotite xeno-liths (Fig 6) from global cratons range from high 143Nd144Nd ratiosindicative of long-term parentndashdaughter depletion to low 143Nd144Nd ratios requiring ancient parentndashdaughter enrichment

Wehrlite

Olivine clinopyroxenitesterite

ite

Clinopyroxenite

Off-craton

Cpx

Dunite

g+Yangyuan Jining+Hannuoba

Shallow oceaniclithosphere

Deep oceaniclithosphere

HannuobaOceanic

Jining

North margin of the NCC

n

s shallow (abyssal ophiolitic peridotites) and deep oceanic lithosphere (basalt-borne South Africa are from Fan et al (2000) and references therein The lsquodeeprsquo basalt-Chinaet al 2011 and this study) Fanshi (Tang et al 2008 Xu et al 2008b Liu et al 2011gyuan (Xu et al 2008b Liu et al 2011) and Hannuoba (Song and Frey 1989 Fan et al

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

90 80 70 60 50

89

91

93

95

88

90

92

94

40100

Modal olivine ()

Oliv

ine

Fo

Melt metasomatism

Mean Archean

Archean

Mean ProterOceanic trend

Proterozoic

Mean high-Tlherzolites

Mean Tecton

ldquoPyroliterdquo

HebiFushan

HannuobaJiningYangyuan

FanshiDatong

Phlogopite metasomCentralNCC

Northmargin

Fig 3 Modal olivine vs Fo contents plot showing the mean compositions of ArchonProton and Tecton subcontinental lithospheric mantle and high-T sheared lherzolitexenoliths from kimberlites Two large arrows illustrate the effect of shallowphlogopite-related metasomatism and the melt-related metasomatism responsiblefor the composition of the sheared xenoliths (Smith et al 1991) The oceanic trend isthe compositional trend from fertile lherzolite to depleted oceanic harzburgite (Boyd1989)The base chart is from Griffin et al (2003) Data sources are as in Fig 2

0 2 4 6 889

91

93

95

88

90

92

94

0 2 4 6 8

Al2O3 (wt)

HebiFushan

HannuobaJiningYangyuan

FanshiDatong

Opx

Cpx

Mg

Mg

Refractory (central NCC)

Fertile(north margin of NCC)

Refractory(central NCC)

Fertile(north margin)

6 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Consequently the greatly heterogeneous isotopic compositions in thelithospheric mantle beneath the Central Zone reflect the diversity inparentndashdaughter elemental fractionation in minerals coupled withancient multiple-stage histories of melt depletion and subsequentrefertilization through melt influx This is also supported by the ele-mental and isotopic characteristics of coexisting opx and cpx in theHebi peridotites (Table 3 Fig 6) which are similar to those in the

HebiFushan

DatongFansi

YangyuanJiningHannuoba

Mn

O

000

010

020

005

015

91 9587 89 93

Paleozoic

Cenozoic

Olivine Fo

025

Ceno XenocrystsMeso Xenocrysts

CentralNCC

Northmargin

Fig 4 Fo vs MnO of olivine from the peridotites compared with olivine xenocrysts inthe Cenozoic XiyangndashPingding basalts (Tang et al 2004) and Mesozoic Shatuo gabbros(Ying et al 2010) and peridotite xenoliths entrained in the Paleozoic kimberlites andCenozoic basalts on the eastern NCC (Zheng et al 1998 2001) Data sources in additionto those designated in Fig 2 include Hannuoba data from Fan and Hooper (1991) andChen et al (2001)

Fig 5 Mg vs Al2O3 of opx and cpx in the mantle xenoliths from the Central Zone andthe West Block of the NCC Data sources are as in Fig 3

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Fanshi peridotites indicating multiple meltfluidndashperidotite interac-tions (Tang et al 2011)

63 RendashOs isotopic data and nature of the lithospheric mantle

The RendashOs system has proven to be particularly useful in tracingthe geochemical evolution of mantle rocks and in defining the chro-nology of mantle differentiation (Walker et al 1989 Shirey andWalker 1998) Nevertheless an increasing number of studies havefound that the RendashOs system in cratonic peridotites can be disturbedby peridotitendashmelt reaction especially when reaction preceded erup-tion by large time intervals (Pearson et al 1998 Alard et al 2002Zhang et al 2008 2009)

Sulfides from a mantle peridotite that underwent melt depletionand refertilization events may have a wide range of RendashOs modelages reflecting different generations of ldquooldrdquo sulfides (residual aftermelt depletion) and later sulfide melts (interstitial sulfides relatedto meltfluid metasomatism) (Pearson et al 1999 2002 Alard etal 2002 Aulbach et al 2004 Griffin et al 2004 Xu et al 2008aZhang et al 2008 2009 Harvey et al 2010) This implies that thebulk-rock Re and Os budget will be controlled by the relative contri-butions from these sulfide populations which are dependent onmeltrock ratios and the degree of S-saturation of the percolatingmelt during the refertilization of lithosphere (Reisberg et al 2005

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

702 702704 706705 708703 704706 710707 712

5140 5140

5115

5115

5110

5120

5120

5125

5125

5130

5130

51355135

87Sr86Sr 87Sr 86Sr

143 N

d14

4 Nd

a b

Fanshibasalts

DM+EMMixing

YangyuanDMMORB

Globalon-craton

Globaloff-craton

07154

Hannuoba

FushanFanshi harzFanshi lherz

Hebi CpxHebi Opx Oceanic

EM1

EM1

Hebibasalts

Mesozoiclithosperic mantle

Mesozoiclithosperic mantle

Kaapvaal

Jining

Fig 6 (a) Sr and Nd isotope ratios in cpx and opx from the peridotites together with the published data for peridotite xenolithsData sources in addition to this study cpx in peridotite xenoliths from Hannuoba (Song and Frey 1989 Tatsumoto et al 1992 Fan et al 2000 Rudnick et al 2004 Tang et al2011) Fanshi (Tang et al 2008 Xu et al 2008b Tang et al 2011) Yangyuan (Ma and Xu 2006 Xu et al 2008b) Jining peridotites (Zhang et al in press) and the Kaapvaal cratonSouth Africa (Menzies andMurthy 1980) Mesozoic lithospheric mantle beneath the Central Zone of the NCC (Zhang et al 2004Wang et al 2006 Xu et al 2010) Cenozoic Fanshiand Hebi host basalts (Tang et al 2006 2011 unpublished data) DM MORB and EM1 (Zindler and Hart 1986) The field roughly drawn denotes the DM-EM1 mixing trend(b) Oceanic peridotites and mantle peridotites from global on- and off-craton locations (Fan et al 2000 and references therein)

7Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Zhang et al 2009 Xiao and Zhang 2011) As a result melt percola-tion could lead to significant changes in the Os isotopic compositionsof the refertilized peridotites Thus whole-rock Os isotope composi-tions reflect the mixtures of different generations of sulfides There-fore the significant variability in Os isotopic compositions ofsulfides within individual peridotite samples calls into question thesignificance of many published whole-rock ldquodepletion agesrdquo(Pearson et al 2002)

RendashOs isotopic ages in the peridotite xenoliths from the NCC varygreatly with Re-depletion model ages (TRD) ranging from 0 to 30 Gaand RendashOs model ages (TMA) of 0ndash35 Ga (Fig 9) For example mostof the Hannuoba peridotites have Proterozoic whole-rock RendashOsmodel ages resembling the Cenozoic basaltndashhost peridotites fromother localities on the North China Craton (Fig 9) However the insitu TRD and TMA model ages of sulfides in the Hannuoba samplesshow a larger range from Archean to Phanerozoic model ages than

Table 3Sr and Nd isotopic compositions of cpx and opx in the peridotite xenoliths

Sample Rb (ppm) Sr (ppm) Sm (ppm) Nd (ppm) 87R

Cpx05HB68 0003 144 0355 472 0005HB70 0030 567 0308 197 0005HB72 0660 315 401 209 00HB1120 0041 768 0133 096 00HB1121 0000 167 0247 225 00HB1122 0004 266 0909 843 00HB1125 0003 161 0506 588 00HB1126 0004 479 665 269 00

Opx05HB68 0013 137 0005HB70 0010 127 0019 0073 0005HB72 0017 285 0063 0207 00HB1120 0007 149 00HB1121 0013 137 00HB1122 0011 137 0010 0094 00HB1125 0015 991 00HB1126 0035 425 0073 0231 0005HB09 0039 199 0451 0070 00HB1128 0081 877 0070 0325 00

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

the whole-rock ages of the peridotites strongly indicating that thewhole-rock ages are not the true formation ages of the peridotitesbut the mixing ages of multiple generations of sulfides (Pearson etal 2002 Griffin et al 2004 Xu et al 2008a Zhang et al 2009)The TRD ages of these peridotites apparently correlate with olivineFo (Fig 9) which is traditionally explained as melting trend (Griffinet al 2004) Alternatively this correlation could also reflect the reac-tion trend of a depleted residue with asthenosphere-derived melts(Zhang et al 2009) The refertilization of peridotites could lowerthe Fo of olivine (Zhang 2005 Griffin et al 2009) and result in thepositive correlations between Re abundances and Al2O3 and Yb con-tents in the peridotites by additions of Fe Al Yb and Re (Zhang etal 2009) Therefore the correlation between TRD ages and olivineFo may reflect the combined results of partial melting and refertiliza-tion processes and the latter lowered the TRD ages of the peridotitesdue to the additions of Re and less radiogenic Os or younger sulfide

b86Sr 87Sr86Sr 2σ 147Sm144Nd 143Nd144Nd 2σ

001 0703092 10 00456 0512942 9015 0703359 10 00944 0513004 7006 0703246 10 01160 0513039 6015 0704151 8 00841 0511825 8000 0703862 8 00665 0512144 12000 0703312 7 00652 0512758 7001 0703242 8 00521 0512960 10000 0703715 14 01494 0512896 9

276 0703529 10234 0703454 15 01604 0513005 7172 0703560 10 01844 0513003 24144 0704055 11277 0703891 10230 0704394 35 00664 0512655 12045 0704829 10241 0703576 13 01921 0512920 8561 0704215 17 39155 0512795 7268 0703655 11 01293 0512907 7

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

5140

5115

5110

5120

5125

5130

5135

89 91 92 9390Olivine Fo

0702

0703

0704

0705

0706

87S

r86

Sr

HebiFushanFanshiYangyuanHannuoba

Mesozoic

Mesozoic

North margin

Central NCC

North margin

Central NCC

143 N

d14

4 Nd

Fig 8 Olivine Fo vs Sr and Nd isotope ratios in cpx from the peridotites Data sourcesare as in Fig 6

200 3010

0509

0511

0512

0513

Time before present (Ga)

143 N

d14

4 Nd

0510

Depleted mantle

HB1120 ( 147144Sm Nd=00665)

t=18

Continental crustDM-old crustmixing

FS6-29 ( 147

144Sm Nd=00936)

Fig 7 The evolution of 143Nd144Nd with time in the HB1120 (this study) and sampleFS6ndash29 (Xu et al 2010) DM-old crust mixing represents the assumed modification ofthe samples by recycled crustal materials at 18 Ga The 143Nd144Nd of the samples at18 Ga were calculated based on the decay constant of 147Sm (654times10minus12) 143Nd144Nd of chondrite (0512638) and the measured 143Nd144Nd and Sm and Nd contentsof the samples

8 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

introduction which could obliterate the evidence of old ages (Griffinet al 2004)

The RendashOs isotopic data of Paleozoic kimberlite-borne xenolithsdemonstrated that Archean lithospheric mantle existed beneath theeastern NCC during the Paleozoic (Gao et al 2002 Wu et al 2006Zhang et al 2008 Chu et al 2009b) However most of the peridotitexenoliths hosted by the Cenozoic basalts have Proterozoic TRD andTMA ages with only a few xenoliths having Phanerozoic ages(Fig 9) The scarcity of Archean TRD ages may reflect that nearly allthe Archean lithospheric mantle beneath the eastern NCC has beenreplaced (Gao et al 2002 Wu et al 2006 Chu et al 2009b) or refer-tilized by multiple-stage influx of melts (Xu et al 2008a Zhang et al2008 2009 Xiao and Zhang 2011) In contrast some peridotites inthe Mesozoic and Cenozoic basaltic rocks in the Central Zone of theNCC have whole-rock (Xu et al 2008b) or sulfide (Zheng et al2007 Xu et al 2008a) TRD ages of Archean reflecting the existenceof Archean mantle beneath this region However the wide range inTRD ages observed in single peridotite and their sulfides may reflectprogressive modification of the lithospheric mantle by fertile mate-rials (Xu et al 2008a) as is well documented for the peridotitesfrom other regions of the world (Pearson et al 1999 2002 Alard etal 2002 Griffin et al 2004 Harvey et al 2010) As a result theTRD ages for most of the samples from the North China Craton may re-flect the mixing of different-generation sulfides generated by referti-lization processes

As a result most of the peridotite xenoliths from the Central Zoneincluding Hebi Fushan Fanshi Yangyuan Datong Jining and Han-nuoba localities are relatively fertile in compositions (Figs 3ndash5) andbear a resemblance to the ldquooceanicrdquo lithosphere (Fan et al 2000)but they are likely the fragments of refertilized Archean lithosphericmantle

64 Constraints on the destruction of the NCC

The mineralogy elemental and isotopic geochemistry of peridotitexenoliths entrained in the Mesozoic and Cenozoic igneous rocks fromthe NCC indicate that the present lithospheric mantle beneath theCentral Zone is highly heterogeneous which is likely produced from

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

an Archean lithosphere by refertilization via multistage additions ofmelt The early-stage melt may be derived from recycled crustal ma-terials and the later-stage melt be mainly derived from the astheno-sphere The refertilization processes could mask even totallyobliterate the Archean refractory signatures of parts of the litho-sphere and rejuvenate the Archean mantle by lowering the RendashOsmodel ages of refertilized peridotites (Zhang et al 2008 2009 Xiaoand Zhang 2011)

The peridotites from Fushan and Hebi in the central NCC are main-ly refractory harzburgites with minor lherzolites (Fig 2) Their ex-tremely variable SrndashNd isotopic ratios (Fig 6) and ArcheanndashPaleoproterozoic TRD ages (Fig 9) reflect low-degree modification ofthe Archean lithospheric mantle beneath the central NCC In contrastthe peridotites from the Hannuoba and Jining in the northern marginof the craton are almost fertile lherzolites (Fig 5) with depleted SrndashNd isotopic compositions (Figs 6 and 8) and ProterozoicndashPhanerozoicTRD ages (Fig 9) indicating high-degree refertilization of the mantlelithosphere (Tang et al 2008 Zhang et al 2009 in press) One peri-dotite from Jining has radiogenic 87Sr86Sr (up to 0707 Fig 6) likelyimplying the modification of oceanic crust (Zhang et al in press)This is consistent with the observation of Santosh (2010) providingevidence for imbrication of oceanic plate lithostratigraphy from theInner Mongolia suture zone (Fig 1)

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

88

89

90

91

92

93

TRD (Ga)

TM

A (

Ga) 20

25

30

35

15

10

05

95

0 05 10 15 20 25 30

Oliv

ine

Fo

TMA0 1 3

Sulfide

In basalt

In kimberlite

EasternBlockIn basalt

CentralZone

Hebi

HebiFushanFanshiDatongYangyuanJiningHannuoba

Reaction trend

Melting trend

Archean

Northmargin

Phanerozoic Proterozoic

PM

CentralNCC

Sulfide Hannuoba

In basalt easternIn kimber eastern

Sulfide Hebi

2

Fig 9 Diagrams of TMA and Fo of olivine vs TRD model ages of peridotite xenoliths andin situ analyses of sulfides from the NCC Inset shows histogram of the TMA agesData sources in addition to this study Hannuoba peridotites (Gao et al 2002 Xia etal 2004 Zhang et al 2009 Liu et al 2011) Fushan Datong and Hebi peridotites (Liuet al 2011) Jining (Liu et al 2011 Zhang et al in press) Fanshi and Yangyuan pe-ridotites (Xu et al 2008b Liu et al 2011) In situ ages of sulfides in Hannuoba andHebi peridotites (Zheng et al 2007 Xu et al 2008a) peridotite xenoliths entrainedin the Cenozoic basalts (Gao et al 2002 Wu et al 2003 2006 Chu et al 2009b) andPaleozoic kimberlites from the NCC (Gao et al 2002 Wu et al 2006 Zhang et al 2008Chu et al 2009b)

9Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Compared to the Hannuoba peridotites the Yangyuan and Fanshixenoliths are mainly lherzolites with minor harzburgite and haveenriched SrndashNd isotopic compositions and ArcheanndashPhanerozoic TRDages implying relatively low-degree modification of the lithosphericmantle Therefore the spatially petrologic and geochemical variationsof xenoliths suggest that the refertilization of ancient lithosphericmantle by melt additions became stronger from the interior to thenorth margin of the NCC (Zhang 2009) (Figs 2ndash9)

For the whole North China Craton it experienced a series ofsubductioncollision events as evidenced by the Paleozoic to TriassicQinlingndashDabie ultrahigh-pressure belt in south (Li et al 1993) theTianshanndashInner MongoliandashDaxinganling orogen in north (Xiao etal 2003 Zhang et al 2003) and the MesozoicndashCenozoic subductionof Pacific plate in east These events could intensively modify thesubcontinental lithospheric mantle by igneous refertilization viamultistage peridotitendashmelt reactions (Zhang et al 2002 2003 Xuet al 2008a Zhang et al 2009 Zhang et al 2010a 2010b Tanget al 2011 2012) leading to the highly heterogeneity of the mantle

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

7 Conclusions

Mineral element and SrndashNd isotopic compositions of the perido-tite xenoliths from the Cenozoic Hebi basalts in the Central Zone ofthe NCC coupled with previously published petrologic and isotopicdata of mantle xenoliths from the eastern NCC allow us to draw thefollowing conclusions

(1) The Hebi harzburgite xenoliths are refractory in mineral com-positions and highly variable in mineral SrndashNd isotopic compo-sitions ranging from MORB-like to EM1-type mantle They arethe residues of Archean lithospheric mantle beneath thisregion

(2) The present lithospheric mantle beneath the Central Zone ofthe NCC is highly heterogeneous in mineral and geochemicalcompositions likely produced by refertilization via multipleadditions of melts

(3) The refertilization of the lithospheric mantle became strongerfrom the interior to the margin of the craton which was closelyrelated to multiple subductioncollision events of circum-craton plates

Acknowledgments

Wewould like to express our gratitude to Qian Mao and Yu-GuangMa for their assistance with EPMA analyses and Jing-Hui Guo withisotopic analyses at the State Key Laboratory of Lithospheric Evolu-tion Institute of Geology and Geophysics Chinese Academy of Sci-ences We gratefully acknowledge the constructive reviews of SAulbach and an anonymous reviewer and editorial handling by Edi-tors which helped us to improve the presentation This work was fi-nancially supported by the National Science Foundation of China(Grants 91014007 41073028 and 40773026)

References

Adam J Green T 2006 Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt 1 Experimental results andthe investigation of controls on partitioning behaviour Contributions to Mineralo-gy and Petrology 152 1ndash17

Alard O Griffin WL Pearson NJ Lorand JP OReilly SY 2002 New insights intothe RendashOs systematics of sub-continental lithospheric mantle from in situ analysisof sulphides Earth and Planetary Science Letters 203 651ndash663

Aulbach S Griffin WL OReilly SY McCandless TE 2004 Genesis and evolution ofthe lithospheric mantle beneath the Buffalo Head Terrane Alberta (Canada) Lithos77 413ndash451

Beyer EE Griffin WL OReilly SY 2006 Transformation of Archaean lithosphericmantle by refertilization evidence from exposed peridotites in the Western GneissRegion Norway Journal of Petrology 47 1611ndash1636

Boyd FR 1989 Compositional distinction between oceanic and cratonic lithosphereEarth and Planetary Science Letters 96 15ndash26

Chen SH OReilly SY Zhou XH Griffin WL Zhang GH Sun M Feng JL ZhangM 2001 Thermal and petrological structure of the lithosphere beneath HannuobaSinondashKorean Craton China evidence from xenoliths Lithos 56 267ndash301

Chen L Zheng T Xu W 2006 A thinned lithospheric image of the Tanlu Fault Zoneeastern China constructed from wave equation based receiver function migrationJournal of Geophysical Research 111 B09312 doi1010292005jb003974

Chu ZY Chen FK Yang YH Guo JH 2009a Precise determination of Sm Nd con-centrations and Nd isotopic compositions at the nanogram level in geological sam-ples by thermal ionization mass spectrometry Journal of Analytical AtomicSpectrometry 24 1534ndash1544

Chu ZY Wu FY Walker RJ Rudnick RL Pitcher L Puchtel IS Yang YH WildeSA 2009b Temporal evolution of the lithospheric mantle beneath the easternNorth China Craton Journal of Petrology 50 1857ndash1898

Dobbs PN Duncan DJ Hu S Shee SR Colgan E Brown MA Smith CB AllsoppHL 1994 The geology of the Mengyin kimberlites Shandong China In MeyerHOA Leonardos OH (Eds) Diamonds Characterization Genesis and Explora-tion Proceedings of the 5th International Kimberlite Conference CPRM Brasiliapp 106ndash115

Fan QC Hooper PR 1991 The Cenozoic basaltic rocks of eastern China petrologyand chemical composition Journal of Petrology 32 765ndash810

Fan WM Menzies MA 1992 Destruction of aged lower lithosphere and accretion ofasthenosphere mantle beneath eastern China Geotectonica et Metallogenia 16171ndash180

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

10 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Fan WM Zhang HF Baker J Jarvis KE Mason PRD Menzies MA 2000 On andoff the north China craton where is the Archaean keel Journal of Petrology 41933ndash950

Frey FA Green DH 1974 The mineralogy geochemistry and origin of Iherzolite in-clusions in Victorian basanites Geochimica et Cosmochimica Acta 38 1023ndash1059

Gao S Rudnick RL Carlson RW McDonough WF Liu YS 2002 RendashOs evidencefor replacement of ancient mantle lithosphere beneath the North China cratonEarth and Planetary Science Letters 198 307ndash322

Gao S Rudnick RL Yuan HL Liu XM Liu YS Xu WL Ling WL Ayers J WangXC Wang QH 2004 Recycling lower continental crust in the North China cratonNature 432 892ndash897

Griffin WL OReilly SY Ryan CG 1992 Composition and thermal structure of thelithosphere beneath South Africa Siberia and China proton microprobe studiesInternational Symposium on Cenozoic Volcanic Rocks and Deep-seated Xenolithsof China and its Environs Beijing pp 65ndash66

Griffin WL Zhang AD OReilly SY Ryan CG 1998 Phanerozoic evolution of thelithosphere beneath the SinondashKorean Craton In Flower MFJ Chung SL LoCH Lee TY (Eds) Mantle Dynamics and Plate Interactions in East Asia AmericanGeophysical Union Washington DC pp 107ndash126

Griffin WL OReilly SY Abe N Aulbach S Davies RM Pearson NJ Doyle BJKivi K 2003 The origin and evolution of Archean lithospheric mantle Precambri-an Research 127 19ndash41

Griffin WL Graham S OReilly SY Pearson NJ 2004 Lithosphere evolution be-neath the Kaapvaal Craton RendashOs systematics of sulfides in mantle-derived peri-dotites Chemical Geology 208 89ndash118

Griffin WL OReilly SY Afonso JC Begg GC 2009 The composition and evolutionof lithospheric mantle a re-evaluation and its tectonic implications Journal of Pe-trology 50 1185ndash1204

Harvey J Gannoun A Burton KW Schiano P Rogers NW Alard O 2010 Unravel-ling the effects of melt depletion and secondary infiltration on mantle RendashOs iso-topes beneath the French Massif Central Geochimica et Cosmochimica Acta 74293ndash320

Kelemen PB Hart SR Bernstein S 1998 Silica enrichment in the continental uppermantle via meltrock reaction Earth and Planetary Science Letters 164 387ndash406

Kroumlner A Wilde SA Li JH Wang KY 2005 Ages and evolution of a Late Archean toPaleoproterozoic upper to lower crustal section in the WutaishanHengshanFup-ing terrain of northern China Journal of Asian Earth Sciences 24 577ndash595

Kusky TM 2011 Geophysical and geological tests of tectonic models of the NorthChina Craton Gondwana Research 20 26ndash35

Li SG Xiao YL Liou DL Chen YZ Ge NJ Zhang ZQ Sun SS Cong BL ZhangRY Hart SR Wang SS 1993 Collision of the North China and Yangtze Blocksand formation of coesite-bearing eclogite-timing and processes Chemical Geology109 89ndash111

Liu J Rudnick RL Walker RJ Gao S Wu FY Piccoli PM Yuan H Xu WL XuYG 2011 Mapping lithospheric boundaries using Os isotopes of mantle xenolithsan example from the North China Craton Geochimica et Cosmochimica Acta 753881ndash3902

Ma X 1989 Atlas of Active Faults in China Seismologic Press BeijingMa JL Xu YG 2006 Old EM1-type enriched mantle under the middle North China

Craton as indicated by Sr and Nd isotopes of mantle xenoliths from YangyuanHebei Province Chinese Science Bulletin 51 1343ndash1349

Menzies MA 1990 Effects of small volume melts Nature 343 312ndash313Menzies M Murthy VR 1980 Enriched mantle Nd and Sr isotopes in diopsides from

kimberlite nodules Nature 283 634ndash636Menzies MA Xu YG 1998 Geodynamics of the North China Craton In Flower

MFJ Chung SL Lo CH Lee TY (Eds) Mantle Dynamics and Plate Interactionsin East Asia American Geophysical Union Washington DC pp 155ndash165

Menzies MA Fan WM Zhang M 1993 Palaeozoic and Cenozoic lithoprobes andthe loss of gt120 km of Archaean lithosphere SinondashKorean craton China InPrichard HM Alabaster T Harris NBW Neary CR (Eds) Magmatic Processesand Plate Tectonics Geological Society of London Special Publication pp 71ndash81

Menzies M Xu YG Zhang HF Fan WM 2007 Integration of geology geophysicsand geochemistry a key to understanding the North China Craton Lithos 96 1ndash21

OReilly SY Griffin WL Poudjom YH Morgan P 2001 Are lithosphere forever Track-ing changes in subcontinental lithospheric mantle through time GSA Today 11 4ndash10

Pearson DG 1999 Evolution of cratonic lithospheric mantle an isotopic perspectiveIn Fei Y Berka CM Mysen BO (Eds) Mantle Petrology Field Observations andHigh-Pressure Experimentation A Tribute to Francis R (Joe) Boyd The Geochemi-cal Society Special Publication pp 57ndash78

Pearson DG Shirey SB Harris JW Carlson RW 1998 Sulphide inclusions in dia-monds from the Koffiefontein kimberlite S Africa constraints on diamond agesand mantle RendashOs systematics Earth and Planetary Science Letters 160 311ndash326

Pearson DG Shirey SB Bulanova GP Carlson RW Milledge HJ 1999 RendashOs iso-tope measurements of single sulfide inclusions in a Siberian diamond and its nitro-gen aggregation systematics Geochimica et Cosmochimica Acta 63 703ndash711

Pearson NJ Alard O Griffin WL Jackson SE OReilly SY 2002 In situ measure-ment of RendashOs isotopes in mantle sulfides by laser ablation multicollector-inductively coupled plasma mass spectrometry analytical methods and prelimi-nary results Geochimica et Cosmochimica Acta 66 1037ndash1050

Reisberg L Zhi XC Lorand JP Wagner C Peng ZC Zimmermann C 2005 RendashOsand S systematics of spinel peridotite xenoliths from east central China evidencefor contrasting effects of melt percolation Earth and Planetary Science Letters239 286ndash308

Rudnick RL Gao S Ling WL Liu YS McDonough WF 2004 Petrology and geo-chemistry of spinel peridotite xenoliths from Hannuoba and Qixia North ChinaCraton Lithos 77 609ndash637

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Santosh M 2010 Assembling North China Craton within the Columbia superconti-nent the role of double-sided subduction Precambrian Research 178 149ndash167

Santosh M Tsunogae T Li JH Liu SJ 2007a Discovery of sapphirine-bearing MgndashAl granulites in the North China Craton implications for Paleoproterozoic ultra-high temperature metamorphism Gondwana Research 11 263ndash285

Santosh M Wilde SA Li JH 2007b Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton evidence from SHRIMPUndashPb zircon geochronology Precambrian Research 159 178ndash196

Santosh M Sajeev K Li JH Liu SJ Itaya T 2009 Counterclockwise exhumation ofa hot orogen the Paleoproterozoic ultrahigh-temperature granulites in the NorthChina Craton Lithos 110 140ndash152

Santosh M Zhao D Kusky T 2010 Mantle dynamics of the Paleoproterozoic NorthChina Craton a perspective based on seismic tomography Journal of Geodynamics49 39ndash53

Santosh M Liu SJ Tsunogae T Li JH 2011 Paleoproterozoic ultrahigh-temperature granulites in the North China Craton implications for tectonic modelson extreme crustal metamorphism Precambrian Research doi101016jprecamres201110051003

Shirey SB Walker RJ 1998 The RendashOs isotopic system in cosmochemistry and igne-ous geochemistry Annual Reviews of Earth and Planetary Sciences 26 425ndash500

Smith D Griffin WL Ryan CG Sie SH 1991 Trace-element zonation in garnetsfrom the thumb mdash heating and melt infiltration below the Colorado Plateau Con-tributions to Mineralogy and Petrology 107 60ndash79

Song Y Frey FA 1989 Geochemistry of peridotite xenoliths in basalt from Hannuobaeastern China implications for subcontinental mantle heterogeneity Geochimica etCosmochimica Acta 53 97ndash113

Tang YJ Zhang HF Ying JF 2004 High-Mg olivine xenocrysts entrained in Cenozoicbasalts in central Taihang Mountains relicts of old lithospheric mantle Acta Petrolo-gica Sinica 20 1243ndash1252

Tang YJ Zhang HF Ying JF 2006 Asthenospherendashlithospheric mantle interactionin an extensional regime implication from the geochemistry of Cenozoic basaltsfrom Taihang Mountains North China Craton Chemical Geology 233 309ndash327

Tang YJ Zhang HF Nakamura E Moriguti T Kobayashi K Ying JF 2007 Lithiumisotopic systematics of peridotite xenoliths from Hannuoba North China Cratonimplications for meltndashrock interaction in the considerably thinned lithosphericmantle Geochimica et Cosmochimica Acta 71 4327ndash4341

Tang YJ Zhang HF Ying JF Zhang J Liu XM 2008 Refertilization of ancient lith-ospheric mantle beneath the central North China Craton evidence from petrologyand geochemistry of peridotite xenoliths Lithos 101 435ndash452

Tang YJ Zhang HF Nakamura E Ying JF 2011 Multistage meltfluidndashperidotiteinteractions in the refertilized lithospheric mantle beneath the North China Cra-ton constraints from the LindashSrndashNd isotopic disequilibrium between minerals ofperidotite xenoliths Contributions to Mineralogy and Petrology 161 845ndash861

Tang YJ Zhang HF Deloule E Su BX Ying JF Xiao Y Hu Y 2012 Slab-derivedlithium isotopic signatures in mantle xenoliths from northeastern North China Cra-ton Lithos doi101016jlithos201112001

Tatsumoto M Basu AR Huang WK Wang JW Xie GH 1992 Sr Nd and Pb iso-topes of ultramafic xenoliths in volcanic-rocks of eastern China enriched compo-nents EMI and EMII in subcontinental lithosphere Earth and Planetary ScienceLetters 113 107ndash128

Walker RJ Carlson RW Shirey SB Boyd FR 1989 Os Sr Nd and Pb isotope sys-tematics of southern African peridotite xenoliths implications for the chemicalevolution of subcontinental mantle Geochimica et Cosmochimica Acta 531583ndash1595

Wang YJ Fan WM Zhang HF Peng TP 2006 Early Cretaceous gabbroic rocksfrom the Taihang Mountains implications for a paleosubduction-related litho-spheric mantle beneath the central North China Craton Lithos 86 281ndash302

Wilshire HG Shervais JW 1975 Al-augite and Cr-diopside ultramafic xenoliths inbasaltic rocks from western United States Physics and Chemistry of the Earth 9257ndash272

Wu FY Walker RJ Ren XW Sun DY Zhou XH 2003 Osmium isotopic con-straints on the age of lithospheric mantle beneath northeastern China ChemicalGeology 196 107ndash129

Wu FY Walker RJ Yang YH Yuan HL Yang JH 2006 The chemicalndashtemporalevolution of lithospheric mantle underlying the North China Craton Geochimicaet Cosmochimica Acta 70 5013ndash5034

Xia QX Zhi XC Meng Q Zheng L Peng ZC 2004 The trace element and RendashOsisotopic geochemistry of mantle-derived peridotite xenoliths from Hannuoba na-ture and age of SCLM beneath the area Acta Petrologica Sinica 20 1215ndash1224 (inChinese with English abstract)

Xiao Y Zhang HF 2011 Effects of melt percolation on platinum group elements andRendashOs systematics of peridotites from the TanndashLu fault zone eastern North ChinaCraton Journal of the Geological Society of London 168 1201ndash1214

Xiao WJ Windley B Hao J Zhai MG 2003 Accretion leading to collision and thePermian Solonker suture Inner Mongolia China termination of the CentralAsian orogenic belt Tectonics 22 doi1010292202 TC001484

Xu YG 2001 Thermo-tectonic destruction of the Archean lithospheric keel beneaththe SinondashKorean Craton in China evidence timing and mechanism Physics andChemistry of the Earth (A) 26 747ndash757

Xu YG 2002 Evidence for crustal components in the mantle and constraints on crustalrecycling mechanisms pyroxenite xenoliths from Hannuoba North China ChemicalGeology 182 301ndash322

Xu XS OReilly SY Griffin WL Zhou XM Huang XL 1998 The nature of the Ce-nozoic lithosphere of Nushan eastern China In Flower MFJ Chung SL Lo CHLee TY (Eds) Mantle Dynamics and Plate Interactions in East Asia AmericanGeophysical Union Washington DC pp 167ndash196

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

11Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Xu YG Chung SL Ma JL Shi LB 2004 Contrasting Cenozoic lithospheric evolutionand architecture in the western and eastern SinondashKorean craton constrains fromgeochemistry of basalts and mantle xenoliths Journal of Geology 112 593ndash605

Xu XS Griffin WL OReilly SY Pearson NJ Geng HY Zheng JP 2008a RendashOsisotopes of sulfides in mantle xenoliths from eastern China progressive modifica-tion of lithospheric mantle Lithos 102 43ndash64

Xu YG Blusztajn J Ma JL Suzuki K Liu JF Hart SR 2008b Late Archean to earlyProterozoic lithospheric mantle beneath the western North China craton SrndashNdndashOs isotopes of peridotite xenoliths from Yangyuan and Fansi Lithos 102 25ndash42

Xu W Yang D Gao S Pei F Yu Y 2010 Geochemistry of peridotite xenoliths inEarly Cretaceous high-Mg diorites from the Central Orogenic Block of the NorthChina Craton the nature of Mesozoic lithospheric mantle and constraints on lith-ospheric thinning Chemical Geology 270 257ndash273

Yang JH Wu FY Wilde SA 2003 A review of the geodynamic setting of large-scaleLate Mesozoic gold mineralization in the North China craton an association withlithospheric thinning Ore Geology Reviews 23 125ndash152

Ying JF Zhang HF Tang YJ 2010 Zoned olivine xenocrysts in a late Mesozoic gab-bro from the southern Taihang Mountains implications for old lithospheric mantlebeneath the central North China Craton Geological Magazine 147 161ndash170

Yuan XC 1996 Atlas of Geophysics in China Geological Publishing House BeijingZhai MG Santosh M 2011 The early Precambrian odyssey of the North China Craton a

synoptic overview Gondwana Research 20 6ndash25Zhang HF 2005 Transformation of lithospheric mantle through peridotitendashmelt reac-

tion a case of SinondashKorean craton Earth and Planetary Science Letters 237768ndash780

Zhang HF 2009 Peridotitendashmelt interaction a key point for the destruction of cra-tonic lithospheric mantle Chinese Science Bulletin 54 3417ndash3437

Zhang HF Sun M Zhou XH Fan WM Zhai MG Ying JF 2002 Mesozoic litho-sphere destruction beneath the North China Craton evidence from major- trace-element and SrndashNdndashPb isotope studies of Fangcheng basalts Contributions to Min-eralogy and Petrology 144 241ndash253

Zhang HF Sun M Zhou XH Zhou MF Fan WM Zheng JP 2003 Secular evolu-tion of the lithosphere beneath the eastern North China Craton evidence fromMe-sozoic basalts and high-Mg andesites Geochimica et Cosmochimica Acta 674373ndash4387

Zhang HF Sun M Zhou MF Fan WM Zhou XH Zhai MG 2004 Highly hetero-geneous late Mesozoic lithospheric mantle beneath the north China Craton evi-dence from SrndashNdndashPb isotopic systematics of mafic igneous rocks GeologicalMagazine 141 55ndash62

Zhang J Zhao GC Sun M Wilde SA Li SZ Liu SW 2006 High-pressure maficgranulites in the Trans-North China Orogen tectonic significance and age Gond-wana Research 9 349ndash362

Zhang HF Nakamura E Kobayashi K Zhang J Ying JF Tang YJ Niu LF 2007Transformation of subcontinental lithospheric mantle through peridotitendashmelt re-action evidence from a highly fertile mantle xenolith from the North China cratonInternational Geology Review 49 658ndash679

Zhang HF Goldstein S Zhou XH Sun M Zheng JP Cai Y 2008 Evolution of sub-continental lithospheric mantle beneath eastern China RendashOs isotopic evidencefrom mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts Contribu-tions to Mineralogy and Petrology 155 271ndash293

Zhang HF Goldstein SL Zhou XH Sun M Cai Y 2009 Comprehensive refertiliza-tion of lithospheric mantle beneath the North China Craton further OsndashSrndashNd iso-topic constraints Journal of the Geological Society of London 166 249ndash259

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Zhang HF Deloule E Tang YJ Ying JF 2010a Meltrock interaction in remains ofrefertilized Archean lithospheric mantle in Jiaodong Peninsula North China Cra-ton Li isotopic evidence Contributions to Mineralogy and Petrology 160 261ndash277

Zhang HF Nakamura E Kobayashi K Ying JF Tang YJ 2010b Recycled crustalmelt injection into lithospheric mantle implication from cumulative compositeand pyroxenite xenoliths International Journal of Earth Sciences 99 1167ndash1186

Zhang HF Ying JF Tang YJ Li XH Feng C Santosh M 2011 Phanerozoic reacti-vation of the Archean North China Craton through episodic magmatism evidencefrom zircon UndashPb geochronology and Hf isotopes from the Liaodong PeninsulaGondwana Research 19 446ndash459

Zhang HF Sun YL Tang YJ Xiao Y Zhang WH Zhao XM Santosh M MenziesMA in press Melt-peridotite interaction in the Pre-cambrian mantle beneath thewestern North China Craton Petrology geochemistry and Sr Nd and Re isotopesLithos doi101016jlithos201201027

Zhao GC Cawood PA Wilde SA Sun M 2000 Metamorphism of basement rocksin the Central Zone of the North China craton implications for Paleoproterozoictectonic evolution Precambrian Research 103 55ndash88

Zhao GC Wilde SA Sun M Li SZ Li XP Zhang J 2008 SHRIMP UndashPb zircon agesof granitoid rocks in the Luumlliang Complex implications for the accretion and evo-lution of the Trans-North China Orogen Precambrian Research 160 213ndash226

Zhao GC Wilde SA Guo JH Cawood PA Sun M Li XP 2010a Single zircongrains record two Paleoproterozoic collisional events in the North China CratonPrecambrian Research 177 266ndash276

Zhao GC Wilde SA Zhang J 2010b New evidence from seismic imaging for sub-duction during assembly of the North China craton comment Geology 38 e206

Zhao XM Zhang HF Zhu XK Tang SH Tang YJ 2010c Iron isotope variations inspinel peridotite xenoliths from North China Craton implications for mantle meta-somatism Contributions to Mineralogy and Petrology 160 1ndash14

Zheng JP OReilly SY Griffin WL Lu FX Zhang M 1998 Nature and evolution ofCenozoic lithospheric mantle beneath Shandong peninsula SinondashKorean cratoneastern China International Geology Review 40 471ndash499

Zheng JP OReilly SY Griffin WL Lu FX Zhang M Pearson NJ 2001 Relict re-fractory mantle beneath the eastern North China block significance for lithosphereevolution Lithos 57 43ndash66

Zheng JP Griffin WL OReilly SY Liou JG Zhang RY Lu FX 2005 Late MesozoicndashEocene mantle replacement beneath the eastern North China craton evidence fromthe Paleozoic and Cenozoic peridotite xenoliths International Geology Review 47457ndash472

Zheng JP Griffin WL OReilly SY Yang JS Li TF Zhang M Zhang RY Liou JG2006 Mineral chemistry of peridotites from Paleozoic Mesozoic and Cenozoic litho-sphere constraints on mantle evolution beneath eastern China Journal of Petrology47 2233ndash2256

Zheng JP Griffin WL OReilly SY Yu CM Zhang HF Pearson N Zhang M 2007Mechanism and timing of lithospheric modification and replacement beneath theeastern North China Craton peridotitic xenoliths from the 100 Ma Fuxin basaltsand a regional synthesis Geochimica et Cosmochimica Acta 71 5203ndash5225

Zhou XH Armstrong RL 1982 Cenozoic volcanic rocks of eastern China mdash secularand geographic trends in chemistry and strontium isotopic composition Earthand Planetary Science Letters 58 301ndash329

Zindler A Hart SR 1986 Chemical geodynamics Annual Reviews of Earth and Plane-tary Sciences 14 493ndash571

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

90 80 70 60 50

89

91

93

95

88

90

92

94

40100

Modal olivine ()

Oliv

ine

Fo

Melt metasomatism

Mean Archean

Archean

Mean ProterOceanic trend

Proterozoic

Mean high-Tlherzolites

Mean Tecton

ldquoPyroliterdquo

HebiFushan

HannuobaJiningYangyuan

FanshiDatong

Phlogopite metasomCentralNCC

Northmargin

Fig 3 Modal olivine vs Fo contents plot showing the mean compositions of ArchonProton and Tecton subcontinental lithospheric mantle and high-T sheared lherzolitexenoliths from kimberlites Two large arrows illustrate the effect of shallowphlogopite-related metasomatism and the melt-related metasomatism responsiblefor the composition of the sheared xenoliths (Smith et al 1991) The oceanic trend isthe compositional trend from fertile lherzolite to depleted oceanic harzburgite (Boyd1989)The base chart is from Griffin et al (2003) Data sources are as in Fig 2

0 2 4 6 889

91

93

95

88

90

92

94

0 2 4 6 8

Al2O3 (wt)

HebiFushan

HannuobaJiningYangyuan

FanshiDatong

Opx

Cpx

Mg

Mg

Refractory (central NCC)

Fertile(north margin of NCC)

Refractory(central NCC)

Fertile(north margin)

6 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Consequently the greatly heterogeneous isotopic compositions in thelithospheric mantle beneath the Central Zone reflect the diversity inparentndashdaughter elemental fractionation in minerals coupled withancient multiple-stage histories of melt depletion and subsequentrefertilization through melt influx This is also supported by the ele-mental and isotopic characteristics of coexisting opx and cpx in theHebi peridotites (Table 3 Fig 6) which are similar to those in the

HebiFushan

DatongFansi

YangyuanJiningHannuoba

Mn

O

000

010

020

005

015

91 9587 89 93

Paleozoic

Cenozoic

Olivine Fo

025

Ceno XenocrystsMeso Xenocrysts

CentralNCC

Northmargin

Fig 4 Fo vs MnO of olivine from the peridotites compared with olivine xenocrysts inthe Cenozoic XiyangndashPingding basalts (Tang et al 2004) and Mesozoic Shatuo gabbros(Ying et al 2010) and peridotite xenoliths entrained in the Paleozoic kimberlites andCenozoic basalts on the eastern NCC (Zheng et al 1998 2001) Data sources in additionto those designated in Fig 2 include Hannuoba data from Fan and Hooper (1991) andChen et al (2001)

Fig 5 Mg vs Al2O3 of opx and cpx in the mantle xenoliths from the Central Zone andthe West Block of the NCC Data sources are as in Fig 3

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Fanshi peridotites indicating multiple meltfluidndashperidotite interac-tions (Tang et al 2011)

63 RendashOs isotopic data and nature of the lithospheric mantle

The RendashOs system has proven to be particularly useful in tracingthe geochemical evolution of mantle rocks and in defining the chro-nology of mantle differentiation (Walker et al 1989 Shirey andWalker 1998) Nevertheless an increasing number of studies havefound that the RendashOs system in cratonic peridotites can be disturbedby peridotitendashmelt reaction especially when reaction preceded erup-tion by large time intervals (Pearson et al 1998 Alard et al 2002Zhang et al 2008 2009)

Sulfides from a mantle peridotite that underwent melt depletionand refertilization events may have a wide range of RendashOs modelages reflecting different generations of ldquooldrdquo sulfides (residual aftermelt depletion) and later sulfide melts (interstitial sulfides relatedto meltfluid metasomatism) (Pearson et al 1999 2002 Alard etal 2002 Aulbach et al 2004 Griffin et al 2004 Xu et al 2008aZhang et al 2008 2009 Harvey et al 2010) This implies that thebulk-rock Re and Os budget will be controlled by the relative contri-butions from these sulfide populations which are dependent onmeltrock ratios and the degree of S-saturation of the percolatingmelt during the refertilization of lithosphere (Reisberg et al 2005

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

702 702704 706705 708703 704706 710707 712

5140 5140

5115

5115

5110

5120

5120

5125

5125

5130

5130

51355135

87Sr86Sr 87Sr 86Sr

143 N

d14

4 Nd

a b

Fanshibasalts

DM+EMMixing

YangyuanDMMORB

Globalon-craton

Globaloff-craton

07154

Hannuoba

FushanFanshi harzFanshi lherz

Hebi CpxHebi Opx Oceanic

EM1

EM1

Hebibasalts

Mesozoiclithosperic mantle

Mesozoiclithosperic mantle

Kaapvaal

Jining

Fig 6 (a) Sr and Nd isotope ratios in cpx and opx from the peridotites together with the published data for peridotite xenolithsData sources in addition to this study cpx in peridotite xenoliths from Hannuoba (Song and Frey 1989 Tatsumoto et al 1992 Fan et al 2000 Rudnick et al 2004 Tang et al2011) Fanshi (Tang et al 2008 Xu et al 2008b Tang et al 2011) Yangyuan (Ma and Xu 2006 Xu et al 2008b) Jining peridotites (Zhang et al in press) and the Kaapvaal cratonSouth Africa (Menzies andMurthy 1980) Mesozoic lithospheric mantle beneath the Central Zone of the NCC (Zhang et al 2004Wang et al 2006 Xu et al 2010) Cenozoic Fanshiand Hebi host basalts (Tang et al 2006 2011 unpublished data) DM MORB and EM1 (Zindler and Hart 1986) The field roughly drawn denotes the DM-EM1 mixing trend(b) Oceanic peridotites and mantle peridotites from global on- and off-craton locations (Fan et al 2000 and references therein)

7Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Zhang et al 2009 Xiao and Zhang 2011) As a result melt percola-tion could lead to significant changes in the Os isotopic compositionsof the refertilized peridotites Thus whole-rock Os isotope composi-tions reflect the mixtures of different generations of sulfides There-fore the significant variability in Os isotopic compositions ofsulfides within individual peridotite samples calls into question thesignificance of many published whole-rock ldquodepletion agesrdquo(Pearson et al 2002)

RendashOs isotopic ages in the peridotite xenoliths from the NCC varygreatly with Re-depletion model ages (TRD) ranging from 0 to 30 Gaand RendashOs model ages (TMA) of 0ndash35 Ga (Fig 9) For example mostof the Hannuoba peridotites have Proterozoic whole-rock RendashOsmodel ages resembling the Cenozoic basaltndashhost peridotites fromother localities on the North China Craton (Fig 9) However the insitu TRD and TMA model ages of sulfides in the Hannuoba samplesshow a larger range from Archean to Phanerozoic model ages than

Table 3Sr and Nd isotopic compositions of cpx and opx in the peridotite xenoliths

Sample Rb (ppm) Sr (ppm) Sm (ppm) Nd (ppm) 87R

Cpx05HB68 0003 144 0355 472 0005HB70 0030 567 0308 197 0005HB72 0660 315 401 209 00HB1120 0041 768 0133 096 00HB1121 0000 167 0247 225 00HB1122 0004 266 0909 843 00HB1125 0003 161 0506 588 00HB1126 0004 479 665 269 00

Opx05HB68 0013 137 0005HB70 0010 127 0019 0073 0005HB72 0017 285 0063 0207 00HB1120 0007 149 00HB1121 0013 137 00HB1122 0011 137 0010 0094 00HB1125 0015 991 00HB1126 0035 425 0073 0231 0005HB09 0039 199 0451 0070 00HB1128 0081 877 0070 0325 00

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

the whole-rock ages of the peridotites strongly indicating that thewhole-rock ages are not the true formation ages of the peridotitesbut the mixing ages of multiple generations of sulfides (Pearson etal 2002 Griffin et al 2004 Xu et al 2008a Zhang et al 2009)The TRD ages of these peridotites apparently correlate with olivineFo (Fig 9) which is traditionally explained as melting trend (Griffinet al 2004) Alternatively this correlation could also reflect the reac-tion trend of a depleted residue with asthenosphere-derived melts(Zhang et al 2009) The refertilization of peridotites could lowerthe Fo of olivine (Zhang 2005 Griffin et al 2009) and result in thepositive correlations between Re abundances and Al2O3 and Yb con-tents in the peridotites by additions of Fe Al Yb and Re (Zhang etal 2009) Therefore the correlation between TRD ages and olivineFo may reflect the combined results of partial melting and refertiliza-tion processes and the latter lowered the TRD ages of the peridotitesdue to the additions of Re and less radiogenic Os or younger sulfide

b86Sr 87Sr86Sr 2σ 147Sm144Nd 143Nd144Nd 2σ

001 0703092 10 00456 0512942 9015 0703359 10 00944 0513004 7006 0703246 10 01160 0513039 6015 0704151 8 00841 0511825 8000 0703862 8 00665 0512144 12000 0703312 7 00652 0512758 7001 0703242 8 00521 0512960 10000 0703715 14 01494 0512896 9

276 0703529 10234 0703454 15 01604 0513005 7172 0703560 10 01844 0513003 24144 0704055 11277 0703891 10230 0704394 35 00664 0512655 12045 0704829 10241 0703576 13 01921 0512920 8561 0704215 17 39155 0512795 7268 0703655 11 01293 0512907 7

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

5140

5115

5110

5120

5125

5130

5135

89 91 92 9390Olivine Fo

0702

0703

0704

0705

0706

87S

r86

Sr

HebiFushanFanshiYangyuanHannuoba

Mesozoic

Mesozoic

North margin

Central NCC

North margin

Central NCC

143 N

d14

4 Nd

Fig 8 Olivine Fo vs Sr and Nd isotope ratios in cpx from the peridotites Data sourcesare as in Fig 6

200 3010

0509

0511

0512

0513

Time before present (Ga)

143 N

d14

4 Nd

0510

Depleted mantle

HB1120 ( 147144Sm Nd=00665)

t=18

Continental crustDM-old crustmixing

FS6-29 ( 147

144Sm Nd=00936)

Fig 7 The evolution of 143Nd144Nd with time in the HB1120 (this study) and sampleFS6ndash29 (Xu et al 2010) DM-old crust mixing represents the assumed modification ofthe samples by recycled crustal materials at 18 Ga The 143Nd144Nd of the samples at18 Ga were calculated based on the decay constant of 147Sm (654times10minus12) 143Nd144Nd of chondrite (0512638) and the measured 143Nd144Nd and Sm and Nd contentsof the samples

8 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

introduction which could obliterate the evidence of old ages (Griffinet al 2004)

The RendashOs isotopic data of Paleozoic kimberlite-borne xenolithsdemonstrated that Archean lithospheric mantle existed beneath theeastern NCC during the Paleozoic (Gao et al 2002 Wu et al 2006Zhang et al 2008 Chu et al 2009b) However most of the peridotitexenoliths hosted by the Cenozoic basalts have Proterozoic TRD andTMA ages with only a few xenoliths having Phanerozoic ages(Fig 9) The scarcity of Archean TRD ages may reflect that nearly allthe Archean lithospheric mantle beneath the eastern NCC has beenreplaced (Gao et al 2002 Wu et al 2006 Chu et al 2009b) or refer-tilized by multiple-stage influx of melts (Xu et al 2008a Zhang et al2008 2009 Xiao and Zhang 2011) In contrast some peridotites inthe Mesozoic and Cenozoic basaltic rocks in the Central Zone of theNCC have whole-rock (Xu et al 2008b) or sulfide (Zheng et al2007 Xu et al 2008a) TRD ages of Archean reflecting the existenceof Archean mantle beneath this region However the wide range inTRD ages observed in single peridotite and their sulfides may reflectprogressive modification of the lithospheric mantle by fertile mate-rials (Xu et al 2008a) as is well documented for the peridotitesfrom other regions of the world (Pearson et al 1999 2002 Alard etal 2002 Griffin et al 2004 Harvey et al 2010) As a result theTRD ages for most of the samples from the North China Craton may re-flect the mixing of different-generation sulfides generated by referti-lization processes

As a result most of the peridotite xenoliths from the Central Zoneincluding Hebi Fushan Fanshi Yangyuan Datong Jining and Han-nuoba localities are relatively fertile in compositions (Figs 3ndash5) andbear a resemblance to the ldquooceanicrdquo lithosphere (Fan et al 2000)but they are likely the fragments of refertilized Archean lithosphericmantle

64 Constraints on the destruction of the NCC

The mineralogy elemental and isotopic geochemistry of peridotitexenoliths entrained in the Mesozoic and Cenozoic igneous rocks fromthe NCC indicate that the present lithospheric mantle beneath theCentral Zone is highly heterogeneous which is likely produced from

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

an Archean lithosphere by refertilization via multistage additions ofmelt The early-stage melt may be derived from recycled crustal ma-terials and the later-stage melt be mainly derived from the astheno-sphere The refertilization processes could mask even totallyobliterate the Archean refractory signatures of parts of the litho-sphere and rejuvenate the Archean mantle by lowering the RendashOsmodel ages of refertilized peridotites (Zhang et al 2008 2009 Xiaoand Zhang 2011)

The peridotites from Fushan and Hebi in the central NCC are main-ly refractory harzburgites with minor lherzolites (Fig 2) Their ex-tremely variable SrndashNd isotopic ratios (Fig 6) and ArcheanndashPaleoproterozoic TRD ages (Fig 9) reflect low-degree modification ofthe Archean lithospheric mantle beneath the central NCC In contrastthe peridotites from the Hannuoba and Jining in the northern marginof the craton are almost fertile lherzolites (Fig 5) with depleted SrndashNd isotopic compositions (Figs 6 and 8) and ProterozoicndashPhanerozoicTRD ages (Fig 9) indicating high-degree refertilization of the mantlelithosphere (Tang et al 2008 Zhang et al 2009 in press) One peri-dotite from Jining has radiogenic 87Sr86Sr (up to 0707 Fig 6) likelyimplying the modification of oceanic crust (Zhang et al in press)This is consistent with the observation of Santosh (2010) providingevidence for imbrication of oceanic plate lithostratigraphy from theInner Mongolia suture zone (Fig 1)

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

88

89

90

91

92

93

TRD (Ga)

TM

A (

Ga) 20

25

30

35

15

10

05

95

0 05 10 15 20 25 30

Oliv

ine

Fo

TMA0 1 3

Sulfide

In basalt

In kimberlite

EasternBlockIn basalt

CentralZone

Hebi

HebiFushanFanshiDatongYangyuanJiningHannuoba

Reaction trend

Melting trend

Archean

Northmargin

Phanerozoic Proterozoic

PM

CentralNCC

Sulfide Hannuoba

In basalt easternIn kimber eastern

Sulfide Hebi

2

Fig 9 Diagrams of TMA and Fo of olivine vs TRD model ages of peridotite xenoliths andin situ analyses of sulfides from the NCC Inset shows histogram of the TMA agesData sources in addition to this study Hannuoba peridotites (Gao et al 2002 Xia etal 2004 Zhang et al 2009 Liu et al 2011) Fushan Datong and Hebi peridotites (Liuet al 2011) Jining (Liu et al 2011 Zhang et al in press) Fanshi and Yangyuan pe-ridotites (Xu et al 2008b Liu et al 2011) In situ ages of sulfides in Hannuoba andHebi peridotites (Zheng et al 2007 Xu et al 2008a) peridotite xenoliths entrainedin the Cenozoic basalts (Gao et al 2002 Wu et al 2003 2006 Chu et al 2009b) andPaleozoic kimberlites from the NCC (Gao et al 2002 Wu et al 2006 Zhang et al 2008Chu et al 2009b)

9Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Compared to the Hannuoba peridotites the Yangyuan and Fanshixenoliths are mainly lherzolites with minor harzburgite and haveenriched SrndashNd isotopic compositions and ArcheanndashPhanerozoic TRDages implying relatively low-degree modification of the lithosphericmantle Therefore the spatially petrologic and geochemical variationsof xenoliths suggest that the refertilization of ancient lithosphericmantle by melt additions became stronger from the interior to thenorth margin of the NCC (Zhang 2009) (Figs 2ndash9)

For the whole North China Craton it experienced a series ofsubductioncollision events as evidenced by the Paleozoic to TriassicQinlingndashDabie ultrahigh-pressure belt in south (Li et al 1993) theTianshanndashInner MongoliandashDaxinganling orogen in north (Xiao etal 2003 Zhang et al 2003) and the MesozoicndashCenozoic subductionof Pacific plate in east These events could intensively modify thesubcontinental lithospheric mantle by igneous refertilization viamultistage peridotitendashmelt reactions (Zhang et al 2002 2003 Xuet al 2008a Zhang et al 2009 Zhang et al 2010a 2010b Tanget al 2011 2012) leading to the highly heterogeneity of the mantle

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

7 Conclusions

Mineral element and SrndashNd isotopic compositions of the perido-tite xenoliths from the Cenozoic Hebi basalts in the Central Zone ofthe NCC coupled with previously published petrologic and isotopicdata of mantle xenoliths from the eastern NCC allow us to draw thefollowing conclusions

(1) The Hebi harzburgite xenoliths are refractory in mineral com-positions and highly variable in mineral SrndashNd isotopic compo-sitions ranging from MORB-like to EM1-type mantle They arethe residues of Archean lithospheric mantle beneath thisregion

(2) The present lithospheric mantle beneath the Central Zone ofthe NCC is highly heterogeneous in mineral and geochemicalcompositions likely produced by refertilization via multipleadditions of melts

(3) The refertilization of the lithospheric mantle became strongerfrom the interior to the margin of the craton which was closelyrelated to multiple subductioncollision events of circum-craton plates

Acknowledgments

Wewould like to express our gratitude to Qian Mao and Yu-GuangMa for their assistance with EPMA analyses and Jing-Hui Guo withisotopic analyses at the State Key Laboratory of Lithospheric Evolu-tion Institute of Geology and Geophysics Chinese Academy of Sci-ences We gratefully acknowledge the constructive reviews of SAulbach and an anonymous reviewer and editorial handling by Edi-tors which helped us to improve the presentation This work was fi-nancially supported by the National Science Foundation of China(Grants 91014007 41073028 and 40773026)

References

Adam J Green T 2006 Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt 1 Experimental results andthe investigation of controls on partitioning behaviour Contributions to Mineralo-gy and Petrology 152 1ndash17

Alard O Griffin WL Pearson NJ Lorand JP OReilly SY 2002 New insights intothe RendashOs systematics of sub-continental lithospheric mantle from in situ analysisof sulphides Earth and Planetary Science Letters 203 651ndash663

Aulbach S Griffin WL OReilly SY McCandless TE 2004 Genesis and evolution ofthe lithospheric mantle beneath the Buffalo Head Terrane Alberta (Canada) Lithos77 413ndash451

Beyer EE Griffin WL OReilly SY 2006 Transformation of Archaean lithosphericmantle by refertilization evidence from exposed peridotites in the Western GneissRegion Norway Journal of Petrology 47 1611ndash1636

Boyd FR 1989 Compositional distinction between oceanic and cratonic lithosphereEarth and Planetary Science Letters 96 15ndash26

Chen SH OReilly SY Zhou XH Griffin WL Zhang GH Sun M Feng JL ZhangM 2001 Thermal and petrological structure of the lithosphere beneath HannuobaSinondashKorean Craton China evidence from xenoliths Lithos 56 267ndash301

Chen L Zheng T Xu W 2006 A thinned lithospheric image of the Tanlu Fault Zoneeastern China constructed from wave equation based receiver function migrationJournal of Geophysical Research 111 B09312 doi1010292005jb003974

Chu ZY Chen FK Yang YH Guo JH 2009a Precise determination of Sm Nd con-centrations and Nd isotopic compositions at the nanogram level in geological sam-ples by thermal ionization mass spectrometry Journal of Analytical AtomicSpectrometry 24 1534ndash1544

Chu ZY Wu FY Walker RJ Rudnick RL Pitcher L Puchtel IS Yang YH WildeSA 2009b Temporal evolution of the lithospheric mantle beneath the easternNorth China Craton Journal of Petrology 50 1857ndash1898

Dobbs PN Duncan DJ Hu S Shee SR Colgan E Brown MA Smith CB AllsoppHL 1994 The geology of the Mengyin kimberlites Shandong China In MeyerHOA Leonardos OH (Eds) Diamonds Characterization Genesis and Explora-tion Proceedings of the 5th International Kimberlite Conference CPRM Brasiliapp 106ndash115

Fan QC Hooper PR 1991 The Cenozoic basaltic rocks of eastern China petrologyand chemical composition Journal of Petrology 32 765ndash810

Fan WM Menzies MA 1992 Destruction of aged lower lithosphere and accretion ofasthenosphere mantle beneath eastern China Geotectonica et Metallogenia 16171ndash180

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

10 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Fan WM Zhang HF Baker J Jarvis KE Mason PRD Menzies MA 2000 On andoff the north China craton where is the Archaean keel Journal of Petrology 41933ndash950

Frey FA Green DH 1974 The mineralogy geochemistry and origin of Iherzolite in-clusions in Victorian basanites Geochimica et Cosmochimica Acta 38 1023ndash1059

Gao S Rudnick RL Carlson RW McDonough WF Liu YS 2002 RendashOs evidencefor replacement of ancient mantle lithosphere beneath the North China cratonEarth and Planetary Science Letters 198 307ndash322

Gao S Rudnick RL Yuan HL Liu XM Liu YS Xu WL Ling WL Ayers J WangXC Wang QH 2004 Recycling lower continental crust in the North China cratonNature 432 892ndash897

Griffin WL OReilly SY Ryan CG 1992 Composition and thermal structure of thelithosphere beneath South Africa Siberia and China proton microprobe studiesInternational Symposium on Cenozoic Volcanic Rocks and Deep-seated Xenolithsof China and its Environs Beijing pp 65ndash66

Griffin WL Zhang AD OReilly SY Ryan CG 1998 Phanerozoic evolution of thelithosphere beneath the SinondashKorean Craton In Flower MFJ Chung SL LoCH Lee TY (Eds) Mantle Dynamics and Plate Interactions in East Asia AmericanGeophysical Union Washington DC pp 107ndash126

Griffin WL OReilly SY Abe N Aulbach S Davies RM Pearson NJ Doyle BJKivi K 2003 The origin and evolution of Archean lithospheric mantle Precambri-an Research 127 19ndash41

Griffin WL Graham S OReilly SY Pearson NJ 2004 Lithosphere evolution be-neath the Kaapvaal Craton RendashOs systematics of sulfides in mantle-derived peri-dotites Chemical Geology 208 89ndash118

Griffin WL OReilly SY Afonso JC Begg GC 2009 The composition and evolutionof lithospheric mantle a re-evaluation and its tectonic implications Journal of Pe-trology 50 1185ndash1204

Harvey J Gannoun A Burton KW Schiano P Rogers NW Alard O 2010 Unravel-ling the effects of melt depletion and secondary infiltration on mantle RendashOs iso-topes beneath the French Massif Central Geochimica et Cosmochimica Acta 74293ndash320

Kelemen PB Hart SR Bernstein S 1998 Silica enrichment in the continental uppermantle via meltrock reaction Earth and Planetary Science Letters 164 387ndash406

Kroumlner A Wilde SA Li JH Wang KY 2005 Ages and evolution of a Late Archean toPaleoproterozoic upper to lower crustal section in the WutaishanHengshanFup-ing terrain of northern China Journal of Asian Earth Sciences 24 577ndash595

Kusky TM 2011 Geophysical and geological tests of tectonic models of the NorthChina Craton Gondwana Research 20 26ndash35

Li SG Xiao YL Liou DL Chen YZ Ge NJ Zhang ZQ Sun SS Cong BL ZhangRY Hart SR Wang SS 1993 Collision of the North China and Yangtze Blocksand formation of coesite-bearing eclogite-timing and processes Chemical Geology109 89ndash111

Liu J Rudnick RL Walker RJ Gao S Wu FY Piccoli PM Yuan H Xu WL XuYG 2011 Mapping lithospheric boundaries using Os isotopes of mantle xenolithsan example from the North China Craton Geochimica et Cosmochimica Acta 753881ndash3902

Ma X 1989 Atlas of Active Faults in China Seismologic Press BeijingMa JL Xu YG 2006 Old EM1-type enriched mantle under the middle North China

Craton as indicated by Sr and Nd isotopes of mantle xenoliths from YangyuanHebei Province Chinese Science Bulletin 51 1343ndash1349

Menzies MA 1990 Effects of small volume melts Nature 343 312ndash313Menzies M Murthy VR 1980 Enriched mantle Nd and Sr isotopes in diopsides from

kimberlite nodules Nature 283 634ndash636Menzies MA Xu YG 1998 Geodynamics of the North China Craton In Flower

MFJ Chung SL Lo CH Lee TY (Eds) Mantle Dynamics and Plate Interactionsin East Asia American Geophysical Union Washington DC pp 155ndash165

Menzies MA Fan WM Zhang M 1993 Palaeozoic and Cenozoic lithoprobes andthe loss of gt120 km of Archaean lithosphere SinondashKorean craton China InPrichard HM Alabaster T Harris NBW Neary CR (Eds) Magmatic Processesand Plate Tectonics Geological Society of London Special Publication pp 71ndash81

Menzies M Xu YG Zhang HF Fan WM 2007 Integration of geology geophysicsand geochemistry a key to understanding the North China Craton Lithos 96 1ndash21

OReilly SY Griffin WL Poudjom YH Morgan P 2001 Are lithosphere forever Track-ing changes in subcontinental lithospheric mantle through time GSA Today 11 4ndash10

Pearson DG 1999 Evolution of cratonic lithospheric mantle an isotopic perspectiveIn Fei Y Berka CM Mysen BO (Eds) Mantle Petrology Field Observations andHigh-Pressure Experimentation A Tribute to Francis R (Joe) Boyd The Geochemi-cal Society Special Publication pp 57ndash78

Pearson DG Shirey SB Harris JW Carlson RW 1998 Sulphide inclusions in dia-monds from the Koffiefontein kimberlite S Africa constraints on diamond agesand mantle RendashOs systematics Earth and Planetary Science Letters 160 311ndash326

Pearson DG Shirey SB Bulanova GP Carlson RW Milledge HJ 1999 RendashOs iso-tope measurements of single sulfide inclusions in a Siberian diamond and its nitro-gen aggregation systematics Geochimica et Cosmochimica Acta 63 703ndash711

Pearson NJ Alard O Griffin WL Jackson SE OReilly SY 2002 In situ measure-ment of RendashOs isotopes in mantle sulfides by laser ablation multicollector-inductively coupled plasma mass spectrometry analytical methods and prelimi-nary results Geochimica et Cosmochimica Acta 66 1037ndash1050

Reisberg L Zhi XC Lorand JP Wagner C Peng ZC Zimmermann C 2005 RendashOsand S systematics of spinel peridotite xenoliths from east central China evidencefor contrasting effects of melt percolation Earth and Planetary Science Letters239 286ndash308

Rudnick RL Gao S Ling WL Liu YS McDonough WF 2004 Petrology and geo-chemistry of spinel peridotite xenoliths from Hannuoba and Qixia North ChinaCraton Lithos 77 609ndash637

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Santosh M 2010 Assembling North China Craton within the Columbia superconti-nent the role of double-sided subduction Precambrian Research 178 149ndash167

Santosh M Tsunogae T Li JH Liu SJ 2007a Discovery of sapphirine-bearing MgndashAl granulites in the North China Craton implications for Paleoproterozoic ultra-high temperature metamorphism Gondwana Research 11 263ndash285

Santosh M Wilde SA Li JH 2007b Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton evidence from SHRIMPUndashPb zircon geochronology Precambrian Research 159 178ndash196

Santosh M Sajeev K Li JH Liu SJ Itaya T 2009 Counterclockwise exhumation ofa hot orogen the Paleoproterozoic ultrahigh-temperature granulites in the NorthChina Craton Lithos 110 140ndash152

Santosh M Zhao D Kusky T 2010 Mantle dynamics of the Paleoproterozoic NorthChina Craton a perspective based on seismic tomography Journal of Geodynamics49 39ndash53

Santosh M Liu SJ Tsunogae T Li JH 2011 Paleoproterozoic ultrahigh-temperature granulites in the North China Craton implications for tectonic modelson extreme crustal metamorphism Precambrian Research doi101016jprecamres201110051003

Shirey SB Walker RJ 1998 The RendashOs isotopic system in cosmochemistry and igne-ous geochemistry Annual Reviews of Earth and Planetary Sciences 26 425ndash500

Smith D Griffin WL Ryan CG Sie SH 1991 Trace-element zonation in garnetsfrom the thumb mdash heating and melt infiltration below the Colorado Plateau Con-tributions to Mineralogy and Petrology 107 60ndash79

Song Y Frey FA 1989 Geochemistry of peridotite xenoliths in basalt from Hannuobaeastern China implications for subcontinental mantle heterogeneity Geochimica etCosmochimica Acta 53 97ndash113

Tang YJ Zhang HF Ying JF 2004 High-Mg olivine xenocrysts entrained in Cenozoicbasalts in central Taihang Mountains relicts of old lithospheric mantle Acta Petrolo-gica Sinica 20 1243ndash1252

Tang YJ Zhang HF Ying JF 2006 Asthenospherendashlithospheric mantle interactionin an extensional regime implication from the geochemistry of Cenozoic basaltsfrom Taihang Mountains North China Craton Chemical Geology 233 309ndash327

Tang YJ Zhang HF Nakamura E Moriguti T Kobayashi K Ying JF 2007 Lithiumisotopic systematics of peridotite xenoliths from Hannuoba North China Cratonimplications for meltndashrock interaction in the considerably thinned lithosphericmantle Geochimica et Cosmochimica Acta 71 4327ndash4341

Tang YJ Zhang HF Ying JF Zhang J Liu XM 2008 Refertilization of ancient lith-ospheric mantle beneath the central North China Craton evidence from petrologyand geochemistry of peridotite xenoliths Lithos 101 435ndash452

Tang YJ Zhang HF Nakamura E Ying JF 2011 Multistage meltfluidndashperidotiteinteractions in the refertilized lithospheric mantle beneath the North China Cra-ton constraints from the LindashSrndashNd isotopic disequilibrium between minerals ofperidotite xenoliths Contributions to Mineralogy and Petrology 161 845ndash861

Tang YJ Zhang HF Deloule E Su BX Ying JF Xiao Y Hu Y 2012 Slab-derivedlithium isotopic signatures in mantle xenoliths from northeastern North China Cra-ton Lithos doi101016jlithos201112001

Tatsumoto M Basu AR Huang WK Wang JW Xie GH 1992 Sr Nd and Pb iso-topes of ultramafic xenoliths in volcanic-rocks of eastern China enriched compo-nents EMI and EMII in subcontinental lithosphere Earth and Planetary ScienceLetters 113 107ndash128

Walker RJ Carlson RW Shirey SB Boyd FR 1989 Os Sr Nd and Pb isotope sys-tematics of southern African peridotite xenoliths implications for the chemicalevolution of subcontinental mantle Geochimica et Cosmochimica Acta 531583ndash1595

Wang YJ Fan WM Zhang HF Peng TP 2006 Early Cretaceous gabbroic rocksfrom the Taihang Mountains implications for a paleosubduction-related litho-spheric mantle beneath the central North China Craton Lithos 86 281ndash302

Wilshire HG Shervais JW 1975 Al-augite and Cr-diopside ultramafic xenoliths inbasaltic rocks from western United States Physics and Chemistry of the Earth 9257ndash272

Wu FY Walker RJ Ren XW Sun DY Zhou XH 2003 Osmium isotopic con-straints on the age of lithospheric mantle beneath northeastern China ChemicalGeology 196 107ndash129

Wu FY Walker RJ Yang YH Yuan HL Yang JH 2006 The chemicalndashtemporalevolution of lithospheric mantle underlying the North China Craton Geochimicaet Cosmochimica Acta 70 5013ndash5034

Xia QX Zhi XC Meng Q Zheng L Peng ZC 2004 The trace element and RendashOsisotopic geochemistry of mantle-derived peridotite xenoliths from Hannuoba na-ture and age of SCLM beneath the area Acta Petrologica Sinica 20 1215ndash1224 (inChinese with English abstract)

Xiao Y Zhang HF 2011 Effects of melt percolation on platinum group elements andRendashOs systematics of peridotites from the TanndashLu fault zone eastern North ChinaCraton Journal of the Geological Society of London 168 1201ndash1214

Xiao WJ Windley B Hao J Zhai MG 2003 Accretion leading to collision and thePermian Solonker suture Inner Mongolia China termination of the CentralAsian orogenic belt Tectonics 22 doi1010292202 TC001484

Xu YG 2001 Thermo-tectonic destruction of the Archean lithospheric keel beneaththe SinondashKorean Craton in China evidence timing and mechanism Physics andChemistry of the Earth (A) 26 747ndash757

Xu YG 2002 Evidence for crustal components in the mantle and constraints on crustalrecycling mechanisms pyroxenite xenoliths from Hannuoba North China ChemicalGeology 182 301ndash322

Xu XS OReilly SY Griffin WL Zhou XM Huang XL 1998 The nature of the Ce-nozoic lithosphere of Nushan eastern China In Flower MFJ Chung SL Lo CHLee TY (Eds) Mantle Dynamics and Plate Interactions in East Asia AmericanGeophysical Union Washington DC pp 167ndash196

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

11Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Xu YG Chung SL Ma JL Shi LB 2004 Contrasting Cenozoic lithospheric evolutionand architecture in the western and eastern SinondashKorean craton constrains fromgeochemistry of basalts and mantle xenoliths Journal of Geology 112 593ndash605

Xu XS Griffin WL OReilly SY Pearson NJ Geng HY Zheng JP 2008a RendashOsisotopes of sulfides in mantle xenoliths from eastern China progressive modifica-tion of lithospheric mantle Lithos 102 43ndash64

Xu YG Blusztajn J Ma JL Suzuki K Liu JF Hart SR 2008b Late Archean to earlyProterozoic lithospheric mantle beneath the western North China craton SrndashNdndashOs isotopes of peridotite xenoliths from Yangyuan and Fansi Lithos 102 25ndash42

Xu W Yang D Gao S Pei F Yu Y 2010 Geochemistry of peridotite xenoliths inEarly Cretaceous high-Mg diorites from the Central Orogenic Block of the NorthChina Craton the nature of Mesozoic lithospheric mantle and constraints on lith-ospheric thinning Chemical Geology 270 257ndash273

Yang JH Wu FY Wilde SA 2003 A review of the geodynamic setting of large-scaleLate Mesozoic gold mineralization in the North China craton an association withlithospheric thinning Ore Geology Reviews 23 125ndash152

Ying JF Zhang HF Tang YJ 2010 Zoned olivine xenocrysts in a late Mesozoic gab-bro from the southern Taihang Mountains implications for old lithospheric mantlebeneath the central North China Craton Geological Magazine 147 161ndash170

Yuan XC 1996 Atlas of Geophysics in China Geological Publishing House BeijingZhai MG Santosh M 2011 The early Precambrian odyssey of the North China Craton a

synoptic overview Gondwana Research 20 6ndash25Zhang HF 2005 Transformation of lithospheric mantle through peridotitendashmelt reac-

tion a case of SinondashKorean craton Earth and Planetary Science Letters 237768ndash780

Zhang HF 2009 Peridotitendashmelt interaction a key point for the destruction of cra-tonic lithospheric mantle Chinese Science Bulletin 54 3417ndash3437

Zhang HF Sun M Zhou XH Fan WM Zhai MG Ying JF 2002 Mesozoic litho-sphere destruction beneath the North China Craton evidence from major- trace-element and SrndashNdndashPb isotope studies of Fangcheng basalts Contributions to Min-eralogy and Petrology 144 241ndash253

Zhang HF Sun M Zhou XH Zhou MF Fan WM Zheng JP 2003 Secular evolu-tion of the lithosphere beneath the eastern North China Craton evidence fromMe-sozoic basalts and high-Mg andesites Geochimica et Cosmochimica Acta 674373ndash4387

Zhang HF Sun M Zhou MF Fan WM Zhou XH Zhai MG 2004 Highly hetero-geneous late Mesozoic lithospheric mantle beneath the north China Craton evi-dence from SrndashNdndashPb isotopic systematics of mafic igneous rocks GeologicalMagazine 141 55ndash62

Zhang J Zhao GC Sun M Wilde SA Li SZ Liu SW 2006 High-pressure maficgranulites in the Trans-North China Orogen tectonic significance and age Gond-wana Research 9 349ndash362

Zhang HF Nakamura E Kobayashi K Zhang J Ying JF Tang YJ Niu LF 2007Transformation of subcontinental lithospheric mantle through peridotitendashmelt re-action evidence from a highly fertile mantle xenolith from the North China cratonInternational Geology Review 49 658ndash679

Zhang HF Goldstein S Zhou XH Sun M Zheng JP Cai Y 2008 Evolution of sub-continental lithospheric mantle beneath eastern China RendashOs isotopic evidencefrom mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts Contribu-tions to Mineralogy and Petrology 155 271ndash293

Zhang HF Goldstein SL Zhou XH Sun M Cai Y 2009 Comprehensive refertiliza-tion of lithospheric mantle beneath the North China Craton further OsndashSrndashNd iso-topic constraints Journal of the Geological Society of London 166 249ndash259

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Zhang HF Deloule E Tang YJ Ying JF 2010a Meltrock interaction in remains ofrefertilized Archean lithospheric mantle in Jiaodong Peninsula North China Cra-ton Li isotopic evidence Contributions to Mineralogy and Petrology 160 261ndash277

Zhang HF Nakamura E Kobayashi K Ying JF Tang YJ 2010b Recycled crustalmelt injection into lithospheric mantle implication from cumulative compositeand pyroxenite xenoliths International Journal of Earth Sciences 99 1167ndash1186

Zhang HF Ying JF Tang YJ Li XH Feng C Santosh M 2011 Phanerozoic reacti-vation of the Archean North China Craton through episodic magmatism evidencefrom zircon UndashPb geochronology and Hf isotopes from the Liaodong PeninsulaGondwana Research 19 446ndash459

Zhang HF Sun YL Tang YJ Xiao Y Zhang WH Zhao XM Santosh M MenziesMA in press Melt-peridotite interaction in the Pre-cambrian mantle beneath thewestern North China Craton Petrology geochemistry and Sr Nd and Re isotopesLithos doi101016jlithos201201027

Zhao GC Cawood PA Wilde SA Sun M 2000 Metamorphism of basement rocksin the Central Zone of the North China craton implications for Paleoproterozoictectonic evolution Precambrian Research 103 55ndash88

Zhao GC Wilde SA Sun M Li SZ Li XP Zhang J 2008 SHRIMP UndashPb zircon agesof granitoid rocks in the Luumlliang Complex implications for the accretion and evo-lution of the Trans-North China Orogen Precambrian Research 160 213ndash226

Zhao GC Wilde SA Guo JH Cawood PA Sun M Li XP 2010a Single zircongrains record two Paleoproterozoic collisional events in the North China CratonPrecambrian Research 177 266ndash276

Zhao GC Wilde SA Zhang J 2010b New evidence from seismic imaging for sub-duction during assembly of the North China craton comment Geology 38 e206

Zhao XM Zhang HF Zhu XK Tang SH Tang YJ 2010c Iron isotope variations inspinel peridotite xenoliths from North China Craton implications for mantle meta-somatism Contributions to Mineralogy and Petrology 160 1ndash14

Zheng JP OReilly SY Griffin WL Lu FX Zhang M 1998 Nature and evolution ofCenozoic lithospheric mantle beneath Shandong peninsula SinondashKorean cratoneastern China International Geology Review 40 471ndash499

Zheng JP OReilly SY Griffin WL Lu FX Zhang M Pearson NJ 2001 Relict re-fractory mantle beneath the eastern North China block significance for lithosphereevolution Lithos 57 43ndash66

Zheng JP Griffin WL OReilly SY Liou JG Zhang RY Lu FX 2005 Late MesozoicndashEocene mantle replacement beneath the eastern North China craton evidence fromthe Paleozoic and Cenozoic peridotite xenoliths International Geology Review 47457ndash472

Zheng JP Griffin WL OReilly SY Yang JS Li TF Zhang M Zhang RY Liou JG2006 Mineral chemistry of peridotites from Paleozoic Mesozoic and Cenozoic litho-sphere constraints on mantle evolution beneath eastern China Journal of Petrology47 2233ndash2256

Zheng JP Griffin WL OReilly SY Yu CM Zhang HF Pearson N Zhang M 2007Mechanism and timing of lithospheric modification and replacement beneath theeastern North China Craton peridotitic xenoliths from the 100 Ma Fuxin basaltsand a regional synthesis Geochimica et Cosmochimica Acta 71 5203ndash5225

Zhou XH Armstrong RL 1982 Cenozoic volcanic rocks of eastern China mdash secularand geographic trends in chemistry and strontium isotopic composition Earthand Planetary Science Letters 58 301ndash329

Zindler A Hart SR 1986 Chemical geodynamics Annual Reviews of Earth and Plane-tary Sciences 14 493ndash571

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

702 702704 706705 708703 704706 710707 712

5140 5140

5115

5115

5110

5120

5120

5125

5125

5130

5130

51355135

87Sr86Sr 87Sr 86Sr

143 N

d14

4 Nd

a b

Fanshibasalts

DM+EMMixing

YangyuanDMMORB

Globalon-craton

Globaloff-craton

07154

Hannuoba

FushanFanshi harzFanshi lherz

Hebi CpxHebi Opx Oceanic

EM1

EM1

Hebibasalts

Mesozoiclithosperic mantle

Mesozoiclithosperic mantle

Kaapvaal

Jining

Fig 6 (a) Sr and Nd isotope ratios in cpx and opx from the peridotites together with the published data for peridotite xenolithsData sources in addition to this study cpx in peridotite xenoliths from Hannuoba (Song and Frey 1989 Tatsumoto et al 1992 Fan et al 2000 Rudnick et al 2004 Tang et al2011) Fanshi (Tang et al 2008 Xu et al 2008b Tang et al 2011) Yangyuan (Ma and Xu 2006 Xu et al 2008b) Jining peridotites (Zhang et al in press) and the Kaapvaal cratonSouth Africa (Menzies andMurthy 1980) Mesozoic lithospheric mantle beneath the Central Zone of the NCC (Zhang et al 2004Wang et al 2006 Xu et al 2010) Cenozoic Fanshiand Hebi host basalts (Tang et al 2006 2011 unpublished data) DM MORB and EM1 (Zindler and Hart 1986) The field roughly drawn denotes the DM-EM1 mixing trend(b) Oceanic peridotites and mantle peridotites from global on- and off-craton locations (Fan et al 2000 and references therein)

7Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Zhang et al 2009 Xiao and Zhang 2011) As a result melt percola-tion could lead to significant changes in the Os isotopic compositionsof the refertilized peridotites Thus whole-rock Os isotope composi-tions reflect the mixtures of different generations of sulfides There-fore the significant variability in Os isotopic compositions ofsulfides within individual peridotite samples calls into question thesignificance of many published whole-rock ldquodepletion agesrdquo(Pearson et al 2002)

RendashOs isotopic ages in the peridotite xenoliths from the NCC varygreatly with Re-depletion model ages (TRD) ranging from 0 to 30 Gaand RendashOs model ages (TMA) of 0ndash35 Ga (Fig 9) For example mostof the Hannuoba peridotites have Proterozoic whole-rock RendashOsmodel ages resembling the Cenozoic basaltndashhost peridotites fromother localities on the North China Craton (Fig 9) However the insitu TRD and TMA model ages of sulfides in the Hannuoba samplesshow a larger range from Archean to Phanerozoic model ages than

Table 3Sr and Nd isotopic compositions of cpx and opx in the peridotite xenoliths

Sample Rb (ppm) Sr (ppm) Sm (ppm) Nd (ppm) 87R

Cpx05HB68 0003 144 0355 472 0005HB70 0030 567 0308 197 0005HB72 0660 315 401 209 00HB1120 0041 768 0133 096 00HB1121 0000 167 0247 225 00HB1122 0004 266 0909 843 00HB1125 0003 161 0506 588 00HB1126 0004 479 665 269 00

Opx05HB68 0013 137 0005HB70 0010 127 0019 0073 0005HB72 0017 285 0063 0207 00HB1120 0007 149 00HB1121 0013 137 00HB1122 0011 137 0010 0094 00HB1125 0015 991 00HB1126 0035 425 0073 0231 0005HB09 0039 199 0451 0070 00HB1128 0081 877 0070 0325 00

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

the whole-rock ages of the peridotites strongly indicating that thewhole-rock ages are not the true formation ages of the peridotitesbut the mixing ages of multiple generations of sulfides (Pearson etal 2002 Griffin et al 2004 Xu et al 2008a Zhang et al 2009)The TRD ages of these peridotites apparently correlate with olivineFo (Fig 9) which is traditionally explained as melting trend (Griffinet al 2004) Alternatively this correlation could also reflect the reac-tion trend of a depleted residue with asthenosphere-derived melts(Zhang et al 2009) The refertilization of peridotites could lowerthe Fo of olivine (Zhang 2005 Griffin et al 2009) and result in thepositive correlations between Re abundances and Al2O3 and Yb con-tents in the peridotites by additions of Fe Al Yb and Re (Zhang etal 2009) Therefore the correlation between TRD ages and olivineFo may reflect the combined results of partial melting and refertiliza-tion processes and the latter lowered the TRD ages of the peridotitesdue to the additions of Re and less radiogenic Os or younger sulfide

b86Sr 87Sr86Sr 2σ 147Sm144Nd 143Nd144Nd 2σ

001 0703092 10 00456 0512942 9015 0703359 10 00944 0513004 7006 0703246 10 01160 0513039 6015 0704151 8 00841 0511825 8000 0703862 8 00665 0512144 12000 0703312 7 00652 0512758 7001 0703242 8 00521 0512960 10000 0703715 14 01494 0512896 9

276 0703529 10234 0703454 15 01604 0513005 7172 0703560 10 01844 0513003 24144 0704055 11277 0703891 10230 0704394 35 00664 0512655 12045 0704829 10241 0703576 13 01921 0512920 8561 0704215 17 39155 0512795 7268 0703655 11 01293 0512907 7

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

5140

5115

5110

5120

5125

5130

5135

89 91 92 9390Olivine Fo

0702

0703

0704

0705

0706

87S

r86

Sr

HebiFushanFanshiYangyuanHannuoba

Mesozoic

Mesozoic

North margin

Central NCC

North margin

Central NCC

143 N

d14

4 Nd

Fig 8 Olivine Fo vs Sr and Nd isotope ratios in cpx from the peridotites Data sourcesare as in Fig 6

200 3010

0509

0511

0512

0513

Time before present (Ga)

143 N

d14

4 Nd

0510

Depleted mantle

HB1120 ( 147144Sm Nd=00665)

t=18

Continental crustDM-old crustmixing

FS6-29 ( 147

144Sm Nd=00936)

Fig 7 The evolution of 143Nd144Nd with time in the HB1120 (this study) and sampleFS6ndash29 (Xu et al 2010) DM-old crust mixing represents the assumed modification ofthe samples by recycled crustal materials at 18 Ga The 143Nd144Nd of the samples at18 Ga were calculated based on the decay constant of 147Sm (654times10minus12) 143Nd144Nd of chondrite (0512638) and the measured 143Nd144Nd and Sm and Nd contentsof the samples

8 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

introduction which could obliterate the evidence of old ages (Griffinet al 2004)

The RendashOs isotopic data of Paleozoic kimberlite-borne xenolithsdemonstrated that Archean lithospheric mantle existed beneath theeastern NCC during the Paleozoic (Gao et al 2002 Wu et al 2006Zhang et al 2008 Chu et al 2009b) However most of the peridotitexenoliths hosted by the Cenozoic basalts have Proterozoic TRD andTMA ages with only a few xenoliths having Phanerozoic ages(Fig 9) The scarcity of Archean TRD ages may reflect that nearly allthe Archean lithospheric mantle beneath the eastern NCC has beenreplaced (Gao et al 2002 Wu et al 2006 Chu et al 2009b) or refer-tilized by multiple-stage influx of melts (Xu et al 2008a Zhang et al2008 2009 Xiao and Zhang 2011) In contrast some peridotites inthe Mesozoic and Cenozoic basaltic rocks in the Central Zone of theNCC have whole-rock (Xu et al 2008b) or sulfide (Zheng et al2007 Xu et al 2008a) TRD ages of Archean reflecting the existenceof Archean mantle beneath this region However the wide range inTRD ages observed in single peridotite and their sulfides may reflectprogressive modification of the lithospheric mantle by fertile mate-rials (Xu et al 2008a) as is well documented for the peridotitesfrom other regions of the world (Pearson et al 1999 2002 Alard etal 2002 Griffin et al 2004 Harvey et al 2010) As a result theTRD ages for most of the samples from the North China Craton may re-flect the mixing of different-generation sulfides generated by referti-lization processes

As a result most of the peridotite xenoliths from the Central Zoneincluding Hebi Fushan Fanshi Yangyuan Datong Jining and Han-nuoba localities are relatively fertile in compositions (Figs 3ndash5) andbear a resemblance to the ldquooceanicrdquo lithosphere (Fan et al 2000)but they are likely the fragments of refertilized Archean lithosphericmantle

64 Constraints on the destruction of the NCC

The mineralogy elemental and isotopic geochemistry of peridotitexenoliths entrained in the Mesozoic and Cenozoic igneous rocks fromthe NCC indicate that the present lithospheric mantle beneath theCentral Zone is highly heterogeneous which is likely produced from

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

an Archean lithosphere by refertilization via multistage additions ofmelt The early-stage melt may be derived from recycled crustal ma-terials and the later-stage melt be mainly derived from the astheno-sphere The refertilization processes could mask even totallyobliterate the Archean refractory signatures of parts of the litho-sphere and rejuvenate the Archean mantle by lowering the RendashOsmodel ages of refertilized peridotites (Zhang et al 2008 2009 Xiaoand Zhang 2011)

The peridotites from Fushan and Hebi in the central NCC are main-ly refractory harzburgites with minor lherzolites (Fig 2) Their ex-tremely variable SrndashNd isotopic ratios (Fig 6) and ArcheanndashPaleoproterozoic TRD ages (Fig 9) reflect low-degree modification ofthe Archean lithospheric mantle beneath the central NCC In contrastthe peridotites from the Hannuoba and Jining in the northern marginof the craton are almost fertile lherzolites (Fig 5) with depleted SrndashNd isotopic compositions (Figs 6 and 8) and ProterozoicndashPhanerozoicTRD ages (Fig 9) indicating high-degree refertilization of the mantlelithosphere (Tang et al 2008 Zhang et al 2009 in press) One peri-dotite from Jining has radiogenic 87Sr86Sr (up to 0707 Fig 6) likelyimplying the modification of oceanic crust (Zhang et al in press)This is consistent with the observation of Santosh (2010) providingevidence for imbrication of oceanic plate lithostratigraphy from theInner Mongolia suture zone (Fig 1)

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

88

89

90

91

92

93

TRD (Ga)

TM

A (

Ga) 20

25

30

35

15

10

05

95

0 05 10 15 20 25 30

Oliv

ine

Fo

TMA0 1 3

Sulfide

In basalt

In kimberlite

EasternBlockIn basalt

CentralZone

Hebi

HebiFushanFanshiDatongYangyuanJiningHannuoba

Reaction trend

Melting trend

Archean

Northmargin

Phanerozoic Proterozoic

PM

CentralNCC

Sulfide Hannuoba

In basalt easternIn kimber eastern

Sulfide Hebi

2

Fig 9 Diagrams of TMA and Fo of olivine vs TRD model ages of peridotite xenoliths andin situ analyses of sulfides from the NCC Inset shows histogram of the TMA agesData sources in addition to this study Hannuoba peridotites (Gao et al 2002 Xia etal 2004 Zhang et al 2009 Liu et al 2011) Fushan Datong and Hebi peridotites (Liuet al 2011) Jining (Liu et al 2011 Zhang et al in press) Fanshi and Yangyuan pe-ridotites (Xu et al 2008b Liu et al 2011) In situ ages of sulfides in Hannuoba andHebi peridotites (Zheng et al 2007 Xu et al 2008a) peridotite xenoliths entrainedin the Cenozoic basalts (Gao et al 2002 Wu et al 2003 2006 Chu et al 2009b) andPaleozoic kimberlites from the NCC (Gao et al 2002 Wu et al 2006 Zhang et al 2008Chu et al 2009b)

9Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Compared to the Hannuoba peridotites the Yangyuan and Fanshixenoliths are mainly lherzolites with minor harzburgite and haveenriched SrndashNd isotopic compositions and ArcheanndashPhanerozoic TRDages implying relatively low-degree modification of the lithosphericmantle Therefore the spatially petrologic and geochemical variationsof xenoliths suggest that the refertilization of ancient lithosphericmantle by melt additions became stronger from the interior to thenorth margin of the NCC (Zhang 2009) (Figs 2ndash9)

For the whole North China Craton it experienced a series ofsubductioncollision events as evidenced by the Paleozoic to TriassicQinlingndashDabie ultrahigh-pressure belt in south (Li et al 1993) theTianshanndashInner MongoliandashDaxinganling orogen in north (Xiao etal 2003 Zhang et al 2003) and the MesozoicndashCenozoic subductionof Pacific plate in east These events could intensively modify thesubcontinental lithospheric mantle by igneous refertilization viamultistage peridotitendashmelt reactions (Zhang et al 2002 2003 Xuet al 2008a Zhang et al 2009 Zhang et al 2010a 2010b Tanget al 2011 2012) leading to the highly heterogeneity of the mantle

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

7 Conclusions

Mineral element and SrndashNd isotopic compositions of the perido-tite xenoliths from the Cenozoic Hebi basalts in the Central Zone ofthe NCC coupled with previously published petrologic and isotopicdata of mantle xenoliths from the eastern NCC allow us to draw thefollowing conclusions

(1) The Hebi harzburgite xenoliths are refractory in mineral com-positions and highly variable in mineral SrndashNd isotopic compo-sitions ranging from MORB-like to EM1-type mantle They arethe residues of Archean lithospheric mantle beneath thisregion

(2) The present lithospheric mantle beneath the Central Zone ofthe NCC is highly heterogeneous in mineral and geochemicalcompositions likely produced by refertilization via multipleadditions of melts

(3) The refertilization of the lithospheric mantle became strongerfrom the interior to the margin of the craton which was closelyrelated to multiple subductioncollision events of circum-craton plates

Acknowledgments

Wewould like to express our gratitude to Qian Mao and Yu-GuangMa for their assistance with EPMA analyses and Jing-Hui Guo withisotopic analyses at the State Key Laboratory of Lithospheric Evolu-tion Institute of Geology and Geophysics Chinese Academy of Sci-ences We gratefully acknowledge the constructive reviews of SAulbach and an anonymous reviewer and editorial handling by Edi-tors which helped us to improve the presentation This work was fi-nancially supported by the National Science Foundation of China(Grants 91014007 41073028 and 40773026)

References

Adam J Green T 2006 Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt 1 Experimental results andthe investigation of controls on partitioning behaviour Contributions to Mineralo-gy and Petrology 152 1ndash17

Alard O Griffin WL Pearson NJ Lorand JP OReilly SY 2002 New insights intothe RendashOs systematics of sub-continental lithospheric mantle from in situ analysisof sulphides Earth and Planetary Science Letters 203 651ndash663

Aulbach S Griffin WL OReilly SY McCandless TE 2004 Genesis and evolution ofthe lithospheric mantle beneath the Buffalo Head Terrane Alberta (Canada) Lithos77 413ndash451

Beyer EE Griffin WL OReilly SY 2006 Transformation of Archaean lithosphericmantle by refertilization evidence from exposed peridotites in the Western GneissRegion Norway Journal of Petrology 47 1611ndash1636

Boyd FR 1989 Compositional distinction between oceanic and cratonic lithosphereEarth and Planetary Science Letters 96 15ndash26

Chen SH OReilly SY Zhou XH Griffin WL Zhang GH Sun M Feng JL ZhangM 2001 Thermal and petrological structure of the lithosphere beneath HannuobaSinondashKorean Craton China evidence from xenoliths Lithos 56 267ndash301

Chen L Zheng T Xu W 2006 A thinned lithospheric image of the Tanlu Fault Zoneeastern China constructed from wave equation based receiver function migrationJournal of Geophysical Research 111 B09312 doi1010292005jb003974

Chu ZY Chen FK Yang YH Guo JH 2009a Precise determination of Sm Nd con-centrations and Nd isotopic compositions at the nanogram level in geological sam-ples by thermal ionization mass spectrometry Journal of Analytical AtomicSpectrometry 24 1534ndash1544

Chu ZY Wu FY Walker RJ Rudnick RL Pitcher L Puchtel IS Yang YH WildeSA 2009b Temporal evolution of the lithospheric mantle beneath the easternNorth China Craton Journal of Petrology 50 1857ndash1898

Dobbs PN Duncan DJ Hu S Shee SR Colgan E Brown MA Smith CB AllsoppHL 1994 The geology of the Mengyin kimberlites Shandong China In MeyerHOA Leonardos OH (Eds) Diamonds Characterization Genesis and Explora-tion Proceedings of the 5th International Kimberlite Conference CPRM Brasiliapp 106ndash115

Fan QC Hooper PR 1991 The Cenozoic basaltic rocks of eastern China petrologyand chemical composition Journal of Petrology 32 765ndash810

Fan WM Menzies MA 1992 Destruction of aged lower lithosphere and accretion ofasthenosphere mantle beneath eastern China Geotectonica et Metallogenia 16171ndash180

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

10 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Fan WM Zhang HF Baker J Jarvis KE Mason PRD Menzies MA 2000 On andoff the north China craton where is the Archaean keel Journal of Petrology 41933ndash950

Frey FA Green DH 1974 The mineralogy geochemistry and origin of Iherzolite in-clusions in Victorian basanites Geochimica et Cosmochimica Acta 38 1023ndash1059

Gao S Rudnick RL Carlson RW McDonough WF Liu YS 2002 RendashOs evidencefor replacement of ancient mantle lithosphere beneath the North China cratonEarth and Planetary Science Letters 198 307ndash322

Gao S Rudnick RL Yuan HL Liu XM Liu YS Xu WL Ling WL Ayers J WangXC Wang QH 2004 Recycling lower continental crust in the North China cratonNature 432 892ndash897

Griffin WL OReilly SY Ryan CG 1992 Composition and thermal structure of thelithosphere beneath South Africa Siberia and China proton microprobe studiesInternational Symposium on Cenozoic Volcanic Rocks and Deep-seated Xenolithsof China and its Environs Beijing pp 65ndash66

Griffin WL Zhang AD OReilly SY Ryan CG 1998 Phanerozoic evolution of thelithosphere beneath the SinondashKorean Craton In Flower MFJ Chung SL LoCH Lee TY (Eds) Mantle Dynamics and Plate Interactions in East Asia AmericanGeophysical Union Washington DC pp 107ndash126

Griffin WL OReilly SY Abe N Aulbach S Davies RM Pearson NJ Doyle BJKivi K 2003 The origin and evolution of Archean lithospheric mantle Precambri-an Research 127 19ndash41

Griffin WL Graham S OReilly SY Pearson NJ 2004 Lithosphere evolution be-neath the Kaapvaal Craton RendashOs systematics of sulfides in mantle-derived peri-dotites Chemical Geology 208 89ndash118

Griffin WL OReilly SY Afonso JC Begg GC 2009 The composition and evolutionof lithospheric mantle a re-evaluation and its tectonic implications Journal of Pe-trology 50 1185ndash1204

Harvey J Gannoun A Burton KW Schiano P Rogers NW Alard O 2010 Unravel-ling the effects of melt depletion and secondary infiltration on mantle RendashOs iso-topes beneath the French Massif Central Geochimica et Cosmochimica Acta 74293ndash320

Kelemen PB Hart SR Bernstein S 1998 Silica enrichment in the continental uppermantle via meltrock reaction Earth and Planetary Science Letters 164 387ndash406

Kroumlner A Wilde SA Li JH Wang KY 2005 Ages and evolution of a Late Archean toPaleoproterozoic upper to lower crustal section in the WutaishanHengshanFup-ing terrain of northern China Journal of Asian Earth Sciences 24 577ndash595

Kusky TM 2011 Geophysical and geological tests of tectonic models of the NorthChina Craton Gondwana Research 20 26ndash35

Li SG Xiao YL Liou DL Chen YZ Ge NJ Zhang ZQ Sun SS Cong BL ZhangRY Hart SR Wang SS 1993 Collision of the North China and Yangtze Blocksand formation of coesite-bearing eclogite-timing and processes Chemical Geology109 89ndash111

Liu J Rudnick RL Walker RJ Gao S Wu FY Piccoli PM Yuan H Xu WL XuYG 2011 Mapping lithospheric boundaries using Os isotopes of mantle xenolithsan example from the North China Craton Geochimica et Cosmochimica Acta 753881ndash3902

Ma X 1989 Atlas of Active Faults in China Seismologic Press BeijingMa JL Xu YG 2006 Old EM1-type enriched mantle under the middle North China

Craton as indicated by Sr and Nd isotopes of mantle xenoliths from YangyuanHebei Province Chinese Science Bulletin 51 1343ndash1349

Menzies MA 1990 Effects of small volume melts Nature 343 312ndash313Menzies M Murthy VR 1980 Enriched mantle Nd and Sr isotopes in diopsides from

kimberlite nodules Nature 283 634ndash636Menzies MA Xu YG 1998 Geodynamics of the North China Craton In Flower

MFJ Chung SL Lo CH Lee TY (Eds) Mantle Dynamics and Plate Interactionsin East Asia American Geophysical Union Washington DC pp 155ndash165

Menzies MA Fan WM Zhang M 1993 Palaeozoic and Cenozoic lithoprobes andthe loss of gt120 km of Archaean lithosphere SinondashKorean craton China InPrichard HM Alabaster T Harris NBW Neary CR (Eds) Magmatic Processesand Plate Tectonics Geological Society of London Special Publication pp 71ndash81

Menzies M Xu YG Zhang HF Fan WM 2007 Integration of geology geophysicsand geochemistry a key to understanding the North China Craton Lithos 96 1ndash21

OReilly SY Griffin WL Poudjom YH Morgan P 2001 Are lithosphere forever Track-ing changes in subcontinental lithospheric mantle through time GSA Today 11 4ndash10

Pearson DG 1999 Evolution of cratonic lithospheric mantle an isotopic perspectiveIn Fei Y Berka CM Mysen BO (Eds) Mantle Petrology Field Observations andHigh-Pressure Experimentation A Tribute to Francis R (Joe) Boyd The Geochemi-cal Society Special Publication pp 57ndash78

Pearson DG Shirey SB Harris JW Carlson RW 1998 Sulphide inclusions in dia-monds from the Koffiefontein kimberlite S Africa constraints on diamond agesand mantle RendashOs systematics Earth and Planetary Science Letters 160 311ndash326

Pearson DG Shirey SB Bulanova GP Carlson RW Milledge HJ 1999 RendashOs iso-tope measurements of single sulfide inclusions in a Siberian diamond and its nitro-gen aggregation systematics Geochimica et Cosmochimica Acta 63 703ndash711

Pearson NJ Alard O Griffin WL Jackson SE OReilly SY 2002 In situ measure-ment of RendashOs isotopes in mantle sulfides by laser ablation multicollector-inductively coupled plasma mass spectrometry analytical methods and prelimi-nary results Geochimica et Cosmochimica Acta 66 1037ndash1050

Reisberg L Zhi XC Lorand JP Wagner C Peng ZC Zimmermann C 2005 RendashOsand S systematics of spinel peridotite xenoliths from east central China evidencefor contrasting effects of melt percolation Earth and Planetary Science Letters239 286ndash308

Rudnick RL Gao S Ling WL Liu YS McDonough WF 2004 Petrology and geo-chemistry of spinel peridotite xenoliths from Hannuoba and Qixia North ChinaCraton Lithos 77 609ndash637

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Santosh M 2010 Assembling North China Craton within the Columbia superconti-nent the role of double-sided subduction Precambrian Research 178 149ndash167

Santosh M Tsunogae T Li JH Liu SJ 2007a Discovery of sapphirine-bearing MgndashAl granulites in the North China Craton implications for Paleoproterozoic ultra-high temperature metamorphism Gondwana Research 11 263ndash285

Santosh M Wilde SA Li JH 2007b Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton evidence from SHRIMPUndashPb zircon geochronology Precambrian Research 159 178ndash196

Santosh M Sajeev K Li JH Liu SJ Itaya T 2009 Counterclockwise exhumation ofa hot orogen the Paleoproterozoic ultrahigh-temperature granulites in the NorthChina Craton Lithos 110 140ndash152

Santosh M Zhao D Kusky T 2010 Mantle dynamics of the Paleoproterozoic NorthChina Craton a perspective based on seismic tomography Journal of Geodynamics49 39ndash53

Santosh M Liu SJ Tsunogae T Li JH 2011 Paleoproterozoic ultrahigh-temperature granulites in the North China Craton implications for tectonic modelson extreme crustal metamorphism Precambrian Research doi101016jprecamres201110051003

Shirey SB Walker RJ 1998 The RendashOs isotopic system in cosmochemistry and igne-ous geochemistry Annual Reviews of Earth and Planetary Sciences 26 425ndash500

Smith D Griffin WL Ryan CG Sie SH 1991 Trace-element zonation in garnetsfrom the thumb mdash heating and melt infiltration below the Colorado Plateau Con-tributions to Mineralogy and Petrology 107 60ndash79

Song Y Frey FA 1989 Geochemistry of peridotite xenoliths in basalt from Hannuobaeastern China implications for subcontinental mantle heterogeneity Geochimica etCosmochimica Acta 53 97ndash113

Tang YJ Zhang HF Ying JF 2004 High-Mg olivine xenocrysts entrained in Cenozoicbasalts in central Taihang Mountains relicts of old lithospheric mantle Acta Petrolo-gica Sinica 20 1243ndash1252

Tang YJ Zhang HF Ying JF 2006 Asthenospherendashlithospheric mantle interactionin an extensional regime implication from the geochemistry of Cenozoic basaltsfrom Taihang Mountains North China Craton Chemical Geology 233 309ndash327

Tang YJ Zhang HF Nakamura E Moriguti T Kobayashi K Ying JF 2007 Lithiumisotopic systematics of peridotite xenoliths from Hannuoba North China Cratonimplications for meltndashrock interaction in the considerably thinned lithosphericmantle Geochimica et Cosmochimica Acta 71 4327ndash4341

Tang YJ Zhang HF Ying JF Zhang J Liu XM 2008 Refertilization of ancient lith-ospheric mantle beneath the central North China Craton evidence from petrologyand geochemistry of peridotite xenoliths Lithos 101 435ndash452

Tang YJ Zhang HF Nakamura E Ying JF 2011 Multistage meltfluidndashperidotiteinteractions in the refertilized lithospheric mantle beneath the North China Cra-ton constraints from the LindashSrndashNd isotopic disequilibrium between minerals ofperidotite xenoliths Contributions to Mineralogy and Petrology 161 845ndash861

Tang YJ Zhang HF Deloule E Su BX Ying JF Xiao Y Hu Y 2012 Slab-derivedlithium isotopic signatures in mantle xenoliths from northeastern North China Cra-ton Lithos doi101016jlithos201112001

Tatsumoto M Basu AR Huang WK Wang JW Xie GH 1992 Sr Nd and Pb iso-topes of ultramafic xenoliths in volcanic-rocks of eastern China enriched compo-nents EMI and EMII in subcontinental lithosphere Earth and Planetary ScienceLetters 113 107ndash128

Walker RJ Carlson RW Shirey SB Boyd FR 1989 Os Sr Nd and Pb isotope sys-tematics of southern African peridotite xenoliths implications for the chemicalevolution of subcontinental mantle Geochimica et Cosmochimica Acta 531583ndash1595

Wang YJ Fan WM Zhang HF Peng TP 2006 Early Cretaceous gabbroic rocksfrom the Taihang Mountains implications for a paleosubduction-related litho-spheric mantle beneath the central North China Craton Lithos 86 281ndash302

Wilshire HG Shervais JW 1975 Al-augite and Cr-diopside ultramafic xenoliths inbasaltic rocks from western United States Physics and Chemistry of the Earth 9257ndash272

Wu FY Walker RJ Ren XW Sun DY Zhou XH 2003 Osmium isotopic con-straints on the age of lithospheric mantle beneath northeastern China ChemicalGeology 196 107ndash129

Wu FY Walker RJ Yang YH Yuan HL Yang JH 2006 The chemicalndashtemporalevolution of lithospheric mantle underlying the North China Craton Geochimicaet Cosmochimica Acta 70 5013ndash5034

Xia QX Zhi XC Meng Q Zheng L Peng ZC 2004 The trace element and RendashOsisotopic geochemistry of mantle-derived peridotite xenoliths from Hannuoba na-ture and age of SCLM beneath the area Acta Petrologica Sinica 20 1215ndash1224 (inChinese with English abstract)

Xiao Y Zhang HF 2011 Effects of melt percolation on platinum group elements andRendashOs systematics of peridotites from the TanndashLu fault zone eastern North ChinaCraton Journal of the Geological Society of London 168 1201ndash1214

Xiao WJ Windley B Hao J Zhai MG 2003 Accretion leading to collision and thePermian Solonker suture Inner Mongolia China termination of the CentralAsian orogenic belt Tectonics 22 doi1010292202 TC001484

Xu YG 2001 Thermo-tectonic destruction of the Archean lithospheric keel beneaththe SinondashKorean Craton in China evidence timing and mechanism Physics andChemistry of the Earth (A) 26 747ndash757

Xu YG 2002 Evidence for crustal components in the mantle and constraints on crustalrecycling mechanisms pyroxenite xenoliths from Hannuoba North China ChemicalGeology 182 301ndash322

Xu XS OReilly SY Griffin WL Zhou XM Huang XL 1998 The nature of the Ce-nozoic lithosphere of Nushan eastern China In Flower MFJ Chung SL Lo CHLee TY (Eds) Mantle Dynamics and Plate Interactions in East Asia AmericanGeophysical Union Washington DC pp 167ndash196

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

11Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Xu YG Chung SL Ma JL Shi LB 2004 Contrasting Cenozoic lithospheric evolutionand architecture in the western and eastern SinondashKorean craton constrains fromgeochemistry of basalts and mantle xenoliths Journal of Geology 112 593ndash605

Xu XS Griffin WL OReilly SY Pearson NJ Geng HY Zheng JP 2008a RendashOsisotopes of sulfides in mantle xenoliths from eastern China progressive modifica-tion of lithospheric mantle Lithos 102 43ndash64

Xu YG Blusztajn J Ma JL Suzuki K Liu JF Hart SR 2008b Late Archean to earlyProterozoic lithospheric mantle beneath the western North China craton SrndashNdndashOs isotopes of peridotite xenoliths from Yangyuan and Fansi Lithos 102 25ndash42

Xu W Yang D Gao S Pei F Yu Y 2010 Geochemistry of peridotite xenoliths inEarly Cretaceous high-Mg diorites from the Central Orogenic Block of the NorthChina Craton the nature of Mesozoic lithospheric mantle and constraints on lith-ospheric thinning Chemical Geology 270 257ndash273

Yang JH Wu FY Wilde SA 2003 A review of the geodynamic setting of large-scaleLate Mesozoic gold mineralization in the North China craton an association withlithospheric thinning Ore Geology Reviews 23 125ndash152

Ying JF Zhang HF Tang YJ 2010 Zoned olivine xenocrysts in a late Mesozoic gab-bro from the southern Taihang Mountains implications for old lithospheric mantlebeneath the central North China Craton Geological Magazine 147 161ndash170

Yuan XC 1996 Atlas of Geophysics in China Geological Publishing House BeijingZhai MG Santosh M 2011 The early Precambrian odyssey of the North China Craton a

synoptic overview Gondwana Research 20 6ndash25Zhang HF 2005 Transformation of lithospheric mantle through peridotitendashmelt reac-

tion a case of SinondashKorean craton Earth and Planetary Science Letters 237768ndash780

Zhang HF 2009 Peridotitendashmelt interaction a key point for the destruction of cra-tonic lithospheric mantle Chinese Science Bulletin 54 3417ndash3437

Zhang HF Sun M Zhou XH Fan WM Zhai MG Ying JF 2002 Mesozoic litho-sphere destruction beneath the North China Craton evidence from major- trace-element and SrndashNdndashPb isotope studies of Fangcheng basalts Contributions to Min-eralogy and Petrology 144 241ndash253

Zhang HF Sun M Zhou XH Zhou MF Fan WM Zheng JP 2003 Secular evolu-tion of the lithosphere beneath the eastern North China Craton evidence fromMe-sozoic basalts and high-Mg andesites Geochimica et Cosmochimica Acta 674373ndash4387

Zhang HF Sun M Zhou MF Fan WM Zhou XH Zhai MG 2004 Highly hetero-geneous late Mesozoic lithospheric mantle beneath the north China Craton evi-dence from SrndashNdndashPb isotopic systematics of mafic igneous rocks GeologicalMagazine 141 55ndash62

Zhang J Zhao GC Sun M Wilde SA Li SZ Liu SW 2006 High-pressure maficgranulites in the Trans-North China Orogen tectonic significance and age Gond-wana Research 9 349ndash362

Zhang HF Nakamura E Kobayashi K Zhang J Ying JF Tang YJ Niu LF 2007Transformation of subcontinental lithospheric mantle through peridotitendashmelt re-action evidence from a highly fertile mantle xenolith from the North China cratonInternational Geology Review 49 658ndash679

Zhang HF Goldstein S Zhou XH Sun M Zheng JP Cai Y 2008 Evolution of sub-continental lithospheric mantle beneath eastern China RendashOs isotopic evidencefrom mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts Contribu-tions to Mineralogy and Petrology 155 271ndash293

Zhang HF Goldstein SL Zhou XH Sun M Cai Y 2009 Comprehensive refertiliza-tion of lithospheric mantle beneath the North China Craton further OsndashSrndashNd iso-topic constraints Journal of the Geological Society of London 166 249ndash259

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Zhang HF Deloule E Tang YJ Ying JF 2010a Meltrock interaction in remains ofrefertilized Archean lithospheric mantle in Jiaodong Peninsula North China Cra-ton Li isotopic evidence Contributions to Mineralogy and Petrology 160 261ndash277

Zhang HF Nakamura E Kobayashi K Ying JF Tang YJ 2010b Recycled crustalmelt injection into lithospheric mantle implication from cumulative compositeand pyroxenite xenoliths International Journal of Earth Sciences 99 1167ndash1186

Zhang HF Ying JF Tang YJ Li XH Feng C Santosh M 2011 Phanerozoic reacti-vation of the Archean North China Craton through episodic magmatism evidencefrom zircon UndashPb geochronology and Hf isotopes from the Liaodong PeninsulaGondwana Research 19 446ndash459

Zhang HF Sun YL Tang YJ Xiao Y Zhang WH Zhao XM Santosh M MenziesMA in press Melt-peridotite interaction in the Pre-cambrian mantle beneath thewestern North China Craton Petrology geochemistry and Sr Nd and Re isotopesLithos doi101016jlithos201201027

Zhao GC Cawood PA Wilde SA Sun M 2000 Metamorphism of basement rocksin the Central Zone of the North China craton implications for Paleoproterozoictectonic evolution Precambrian Research 103 55ndash88

Zhao GC Wilde SA Sun M Li SZ Li XP Zhang J 2008 SHRIMP UndashPb zircon agesof granitoid rocks in the Luumlliang Complex implications for the accretion and evo-lution of the Trans-North China Orogen Precambrian Research 160 213ndash226

Zhao GC Wilde SA Guo JH Cawood PA Sun M Li XP 2010a Single zircongrains record two Paleoproterozoic collisional events in the North China CratonPrecambrian Research 177 266ndash276

Zhao GC Wilde SA Zhang J 2010b New evidence from seismic imaging for sub-duction during assembly of the North China craton comment Geology 38 e206

Zhao XM Zhang HF Zhu XK Tang SH Tang YJ 2010c Iron isotope variations inspinel peridotite xenoliths from North China Craton implications for mantle meta-somatism Contributions to Mineralogy and Petrology 160 1ndash14

Zheng JP OReilly SY Griffin WL Lu FX Zhang M 1998 Nature and evolution ofCenozoic lithospheric mantle beneath Shandong peninsula SinondashKorean cratoneastern China International Geology Review 40 471ndash499

Zheng JP OReilly SY Griffin WL Lu FX Zhang M Pearson NJ 2001 Relict re-fractory mantle beneath the eastern North China block significance for lithosphereevolution Lithos 57 43ndash66

Zheng JP Griffin WL OReilly SY Liou JG Zhang RY Lu FX 2005 Late MesozoicndashEocene mantle replacement beneath the eastern North China craton evidence fromthe Paleozoic and Cenozoic peridotite xenoliths International Geology Review 47457ndash472

Zheng JP Griffin WL OReilly SY Yang JS Li TF Zhang M Zhang RY Liou JG2006 Mineral chemistry of peridotites from Paleozoic Mesozoic and Cenozoic litho-sphere constraints on mantle evolution beneath eastern China Journal of Petrology47 2233ndash2256

Zheng JP Griffin WL OReilly SY Yu CM Zhang HF Pearson N Zhang M 2007Mechanism and timing of lithospheric modification and replacement beneath theeastern North China Craton peridotitic xenoliths from the 100 Ma Fuxin basaltsand a regional synthesis Geochimica et Cosmochimica Acta 71 5203ndash5225

Zhou XH Armstrong RL 1982 Cenozoic volcanic rocks of eastern China mdash secularand geographic trends in chemistry and strontium isotopic composition Earthand Planetary Science Letters 58 301ndash329

Zindler A Hart SR 1986 Chemical geodynamics Annual Reviews of Earth and Plane-tary Sciences 14 493ndash571

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

5140

5115

5110

5120

5125

5130

5135

89 91 92 9390Olivine Fo

0702

0703

0704

0705

0706

87S

r86

Sr

HebiFushanFanshiYangyuanHannuoba

Mesozoic

Mesozoic

North margin

Central NCC

North margin

Central NCC

143 N

d14

4 Nd

Fig 8 Olivine Fo vs Sr and Nd isotope ratios in cpx from the peridotites Data sourcesare as in Fig 6

200 3010

0509

0511

0512

0513

Time before present (Ga)

143 N

d14

4 Nd

0510

Depleted mantle

HB1120 ( 147144Sm Nd=00665)

t=18

Continental crustDM-old crustmixing

FS6-29 ( 147

144Sm Nd=00936)

Fig 7 The evolution of 143Nd144Nd with time in the HB1120 (this study) and sampleFS6ndash29 (Xu et al 2010) DM-old crust mixing represents the assumed modification ofthe samples by recycled crustal materials at 18 Ga The 143Nd144Nd of the samples at18 Ga were calculated based on the decay constant of 147Sm (654times10minus12) 143Nd144Nd of chondrite (0512638) and the measured 143Nd144Nd and Sm and Nd contentsof the samples

8 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

introduction which could obliterate the evidence of old ages (Griffinet al 2004)

The RendashOs isotopic data of Paleozoic kimberlite-borne xenolithsdemonstrated that Archean lithospheric mantle existed beneath theeastern NCC during the Paleozoic (Gao et al 2002 Wu et al 2006Zhang et al 2008 Chu et al 2009b) However most of the peridotitexenoliths hosted by the Cenozoic basalts have Proterozoic TRD andTMA ages with only a few xenoliths having Phanerozoic ages(Fig 9) The scarcity of Archean TRD ages may reflect that nearly allthe Archean lithospheric mantle beneath the eastern NCC has beenreplaced (Gao et al 2002 Wu et al 2006 Chu et al 2009b) or refer-tilized by multiple-stage influx of melts (Xu et al 2008a Zhang et al2008 2009 Xiao and Zhang 2011) In contrast some peridotites inthe Mesozoic and Cenozoic basaltic rocks in the Central Zone of theNCC have whole-rock (Xu et al 2008b) or sulfide (Zheng et al2007 Xu et al 2008a) TRD ages of Archean reflecting the existenceof Archean mantle beneath this region However the wide range inTRD ages observed in single peridotite and their sulfides may reflectprogressive modification of the lithospheric mantle by fertile mate-rials (Xu et al 2008a) as is well documented for the peridotitesfrom other regions of the world (Pearson et al 1999 2002 Alard etal 2002 Griffin et al 2004 Harvey et al 2010) As a result theTRD ages for most of the samples from the North China Craton may re-flect the mixing of different-generation sulfides generated by referti-lization processes

As a result most of the peridotite xenoliths from the Central Zoneincluding Hebi Fushan Fanshi Yangyuan Datong Jining and Han-nuoba localities are relatively fertile in compositions (Figs 3ndash5) andbear a resemblance to the ldquooceanicrdquo lithosphere (Fan et al 2000)but they are likely the fragments of refertilized Archean lithosphericmantle

64 Constraints on the destruction of the NCC

The mineralogy elemental and isotopic geochemistry of peridotitexenoliths entrained in the Mesozoic and Cenozoic igneous rocks fromthe NCC indicate that the present lithospheric mantle beneath theCentral Zone is highly heterogeneous which is likely produced from

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

an Archean lithosphere by refertilization via multistage additions ofmelt The early-stage melt may be derived from recycled crustal ma-terials and the later-stage melt be mainly derived from the astheno-sphere The refertilization processes could mask even totallyobliterate the Archean refractory signatures of parts of the litho-sphere and rejuvenate the Archean mantle by lowering the RendashOsmodel ages of refertilized peridotites (Zhang et al 2008 2009 Xiaoand Zhang 2011)

The peridotites from Fushan and Hebi in the central NCC are main-ly refractory harzburgites with minor lherzolites (Fig 2) Their ex-tremely variable SrndashNd isotopic ratios (Fig 6) and ArcheanndashPaleoproterozoic TRD ages (Fig 9) reflect low-degree modification ofthe Archean lithospheric mantle beneath the central NCC In contrastthe peridotites from the Hannuoba and Jining in the northern marginof the craton are almost fertile lherzolites (Fig 5) with depleted SrndashNd isotopic compositions (Figs 6 and 8) and ProterozoicndashPhanerozoicTRD ages (Fig 9) indicating high-degree refertilization of the mantlelithosphere (Tang et al 2008 Zhang et al 2009 in press) One peri-dotite from Jining has radiogenic 87Sr86Sr (up to 0707 Fig 6) likelyimplying the modification of oceanic crust (Zhang et al in press)This is consistent with the observation of Santosh (2010) providingevidence for imbrication of oceanic plate lithostratigraphy from theInner Mongolia suture zone (Fig 1)

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

88

89

90

91

92

93

TRD (Ga)

TM

A (

Ga) 20

25

30

35

15

10

05

95

0 05 10 15 20 25 30

Oliv

ine

Fo

TMA0 1 3

Sulfide

In basalt

In kimberlite

EasternBlockIn basalt

CentralZone

Hebi

HebiFushanFanshiDatongYangyuanJiningHannuoba

Reaction trend

Melting trend

Archean

Northmargin

Phanerozoic Proterozoic

PM

CentralNCC

Sulfide Hannuoba

In basalt easternIn kimber eastern

Sulfide Hebi

2

Fig 9 Diagrams of TMA and Fo of olivine vs TRD model ages of peridotite xenoliths andin situ analyses of sulfides from the NCC Inset shows histogram of the TMA agesData sources in addition to this study Hannuoba peridotites (Gao et al 2002 Xia etal 2004 Zhang et al 2009 Liu et al 2011) Fushan Datong and Hebi peridotites (Liuet al 2011) Jining (Liu et al 2011 Zhang et al in press) Fanshi and Yangyuan pe-ridotites (Xu et al 2008b Liu et al 2011) In situ ages of sulfides in Hannuoba andHebi peridotites (Zheng et al 2007 Xu et al 2008a) peridotite xenoliths entrainedin the Cenozoic basalts (Gao et al 2002 Wu et al 2003 2006 Chu et al 2009b) andPaleozoic kimberlites from the NCC (Gao et al 2002 Wu et al 2006 Zhang et al 2008Chu et al 2009b)

9Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Compared to the Hannuoba peridotites the Yangyuan and Fanshixenoliths are mainly lherzolites with minor harzburgite and haveenriched SrndashNd isotopic compositions and ArcheanndashPhanerozoic TRDages implying relatively low-degree modification of the lithosphericmantle Therefore the spatially petrologic and geochemical variationsof xenoliths suggest that the refertilization of ancient lithosphericmantle by melt additions became stronger from the interior to thenorth margin of the NCC (Zhang 2009) (Figs 2ndash9)

For the whole North China Craton it experienced a series ofsubductioncollision events as evidenced by the Paleozoic to TriassicQinlingndashDabie ultrahigh-pressure belt in south (Li et al 1993) theTianshanndashInner MongoliandashDaxinganling orogen in north (Xiao etal 2003 Zhang et al 2003) and the MesozoicndashCenozoic subductionof Pacific plate in east These events could intensively modify thesubcontinental lithospheric mantle by igneous refertilization viamultistage peridotitendashmelt reactions (Zhang et al 2002 2003 Xuet al 2008a Zhang et al 2009 Zhang et al 2010a 2010b Tanget al 2011 2012) leading to the highly heterogeneity of the mantle

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

7 Conclusions

Mineral element and SrndashNd isotopic compositions of the perido-tite xenoliths from the Cenozoic Hebi basalts in the Central Zone ofthe NCC coupled with previously published petrologic and isotopicdata of mantle xenoliths from the eastern NCC allow us to draw thefollowing conclusions

(1) The Hebi harzburgite xenoliths are refractory in mineral com-positions and highly variable in mineral SrndashNd isotopic compo-sitions ranging from MORB-like to EM1-type mantle They arethe residues of Archean lithospheric mantle beneath thisregion

(2) The present lithospheric mantle beneath the Central Zone ofthe NCC is highly heterogeneous in mineral and geochemicalcompositions likely produced by refertilization via multipleadditions of melts

(3) The refertilization of the lithospheric mantle became strongerfrom the interior to the margin of the craton which was closelyrelated to multiple subductioncollision events of circum-craton plates

Acknowledgments

Wewould like to express our gratitude to Qian Mao and Yu-GuangMa for their assistance with EPMA analyses and Jing-Hui Guo withisotopic analyses at the State Key Laboratory of Lithospheric Evolu-tion Institute of Geology and Geophysics Chinese Academy of Sci-ences We gratefully acknowledge the constructive reviews of SAulbach and an anonymous reviewer and editorial handling by Edi-tors which helped us to improve the presentation This work was fi-nancially supported by the National Science Foundation of China(Grants 91014007 41073028 and 40773026)

References

Adam J Green T 2006 Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt 1 Experimental results andthe investigation of controls on partitioning behaviour Contributions to Mineralo-gy and Petrology 152 1ndash17

Alard O Griffin WL Pearson NJ Lorand JP OReilly SY 2002 New insights intothe RendashOs systematics of sub-continental lithospheric mantle from in situ analysisof sulphides Earth and Planetary Science Letters 203 651ndash663

Aulbach S Griffin WL OReilly SY McCandless TE 2004 Genesis and evolution ofthe lithospheric mantle beneath the Buffalo Head Terrane Alberta (Canada) Lithos77 413ndash451

Beyer EE Griffin WL OReilly SY 2006 Transformation of Archaean lithosphericmantle by refertilization evidence from exposed peridotites in the Western GneissRegion Norway Journal of Petrology 47 1611ndash1636

Boyd FR 1989 Compositional distinction between oceanic and cratonic lithosphereEarth and Planetary Science Letters 96 15ndash26

Chen SH OReilly SY Zhou XH Griffin WL Zhang GH Sun M Feng JL ZhangM 2001 Thermal and petrological structure of the lithosphere beneath HannuobaSinondashKorean Craton China evidence from xenoliths Lithos 56 267ndash301

Chen L Zheng T Xu W 2006 A thinned lithospheric image of the Tanlu Fault Zoneeastern China constructed from wave equation based receiver function migrationJournal of Geophysical Research 111 B09312 doi1010292005jb003974

Chu ZY Chen FK Yang YH Guo JH 2009a Precise determination of Sm Nd con-centrations and Nd isotopic compositions at the nanogram level in geological sam-ples by thermal ionization mass spectrometry Journal of Analytical AtomicSpectrometry 24 1534ndash1544

Chu ZY Wu FY Walker RJ Rudnick RL Pitcher L Puchtel IS Yang YH WildeSA 2009b Temporal evolution of the lithospheric mantle beneath the easternNorth China Craton Journal of Petrology 50 1857ndash1898

Dobbs PN Duncan DJ Hu S Shee SR Colgan E Brown MA Smith CB AllsoppHL 1994 The geology of the Mengyin kimberlites Shandong China In MeyerHOA Leonardos OH (Eds) Diamonds Characterization Genesis and Explora-tion Proceedings of the 5th International Kimberlite Conference CPRM Brasiliapp 106ndash115

Fan QC Hooper PR 1991 The Cenozoic basaltic rocks of eastern China petrologyand chemical composition Journal of Petrology 32 765ndash810

Fan WM Menzies MA 1992 Destruction of aged lower lithosphere and accretion ofasthenosphere mantle beneath eastern China Geotectonica et Metallogenia 16171ndash180

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

10 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Fan WM Zhang HF Baker J Jarvis KE Mason PRD Menzies MA 2000 On andoff the north China craton where is the Archaean keel Journal of Petrology 41933ndash950

Frey FA Green DH 1974 The mineralogy geochemistry and origin of Iherzolite in-clusions in Victorian basanites Geochimica et Cosmochimica Acta 38 1023ndash1059

Gao S Rudnick RL Carlson RW McDonough WF Liu YS 2002 RendashOs evidencefor replacement of ancient mantle lithosphere beneath the North China cratonEarth and Planetary Science Letters 198 307ndash322

Gao S Rudnick RL Yuan HL Liu XM Liu YS Xu WL Ling WL Ayers J WangXC Wang QH 2004 Recycling lower continental crust in the North China cratonNature 432 892ndash897

Griffin WL OReilly SY Ryan CG 1992 Composition and thermal structure of thelithosphere beneath South Africa Siberia and China proton microprobe studiesInternational Symposium on Cenozoic Volcanic Rocks and Deep-seated Xenolithsof China and its Environs Beijing pp 65ndash66

Griffin WL Zhang AD OReilly SY Ryan CG 1998 Phanerozoic evolution of thelithosphere beneath the SinondashKorean Craton In Flower MFJ Chung SL LoCH Lee TY (Eds) Mantle Dynamics and Plate Interactions in East Asia AmericanGeophysical Union Washington DC pp 107ndash126

Griffin WL OReilly SY Abe N Aulbach S Davies RM Pearson NJ Doyle BJKivi K 2003 The origin and evolution of Archean lithospheric mantle Precambri-an Research 127 19ndash41

Griffin WL Graham S OReilly SY Pearson NJ 2004 Lithosphere evolution be-neath the Kaapvaal Craton RendashOs systematics of sulfides in mantle-derived peri-dotites Chemical Geology 208 89ndash118

Griffin WL OReilly SY Afonso JC Begg GC 2009 The composition and evolutionof lithospheric mantle a re-evaluation and its tectonic implications Journal of Pe-trology 50 1185ndash1204

Harvey J Gannoun A Burton KW Schiano P Rogers NW Alard O 2010 Unravel-ling the effects of melt depletion and secondary infiltration on mantle RendashOs iso-topes beneath the French Massif Central Geochimica et Cosmochimica Acta 74293ndash320

Kelemen PB Hart SR Bernstein S 1998 Silica enrichment in the continental uppermantle via meltrock reaction Earth and Planetary Science Letters 164 387ndash406

Kroumlner A Wilde SA Li JH Wang KY 2005 Ages and evolution of a Late Archean toPaleoproterozoic upper to lower crustal section in the WutaishanHengshanFup-ing terrain of northern China Journal of Asian Earth Sciences 24 577ndash595

Kusky TM 2011 Geophysical and geological tests of tectonic models of the NorthChina Craton Gondwana Research 20 26ndash35

Li SG Xiao YL Liou DL Chen YZ Ge NJ Zhang ZQ Sun SS Cong BL ZhangRY Hart SR Wang SS 1993 Collision of the North China and Yangtze Blocksand formation of coesite-bearing eclogite-timing and processes Chemical Geology109 89ndash111

Liu J Rudnick RL Walker RJ Gao S Wu FY Piccoli PM Yuan H Xu WL XuYG 2011 Mapping lithospheric boundaries using Os isotopes of mantle xenolithsan example from the North China Craton Geochimica et Cosmochimica Acta 753881ndash3902

Ma X 1989 Atlas of Active Faults in China Seismologic Press BeijingMa JL Xu YG 2006 Old EM1-type enriched mantle under the middle North China

Craton as indicated by Sr and Nd isotopes of mantle xenoliths from YangyuanHebei Province Chinese Science Bulletin 51 1343ndash1349

Menzies MA 1990 Effects of small volume melts Nature 343 312ndash313Menzies M Murthy VR 1980 Enriched mantle Nd and Sr isotopes in diopsides from

kimberlite nodules Nature 283 634ndash636Menzies MA Xu YG 1998 Geodynamics of the North China Craton In Flower

MFJ Chung SL Lo CH Lee TY (Eds) Mantle Dynamics and Plate Interactionsin East Asia American Geophysical Union Washington DC pp 155ndash165

Menzies MA Fan WM Zhang M 1993 Palaeozoic and Cenozoic lithoprobes andthe loss of gt120 km of Archaean lithosphere SinondashKorean craton China InPrichard HM Alabaster T Harris NBW Neary CR (Eds) Magmatic Processesand Plate Tectonics Geological Society of London Special Publication pp 71ndash81

Menzies M Xu YG Zhang HF Fan WM 2007 Integration of geology geophysicsand geochemistry a key to understanding the North China Craton Lithos 96 1ndash21

OReilly SY Griffin WL Poudjom YH Morgan P 2001 Are lithosphere forever Track-ing changes in subcontinental lithospheric mantle through time GSA Today 11 4ndash10

Pearson DG 1999 Evolution of cratonic lithospheric mantle an isotopic perspectiveIn Fei Y Berka CM Mysen BO (Eds) Mantle Petrology Field Observations andHigh-Pressure Experimentation A Tribute to Francis R (Joe) Boyd The Geochemi-cal Society Special Publication pp 57ndash78

Pearson DG Shirey SB Harris JW Carlson RW 1998 Sulphide inclusions in dia-monds from the Koffiefontein kimberlite S Africa constraints on diamond agesand mantle RendashOs systematics Earth and Planetary Science Letters 160 311ndash326

Pearson DG Shirey SB Bulanova GP Carlson RW Milledge HJ 1999 RendashOs iso-tope measurements of single sulfide inclusions in a Siberian diamond and its nitro-gen aggregation systematics Geochimica et Cosmochimica Acta 63 703ndash711

Pearson NJ Alard O Griffin WL Jackson SE OReilly SY 2002 In situ measure-ment of RendashOs isotopes in mantle sulfides by laser ablation multicollector-inductively coupled plasma mass spectrometry analytical methods and prelimi-nary results Geochimica et Cosmochimica Acta 66 1037ndash1050

Reisberg L Zhi XC Lorand JP Wagner C Peng ZC Zimmermann C 2005 RendashOsand S systematics of spinel peridotite xenoliths from east central China evidencefor contrasting effects of melt percolation Earth and Planetary Science Letters239 286ndash308

Rudnick RL Gao S Ling WL Liu YS McDonough WF 2004 Petrology and geo-chemistry of spinel peridotite xenoliths from Hannuoba and Qixia North ChinaCraton Lithos 77 609ndash637

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Santosh M 2010 Assembling North China Craton within the Columbia superconti-nent the role of double-sided subduction Precambrian Research 178 149ndash167

Santosh M Tsunogae T Li JH Liu SJ 2007a Discovery of sapphirine-bearing MgndashAl granulites in the North China Craton implications for Paleoproterozoic ultra-high temperature metamorphism Gondwana Research 11 263ndash285

Santosh M Wilde SA Li JH 2007b Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton evidence from SHRIMPUndashPb zircon geochronology Precambrian Research 159 178ndash196

Santosh M Sajeev K Li JH Liu SJ Itaya T 2009 Counterclockwise exhumation ofa hot orogen the Paleoproterozoic ultrahigh-temperature granulites in the NorthChina Craton Lithos 110 140ndash152

Santosh M Zhao D Kusky T 2010 Mantle dynamics of the Paleoproterozoic NorthChina Craton a perspective based on seismic tomography Journal of Geodynamics49 39ndash53

Santosh M Liu SJ Tsunogae T Li JH 2011 Paleoproterozoic ultrahigh-temperature granulites in the North China Craton implications for tectonic modelson extreme crustal metamorphism Precambrian Research doi101016jprecamres201110051003

Shirey SB Walker RJ 1998 The RendashOs isotopic system in cosmochemistry and igne-ous geochemistry Annual Reviews of Earth and Planetary Sciences 26 425ndash500

Smith D Griffin WL Ryan CG Sie SH 1991 Trace-element zonation in garnetsfrom the thumb mdash heating and melt infiltration below the Colorado Plateau Con-tributions to Mineralogy and Petrology 107 60ndash79

Song Y Frey FA 1989 Geochemistry of peridotite xenoliths in basalt from Hannuobaeastern China implications for subcontinental mantle heterogeneity Geochimica etCosmochimica Acta 53 97ndash113

Tang YJ Zhang HF Ying JF 2004 High-Mg olivine xenocrysts entrained in Cenozoicbasalts in central Taihang Mountains relicts of old lithospheric mantle Acta Petrolo-gica Sinica 20 1243ndash1252

Tang YJ Zhang HF Ying JF 2006 Asthenospherendashlithospheric mantle interactionin an extensional regime implication from the geochemistry of Cenozoic basaltsfrom Taihang Mountains North China Craton Chemical Geology 233 309ndash327

Tang YJ Zhang HF Nakamura E Moriguti T Kobayashi K Ying JF 2007 Lithiumisotopic systematics of peridotite xenoliths from Hannuoba North China Cratonimplications for meltndashrock interaction in the considerably thinned lithosphericmantle Geochimica et Cosmochimica Acta 71 4327ndash4341

Tang YJ Zhang HF Ying JF Zhang J Liu XM 2008 Refertilization of ancient lith-ospheric mantle beneath the central North China Craton evidence from petrologyand geochemistry of peridotite xenoliths Lithos 101 435ndash452

Tang YJ Zhang HF Nakamura E Ying JF 2011 Multistage meltfluidndashperidotiteinteractions in the refertilized lithospheric mantle beneath the North China Cra-ton constraints from the LindashSrndashNd isotopic disequilibrium between minerals ofperidotite xenoliths Contributions to Mineralogy and Petrology 161 845ndash861

Tang YJ Zhang HF Deloule E Su BX Ying JF Xiao Y Hu Y 2012 Slab-derivedlithium isotopic signatures in mantle xenoliths from northeastern North China Cra-ton Lithos doi101016jlithos201112001

Tatsumoto M Basu AR Huang WK Wang JW Xie GH 1992 Sr Nd and Pb iso-topes of ultramafic xenoliths in volcanic-rocks of eastern China enriched compo-nents EMI and EMII in subcontinental lithosphere Earth and Planetary ScienceLetters 113 107ndash128

Walker RJ Carlson RW Shirey SB Boyd FR 1989 Os Sr Nd and Pb isotope sys-tematics of southern African peridotite xenoliths implications for the chemicalevolution of subcontinental mantle Geochimica et Cosmochimica Acta 531583ndash1595

Wang YJ Fan WM Zhang HF Peng TP 2006 Early Cretaceous gabbroic rocksfrom the Taihang Mountains implications for a paleosubduction-related litho-spheric mantle beneath the central North China Craton Lithos 86 281ndash302

Wilshire HG Shervais JW 1975 Al-augite and Cr-diopside ultramafic xenoliths inbasaltic rocks from western United States Physics and Chemistry of the Earth 9257ndash272

Wu FY Walker RJ Ren XW Sun DY Zhou XH 2003 Osmium isotopic con-straints on the age of lithospheric mantle beneath northeastern China ChemicalGeology 196 107ndash129

Wu FY Walker RJ Yang YH Yuan HL Yang JH 2006 The chemicalndashtemporalevolution of lithospheric mantle underlying the North China Craton Geochimicaet Cosmochimica Acta 70 5013ndash5034

Xia QX Zhi XC Meng Q Zheng L Peng ZC 2004 The trace element and RendashOsisotopic geochemistry of mantle-derived peridotite xenoliths from Hannuoba na-ture and age of SCLM beneath the area Acta Petrologica Sinica 20 1215ndash1224 (inChinese with English abstract)

Xiao Y Zhang HF 2011 Effects of melt percolation on platinum group elements andRendashOs systematics of peridotites from the TanndashLu fault zone eastern North ChinaCraton Journal of the Geological Society of London 168 1201ndash1214

Xiao WJ Windley B Hao J Zhai MG 2003 Accretion leading to collision and thePermian Solonker suture Inner Mongolia China termination of the CentralAsian orogenic belt Tectonics 22 doi1010292202 TC001484

Xu YG 2001 Thermo-tectonic destruction of the Archean lithospheric keel beneaththe SinondashKorean Craton in China evidence timing and mechanism Physics andChemistry of the Earth (A) 26 747ndash757

Xu YG 2002 Evidence for crustal components in the mantle and constraints on crustalrecycling mechanisms pyroxenite xenoliths from Hannuoba North China ChemicalGeology 182 301ndash322

Xu XS OReilly SY Griffin WL Zhou XM Huang XL 1998 The nature of the Ce-nozoic lithosphere of Nushan eastern China In Flower MFJ Chung SL Lo CHLee TY (Eds) Mantle Dynamics and Plate Interactions in East Asia AmericanGeophysical Union Washington DC pp 167ndash196

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

11Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Xu YG Chung SL Ma JL Shi LB 2004 Contrasting Cenozoic lithospheric evolutionand architecture in the western and eastern SinondashKorean craton constrains fromgeochemistry of basalts and mantle xenoliths Journal of Geology 112 593ndash605

Xu XS Griffin WL OReilly SY Pearson NJ Geng HY Zheng JP 2008a RendashOsisotopes of sulfides in mantle xenoliths from eastern China progressive modifica-tion of lithospheric mantle Lithos 102 43ndash64

Xu YG Blusztajn J Ma JL Suzuki K Liu JF Hart SR 2008b Late Archean to earlyProterozoic lithospheric mantle beneath the western North China craton SrndashNdndashOs isotopes of peridotite xenoliths from Yangyuan and Fansi Lithos 102 25ndash42

Xu W Yang D Gao S Pei F Yu Y 2010 Geochemistry of peridotite xenoliths inEarly Cretaceous high-Mg diorites from the Central Orogenic Block of the NorthChina Craton the nature of Mesozoic lithospheric mantle and constraints on lith-ospheric thinning Chemical Geology 270 257ndash273

Yang JH Wu FY Wilde SA 2003 A review of the geodynamic setting of large-scaleLate Mesozoic gold mineralization in the North China craton an association withlithospheric thinning Ore Geology Reviews 23 125ndash152

Ying JF Zhang HF Tang YJ 2010 Zoned olivine xenocrysts in a late Mesozoic gab-bro from the southern Taihang Mountains implications for old lithospheric mantlebeneath the central North China Craton Geological Magazine 147 161ndash170

Yuan XC 1996 Atlas of Geophysics in China Geological Publishing House BeijingZhai MG Santosh M 2011 The early Precambrian odyssey of the North China Craton a

synoptic overview Gondwana Research 20 6ndash25Zhang HF 2005 Transformation of lithospheric mantle through peridotitendashmelt reac-

tion a case of SinondashKorean craton Earth and Planetary Science Letters 237768ndash780

Zhang HF 2009 Peridotitendashmelt interaction a key point for the destruction of cra-tonic lithospheric mantle Chinese Science Bulletin 54 3417ndash3437

Zhang HF Sun M Zhou XH Fan WM Zhai MG Ying JF 2002 Mesozoic litho-sphere destruction beneath the North China Craton evidence from major- trace-element and SrndashNdndashPb isotope studies of Fangcheng basalts Contributions to Min-eralogy and Petrology 144 241ndash253

Zhang HF Sun M Zhou XH Zhou MF Fan WM Zheng JP 2003 Secular evolu-tion of the lithosphere beneath the eastern North China Craton evidence fromMe-sozoic basalts and high-Mg andesites Geochimica et Cosmochimica Acta 674373ndash4387

Zhang HF Sun M Zhou MF Fan WM Zhou XH Zhai MG 2004 Highly hetero-geneous late Mesozoic lithospheric mantle beneath the north China Craton evi-dence from SrndashNdndashPb isotopic systematics of mafic igneous rocks GeologicalMagazine 141 55ndash62

Zhang J Zhao GC Sun M Wilde SA Li SZ Liu SW 2006 High-pressure maficgranulites in the Trans-North China Orogen tectonic significance and age Gond-wana Research 9 349ndash362

Zhang HF Nakamura E Kobayashi K Zhang J Ying JF Tang YJ Niu LF 2007Transformation of subcontinental lithospheric mantle through peridotitendashmelt re-action evidence from a highly fertile mantle xenolith from the North China cratonInternational Geology Review 49 658ndash679

Zhang HF Goldstein S Zhou XH Sun M Zheng JP Cai Y 2008 Evolution of sub-continental lithospheric mantle beneath eastern China RendashOs isotopic evidencefrom mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts Contribu-tions to Mineralogy and Petrology 155 271ndash293

Zhang HF Goldstein SL Zhou XH Sun M Cai Y 2009 Comprehensive refertiliza-tion of lithospheric mantle beneath the North China Craton further OsndashSrndashNd iso-topic constraints Journal of the Geological Society of London 166 249ndash259

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Zhang HF Deloule E Tang YJ Ying JF 2010a Meltrock interaction in remains ofrefertilized Archean lithospheric mantle in Jiaodong Peninsula North China Cra-ton Li isotopic evidence Contributions to Mineralogy and Petrology 160 261ndash277

Zhang HF Nakamura E Kobayashi K Ying JF Tang YJ 2010b Recycled crustalmelt injection into lithospheric mantle implication from cumulative compositeand pyroxenite xenoliths International Journal of Earth Sciences 99 1167ndash1186

Zhang HF Ying JF Tang YJ Li XH Feng C Santosh M 2011 Phanerozoic reacti-vation of the Archean North China Craton through episodic magmatism evidencefrom zircon UndashPb geochronology and Hf isotopes from the Liaodong PeninsulaGondwana Research 19 446ndash459

Zhang HF Sun YL Tang YJ Xiao Y Zhang WH Zhao XM Santosh M MenziesMA in press Melt-peridotite interaction in the Pre-cambrian mantle beneath thewestern North China Craton Petrology geochemistry and Sr Nd and Re isotopesLithos doi101016jlithos201201027

Zhao GC Cawood PA Wilde SA Sun M 2000 Metamorphism of basement rocksin the Central Zone of the North China craton implications for Paleoproterozoictectonic evolution Precambrian Research 103 55ndash88

Zhao GC Wilde SA Sun M Li SZ Li XP Zhang J 2008 SHRIMP UndashPb zircon agesof granitoid rocks in the Luumlliang Complex implications for the accretion and evo-lution of the Trans-North China Orogen Precambrian Research 160 213ndash226

Zhao GC Wilde SA Guo JH Cawood PA Sun M Li XP 2010a Single zircongrains record two Paleoproterozoic collisional events in the North China CratonPrecambrian Research 177 266ndash276

Zhao GC Wilde SA Zhang J 2010b New evidence from seismic imaging for sub-duction during assembly of the North China craton comment Geology 38 e206

Zhao XM Zhang HF Zhu XK Tang SH Tang YJ 2010c Iron isotope variations inspinel peridotite xenoliths from North China Craton implications for mantle meta-somatism Contributions to Mineralogy and Petrology 160 1ndash14

Zheng JP OReilly SY Griffin WL Lu FX Zhang M 1998 Nature and evolution ofCenozoic lithospheric mantle beneath Shandong peninsula SinondashKorean cratoneastern China International Geology Review 40 471ndash499

Zheng JP OReilly SY Griffin WL Lu FX Zhang M Pearson NJ 2001 Relict re-fractory mantle beneath the eastern North China block significance for lithosphereevolution Lithos 57 43ndash66

Zheng JP Griffin WL OReilly SY Liou JG Zhang RY Lu FX 2005 Late MesozoicndashEocene mantle replacement beneath the eastern North China craton evidence fromthe Paleozoic and Cenozoic peridotite xenoliths International Geology Review 47457ndash472

Zheng JP Griffin WL OReilly SY Yang JS Li TF Zhang M Zhang RY Liou JG2006 Mineral chemistry of peridotites from Paleozoic Mesozoic and Cenozoic litho-sphere constraints on mantle evolution beneath eastern China Journal of Petrology47 2233ndash2256

Zheng JP Griffin WL OReilly SY Yu CM Zhang HF Pearson N Zhang M 2007Mechanism and timing of lithospheric modification and replacement beneath theeastern North China Craton peridotitic xenoliths from the 100 Ma Fuxin basaltsand a regional synthesis Geochimica et Cosmochimica Acta 71 5203ndash5225

Zhou XH Armstrong RL 1982 Cenozoic volcanic rocks of eastern China mdash secularand geographic trends in chemistry and strontium isotopic composition Earthand Planetary Science Letters 58 301ndash329

Zindler A Hart SR 1986 Chemical geodynamics Annual Reviews of Earth and Plane-tary Sciences 14 493ndash571

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

88

89

90

91

92

93

TRD (Ga)

TM

A (

Ga) 20

25

30

35

15

10

05

95

0 05 10 15 20 25 30

Oliv

ine

Fo

TMA0 1 3

Sulfide

In basalt

In kimberlite

EasternBlockIn basalt

CentralZone

Hebi

HebiFushanFanshiDatongYangyuanJiningHannuoba

Reaction trend

Melting trend

Archean

Northmargin

Phanerozoic Proterozoic

PM

CentralNCC

Sulfide Hannuoba

In basalt easternIn kimber eastern

Sulfide Hebi

2

Fig 9 Diagrams of TMA and Fo of olivine vs TRD model ages of peridotite xenoliths andin situ analyses of sulfides from the NCC Inset shows histogram of the TMA agesData sources in addition to this study Hannuoba peridotites (Gao et al 2002 Xia etal 2004 Zhang et al 2009 Liu et al 2011) Fushan Datong and Hebi peridotites (Liuet al 2011) Jining (Liu et al 2011 Zhang et al in press) Fanshi and Yangyuan pe-ridotites (Xu et al 2008b Liu et al 2011) In situ ages of sulfides in Hannuoba andHebi peridotites (Zheng et al 2007 Xu et al 2008a) peridotite xenoliths entrainedin the Cenozoic basalts (Gao et al 2002 Wu et al 2003 2006 Chu et al 2009b) andPaleozoic kimberlites from the NCC (Gao et al 2002 Wu et al 2006 Zhang et al 2008Chu et al 2009b)

9Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Compared to the Hannuoba peridotites the Yangyuan and Fanshixenoliths are mainly lherzolites with minor harzburgite and haveenriched SrndashNd isotopic compositions and ArcheanndashPhanerozoic TRDages implying relatively low-degree modification of the lithosphericmantle Therefore the spatially petrologic and geochemical variationsof xenoliths suggest that the refertilization of ancient lithosphericmantle by melt additions became stronger from the interior to thenorth margin of the NCC (Zhang 2009) (Figs 2ndash9)

For the whole North China Craton it experienced a series ofsubductioncollision events as evidenced by the Paleozoic to TriassicQinlingndashDabie ultrahigh-pressure belt in south (Li et al 1993) theTianshanndashInner MongoliandashDaxinganling orogen in north (Xiao etal 2003 Zhang et al 2003) and the MesozoicndashCenozoic subductionof Pacific plate in east These events could intensively modify thesubcontinental lithospheric mantle by igneous refertilization viamultistage peridotitendashmelt reactions (Zhang et al 2002 2003 Xuet al 2008a Zhang et al 2009 Zhang et al 2010a 2010b Tanget al 2011 2012) leading to the highly heterogeneity of the mantle

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

7 Conclusions

Mineral element and SrndashNd isotopic compositions of the perido-tite xenoliths from the Cenozoic Hebi basalts in the Central Zone ofthe NCC coupled with previously published petrologic and isotopicdata of mantle xenoliths from the eastern NCC allow us to draw thefollowing conclusions

(1) The Hebi harzburgite xenoliths are refractory in mineral com-positions and highly variable in mineral SrndashNd isotopic compo-sitions ranging from MORB-like to EM1-type mantle They arethe residues of Archean lithospheric mantle beneath thisregion

(2) The present lithospheric mantle beneath the Central Zone ofthe NCC is highly heterogeneous in mineral and geochemicalcompositions likely produced by refertilization via multipleadditions of melts

(3) The refertilization of the lithospheric mantle became strongerfrom the interior to the margin of the craton which was closelyrelated to multiple subductioncollision events of circum-craton plates

Acknowledgments

Wewould like to express our gratitude to Qian Mao and Yu-GuangMa for their assistance with EPMA analyses and Jing-Hui Guo withisotopic analyses at the State Key Laboratory of Lithospheric Evolu-tion Institute of Geology and Geophysics Chinese Academy of Sci-ences We gratefully acknowledge the constructive reviews of SAulbach and an anonymous reviewer and editorial handling by Edi-tors which helped us to improve the presentation This work was fi-nancially supported by the National Science Foundation of China(Grants 91014007 41073028 and 40773026)

References

Adam J Green T 2006 Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt 1 Experimental results andthe investigation of controls on partitioning behaviour Contributions to Mineralo-gy and Petrology 152 1ndash17

Alard O Griffin WL Pearson NJ Lorand JP OReilly SY 2002 New insights intothe RendashOs systematics of sub-continental lithospheric mantle from in situ analysisof sulphides Earth and Planetary Science Letters 203 651ndash663

Aulbach S Griffin WL OReilly SY McCandless TE 2004 Genesis and evolution ofthe lithospheric mantle beneath the Buffalo Head Terrane Alberta (Canada) Lithos77 413ndash451

Beyer EE Griffin WL OReilly SY 2006 Transformation of Archaean lithosphericmantle by refertilization evidence from exposed peridotites in the Western GneissRegion Norway Journal of Petrology 47 1611ndash1636

Boyd FR 1989 Compositional distinction between oceanic and cratonic lithosphereEarth and Planetary Science Letters 96 15ndash26

Chen SH OReilly SY Zhou XH Griffin WL Zhang GH Sun M Feng JL ZhangM 2001 Thermal and petrological structure of the lithosphere beneath HannuobaSinondashKorean Craton China evidence from xenoliths Lithos 56 267ndash301

Chen L Zheng T Xu W 2006 A thinned lithospheric image of the Tanlu Fault Zoneeastern China constructed from wave equation based receiver function migrationJournal of Geophysical Research 111 B09312 doi1010292005jb003974

Chu ZY Chen FK Yang YH Guo JH 2009a Precise determination of Sm Nd con-centrations and Nd isotopic compositions at the nanogram level in geological sam-ples by thermal ionization mass spectrometry Journal of Analytical AtomicSpectrometry 24 1534ndash1544

Chu ZY Wu FY Walker RJ Rudnick RL Pitcher L Puchtel IS Yang YH WildeSA 2009b Temporal evolution of the lithospheric mantle beneath the easternNorth China Craton Journal of Petrology 50 1857ndash1898

Dobbs PN Duncan DJ Hu S Shee SR Colgan E Brown MA Smith CB AllsoppHL 1994 The geology of the Mengyin kimberlites Shandong China In MeyerHOA Leonardos OH (Eds) Diamonds Characterization Genesis and Explora-tion Proceedings of the 5th International Kimberlite Conference CPRM Brasiliapp 106ndash115

Fan QC Hooper PR 1991 The Cenozoic basaltic rocks of eastern China petrologyand chemical composition Journal of Petrology 32 765ndash810

Fan WM Menzies MA 1992 Destruction of aged lower lithosphere and accretion ofasthenosphere mantle beneath eastern China Geotectonica et Metallogenia 16171ndash180

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

10 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Fan WM Zhang HF Baker J Jarvis KE Mason PRD Menzies MA 2000 On andoff the north China craton where is the Archaean keel Journal of Petrology 41933ndash950

Frey FA Green DH 1974 The mineralogy geochemistry and origin of Iherzolite in-clusions in Victorian basanites Geochimica et Cosmochimica Acta 38 1023ndash1059

Gao S Rudnick RL Carlson RW McDonough WF Liu YS 2002 RendashOs evidencefor replacement of ancient mantle lithosphere beneath the North China cratonEarth and Planetary Science Letters 198 307ndash322

Gao S Rudnick RL Yuan HL Liu XM Liu YS Xu WL Ling WL Ayers J WangXC Wang QH 2004 Recycling lower continental crust in the North China cratonNature 432 892ndash897

Griffin WL OReilly SY Ryan CG 1992 Composition and thermal structure of thelithosphere beneath South Africa Siberia and China proton microprobe studiesInternational Symposium on Cenozoic Volcanic Rocks and Deep-seated Xenolithsof China and its Environs Beijing pp 65ndash66

Griffin WL Zhang AD OReilly SY Ryan CG 1998 Phanerozoic evolution of thelithosphere beneath the SinondashKorean Craton In Flower MFJ Chung SL LoCH Lee TY (Eds) Mantle Dynamics and Plate Interactions in East Asia AmericanGeophysical Union Washington DC pp 107ndash126

Griffin WL OReilly SY Abe N Aulbach S Davies RM Pearson NJ Doyle BJKivi K 2003 The origin and evolution of Archean lithospheric mantle Precambri-an Research 127 19ndash41

Griffin WL Graham S OReilly SY Pearson NJ 2004 Lithosphere evolution be-neath the Kaapvaal Craton RendashOs systematics of sulfides in mantle-derived peri-dotites Chemical Geology 208 89ndash118

Griffin WL OReilly SY Afonso JC Begg GC 2009 The composition and evolutionof lithospheric mantle a re-evaluation and its tectonic implications Journal of Pe-trology 50 1185ndash1204

Harvey J Gannoun A Burton KW Schiano P Rogers NW Alard O 2010 Unravel-ling the effects of melt depletion and secondary infiltration on mantle RendashOs iso-topes beneath the French Massif Central Geochimica et Cosmochimica Acta 74293ndash320

Kelemen PB Hart SR Bernstein S 1998 Silica enrichment in the continental uppermantle via meltrock reaction Earth and Planetary Science Letters 164 387ndash406

Kroumlner A Wilde SA Li JH Wang KY 2005 Ages and evolution of a Late Archean toPaleoproterozoic upper to lower crustal section in the WutaishanHengshanFup-ing terrain of northern China Journal of Asian Earth Sciences 24 577ndash595

Kusky TM 2011 Geophysical and geological tests of tectonic models of the NorthChina Craton Gondwana Research 20 26ndash35

Li SG Xiao YL Liou DL Chen YZ Ge NJ Zhang ZQ Sun SS Cong BL ZhangRY Hart SR Wang SS 1993 Collision of the North China and Yangtze Blocksand formation of coesite-bearing eclogite-timing and processes Chemical Geology109 89ndash111

Liu J Rudnick RL Walker RJ Gao S Wu FY Piccoli PM Yuan H Xu WL XuYG 2011 Mapping lithospheric boundaries using Os isotopes of mantle xenolithsan example from the North China Craton Geochimica et Cosmochimica Acta 753881ndash3902

Ma X 1989 Atlas of Active Faults in China Seismologic Press BeijingMa JL Xu YG 2006 Old EM1-type enriched mantle under the middle North China

Craton as indicated by Sr and Nd isotopes of mantle xenoliths from YangyuanHebei Province Chinese Science Bulletin 51 1343ndash1349

Menzies MA 1990 Effects of small volume melts Nature 343 312ndash313Menzies M Murthy VR 1980 Enriched mantle Nd and Sr isotopes in diopsides from

kimberlite nodules Nature 283 634ndash636Menzies MA Xu YG 1998 Geodynamics of the North China Craton In Flower

MFJ Chung SL Lo CH Lee TY (Eds) Mantle Dynamics and Plate Interactionsin East Asia American Geophysical Union Washington DC pp 155ndash165

Menzies MA Fan WM Zhang M 1993 Palaeozoic and Cenozoic lithoprobes andthe loss of gt120 km of Archaean lithosphere SinondashKorean craton China InPrichard HM Alabaster T Harris NBW Neary CR (Eds) Magmatic Processesand Plate Tectonics Geological Society of London Special Publication pp 71ndash81

Menzies M Xu YG Zhang HF Fan WM 2007 Integration of geology geophysicsand geochemistry a key to understanding the North China Craton Lithos 96 1ndash21

OReilly SY Griffin WL Poudjom YH Morgan P 2001 Are lithosphere forever Track-ing changes in subcontinental lithospheric mantle through time GSA Today 11 4ndash10

Pearson DG 1999 Evolution of cratonic lithospheric mantle an isotopic perspectiveIn Fei Y Berka CM Mysen BO (Eds) Mantle Petrology Field Observations andHigh-Pressure Experimentation A Tribute to Francis R (Joe) Boyd The Geochemi-cal Society Special Publication pp 57ndash78

Pearson DG Shirey SB Harris JW Carlson RW 1998 Sulphide inclusions in dia-monds from the Koffiefontein kimberlite S Africa constraints on diamond agesand mantle RendashOs systematics Earth and Planetary Science Letters 160 311ndash326

Pearson DG Shirey SB Bulanova GP Carlson RW Milledge HJ 1999 RendashOs iso-tope measurements of single sulfide inclusions in a Siberian diamond and its nitro-gen aggregation systematics Geochimica et Cosmochimica Acta 63 703ndash711

Pearson NJ Alard O Griffin WL Jackson SE OReilly SY 2002 In situ measure-ment of RendashOs isotopes in mantle sulfides by laser ablation multicollector-inductively coupled plasma mass spectrometry analytical methods and prelimi-nary results Geochimica et Cosmochimica Acta 66 1037ndash1050

Reisberg L Zhi XC Lorand JP Wagner C Peng ZC Zimmermann C 2005 RendashOsand S systematics of spinel peridotite xenoliths from east central China evidencefor contrasting effects of melt percolation Earth and Planetary Science Letters239 286ndash308

Rudnick RL Gao S Ling WL Liu YS McDonough WF 2004 Petrology and geo-chemistry of spinel peridotite xenoliths from Hannuoba and Qixia North ChinaCraton Lithos 77 609ndash637

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Santosh M 2010 Assembling North China Craton within the Columbia superconti-nent the role of double-sided subduction Precambrian Research 178 149ndash167

Santosh M Tsunogae T Li JH Liu SJ 2007a Discovery of sapphirine-bearing MgndashAl granulites in the North China Craton implications for Paleoproterozoic ultra-high temperature metamorphism Gondwana Research 11 263ndash285

Santosh M Wilde SA Li JH 2007b Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton evidence from SHRIMPUndashPb zircon geochronology Precambrian Research 159 178ndash196

Santosh M Sajeev K Li JH Liu SJ Itaya T 2009 Counterclockwise exhumation ofa hot orogen the Paleoproterozoic ultrahigh-temperature granulites in the NorthChina Craton Lithos 110 140ndash152

Santosh M Zhao D Kusky T 2010 Mantle dynamics of the Paleoproterozoic NorthChina Craton a perspective based on seismic tomography Journal of Geodynamics49 39ndash53

Santosh M Liu SJ Tsunogae T Li JH 2011 Paleoproterozoic ultrahigh-temperature granulites in the North China Craton implications for tectonic modelson extreme crustal metamorphism Precambrian Research doi101016jprecamres201110051003

Shirey SB Walker RJ 1998 The RendashOs isotopic system in cosmochemistry and igne-ous geochemistry Annual Reviews of Earth and Planetary Sciences 26 425ndash500

Smith D Griffin WL Ryan CG Sie SH 1991 Trace-element zonation in garnetsfrom the thumb mdash heating and melt infiltration below the Colorado Plateau Con-tributions to Mineralogy and Petrology 107 60ndash79

Song Y Frey FA 1989 Geochemistry of peridotite xenoliths in basalt from Hannuobaeastern China implications for subcontinental mantle heterogeneity Geochimica etCosmochimica Acta 53 97ndash113

Tang YJ Zhang HF Ying JF 2004 High-Mg olivine xenocrysts entrained in Cenozoicbasalts in central Taihang Mountains relicts of old lithospheric mantle Acta Petrolo-gica Sinica 20 1243ndash1252

Tang YJ Zhang HF Ying JF 2006 Asthenospherendashlithospheric mantle interactionin an extensional regime implication from the geochemistry of Cenozoic basaltsfrom Taihang Mountains North China Craton Chemical Geology 233 309ndash327

Tang YJ Zhang HF Nakamura E Moriguti T Kobayashi K Ying JF 2007 Lithiumisotopic systematics of peridotite xenoliths from Hannuoba North China Cratonimplications for meltndashrock interaction in the considerably thinned lithosphericmantle Geochimica et Cosmochimica Acta 71 4327ndash4341

Tang YJ Zhang HF Ying JF Zhang J Liu XM 2008 Refertilization of ancient lith-ospheric mantle beneath the central North China Craton evidence from petrologyand geochemistry of peridotite xenoliths Lithos 101 435ndash452

Tang YJ Zhang HF Nakamura E Ying JF 2011 Multistage meltfluidndashperidotiteinteractions in the refertilized lithospheric mantle beneath the North China Cra-ton constraints from the LindashSrndashNd isotopic disequilibrium between minerals ofperidotite xenoliths Contributions to Mineralogy and Petrology 161 845ndash861

Tang YJ Zhang HF Deloule E Su BX Ying JF Xiao Y Hu Y 2012 Slab-derivedlithium isotopic signatures in mantle xenoliths from northeastern North China Cra-ton Lithos doi101016jlithos201112001

Tatsumoto M Basu AR Huang WK Wang JW Xie GH 1992 Sr Nd and Pb iso-topes of ultramafic xenoliths in volcanic-rocks of eastern China enriched compo-nents EMI and EMII in subcontinental lithosphere Earth and Planetary ScienceLetters 113 107ndash128

Walker RJ Carlson RW Shirey SB Boyd FR 1989 Os Sr Nd and Pb isotope sys-tematics of southern African peridotite xenoliths implications for the chemicalevolution of subcontinental mantle Geochimica et Cosmochimica Acta 531583ndash1595

Wang YJ Fan WM Zhang HF Peng TP 2006 Early Cretaceous gabbroic rocksfrom the Taihang Mountains implications for a paleosubduction-related litho-spheric mantle beneath the central North China Craton Lithos 86 281ndash302

Wilshire HG Shervais JW 1975 Al-augite and Cr-diopside ultramafic xenoliths inbasaltic rocks from western United States Physics and Chemistry of the Earth 9257ndash272

Wu FY Walker RJ Ren XW Sun DY Zhou XH 2003 Osmium isotopic con-straints on the age of lithospheric mantle beneath northeastern China ChemicalGeology 196 107ndash129

Wu FY Walker RJ Yang YH Yuan HL Yang JH 2006 The chemicalndashtemporalevolution of lithospheric mantle underlying the North China Craton Geochimicaet Cosmochimica Acta 70 5013ndash5034

Xia QX Zhi XC Meng Q Zheng L Peng ZC 2004 The trace element and RendashOsisotopic geochemistry of mantle-derived peridotite xenoliths from Hannuoba na-ture and age of SCLM beneath the area Acta Petrologica Sinica 20 1215ndash1224 (inChinese with English abstract)

Xiao Y Zhang HF 2011 Effects of melt percolation on platinum group elements andRendashOs systematics of peridotites from the TanndashLu fault zone eastern North ChinaCraton Journal of the Geological Society of London 168 1201ndash1214

Xiao WJ Windley B Hao J Zhai MG 2003 Accretion leading to collision and thePermian Solonker suture Inner Mongolia China termination of the CentralAsian orogenic belt Tectonics 22 doi1010292202 TC001484

Xu YG 2001 Thermo-tectonic destruction of the Archean lithospheric keel beneaththe SinondashKorean Craton in China evidence timing and mechanism Physics andChemistry of the Earth (A) 26 747ndash757

Xu YG 2002 Evidence for crustal components in the mantle and constraints on crustalrecycling mechanisms pyroxenite xenoliths from Hannuoba North China ChemicalGeology 182 301ndash322

Xu XS OReilly SY Griffin WL Zhou XM Huang XL 1998 The nature of the Ce-nozoic lithosphere of Nushan eastern China In Flower MFJ Chung SL Lo CHLee TY (Eds) Mantle Dynamics and Plate Interactions in East Asia AmericanGeophysical Union Washington DC pp 167ndash196

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

11Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Xu YG Chung SL Ma JL Shi LB 2004 Contrasting Cenozoic lithospheric evolutionand architecture in the western and eastern SinondashKorean craton constrains fromgeochemistry of basalts and mantle xenoliths Journal of Geology 112 593ndash605

Xu XS Griffin WL OReilly SY Pearson NJ Geng HY Zheng JP 2008a RendashOsisotopes of sulfides in mantle xenoliths from eastern China progressive modifica-tion of lithospheric mantle Lithos 102 43ndash64

Xu YG Blusztajn J Ma JL Suzuki K Liu JF Hart SR 2008b Late Archean to earlyProterozoic lithospheric mantle beneath the western North China craton SrndashNdndashOs isotopes of peridotite xenoliths from Yangyuan and Fansi Lithos 102 25ndash42

Xu W Yang D Gao S Pei F Yu Y 2010 Geochemistry of peridotite xenoliths inEarly Cretaceous high-Mg diorites from the Central Orogenic Block of the NorthChina Craton the nature of Mesozoic lithospheric mantle and constraints on lith-ospheric thinning Chemical Geology 270 257ndash273

Yang JH Wu FY Wilde SA 2003 A review of the geodynamic setting of large-scaleLate Mesozoic gold mineralization in the North China craton an association withlithospheric thinning Ore Geology Reviews 23 125ndash152

Ying JF Zhang HF Tang YJ 2010 Zoned olivine xenocrysts in a late Mesozoic gab-bro from the southern Taihang Mountains implications for old lithospheric mantlebeneath the central North China Craton Geological Magazine 147 161ndash170

Yuan XC 1996 Atlas of Geophysics in China Geological Publishing House BeijingZhai MG Santosh M 2011 The early Precambrian odyssey of the North China Craton a

synoptic overview Gondwana Research 20 6ndash25Zhang HF 2005 Transformation of lithospheric mantle through peridotitendashmelt reac-

tion a case of SinondashKorean craton Earth and Planetary Science Letters 237768ndash780

Zhang HF 2009 Peridotitendashmelt interaction a key point for the destruction of cra-tonic lithospheric mantle Chinese Science Bulletin 54 3417ndash3437

Zhang HF Sun M Zhou XH Fan WM Zhai MG Ying JF 2002 Mesozoic litho-sphere destruction beneath the North China Craton evidence from major- trace-element and SrndashNdndashPb isotope studies of Fangcheng basalts Contributions to Min-eralogy and Petrology 144 241ndash253

Zhang HF Sun M Zhou XH Zhou MF Fan WM Zheng JP 2003 Secular evolu-tion of the lithosphere beneath the eastern North China Craton evidence fromMe-sozoic basalts and high-Mg andesites Geochimica et Cosmochimica Acta 674373ndash4387

Zhang HF Sun M Zhou MF Fan WM Zhou XH Zhai MG 2004 Highly hetero-geneous late Mesozoic lithospheric mantle beneath the north China Craton evi-dence from SrndashNdndashPb isotopic systematics of mafic igneous rocks GeologicalMagazine 141 55ndash62

Zhang J Zhao GC Sun M Wilde SA Li SZ Liu SW 2006 High-pressure maficgranulites in the Trans-North China Orogen tectonic significance and age Gond-wana Research 9 349ndash362

Zhang HF Nakamura E Kobayashi K Zhang J Ying JF Tang YJ Niu LF 2007Transformation of subcontinental lithospheric mantle through peridotitendashmelt re-action evidence from a highly fertile mantle xenolith from the North China cratonInternational Geology Review 49 658ndash679

Zhang HF Goldstein S Zhou XH Sun M Zheng JP Cai Y 2008 Evolution of sub-continental lithospheric mantle beneath eastern China RendashOs isotopic evidencefrom mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts Contribu-tions to Mineralogy and Petrology 155 271ndash293

Zhang HF Goldstein SL Zhou XH Sun M Cai Y 2009 Comprehensive refertiliza-tion of lithospheric mantle beneath the North China Craton further OsndashSrndashNd iso-topic constraints Journal of the Geological Society of London 166 249ndash259

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Zhang HF Deloule E Tang YJ Ying JF 2010a Meltrock interaction in remains ofrefertilized Archean lithospheric mantle in Jiaodong Peninsula North China Cra-ton Li isotopic evidence Contributions to Mineralogy and Petrology 160 261ndash277

Zhang HF Nakamura E Kobayashi K Ying JF Tang YJ 2010b Recycled crustalmelt injection into lithospheric mantle implication from cumulative compositeand pyroxenite xenoliths International Journal of Earth Sciences 99 1167ndash1186

Zhang HF Ying JF Tang YJ Li XH Feng C Santosh M 2011 Phanerozoic reacti-vation of the Archean North China Craton through episodic magmatism evidencefrom zircon UndashPb geochronology and Hf isotopes from the Liaodong PeninsulaGondwana Research 19 446ndash459

Zhang HF Sun YL Tang YJ Xiao Y Zhang WH Zhao XM Santosh M MenziesMA in press Melt-peridotite interaction in the Pre-cambrian mantle beneath thewestern North China Craton Petrology geochemistry and Sr Nd and Re isotopesLithos doi101016jlithos201201027

Zhao GC Cawood PA Wilde SA Sun M 2000 Metamorphism of basement rocksin the Central Zone of the North China craton implications for Paleoproterozoictectonic evolution Precambrian Research 103 55ndash88

Zhao GC Wilde SA Sun M Li SZ Li XP Zhang J 2008 SHRIMP UndashPb zircon agesof granitoid rocks in the Luumlliang Complex implications for the accretion and evo-lution of the Trans-North China Orogen Precambrian Research 160 213ndash226

Zhao GC Wilde SA Guo JH Cawood PA Sun M Li XP 2010a Single zircongrains record two Paleoproterozoic collisional events in the North China CratonPrecambrian Research 177 266ndash276

Zhao GC Wilde SA Zhang J 2010b New evidence from seismic imaging for sub-duction during assembly of the North China craton comment Geology 38 e206

Zhao XM Zhang HF Zhu XK Tang SH Tang YJ 2010c Iron isotope variations inspinel peridotite xenoliths from North China Craton implications for mantle meta-somatism Contributions to Mineralogy and Petrology 160 1ndash14

Zheng JP OReilly SY Griffin WL Lu FX Zhang M 1998 Nature and evolution ofCenozoic lithospheric mantle beneath Shandong peninsula SinondashKorean cratoneastern China International Geology Review 40 471ndash499

Zheng JP OReilly SY Griffin WL Lu FX Zhang M Pearson NJ 2001 Relict re-fractory mantle beneath the eastern North China block significance for lithosphereevolution Lithos 57 43ndash66

Zheng JP Griffin WL OReilly SY Liou JG Zhang RY Lu FX 2005 Late MesozoicndashEocene mantle replacement beneath the eastern North China craton evidence fromthe Paleozoic and Cenozoic peridotite xenoliths International Geology Review 47457ndash472

Zheng JP Griffin WL OReilly SY Yang JS Li TF Zhang M Zhang RY Liou JG2006 Mineral chemistry of peridotites from Paleozoic Mesozoic and Cenozoic litho-sphere constraints on mantle evolution beneath eastern China Journal of Petrology47 2233ndash2256

Zheng JP Griffin WL OReilly SY Yu CM Zhang HF Pearson N Zhang M 2007Mechanism and timing of lithospheric modification and replacement beneath theeastern North China Craton peridotitic xenoliths from the 100 Ma Fuxin basaltsand a regional synthesis Geochimica et Cosmochimica Acta 71 5203ndash5225

Zhou XH Armstrong RL 1982 Cenozoic volcanic rocks of eastern China mdash secularand geographic trends in chemistry and strontium isotopic composition Earthand Planetary Science Letters 58 301ndash329

Zindler A Hart SR 1986 Chemical geodynamics Annual Reviews of Earth and Plane-tary Sciences 14 493ndash571

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

10 Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Fan WM Zhang HF Baker J Jarvis KE Mason PRD Menzies MA 2000 On andoff the north China craton where is the Archaean keel Journal of Petrology 41933ndash950

Frey FA Green DH 1974 The mineralogy geochemistry and origin of Iherzolite in-clusions in Victorian basanites Geochimica et Cosmochimica Acta 38 1023ndash1059

Gao S Rudnick RL Carlson RW McDonough WF Liu YS 2002 RendashOs evidencefor replacement of ancient mantle lithosphere beneath the North China cratonEarth and Planetary Science Letters 198 307ndash322

Gao S Rudnick RL Yuan HL Liu XM Liu YS Xu WL Ling WL Ayers J WangXC Wang QH 2004 Recycling lower continental crust in the North China cratonNature 432 892ndash897

Griffin WL OReilly SY Ryan CG 1992 Composition and thermal structure of thelithosphere beneath South Africa Siberia and China proton microprobe studiesInternational Symposium on Cenozoic Volcanic Rocks and Deep-seated Xenolithsof China and its Environs Beijing pp 65ndash66

Griffin WL Zhang AD OReilly SY Ryan CG 1998 Phanerozoic evolution of thelithosphere beneath the SinondashKorean Craton In Flower MFJ Chung SL LoCH Lee TY (Eds) Mantle Dynamics and Plate Interactions in East Asia AmericanGeophysical Union Washington DC pp 107ndash126

Griffin WL OReilly SY Abe N Aulbach S Davies RM Pearson NJ Doyle BJKivi K 2003 The origin and evolution of Archean lithospheric mantle Precambri-an Research 127 19ndash41

Griffin WL Graham S OReilly SY Pearson NJ 2004 Lithosphere evolution be-neath the Kaapvaal Craton RendashOs systematics of sulfides in mantle-derived peri-dotites Chemical Geology 208 89ndash118

Griffin WL OReilly SY Afonso JC Begg GC 2009 The composition and evolutionof lithospheric mantle a re-evaluation and its tectonic implications Journal of Pe-trology 50 1185ndash1204

Harvey J Gannoun A Burton KW Schiano P Rogers NW Alard O 2010 Unravel-ling the effects of melt depletion and secondary infiltration on mantle RendashOs iso-topes beneath the French Massif Central Geochimica et Cosmochimica Acta 74293ndash320

Kelemen PB Hart SR Bernstein S 1998 Silica enrichment in the continental uppermantle via meltrock reaction Earth and Planetary Science Letters 164 387ndash406

Kroumlner A Wilde SA Li JH Wang KY 2005 Ages and evolution of a Late Archean toPaleoproterozoic upper to lower crustal section in the WutaishanHengshanFup-ing terrain of northern China Journal of Asian Earth Sciences 24 577ndash595

Kusky TM 2011 Geophysical and geological tests of tectonic models of the NorthChina Craton Gondwana Research 20 26ndash35

Li SG Xiao YL Liou DL Chen YZ Ge NJ Zhang ZQ Sun SS Cong BL ZhangRY Hart SR Wang SS 1993 Collision of the North China and Yangtze Blocksand formation of coesite-bearing eclogite-timing and processes Chemical Geology109 89ndash111

Liu J Rudnick RL Walker RJ Gao S Wu FY Piccoli PM Yuan H Xu WL XuYG 2011 Mapping lithospheric boundaries using Os isotopes of mantle xenolithsan example from the North China Craton Geochimica et Cosmochimica Acta 753881ndash3902

Ma X 1989 Atlas of Active Faults in China Seismologic Press BeijingMa JL Xu YG 2006 Old EM1-type enriched mantle under the middle North China

Craton as indicated by Sr and Nd isotopes of mantle xenoliths from YangyuanHebei Province Chinese Science Bulletin 51 1343ndash1349

Menzies MA 1990 Effects of small volume melts Nature 343 312ndash313Menzies M Murthy VR 1980 Enriched mantle Nd and Sr isotopes in diopsides from

kimberlite nodules Nature 283 634ndash636Menzies MA Xu YG 1998 Geodynamics of the North China Craton In Flower

MFJ Chung SL Lo CH Lee TY (Eds) Mantle Dynamics and Plate Interactionsin East Asia American Geophysical Union Washington DC pp 155ndash165

Menzies MA Fan WM Zhang M 1993 Palaeozoic and Cenozoic lithoprobes andthe loss of gt120 km of Archaean lithosphere SinondashKorean craton China InPrichard HM Alabaster T Harris NBW Neary CR (Eds) Magmatic Processesand Plate Tectonics Geological Society of London Special Publication pp 71ndash81

Menzies M Xu YG Zhang HF Fan WM 2007 Integration of geology geophysicsand geochemistry a key to understanding the North China Craton Lithos 96 1ndash21

OReilly SY Griffin WL Poudjom YH Morgan P 2001 Are lithosphere forever Track-ing changes in subcontinental lithospheric mantle through time GSA Today 11 4ndash10

Pearson DG 1999 Evolution of cratonic lithospheric mantle an isotopic perspectiveIn Fei Y Berka CM Mysen BO (Eds) Mantle Petrology Field Observations andHigh-Pressure Experimentation A Tribute to Francis R (Joe) Boyd The Geochemi-cal Society Special Publication pp 57ndash78

Pearson DG Shirey SB Harris JW Carlson RW 1998 Sulphide inclusions in dia-monds from the Koffiefontein kimberlite S Africa constraints on diamond agesand mantle RendashOs systematics Earth and Planetary Science Letters 160 311ndash326

Pearson DG Shirey SB Bulanova GP Carlson RW Milledge HJ 1999 RendashOs iso-tope measurements of single sulfide inclusions in a Siberian diamond and its nitro-gen aggregation systematics Geochimica et Cosmochimica Acta 63 703ndash711

Pearson NJ Alard O Griffin WL Jackson SE OReilly SY 2002 In situ measure-ment of RendashOs isotopes in mantle sulfides by laser ablation multicollector-inductively coupled plasma mass spectrometry analytical methods and prelimi-nary results Geochimica et Cosmochimica Acta 66 1037ndash1050

Reisberg L Zhi XC Lorand JP Wagner C Peng ZC Zimmermann C 2005 RendashOsand S systematics of spinel peridotite xenoliths from east central China evidencefor contrasting effects of melt percolation Earth and Planetary Science Letters239 286ndash308

Rudnick RL Gao S Ling WL Liu YS McDonough WF 2004 Petrology and geo-chemistry of spinel peridotite xenoliths from Hannuoba and Qixia North ChinaCraton Lithos 77 609ndash637

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Santosh M 2010 Assembling North China Craton within the Columbia superconti-nent the role of double-sided subduction Precambrian Research 178 149ndash167

Santosh M Tsunogae T Li JH Liu SJ 2007a Discovery of sapphirine-bearing MgndashAl granulites in the North China Craton implications for Paleoproterozoic ultra-high temperature metamorphism Gondwana Research 11 263ndash285

Santosh M Wilde SA Li JH 2007b Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton evidence from SHRIMPUndashPb zircon geochronology Precambrian Research 159 178ndash196

Santosh M Sajeev K Li JH Liu SJ Itaya T 2009 Counterclockwise exhumation ofa hot orogen the Paleoproterozoic ultrahigh-temperature granulites in the NorthChina Craton Lithos 110 140ndash152

Santosh M Zhao D Kusky T 2010 Mantle dynamics of the Paleoproterozoic NorthChina Craton a perspective based on seismic tomography Journal of Geodynamics49 39ndash53

Santosh M Liu SJ Tsunogae T Li JH 2011 Paleoproterozoic ultrahigh-temperature granulites in the North China Craton implications for tectonic modelson extreme crustal metamorphism Precambrian Research doi101016jprecamres201110051003

Shirey SB Walker RJ 1998 The RendashOs isotopic system in cosmochemistry and igne-ous geochemistry Annual Reviews of Earth and Planetary Sciences 26 425ndash500

Smith D Griffin WL Ryan CG Sie SH 1991 Trace-element zonation in garnetsfrom the thumb mdash heating and melt infiltration below the Colorado Plateau Con-tributions to Mineralogy and Petrology 107 60ndash79

Song Y Frey FA 1989 Geochemistry of peridotite xenoliths in basalt from Hannuobaeastern China implications for subcontinental mantle heterogeneity Geochimica etCosmochimica Acta 53 97ndash113

Tang YJ Zhang HF Ying JF 2004 High-Mg olivine xenocrysts entrained in Cenozoicbasalts in central Taihang Mountains relicts of old lithospheric mantle Acta Petrolo-gica Sinica 20 1243ndash1252

Tang YJ Zhang HF Ying JF 2006 Asthenospherendashlithospheric mantle interactionin an extensional regime implication from the geochemistry of Cenozoic basaltsfrom Taihang Mountains North China Craton Chemical Geology 233 309ndash327

Tang YJ Zhang HF Nakamura E Moriguti T Kobayashi K Ying JF 2007 Lithiumisotopic systematics of peridotite xenoliths from Hannuoba North China Cratonimplications for meltndashrock interaction in the considerably thinned lithosphericmantle Geochimica et Cosmochimica Acta 71 4327ndash4341

Tang YJ Zhang HF Ying JF Zhang J Liu XM 2008 Refertilization of ancient lith-ospheric mantle beneath the central North China Craton evidence from petrologyand geochemistry of peridotite xenoliths Lithos 101 435ndash452

Tang YJ Zhang HF Nakamura E Ying JF 2011 Multistage meltfluidndashperidotiteinteractions in the refertilized lithospheric mantle beneath the North China Cra-ton constraints from the LindashSrndashNd isotopic disequilibrium between minerals ofperidotite xenoliths Contributions to Mineralogy and Petrology 161 845ndash861

Tang YJ Zhang HF Deloule E Su BX Ying JF Xiao Y Hu Y 2012 Slab-derivedlithium isotopic signatures in mantle xenoliths from northeastern North China Cra-ton Lithos doi101016jlithos201112001

Tatsumoto M Basu AR Huang WK Wang JW Xie GH 1992 Sr Nd and Pb iso-topes of ultramafic xenoliths in volcanic-rocks of eastern China enriched compo-nents EMI and EMII in subcontinental lithosphere Earth and Planetary ScienceLetters 113 107ndash128

Walker RJ Carlson RW Shirey SB Boyd FR 1989 Os Sr Nd and Pb isotope sys-tematics of southern African peridotite xenoliths implications for the chemicalevolution of subcontinental mantle Geochimica et Cosmochimica Acta 531583ndash1595

Wang YJ Fan WM Zhang HF Peng TP 2006 Early Cretaceous gabbroic rocksfrom the Taihang Mountains implications for a paleosubduction-related litho-spheric mantle beneath the central North China Craton Lithos 86 281ndash302

Wilshire HG Shervais JW 1975 Al-augite and Cr-diopside ultramafic xenoliths inbasaltic rocks from western United States Physics and Chemistry of the Earth 9257ndash272

Wu FY Walker RJ Ren XW Sun DY Zhou XH 2003 Osmium isotopic con-straints on the age of lithospheric mantle beneath northeastern China ChemicalGeology 196 107ndash129

Wu FY Walker RJ Yang YH Yuan HL Yang JH 2006 The chemicalndashtemporalevolution of lithospheric mantle underlying the North China Craton Geochimicaet Cosmochimica Acta 70 5013ndash5034

Xia QX Zhi XC Meng Q Zheng L Peng ZC 2004 The trace element and RendashOsisotopic geochemistry of mantle-derived peridotite xenoliths from Hannuoba na-ture and age of SCLM beneath the area Acta Petrologica Sinica 20 1215ndash1224 (inChinese with English abstract)

Xiao Y Zhang HF 2011 Effects of melt percolation on platinum group elements andRendashOs systematics of peridotites from the TanndashLu fault zone eastern North ChinaCraton Journal of the Geological Society of London 168 1201ndash1214

Xiao WJ Windley B Hao J Zhai MG 2003 Accretion leading to collision and thePermian Solonker suture Inner Mongolia China termination of the CentralAsian orogenic belt Tectonics 22 doi1010292202 TC001484

Xu YG 2001 Thermo-tectonic destruction of the Archean lithospheric keel beneaththe SinondashKorean Craton in China evidence timing and mechanism Physics andChemistry of the Earth (A) 26 747ndash757

Xu YG 2002 Evidence for crustal components in the mantle and constraints on crustalrecycling mechanisms pyroxenite xenoliths from Hannuoba North China ChemicalGeology 182 301ndash322

Xu XS OReilly SY Griffin WL Zhou XM Huang XL 1998 The nature of the Ce-nozoic lithosphere of Nushan eastern China In Flower MFJ Chung SL Lo CHLee TY (Eds) Mantle Dynamics and Plate Interactions in East Asia AmericanGeophysical Union Washington DC pp 167ndash196

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

11Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Xu YG Chung SL Ma JL Shi LB 2004 Contrasting Cenozoic lithospheric evolutionand architecture in the western and eastern SinondashKorean craton constrains fromgeochemistry of basalts and mantle xenoliths Journal of Geology 112 593ndash605

Xu XS Griffin WL OReilly SY Pearson NJ Geng HY Zheng JP 2008a RendashOsisotopes of sulfides in mantle xenoliths from eastern China progressive modifica-tion of lithospheric mantle Lithos 102 43ndash64

Xu YG Blusztajn J Ma JL Suzuki K Liu JF Hart SR 2008b Late Archean to earlyProterozoic lithospheric mantle beneath the western North China craton SrndashNdndashOs isotopes of peridotite xenoliths from Yangyuan and Fansi Lithos 102 25ndash42

Xu W Yang D Gao S Pei F Yu Y 2010 Geochemistry of peridotite xenoliths inEarly Cretaceous high-Mg diorites from the Central Orogenic Block of the NorthChina Craton the nature of Mesozoic lithospheric mantle and constraints on lith-ospheric thinning Chemical Geology 270 257ndash273

Yang JH Wu FY Wilde SA 2003 A review of the geodynamic setting of large-scaleLate Mesozoic gold mineralization in the North China craton an association withlithospheric thinning Ore Geology Reviews 23 125ndash152

Ying JF Zhang HF Tang YJ 2010 Zoned olivine xenocrysts in a late Mesozoic gab-bro from the southern Taihang Mountains implications for old lithospheric mantlebeneath the central North China Craton Geological Magazine 147 161ndash170

Yuan XC 1996 Atlas of Geophysics in China Geological Publishing House BeijingZhai MG Santosh M 2011 The early Precambrian odyssey of the North China Craton a

synoptic overview Gondwana Research 20 6ndash25Zhang HF 2005 Transformation of lithospheric mantle through peridotitendashmelt reac-

tion a case of SinondashKorean craton Earth and Planetary Science Letters 237768ndash780

Zhang HF 2009 Peridotitendashmelt interaction a key point for the destruction of cra-tonic lithospheric mantle Chinese Science Bulletin 54 3417ndash3437

Zhang HF Sun M Zhou XH Fan WM Zhai MG Ying JF 2002 Mesozoic litho-sphere destruction beneath the North China Craton evidence from major- trace-element and SrndashNdndashPb isotope studies of Fangcheng basalts Contributions to Min-eralogy and Petrology 144 241ndash253

Zhang HF Sun M Zhou XH Zhou MF Fan WM Zheng JP 2003 Secular evolu-tion of the lithosphere beneath the eastern North China Craton evidence fromMe-sozoic basalts and high-Mg andesites Geochimica et Cosmochimica Acta 674373ndash4387

Zhang HF Sun M Zhou MF Fan WM Zhou XH Zhai MG 2004 Highly hetero-geneous late Mesozoic lithospheric mantle beneath the north China Craton evi-dence from SrndashNdndashPb isotopic systematics of mafic igneous rocks GeologicalMagazine 141 55ndash62

Zhang J Zhao GC Sun M Wilde SA Li SZ Liu SW 2006 High-pressure maficgranulites in the Trans-North China Orogen tectonic significance and age Gond-wana Research 9 349ndash362

Zhang HF Nakamura E Kobayashi K Zhang J Ying JF Tang YJ Niu LF 2007Transformation of subcontinental lithospheric mantle through peridotitendashmelt re-action evidence from a highly fertile mantle xenolith from the North China cratonInternational Geology Review 49 658ndash679

Zhang HF Goldstein S Zhou XH Sun M Zheng JP Cai Y 2008 Evolution of sub-continental lithospheric mantle beneath eastern China RendashOs isotopic evidencefrom mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts Contribu-tions to Mineralogy and Petrology 155 271ndash293

Zhang HF Goldstein SL Zhou XH Sun M Cai Y 2009 Comprehensive refertiliza-tion of lithospheric mantle beneath the North China Craton further OsndashSrndashNd iso-topic constraints Journal of the Geological Society of London 166 249ndash259

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Zhang HF Deloule E Tang YJ Ying JF 2010a Meltrock interaction in remains ofrefertilized Archean lithospheric mantle in Jiaodong Peninsula North China Cra-ton Li isotopic evidence Contributions to Mineralogy and Petrology 160 261ndash277

Zhang HF Nakamura E Kobayashi K Ying JF Tang YJ 2010b Recycled crustalmelt injection into lithospheric mantle implication from cumulative compositeand pyroxenite xenoliths International Journal of Earth Sciences 99 1167ndash1186

Zhang HF Ying JF Tang YJ Li XH Feng C Santosh M 2011 Phanerozoic reacti-vation of the Archean North China Craton through episodic magmatism evidencefrom zircon UndashPb geochronology and Hf isotopes from the Liaodong PeninsulaGondwana Research 19 446ndash459

Zhang HF Sun YL Tang YJ Xiao Y Zhang WH Zhao XM Santosh M MenziesMA in press Melt-peridotite interaction in the Pre-cambrian mantle beneath thewestern North China Craton Petrology geochemistry and Sr Nd and Re isotopesLithos doi101016jlithos201201027

Zhao GC Cawood PA Wilde SA Sun M 2000 Metamorphism of basement rocksin the Central Zone of the North China craton implications for Paleoproterozoictectonic evolution Precambrian Research 103 55ndash88

Zhao GC Wilde SA Sun M Li SZ Li XP Zhang J 2008 SHRIMP UndashPb zircon agesof granitoid rocks in the Luumlliang Complex implications for the accretion and evo-lution of the Trans-North China Orogen Precambrian Research 160 213ndash226

Zhao GC Wilde SA Guo JH Cawood PA Sun M Li XP 2010a Single zircongrains record two Paleoproterozoic collisional events in the North China CratonPrecambrian Research 177 266ndash276

Zhao GC Wilde SA Zhang J 2010b New evidence from seismic imaging for sub-duction during assembly of the North China craton comment Geology 38 e206

Zhao XM Zhang HF Zhu XK Tang SH Tang YJ 2010c Iron isotope variations inspinel peridotite xenoliths from North China Craton implications for mantle meta-somatism Contributions to Mineralogy and Petrology 160 1ndash14

Zheng JP OReilly SY Griffin WL Lu FX Zhang M 1998 Nature and evolution ofCenozoic lithospheric mantle beneath Shandong peninsula SinondashKorean cratoneastern China International Geology Review 40 471ndash499

Zheng JP OReilly SY Griffin WL Lu FX Zhang M Pearson NJ 2001 Relict re-fractory mantle beneath the eastern North China block significance for lithosphereevolution Lithos 57 43ndash66

Zheng JP Griffin WL OReilly SY Liou JG Zhang RY Lu FX 2005 Late MesozoicndashEocene mantle replacement beneath the eastern North China craton evidence fromthe Paleozoic and Cenozoic peridotite xenoliths International Geology Review 47457ndash472

Zheng JP Griffin WL OReilly SY Yang JS Li TF Zhang M Zhang RY Liou JG2006 Mineral chemistry of peridotites from Paleozoic Mesozoic and Cenozoic litho-sphere constraints on mantle evolution beneath eastern China Journal of Petrology47 2233ndash2256

Zheng JP Griffin WL OReilly SY Yu CM Zhang HF Pearson N Zhang M 2007Mechanism and timing of lithospheric modification and replacement beneath theeastern North China Craton peridotitic xenoliths from the 100 Ma Fuxin basaltsand a regional synthesis Geochimica et Cosmochimica Acta 71 5203ndash5225

Zhou XH Armstrong RL 1982 Cenozoic volcanic rocks of eastern China mdash secularand geographic trends in chemistry and strontium isotopic composition Earthand Planetary Science Letters 58 301ndash329

Zindler A Hart SR 1986 Chemical geodynamics Annual Reviews of Earth and Plane-tary Sciences 14 493ndash571

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006

11Y-J Tang et al Gondwana Research xxx (2012) xxxndashxxx

Xu YG Chung SL Ma JL Shi LB 2004 Contrasting Cenozoic lithospheric evolutionand architecture in the western and eastern SinondashKorean craton constrains fromgeochemistry of basalts and mantle xenoliths Journal of Geology 112 593ndash605

Xu XS Griffin WL OReilly SY Pearson NJ Geng HY Zheng JP 2008a RendashOsisotopes of sulfides in mantle xenoliths from eastern China progressive modifica-tion of lithospheric mantle Lithos 102 43ndash64

Xu YG Blusztajn J Ma JL Suzuki K Liu JF Hart SR 2008b Late Archean to earlyProterozoic lithospheric mantle beneath the western North China craton SrndashNdndashOs isotopes of peridotite xenoliths from Yangyuan and Fansi Lithos 102 25ndash42

Xu W Yang D Gao S Pei F Yu Y 2010 Geochemistry of peridotite xenoliths inEarly Cretaceous high-Mg diorites from the Central Orogenic Block of the NorthChina Craton the nature of Mesozoic lithospheric mantle and constraints on lith-ospheric thinning Chemical Geology 270 257ndash273

Yang JH Wu FY Wilde SA 2003 A review of the geodynamic setting of large-scaleLate Mesozoic gold mineralization in the North China craton an association withlithospheric thinning Ore Geology Reviews 23 125ndash152

Ying JF Zhang HF Tang YJ 2010 Zoned olivine xenocrysts in a late Mesozoic gab-bro from the southern Taihang Mountains implications for old lithospheric mantlebeneath the central North China Craton Geological Magazine 147 161ndash170

Yuan XC 1996 Atlas of Geophysics in China Geological Publishing House BeijingZhai MG Santosh M 2011 The early Precambrian odyssey of the North China Craton a

synoptic overview Gondwana Research 20 6ndash25Zhang HF 2005 Transformation of lithospheric mantle through peridotitendashmelt reac-

tion a case of SinondashKorean craton Earth and Planetary Science Letters 237768ndash780

Zhang HF 2009 Peridotitendashmelt interaction a key point for the destruction of cra-tonic lithospheric mantle Chinese Science Bulletin 54 3417ndash3437

Zhang HF Sun M Zhou XH Fan WM Zhai MG Ying JF 2002 Mesozoic litho-sphere destruction beneath the North China Craton evidence from major- trace-element and SrndashNdndashPb isotope studies of Fangcheng basalts Contributions to Min-eralogy and Petrology 144 241ndash253

Zhang HF Sun M Zhou XH Zhou MF Fan WM Zheng JP 2003 Secular evolu-tion of the lithosphere beneath the eastern North China Craton evidence fromMe-sozoic basalts and high-Mg andesites Geochimica et Cosmochimica Acta 674373ndash4387

Zhang HF Sun M Zhou MF Fan WM Zhou XH Zhai MG 2004 Highly hetero-geneous late Mesozoic lithospheric mantle beneath the north China Craton evi-dence from SrndashNdndashPb isotopic systematics of mafic igneous rocks GeologicalMagazine 141 55ndash62

Zhang J Zhao GC Sun M Wilde SA Li SZ Liu SW 2006 High-pressure maficgranulites in the Trans-North China Orogen tectonic significance and age Gond-wana Research 9 349ndash362

Zhang HF Nakamura E Kobayashi K Zhang J Ying JF Tang YJ Niu LF 2007Transformation of subcontinental lithospheric mantle through peridotitendashmelt re-action evidence from a highly fertile mantle xenolith from the North China cratonInternational Geology Review 49 658ndash679

Zhang HF Goldstein S Zhou XH Sun M Zheng JP Cai Y 2008 Evolution of sub-continental lithospheric mantle beneath eastern China RendashOs isotopic evidencefrom mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts Contribu-tions to Mineralogy and Petrology 155 271ndash293

Zhang HF Goldstein SL Zhou XH Sun M Cai Y 2009 Comprehensive refertiliza-tion of lithospheric mantle beneath the North China Craton further OsndashSrndashNd iso-topic constraints Journal of the Geological Society of London 166 249ndash259

Please cite this article as Tang Y-J et al Highly heterogeneous lithosevolved from Archean mantle through di Gondwana Res (2012) doi

Zhang HF Deloule E Tang YJ Ying JF 2010a Meltrock interaction in remains ofrefertilized Archean lithospheric mantle in Jiaodong Peninsula North China Cra-ton Li isotopic evidence Contributions to Mineralogy and Petrology 160 261ndash277

Zhang HF Nakamura E Kobayashi K Ying JF Tang YJ 2010b Recycled crustalmelt injection into lithospheric mantle implication from cumulative compositeand pyroxenite xenoliths International Journal of Earth Sciences 99 1167ndash1186

Zhang HF Ying JF Tang YJ Li XH Feng C Santosh M 2011 Phanerozoic reacti-vation of the Archean North China Craton through episodic magmatism evidencefrom zircon UndashPb geochronology and Hf isotopes from the Liaodong PeninsulaGondwana Research 19 446ndash459

Zhang HF Sun YL Tang YJ Xiao Y Zhang WH Zhao XM Santosh M MenziesMA in press Melt-peridotite interaction in the Pre-cambrian mantle beneath thewestern North China Craton Petrology geochemistry and Sr Nd and Re isotopesLithos doi101016jlithos201201027

Zhao GC Cawood PA Wilde SA Sun M 2000 Metamorphism of basement rocksin the Central Zone of the North China craton implications for Paleoproterozoictectonic evolution Precambrian Research 103 55ndash88

Zhao GC Wilde SA Sun M Li SZ Li XP Zhang J 2008 SHRIMP UndashPb zircon agesof granitoid rocks in the Luumlliang Complex implications for the accretion and evo-lution of the Trans-North China Orogen Precambrian Research 160 213ndash226

Zhao GC Wilde SA Guo JH Cawood PA Sun M Li XP 2010a Single zircongrains record two Paleoproterozoic collisional events in the North China CratonPrecambrian Research 177 266ndash276

Zhao GC Wilde SA Zhang J 2010b New evidence from seismic imaging for sub-duction during assembly of the North China craton comment Geology 38 e206

Zhao XM Zhang HF Zhu XK Tang SH Tang YJ 2010c Iron isotope variations inspinel peridotite xenoliths from North China Craton implications for mantle meta-somatism Contributions to Mineralogy and Petrology 160 1ndash14

Zheng JP OReilly SY Griffin WL Lu FX Zhang M 1998 Nature and evolution ofCenozoic lithospheric mantle beneath Shandong peninsula SinondashKorean cratoneastern China International Geology Review 40 471ndash499

Zheng JP OReilly SY Griffin WL Lu FX Zhang M Pearson NJ 2001 Relict re-fractory mantle beneath the eastern North China block significance for lithosphereevolution Lithos 57 43ndash66

Zheng JP Griffin WL OReilly SY Liou JG Zhang RY Lu FX 2005 Late MesozoicndashEocene mantle replacement beneath the eastern North China craton evidence fromthe Paleozoic and Cenozoic peridotite xenoliths International Geology Review 47457ndash472

Zheng JP Griffin WL OReilly SY Yang JS Li TF Zhang M Zhang RY Liou JG2006 Mineral chemistry of peridotites from Paleozoic Mesozoic and Cenozoic litho-sphere constraints on mantle evolution beneath eastern China Journal of Petrology47 2233ndash2256

Zheng JP Griffin WL OReilly SY Yu CM Zhang HF Pearson N Zhang M 2007Mechanism and timing of lithospheric modification and replacement beneath theeastern North China Craton peridotitic xenoliths from the 100 Ma Fuxin basaltsand a regional synthesis Geochimica et Cosmochimica Acta 71 5203ndash5225

Zhou XH Armstrong RL 1982 Cenozoic volcanic rocks of eastern China mdash secularand geographic trends in chemistry and strontium isotopic composition Earthand Planetary Science Letters 58 301ndash329

Zindler A Hart SR 1986 Chemical geodynamics Annual Reviews of Earth and Plane-tary Sciences 14 493ndash571

pheric mantle beneath the Central Zone of the North China Craton101016jgr201201006


Recommended