+ All Categories
Home > Documents > Lower Cambrian small shelly fossils of northern Sichuan and southern Shaanxi (China), and their...

Lower Cambrian small shelly fossils of northern Sichuan and southern Shaanxi (China), and their...

Date post: 28-Mar-2023
Category:
Upload: independent
View: 0 times
Download: 0 times
Share this document with a friend
17
Lower Cambrian Small Shelly Fossils of northern Sichuan and southern Shaanxi (China), and their biostratigraphic importance Small Shelly Fossils du Cambrien inférieur du nord du Sichuan et du sud du Shaanxi (Chine) et leur importance biostratigraphique Michael Steiner a, *, Guoxiang Li b , Yi Qian b , Maoyan Zhu b a Technische Universität Berlin, Sekr. ACK 14, Ackerstrasse 71-76, 13355 Berlin, Germany b Nanjing Institute of Geology and Palaeontology, Academia Sinica, 210008 Nanjing, China Received 25 October 2002; accepted 12 August 2003 Abstract Extensive information has been acquired on the occurrence of Lower Cambrian Small Shelly Fossils (SSF) in the shallow water sediments of the western fringe of theYangtze Platform (easternYunnan and central Sichuan Provinces) during the last two decades. However, less is known on the temporal and spatial distribution of SSFs on the northern margin of theYangtze Platform. Here we report SSF associations from Kuanchuanpu (Ningqiang County, southern Shaanxi Province), Shatan, and Xinli (both Nanjiang County, northern Sichuan Province) representing the Southwest Shaanxi region and from Sanlangpu, and Xiaowan (Xixiang County, southern Shaanxi Province) of the Southeast Shaanxi – Northwest Hubei region. The thickness of the Lower Cambrian SSF-bearing strata strongly decreases in this region from West to East and the stratigraphic hiatus increases. An earliest Cambrian hiatus is widely distributed on the northern margin of theYangtze Platform. At the same time, a syngenetic brecciation occurred in wide shallow shelf settings. A tectonic mobilization, possibly related to the assembly of Gondwana following the breakup of Rodinia, may be responsible for this. In sections near Kuanchuanpu (Ningqiang County), the Meishucunian (equivalent to the Nemakit-Daldynian to Tommotian of Siberia) succession comprises ca. 55 m of dark phosphatic carbonates, siltstones, and cherts. The SSF associations are similar to those of East Yunnan and, in ascending order, can be discriminated into the Anabarites trisulcatus – Protohertzina anabarica Zone, the Watsonella yunnanensis Zone (previously mentioned as Heraultipegma yunnanensis Zone), and the Sinosachites flabelliformis – Tannuolina zhangwentangi Zone. The Siphogonuchites triangularis – Paraglobo- rilus subglobosus Zone cannot be unambiguously detected in the Southwest Shaanxi region. The occurrence of embryos and eggs within the Anabarites trisulcatus – Protohertzina anabarica Zone, which has been reported earlier, is remarkable. The previously reconstructed life cycle and taxonomic treatment of Olivooides / Punctatus are re-discussed. The earliest SSF associations (Anabarites trisulcatus – Protohertzina anabarica Zone to Watsonella yunnanesis Zone) are missing in the Southeast Shaanxi – Northwest Hubei region and the Ninella tarimensis – Cambroclavus fangxianensis Assemblage Zone and Rhombocorniculum cancellatum Taxon Range Zone are introduced herein. © 2004 Elsevier SAS. All rights reserved. Résumé Au cours des vingt dernières années des informations complètes ont été obtenues sur la distribution des Small Shelly Fossils (SSF) dans les sédiments peu profonds de la bordure ouest de la plate-forme duYangtze (partie est de la province duYunnan et partie centrale de la province du Sichuan). Cependant, on connaît peu de choses sur la distribution stratigraphique et spatiale des SSF sur la marge nord de la plate-forme du Yangtze. Nous décrivons ici des associations de SSF provenant de Kuanchuanpu (Ningqiang County, sud de la province de Shaanxi), Shatan et Xinli (ces deux localités étant dans le Xixiang County, sud de la province de Shaanxi), région SE Shaanxi – NW Hubei. L’épaisseur des strates à SSF du Cambrien inférieur décroît fortement d’ouest en est dans cette région et le hiatus stratigraphique augmente. Un hiatus à la base du Cambrien est largement distribué sur la marge nord de la plate-forme du Yangtze. Au même moment on note la formation de brèches synsédimentaires dans des environnements de large plate-forme peu profonde. Une mobilisation tectonique peut-être liée à l’assemblage du * Corresponding author. E-mail address: [email protected] (M. Steiner). Geobios 37 (2004) 259–275 www.elsevier.com/locate/geobio © 2004 Elsevier SAS. All rights reserved. doi:10.1016/j.geobios.2003.08.001
Transcript

Lower Cambrian Small Shelly Fossils of northern Sichuanand southern Shaanxi (China), and their biostratigraphic importance

Small Shelly Fossils du Cambrien inférieur du nord du Sichuanet du sud du Shaanxi (Chine) et leur importance biostratigraphique

Michael Steiner a,*, Guoxiang Li b, Yi Qian b, Maoyan Zhu b

a Technische Universität Berlin, Sekr. ACK 14, Ackerstrasse 71-76, 13355 Berlin, Germanyb Nanjing Institute of Geology and Palaeontology, Academia Sinica, 210008 Nanjing, China

Received 25 October 2002; accepted 12 August 2003

Abstract

Extensive information has been acquired on the occurrence of Lower Cambrian Small Shelly Fossils (SSF) in the shallow water sedimentsof the western fringe of the Yangtze Platform (eastern Yunnan and central Sichuan Provinces) during the last two decades. However, less isknown on the temporal and spatial distribution of SSFs on the northern margin of theYangtze Platform. Here we report SSF associations fromKuanchuanpu (Ningqiang County, southern Shaanxi Province), Shatan, and Xinli (both Nanjiang County, northern Sichuan Province)representing the Southwest Shaanxi region and from Sanlangpu, and Xiaowan (Xixiang County, southern Shaanxi Province) of the SoutheastShaanxi – Northwest Hubei region. The thickness of the Lower Cambrian SSF-bearing strata strongly decreases in this region from West toEast and the stratigraphic hiatus increases. An earliest Cambrian hiatus is widely distributed on the northern margin of the Yangtze Platform.At the same time, a syngenetic brecciation occurred in wide shallow shelf settings. A tectonic mobilization, possibly related to the assemblyof Gondwana following the breakup of Rodinia, may be responsible for this. In sections near Kuanchuanpu (Ningqiang County), theMeishucunian (equivalent to the Nemakit-Daldynian to Tommotian of Siberia) succession comprises ca. 55 m of dark phosphatic carbonates,siltstones, and cherts. The SSF associations are similar to those of East Yunnan and, in ascending order, can be discriminated into theAnabarites trisulcatus – Protohertzina anabarica Zone, the Watsonella yunnanensis Zone (previously mentioned as Heraultipegmayunnanensis Zone), and the Sinosachites flabelliformis – Tannuolina zhangwentangi Zone. The Siphogonuchites triangularis – Paraglobo-rilus subglobosus Zone cannot be unambiguously detected in the Southwest Shaanxi region. The occurrence of embryos and eggs within theAnabarites trisulcatus – Protohertzina anabarica Zone, which has been reported earlier, is remarkable. The previously reconstructed lifecycle and taxonomic treatment of Olivooides / Punctatus are re-discussed. The earliest SSF associations (Anabarites trisulcatus –Protohertzina anabarica Zone to Watsonella yunnanesis Zone) are missing in the Southeast Shaanxi – Northwest Hubei region and the Ninellatarimensis – Cambroclavus fangxianensis Assemblage Zone and Rhombocorniculum cancellatum Taxon Range Zone are introduced herein.© 2004 Elsevier SAS. All rights reserved.

Résumé

Au cours des vingt dernières années des informations complètes ont été obtenues sur la distribution des Small Shelly Fossils (SSF) dans lessédiments peu profonds de la bordure ouest de la plate-forme du Yangtze (partie est de la province du Yunnan et partie centrale de la provincedu Sichuan). Cependant, on connaît peu de choses sur la distribution stratigraphique et spatiale des SSF sur la marge nord de la plate-forme duYangtze. Nous décrivons ici des associations de SSF provenant de Kuanchuanpu (Ningqiang County, sud de la province de Shaanxi), Shatanet Xinli (ces deux localités étant dans le Xixiang County, sud de la province de Shaanxi), région SE Shaanxi – NW Hubei. L’épaisseur desstrates à SSF du Cambrien inférieur décroît fortement d’ouest en est dans cette région et le hiatus stratigraphique augmente. Un hiatus à la basedu Cambrien est largement distribué sur la marge nord de la plate-forme du Yangtze. Au même moment on note la formation de brèchessynsédimentaires dans des environnements de large plate-forme peu profonde. Une mobilisation tectonique peut-être liée à l’assemblage du

* Corresponding author.E-mail address: [email protected] (M. Steiner).

Geobios 37 (2004) 259–275

www.elsevier.com/locate/geobio

© 2004 Elsevier SAS. All rights reserved.doi:10.1016/j.geobios.2003.08.001

Gondwana (à la suite de l’éclatement de Rodinia) pourrait être à l’origine de cela. Dans les coupes près de Kuanchuanpu (Ningqiang County)la succession du Meishucunien (équivalent du Nemakit-Daldynien à Tommotien en Sibérie) comprend environ 55 m de carbonates phosphatéssombres, siltstones et cherts. Les associations à SSF sont semblables à celles de l’Est du Yunnan et en ordre ascendant, distribuées en zones.Ainsi, on reconnaît la zone à Anabarites trisulcatus – Protohertzina anabarica et Watsonella yunnanensis (anciennement Heraultipegmayunnanensis Zone), et la zone à Sinosachites flabelliformis – Tannuolina zhangwentangi. La zone à Siphogonuchites triangularis –Paragloborilus subglobosus n’est pas reconnue avec certitude dans la région SW du Shaanxi. La présence d’embryons et d’œufs dans la zoneà Anabarites trisulcatus – Protohertzina anabarica qui avait déjà été signalée, est remarquable. Le cycle de vie et l’analyse taxonomique deOlivooides / Punctatus sont rediscutés. Les toutes premières associations à SSF (Zone à Anabarites trisulcatus – Protohertzina anabarica etzone à Watsonella yunnanesis) sont absentes dans la région SE Shaanxi – NW Hubei. La zone d’assemblage Ninella tarimensis –Cambroclavus fangxianensis et la zone à Rhombocorniculum cancellatum sont décrites dans ce travail.© 2004 Elsevier SAS. All rights reserved.

Keywords: Small Shelly Fossils; Biostratigraphy; Early Cambrian; China; Yangtze Platform; Embryos

Mots clés : Small Shelly Fossils ; Biostratigraphie ; Cambrien inférieur ; Chine ; Plate-forme du Yangtze ; Embryons

1. Introduction

Small Shelly Fossils (SSF) are abundant in Early Cam-brian shallow water carbonates of theYangtze Platform. Theyare of great importance for the biostratigraphic subdivisionand correlation of the pre-trilobitic sequences, since thestratigraphically important archaeocyathids are widely lack-ing on the Yangtze Platform and trace fossils also vary ac-cording to different facies. The importance of the SSFs forthe biostratigraphy of the Lower Cambrian was partly ques-tioned (Landing, 1994) because of a common provincialismand restriction to shallow water facies, a long stratigraphicalrange of critical taxa, and the fact that the affiliation of themorphospecies (part-based taxa) to genuine biological spe-cies is, to a large extent, undetermined, and an artificialdiversity has been developed by taxonomic over-splitting(Bengtson, 1985). Simply constructed sclerites of differentorganisms may show homologous structures and re-deposited fossils may be difficult to verify (Qian and Bengt-son, 1989; Bengtson et al., 1990). On various Precambrianplatforms different stratigraphic ranges have been detectedfor some index fossils (compare Brasier, 1989; Bengtson etal., 1990). Although these problems can lead to difficultiesfor international correlation, the great utility of SSFs forregional correlation has been repeatedly demonstrated in thepast (Qian et al., 1999; Alexander et al., 2001).

An accepted SSF-based zonation exists today for at leastthe basal Cambrian of a wide range of sections on theYangtzePlatform (Qian, 1989; Qian and Bengtson, 1989; Qian et al.,1999,2001). Intense research was carried out on SSF faunasof the Yangtze Platform during the 1980s in preparation forthe proposal of different sections as candidates for thePrecambrian-Cambrian Global Stratotype Section and Point(GSSP). However, most taxonomic and biostratigraphic in-vestigations focused on SSFs of the Meishucunian and earli-est Qiongzhusian of East Yunnan (e.g. Luo et al.,1982,1984,1994; Qian, 1989; Qian and Bengtson, 1989; Zhuet al., 2001). Younger SSF associations received less atten-tion, a problem exacerbated by the fact that a fossil extraction

from the mainly siliciclastic sequences of the Qiongzhusianand Canglangpuian is by far more difficult than from carbon-ates.

Previous investigations on SSF of northern Sichuan andsouthern Shaanxi mainly concentrated on taxonomic de-scriptions of new taxa (Yang et al., 1983; Li, 1984; Xing andYue, 1984; Yang and He, 1984; He, 1987; Yue, 1986; Xie,1990; Ding et al., 1992). Well-preserved fossil material fromsouthern Shaanxi was later also re-considered in interna-tional revisions of selected SSF-groups (Conway Morris andChen, 1989,1991,1992). Exceptional egg-stages and em-bryos have been published by Bengtson and Yue (1997).However, most of the early investigations lacked detailedbiostratigraphic documentation.

The aim of the present publication is to provide an over-view of the regional and stratigraphic distribution of the mostimportant SSF taxa, extraordinarily preserved embryos, andphosphatized soft-bodied organisms on the northern edge ofthe Yangtze Platform, and to discuss their biostratigraphicrelevance.

2. SSF associations of Southwest Shaanxi region

Under the term Southwest Shaanxi region the Early Cam-brian outcrops of the area between Kuanchuanpu (NingqiangCounty) to Zhangjiagou (Hexi district, western XixiangCounty) are summarized here (Fig. 1). Due to lithologic andbiostratigraphic similarity this region also includes the north-ernmost range of Sichuan Province (Shatan, Xinli, both Nan-jiang County).

The thickest and most complete sections with preservedstrata of the Meishucunian Stage of the Early Cambrian(equivalent to the Nemakit-Daldynian and Tommotian ofSiberia) are located near Kuanchuanpu. The thickness of theLower Cambrian succession decreases continuously towardthe east or southeast. In the Shizhonggou section, approxi-mately 2 km south of Kuanchuanpu, the Meishucunian com-prises the ca. 55-m-thick Kuanchuanpu Formation and partsof the siliciclastic Guojiaba Formation. The Kuanchuanpu

260 M. Steiner et al. / Geobios 37 (2004) 259–275

Formation consists mainly of limestones and phosphaticlimestones, with thick interlayers of cherts and some shales(Fig. 2). The uppermost 10 m of the Kuanchuanpu Formationconsist of clastic limestones, which contain breccia beds andconglomerates. The underlying dolostones of the Neoprot-erozoic Dengying Formation are disconformably overlain bythe Kuanchuanpu Formation. The top of the Dengying For-mation contains numerous phosphatized cloudiniids atKuanchuanpu (Bengtson and Yue, 1992).

The main distribution of Lower Cambrian SSFs is re-stricted to an approximately 15-m-thick horizon in themiddle Kuanchuanpu Formation (Fig. 2). The examinedSSFs belong to the Anabarites trisulcatus – Protohertzinaanabarica Assemblage Zone (Fig. 3). Except for the abun-dant protoconodont Protohertzina, and the common ana-baritids and siphogonuchitids, it also contains numerousphosphatized remains of soft-bodied metazoan eggs, em-bryos, larvae and adult stages, such as possible cnidarianpolyps, algae, and bacteria (Fig. 4). In addition, rare repre-sentatives of enigmatic fossils occur, e.g. Carinachites,Hexaconularia, Cambrothyra, and Punctatus, which locallycan be more frequent in Xixiang or Nanjiang counties. It isimportant to mention that Anabarites obliquasulcatus andA. sulcoconvex, both of which were initially described asseparate species, always appear together with Anabaritestrisulcatus. Additionally, transitional forms can be observed

between A. trisulcatus and A. sulcoconvex, and betweenA. obliquasulcatus and A. sulcoconvex (Fig. 3(15, 16)),which led us to regard the latter two species as synonyms ofAnabarites trisulcatus and to treat them here merely asintraspecific varieties. A similar morphological convergencewas pointed out by Qian and Bengtson (1989) between Ana-barites trisulcatus and Conotheca subcurvata. Specimenspreviously described as Anabarites rotunda, which is hereinalso treated as morphological variant (A. trisulcatus formarotunda), indicate a morphologically intermediate positionbetween the latter two species. Conotheca subcurvata andAnabarites trisulcatus also show a similar stratigraphic dis-tribution in the investigated region. The co-occurrence ofProtohertzina unguliformis with the considerably more rareP. anabarica hints that both protoconodont species maybelong to the same apparatus of one biospecies. Morphologi-cal analogies and the co-occurrence of Siphogonuchites tri-angularis, S. mirus, Lopochites latazonalis, andMaikhanella multa in Kuanchuanpu (Fig. 3(2, 3, 5, 7)), andalso in Xinli and Shatan, further support the suspicion thatthese taxa merely represent different sclerites of the samecoeloscleritophoran organism (Bengtson, 1992). This isstrengthened by the fact that merged sclerites of Siphogonu-chites occur and some sclerites show individual features ofboth Lopochites and Siphogonuchites (Fig. 3(6)). It is re-markable that Siphogonuchites triangularis and Lopochiteslatazonalis, which are both typical representatives of theyounger Siphogonuchites triangularis – Paragloborilussubglobosus Zone in Yunnan (Qian and Bengtson, 1989),occur frequently in the Anabarites trisulcatus – Proto-hertzina anabarica Zone of Southwest Shaanxi. However,indefinite siphogonuchitids were also reported from the olderSSF zone in Yunnan (Qian and Bengtson, 1989). Further-more, no unambiguous Paragloborilus specimens were re-ported from the Southwest Shaanxi region.

Unfortunately, the basal and terminal sequence of theKuanchuanpu Formation did not contain determinable SSFsexcept for Conotheca sp. in the investigated Shizhonggousection. However, Xing and Yue (1984) described an ap-proximately one-meter-thick limestone bed with phosphateclasts, containing Paragloborilus subglobosus, Igorella cf.ungulata, Aldanella sp., Watsonella sp. (as ?Heraultipegmasp.) and numerous other taxa of molluscs from the upperKuanchuanpu Formation of the nearby Yuanjiaping section.In a re-study of SSFs from this interval of the Yuanjiapingsection we could only recover few helcionellid sclerites(Fig. 4(11, 12)), such as Bemella sp. and pustulous, cap-shaped steinkerns, previously described as “Tuberoconus”paucipapillae (Xing et al., 1984). The described horizonprobably correlates with the conglomeratic and partiallybrecciated uppermost part of the Kuanchuanpu Formation ofthe Shizhonggou section (Fig. 2). While the single specimenof Paragloborilus subglobosus figured in Xing and Yue(1984) has to be regarded as questionable, the determinationsas Aldanella sp. and Watsonella (?Heraultipegma) sp. appearplausible.

NanzhengHanzhong

Chenggong

Xixiang

Zhenba

Nanjiang

Wangcang

Guangyuan

Ningqiang

Mian Xian

XinliShatan

Zhangjiagou

Xiaoyangba

Xiaowan

SanlanpuKuanchuanpu

Sichuan

Shaanxi

Beijing

Yangtze Platform

South Shaanxi

150 30 km

Shizonggou

Hexi

Yuanjiaping Guojiaba

108°E107°E

33°N

Fig. 1. Locality map of SSF-bearing sections in South Shaanxi / NorthSichuan (triangles indicate sections discussed in the text).Fig. 1. Carte des localités où sont situées les coupes contenant les SSF dansle sud du Shaanxi / nord du Sichuan (les triangles indiquent les coupesdiscutées dans le texte).

261M. Steiner et al. / Geobios 37 (2004) 259–275

Dengying

Form

ation suorefilissof ylroop

noitamroF upnauhcnauK

Sh

izho

ng

go

u /

Ku

anch

uan

pu

,N

ing

qian

g C

ou

nty,

Sh

aanxi P

rovin

ce

Ku

a 100

Ku

a 115

Ku

a 108

Ku

a 102

Ku

a 118

Ku

a 125

Ku

a 116

acirabana aniztrehotorP - sutaclusirt setirabanA enoZ egalbmessA

Ku

a 101

Ku

a 117

Ku

a 105

Ku

a 104

Ku

a 119

Ku

a 111

Ku

a 113

Ku

a 110

Ku

a 109

Ku

a 120

5 m

Ku

a 106

Ku

a 107

acehtonoC .ps

siralugnairt setihcunogohpiS

surim setihcunogohpiS

silanozatal setihcopoL

sunogordauq setihcopoL

atlum allenahkiaM

sutanips setihcaniraC

suhtnacahtro sissacohtnacA

airalunocaxeH .ps

atacnurt aryhtorbmaC

sutalunarg sediooeahcrA

sutaclusitlum sedioovilO

A epyT oyrbmE

B epyT oyrbmE

oyrbmE -sutatcnuP epyT

sisneieme sutatcnuP

selucips depahs-eldnips

seinoloc lairetcab / lagla

Ku

a 135

Ku

a 136

Ku

a 134

Guojiaba

Form

ation

acirabana aniztrehotorP

simrofilugnu aniztrehotorP

sutaclusirt setirabanA

sutaclusirt .A .rav sutaclusauqilbo

sutaclusirt .A .rav xevnococlus

atavrucbus acehtonoC

?

Ku

a 139

4.6 m covered

Ku

a 146

Ku

a 144K

ua 143

Ku

a 142

Ku

a 141

Ku

a 140

Ku

a 133K

ua 131

Ku

a 130K

ua 128

?

Ku

a 124/121K

ua 122

Ku

a 123

Ku

a 126

Ku

a 127

covered

Ku

a 148

Ku

a 147

dolomite

limestone

chert

phosphatenodules

black shale

comm

onS

SF

occurrence

HG

Rhardground

sample num

ber

trilobites

chancelloriidsK

ua 110

mudstone

spongespicules

sandylim

estone

brecciabed

phosphorite

siltstone

Fig.2.Stratigraphiccolum

nofthe

Kuanchuanpu

Formation

atShizhonggou,nearKuanchuanpu,N

ingqiangC

ounty(ShaanxiProvince)including

occurrencesof

SmallShelly

Fossils.Fig.

2.C

olonnestratigraphique

dela

Formation

Kuanchuanpu

deShizhonggou

prèsde

Kuanchuanpu,

Ningqiang

County

(Provincede

Shaanxi)avec

ladistribution

desSSF.

262M

.Steineret

al./G

eobios37

(2004)259–275

In the nearby villages of Guojiaba and Zhaojiaba, approxi-mately 5 km south of Kuanchuanpu, several thin interbeds ofphosphatic conglomerates exist within the Guojiaba Forma-tion. Their exact stratigraphic position, however, remainsuncertain because of poor exposure. Mitral and sellate scler-ites of Tannuolina zhangwentangi were recovered from oneof these layers (Fig. 3(9)).

In the Shatan section, the Kuanchuanpu Formation isconsiderably reduced in thickness (5.75 m; Fig. 5). A phos-phatic hardground, indicating a disconformity, exists at thebase of the Kuanchuanpu Formation. A trend toward strongersilicification of the limestones occurs from the top of theformation downward. Determinable SSFs were recoveredfrom only the uppermost 2 m of the formation. In somesamples the SSFs are frequently coated by migrated pyrobi-tumen. Most of the Kuanchuanpu Formation at Shatan repre-sents the Anabarites trisulcatus – Protohertzina anabaricaZone (Fig. 5). Due to the lithologic similarity with the Kuan-chuanpu area, and a comparable SSF association, we applythe term Kuanchuanpu Formation to the limestone sequencein Shatan instead of the formerly used Mofangyan Memberof the Dengying Formation (Yang et al., 1983). The higherpart of the Kuanchuanpu Formation, as present at Kuanchua-npu, seems to be missing in this section. However, the forma-tion is terminated by a 16-cm-thick limestone bed with brec-ciated phosphate clasts, which represents a reworkedhorizon. Except for Protohertzina unguliformis and Conoth-eca subcurvata this horizon contains numerous helcionellidmolluscs, such as Igorella sp., and Bemella costa, but alsoZhijinites longistriatus, Chancelloria cf. eros, and Halkieriasthenobasis (Fig. 6). However, these molluscs, zhijinitids andcoeloscleritophorans occur in higher zones in other regionsof the Yangtze Platform, as for example in Yunnan. There-fore, it can be assumed that a mixing of several SSF associa-tions occurred at the top of the Kuanchuanpu Formation atShatan. It is also worth noting that Anabarites trisulcatuscould neither be detected at Shatan nor at Xinli, although it isa common constituent of the Anabarites trisulcatus – Proto-hertzina anabarica Zone in shallow water environments. AtZhangjiagou anabaritids, which accompany Protohertzinaanabarica, are extremely rare and only few fragments wererecovered among thousands of specimens of Conotheca sub-curvata. However, these individuals are morphologicallycloser related to A. tripartitus / A. trymatus, due to theexistence of depressions on the three lobes. The rare occur-rence or lack of anabaritids east of Kuanchuanpu may beexplained by different facies settings. Anabaritids also onlyoccurred very rarely in SSF associations of deeper shelfsettings on the central and eastern Yangtze Platform (Dingand Qian, 1988; He and Yu, 1992; Steiner et al., 2003).

The basal Cambrian phosphatic carbonates are muchthicker at Xinli compared with the Kuanchuanpu Formationat Shatan (Fig. 7), although the section is only situatedapproximately 15 km east of Shatan. Because of the preva-lence of dolostones in this sequence it was treated as the XinliMember of the Dengying Formation (Yang et al., 1983). Due

to the fact that there occur limestones of the KuanchuanpuFormation in the Zhangjiagou section (Hexi area), approxi-mately 40 km further northeast, again, the existence of LowerCambrian dolostones in Xinli may be attributed to localdolomitization. The recovered SSF association is well com-parable to that of the Anabarites trisulcatus – Protohertzinaanabarica Zone from Kuanchuanpu (Fig. 8). In addition tothis, it also contains Mongolodus longispina and M. platy-basalis (Fig. 8(7)).

3. SSF associations of the Southeast Shaanxi –Northwest Hubei Region

The Southeast Shaanxi – Northwest Hubei region com-prises an area east of Xixiang and is separated from theSouthwest Shaanxi region by a multiple fault zone (Yin et al.,1993). It extends to the Shennongjia district of northwesternHubei.

The carbonate and phosphatic sequences of the LowerCambrian are thin in the exposures east and southeast ofXixiang. Thicknesses vary strongly, even in short distances.In the Sanlangpu section merely a 5 cm thick conglomeraticlimestone bed of the Xihaoping Member of the DengyingFormation is exposed (Fig. 9), whereas the same interval isapproximately 45 cm thick in Xiaowan (Fig. 10). However,in earlier publications a thickness of 8.47 m was mentionedfor the Xihaoping Member in Sanlangpu, and a thickness ofabout 8.4 m was described for the same member in Xiaoy-angba, Zhenba County, southeast of Xixiang (Qian et al.,1999). Lithology and biostratigraphy indicate a large basalCambrian hiatus for this region.

The SSF associations of the two investigated sections aremainly characterized by the frequent occurrence of Cam-brothyra ampulliformis, C. truncata, Ninella tarimensis,Cambroclavus fangxianensis, the chancellorids Archiaster-ella pentactina, Chancelloria cf. eros, Chancelloria? arida,Allonnia tetrathallis, and partly undetermined or unknownmolluscs (Fig. 11). The occurrence of Yochelcionella cf.chinensis is noteworthy, since it has so far not been reportedfrom the Lower Cambrian of the Yangtze Platform. Repre-sentatives of the early Anabarites trisulcatus – Protohertzinaanabarica Zone, the Siphogonuchites triangularis – Para-globorilus subglobosus Zone, and the Watsonella yunnanen-sis Zone have not been demonstrated for Southeast Shaanxiand Northwest Hubei. In earlier reports, Rhombocorniculumwas repeatedly mentioned from the Xihaoping Member ofSoutheast Shaanxi (Xie, 1990; Ding et al., 1991; Qian et al.,1999). However, this occurrence could neither be confirmedfor Sanlangpu and Xiaowan (this study), nor for the Zhenbaarea (Li, 2000). The only figured specimen from the Xihaop-ing Member of Sanlangpu, which has been assigned toRhombocorniculum (Ding et al., 1991: pl. 3, Fig. 27), ap-pears questionable. However, at Xiaoyangba, ZhenbaCounty, Rhombocorniculum occurs abundantly in the lowerShuijingtuo Formation, which overlies the Xihaoping Mem-

263M. Steiner et al. / Geobios 37 (2004) 259–275

264 M. Steiner et al. / Geobios 37 (2004) 259–275

ber. In contrast to Southeast Shaanxi, Rhombocorniculumhas been documented from the top Xihaoping Member ofNorthwest Hubei (Qian and Zhang, 1983; Qian et al., 1999).

In Sanlangpu, black shales of the Guojiaba Formation,about 3 m above the conglomeratic limestone bed of theXihaoping Member, contain the eodiscid trilobite Tsunyidis-cus, as well as sclerites of Allonnia, and bradoriids. Thisassociation is typical for the Tsunyidiscus Subzone of theWutingaspis – Eoredlichia Zone of the Qiongzhusian Stagein Yunnan (Steiner et al., 2001a).

4. Exceptional preservation of eggs, embryos,and soft-bodied organisms

The first description of phosphatic fossils with similarityto eggs of animals was given in the original description ofOlivooides from Kuanchuanpu (Qian, 1977). With the selec-tion of the name for the fossil, Qian gave the first hint of afossil preserved as an egg-stage, although Olivooides wasofficially classified together with Archaeooides and otherremains as “problematic fossils”. During later investigations,Xing et al. (1984) and Yue (1986) observed distinct spinosestructures under a thin external layer in individual specimensof Olivooides. This led to an assignment of Olivooides to thePorifera (Xing et al., 1984; Yue, 1986).

Zhang and Pratt (1994) first discovered phosphatized ani-mal embryos on theYangtze Platform from the Middle Cam-brian Gaotai Formation (Guizhou Province). Finally, Bengt-son and Yue (1997) re-investigated material of Olivooidesand interpreted Olivooides as egg-stages and embryos of theconical fossil Punctatus that co-occurs in the same horizon.Conway Morris and Chen (1992) already had drawn atten-tion to the similarity in the spinose surface structure ofPunctatus with Olivooides but interpreted this to be acciden-tal. Later, Yue and Bengtson (1999) formally synonymizedPunctatus with Olivooides and indicated Punctatus was anadult stage within an ontogenetic cycle of different eggs andembryos of Olivooides.

During this study, both Olivooides and Punctatus havebeen documented from a wide stratigraphic range within the

Anabarites trisulcatus – Protohertzina anabarica Zone inthe Southwest Shaanxi region (Figs. 2, 5 and 7). Thousandsof specimens of Olivooides and several dozens of specimensof Punctatus have been recovered from the Shizhonggousection, Kuanchuanpu (Fig. 4(1–7, 9)). However, their de-tailed description is beyond the scope of this study. Theobserved structures confirm the former interpretation ofOlivooides as eggs or embryos. However, Olivooides multi-sulcatus also shows a great morphologic variability, which is,on the one hand, explained biologically by the differentontogenetic stages, but on the other hand also by numeroustaphonomic variants of the same stages. A preliminary studyof the egg-stages and embryos indicates that at least 3 typesof embryos can be distinguished from the egg-stages. It canbe assumed that the true biological diversity, concealed underthe form-taxon name Olivooides multisulcatus, is consider-ably higher. However, final conclusions can only be drawnwith further detailed investigations on the developmentalbiology of the embryos.

Here we distinguish one embryo type with holoblasticcleavage (type A, Fig. 4(2)), one embryo type with discoidalgerm band development (type B, Fig. 4(4)), as well as anembryo type with spinose surface structure and pentameroussymmetry (Punctatus type, Fig. 4(1, 3, 6)). It is undecidedwhether all embryos with holoblastic cleavage developedinto the Punctatus type. It can be assumed that other organ-isms developed embryos with similar morphology in theearly blastula stage since this cleavage pattern is widelydistributed. At least embryo type B belonged to an organismdifferent from Punctatus emeiensis. Both embryos of type Aand Punctatus type developed smooth external egg cases thatare indistinguishable from Olivooides in the case of completepreservation. Therefore, a synonymization of all Olivooideswith Punctatus, as proposed by Yue and Bengtson (1999),appears unjustified. In addition, no indication of an embry-onic stage is available in the type material of Olivooides.Considering this, Olivooides represents a form-taxon, whichis not monospecific. Punctatus emeiensis, however, may be agenuine biospecies.

The preservation of numerous hollow eggs and embryosindicates that the process of phosphatization was directed

Fig. 3. All specimens from the Kuanchuanpu Formation of Shizhonggou section, Kuanchuanpu, Ningqiang County, South Shaanxi Province, except for Fig. 9,which is from the Guojiaba Formation, Zhaojiaba village, Ningqiang County. Thick scale bar equals 500 µm; thin scale bar 100 µm. Samples stored at TU Berlincollection (TUBACK). 1. Lateral view of Cambrothyra truncata, No Kua 125-143. 2. Maikhanella multa, No Kua 125-57. 3. Siphogonuchites mirus, No Kua123b-6. 4. Coccoidal algae or bacterial colonies, No Kua 125-54. 5. Siphogonuchites triangularis, No Kua 121-02. 6. Form transitional between Lopochiteslatazonalis and Siphogonuchites triangularis, No Kua 123b-3. 7. Lopochites latazonalis, No Kua 125-36. 8. Protohertzina anabarica, No Kua 125-118. 9.Tannuolina zhangwentangi, No Q 6-1. 10. Spindle-shaped spicule (?cnidarian spicule), No Kua 125-71. 11. Protohertzina unguliformis, No Kua 124-01. 12.Protohertzina unguliformis, No Kua 121-02. 13. Hyolithellus sp., No Kua 125-136. 14. Anabarites trisulcatus, No Kua 115-11. 15. Anabarites trisulcatus formasulcoconvex, No Kua 115-06. 16. Anabarites trisulcatus forma obliquasulcatus, No Kua 125-43. 17. Conotheca subcurvata, No Kua 125-131.Fig. 3. Tous les spécimens viennent de la Formation Kuanchuanpu, coupe de Shizhonggou, sud du Shaanxi, sauf 9, (Formation Guojiaba, village de Zhaojiaba,Ningqiang County). Barre d’échelle épaisse = 500 µm, barre fine = 100 µm. 1. Vue latérale de Cambrothyra truncata, No Kua 125-143. 2. Maikhanella multa,No Kua 125-57. 3. Siphogonuchites mirus, No Kua 123b-6. 4. Algues coccoïdales ou conolies bactériennes, No Kua 125-54. 5. Siphogonuchites triangularis, No

Kua 121-02. 6. Forme de transition entre Lopochites latazonalis et Siphogonuchites triangularis, No Kua 123b-3. 7. Lopochites latazonalis, No Kua 125-36.8. Protohertzina anabarica, No Kua 125-118. 9. Tannuolina zhangwentangi, No Q 6-1. 10. Spicule en forme de fuseau (spicule de cnidaire ?), No Kua 125-71.11. Protohertzina unguliformis, No Kua 124-01. 12. Protohertzina unguliformis, No Kua 121-02. 13. Hyolithellus sp., No Kua 125-136. 14. Anabaritestrisulcatus, No Kua 115-11. 15. Anabarites trisulcatus forme sulcoconvex, No Kua 115-06. 16. Anabarites trisulcatus forme obliquasulcatus, No Kua 125-43.17. Conotheca subcurvata, No Kua 125-131.

265M. Steiner et al. / Geobios 37 (2004) 259–275

266 M. Steiner et al. / Geobios 37 (2004) 259–275

Fig. 4. All specimens from the Kuanchuanpu Formation of Shizhonggou section, Kuanchuanpu, Ningqiang County, South Shaanxi Province, except for Figs. 11, 12,which are from the upper Kuanchuanpu Formation of Yuanjiaping village, Ningqiang County. Thick scale bar equals 500 µm; thin scale bar 100 µm. Samplesstored at TU Berlin collection (TUBACK). 1. Late embryo of Punctatus type (late blastula stage), indicating a pentaradial symmetry and initial formation of aspinous surface texture, No Kua 125-95. 2. Embryo type A (early blastula stage) with clearly confined blastomeres, indicating a holoblastic cleavage, No Kua125-93. 3. Partly decayed embryo of Punctatus type within the egg case, No Kua 125-30. 4. Embryo type B, indicating the formation of discoidal germ band, No

Kua 120-01; A, vegetal pole with rectangular folding; B, animal pole with discoidal germ band. 5. Smooth egg of Olivooides multisulcatus, No Kua 121-23. 6.Late embryo of Punctatus type with removed egg case; late blastula stage before hatching; note pentaradial symmetry of apertural region, No Kua 125-30. 7.Hatched individual of Punctatus emeiensis, apertural view; note pentaradial symmetry of aperture, No Kua 115-18. 8. Carinachites spinatus, No Kua 125-40.9. Hatched individual of Punctatus emeiensis, lateral view; note spinous surface texture of antapical part, No Kua 115-11. 10. Possible polyp of a cnidarian, No

Kua 125-56. 11. Bemella sp., NoYug 1-1. 12. Undetermined steinkern of a helcionellid shell with pustulous surface structures, NoYug 1-4. 13. Stalked specimenof Acanthocassis orthacanthus, No Kua 115-01; A, view into the five-tentacled crown (two are broken); B, lateral view.Fig. 4. Tous les spécimens viennent de la Formation Kuanchuanpu, coupe de Shizhonggou, sud du Shaanxi, sauf 11 et 12, Formation Guojiaba, village deZhaojiaba, Ningqiang County. Barre d’échelle épaisse = 500 µm, barre fine = 100 µm. Échantillons dans les collections de TU Berlin (TUBACK). 1. Stadeembryonnaire tardif de type punctatus (stade blastula tardif) indiquant une symétrie pentaradiée et la formation initiale d’une texture de surface épineuse, No

Kua 125-95. 2. Embryon de type A (stade blastula précoce) montrant des blastomères clairement resserrés indiquant un clivage holoblastique, No Kua 125-93.3. Embryons partiellement décomposés de type punctatus (enveloppe enlevée), No Kua 125-30. 4. Embryon de type B, indiquant la formation d’une bandegerminative discoïdale, No Kua 120-01. A, pôle végétatif avec plis rectangulaires. B, pôle animal avec bande germinative discoïdale. 5. Œuf lisse de Olivooidesmultisulcatus, No Kua 121-23. 6. Embryon tardif de type punctatus avec enveloppe enlevée ; blastula tardive avant l’éclosion. Noter la symétrie pentaradiée del’ouverture, No Kua 125-30. 7. Individu éclos de Punctatus emeiensis, vue latérale. Noter la surface épineuse de la partie antapicale, No Kua 115-18.8. Carinachites spinatus, No Kua 125-40. 9. Individu éclos de Punctatus emeiensis, vue latérale; noter la texture de surface épineuse de la partie antapicale. 10.Possible polype de cnidaire, No Kua 125-56. 11. Bemella sp., NoYug 1-1. 12. Moule interne de coquille d’hécionellidé avec des structures de surface pustuleuses,No Yug 1-4. 13. Spécimen de Acanthocassis orthacanthus, No Kua 115-01 ; A, vue d’une couronne à 5 tentacules (2 sont cassées). B, vue latérale.

Shatan section,Nanjiang County,

North Sichuan Province

Sht 117

Sht 101

Sht 113

Sht 303

Sht 107

Sht 100

Sht 302

Sht 116

Sht 103

Sht 109

Sht 102

Sht 110

Sht 111

Sht 108

Sht 115Sht 114

Sht 106

Sht 105

Sht 104

Sht 301

1 m

HGR

*

pust

ulou

s he

lcio

nelli

d in

det.

DengyingFormation

Ku

anch

uan

pu

Fo

rmat

ion

Ana

barit

es tr

isul

catu

s -

Pro

tohe

rtzi

na a

naba

rica

Ass

embl

age

Zon

epo

orly

foss

ilife

rous

GuojiabaFormation P

roto

cono

dont

gen

. et s

p. in

det.

Pro

tohe

rtzi

na u

ngul

iform

is

Con

othe

ca s

ubcu

rvat

a

Sip

hogo

nuch

ites

tria

ngul

aris

Sip

hogo

nuch

ites

miru

s

Lopo

chite

s la

tazo

nalis

Mai

khan

ella

mul

ta

Zhi

jinite

s lo

ngis

tria

tus

Zhi

jinite

s sp

.

Rha

bdoc

hite

s ex

aspe

ratu

s

Hyo

lithe

llus

sp.

Igor

ella

sp.

Pur

ella

cf.

squa

mul

osa

Bem

ella

cos

ta

Cha

ncel

loria

cf.e

ros

Oliv

ooid

es m

ultis

ulca

tus

Hex

acon

ular

ia s

p.

Hal

kier

ia s

then

obas

is

Pun

ctat

us e

mei

ensi

s

Hel

cion

ella

sp.

?

Fig. 5. Stratigraphic column of the Kuanchuanpu Formation at Shatan, Nanjiang County (Sichuan Province) including occurrences of Small Shelly Fossils(asterisk: reworked horizon with mixing of zones).Fig. 5. Colonne stratigraphique de la Formation Kuanchuanpu à Shatan Nanjiang County (Province de Sichuan) avec indication de la présence de Small ShellyFossils (astérisque = horizons remaniés avec mélanges de zones).

267M. Steiner et al. / Geobios 37 (2004) 259–275

268 M. Steiner et al. / Geobios 37 (2004) 259–275

from the exterior to the interior. Cavities within egg caseswere maintained or later filled by secondary phosphate. Inthis light, we interpret the structures, initially discussed asprimary tissues (Yue and Bengtson, 1999: Fig. 9) from theinterior of some specimens of Olivooides, as secondary sta-lactitic phosphate growth along an organic matrix derivedfrom the enzymatic or bacterial disintegration of the cells.Similar structures were also found in cavities of other SSFs,as well as in phosphate clasts of inorganic origin. Someindividuals of Olivooides also show distinctive phosphaticmicroglobules, which are interpreted here as algae or bacte-ria. Phosphatized bacterial envelopes and coccoidal algae(Fig. 3(4)) are widespread in the Kuanchuanpu Formation.The figured specimen of a “cleavage embryo” with yolkglobules (Yue and Bengtson, 1999: Fig. 6) probably alsorepresents coccoidal algae or bacterial colonies.

Besides the extraordinary preservation of egg stages, em-bryos, and larva, the undoubtedly very early phosphatizationalso led to the preservation of some soft-bodied organisms, asfor example that of a possible cnidarian polyp (Fig. 4(10)), orof the polyp-like Acanthocassis orthacanthus (Fig. 4(13)).Although the latter organism resembles hydrozoan polyps,its detailed biological assignment remains uncertain becauseof the pentaradial symmetry and the lack of a mouth opening.Fragments of this species were also frequently found in theKuanchuanpu Formation at Xinli (Fig. 8(8, 9)).

5. Biostratigraphic implication of SSF associations

Comparison of the SSF distribution in the SouthwestShaanxi region and the Southeast Shaanxi – NorthwestHubei region by means of the sections examined herein andthe available literature reveals a striking discrepancy in SSFassociations. Biozonation of the Southwest Shaanxi region(Fig. 12) is comparable with that of East Yunnan and Si-chuan. A disconformity occurs at the Precambrian – Cam-brian boundary interval here. The Anabarites trisulcatus –Protohertzina anabarica Zone (first Chinese SSF zone) iswidespread and generally comprises continuous sedimentsequences. Unlike in East Yunnan, Siphogonuchites triangu-laris, Lopochites latazonalis, and Maikhanella multa al-ready appear in the first SSF zone. These species first occurwithin the Siphogonuchites triangularis – Paragloborilus

subglobosus Zone in Yunnan (second Chinese SSF zone;Qian and Bengtson, 1989). But indefinite siphogonuchitidswere also mentioned in the first SSF zone fromYunnan (Qianand Bengtson, 1989). However, up to now, Paragloborilussubglobosus could not be unambiguously determined fromShaanxi. Therefore, the occurrence of the Siphogonuchitestriangularis – Paragloborilus subglobosus Zone in Shaanxiis not discerned. The presence of Aldanella sp. and Wat-sonella sp. [as ?Heraultipegma sp.] (Xing and Yue, 1984)indicate that the Watsonella yunnanensis Zone is represented

Fig. 6. All specimens from the Kuanchuanpu Formation of Shatan section, Nanjiang County, northern Sichuan Province. Thick scale bar equals 500 µm; thinscale bar 100 µm. Samples stored at TU Berlin collection (TUBACK). 1. Bemella costa, No Sht 100-10. 2. Bemella costa, No Sht 100-08. 3. Purella cf.squamulosa, No Sht 100-23. 4. Purella cf. squamulosa, No Sht 100-24. 5. Igorella sp., No Sht 100-04. 6. 8+1 sclerite of Chancelloria cf. eros, No Sht 100-16.7. Zhijinites sp., No Sht 100-09. 8. Hyolithellus sp., No Sht 100-18. 9. Zhijinites longistriatus, No Sht 100-15. 10. Helcionella sp., No Sht 100-20. 11.Protohertzina unguliformis, No Sht 102-01. 12. Rhabdochites exasperatus, No Sht 100-01. 13. Siphogonuchites triangularis, No Kua 103-01. 14. Undeterminedsteinkern of a helcionellid shell with pustulous surface structures, No Sht 100-31.Fig. 6. Tous les spécimens viennent de la Formation Kuanchuanpu, coupe de Shatan, Nanjiang County, nord de la province de Sichuan. Barre d’échelleépaisse = 500 µm, barre fine = 100 µm. Échantillons conservés dans les collections de TU Berlin (TUBACK). 1. Bemella costa, No Sht 100-10. 2. Bemella costa,No Sht 100-08. 3. Purella cf. squamulosa, No Sht 100-23. 4. Purella cf. squamulosa, No Sht 100-24. 5. Igorella sp., No Sht 100-04. 6. 8+1 sclérite deChancelloria cf. eros, No Sht 100-16. 7. Zhijinites sp., No Sht 100-09. 8. Hyolithellus sp., No Sht 100-18. 9. Zhijinites longistriatus, No Sht 100-15. 10.Helcionella sp., No Sht 100-20. 11. Protohertzina unguliformis, No Sht 102-01. 12. Rhabdochites exasperatus, No Sht 100-01. 13. Siphogonuchites triangularis,No Kua 103-01. 14. Moule interne indéterminé d’une coquille d’helcionellidé avec structures de surface pustuleuses, No Sht 100-31.

NXC-1

NXC-3

NXC-4

NXC-8

NXC-6

NXC-9

NXC-10NXC-11NXC-12NXC-13NXC-14NXC-15NXC-16NXC-17

NXC-5

NXC-7

NXC 10a

NXC-18

NXC-19

NXC-20

NXC-21

NXC-22

NXC-23

NXC-24

NXC-2 2m

Conothecasubcurvata

Archaeooidesgranulatus

Siphogonuchitestriangularis

Siphogonuchitesmirus

Lopochiteslatazonalis

Maikhanellamulta

Protoherzinaanabarica

Protoherzinaunguliformis

Hexaconulariasichuanensis

Punctatusemeiensis

Mongoloduslongispina

Mongolodusplatybasalis

Acanthocassisorthacanthus

Olivooidesmultisulcatus

XinliMember

Dengying

Formation

Guojiaba

Guojiaba

Formation

Formation

Xinli SectionNanjiang CountyN.Sichuan Province

Fig. 7. Stratigraphic column of the Xinli Member of Dengying Formation atXinli, Nanjiang County (Sichuan Province) including occurrences of SmallShelly Fossils.Fig. 7. Colonne stratigraphique de la Formation Dengying de Xinli, Nan-jiang County (Province de Sichuan) avec indication de la présence de SmallShelly Fossils.

269M. Steiner et al. / Geobios 37 (2004) 259–275

270 M. Steiner et al. / Geobios 37 (2004) 259–275

in the higher Kuanchuanpu Formation. Watsonella yunnan-ensis and Aldanella yanjiaheensis (mistakenly mentioned asPelagiella subangulata, Li personal observation) were alsoboth described from the Dahai Member of Xiaotan, Yunnan(Li et al., 2001). Tannuolina zhangwentangi is here reportedfrom the overlying Guojiaba Formation, and this suggests theexistence of the Sinosachites flabelliformis – Tannuolinazhangwentangi Zone. However, Sinosachites and Lapworth-ella have not yet been found in this region. The occurrence ofbreccia beds at the top of the Anabarites trisulcatus – Pro-tohertzina anabarica Zone or at the base of the directlyoverlying strata is remarkable. Such breccia beds occur inwide parts of the shallow water settings of the Yangtze Plat-form (Steiner, 2001). Deep-seated fault zones formed in theprotected basin south of the carbonate platform, which alsoled to the formation of synsedimentary- hydrothermal ore(Steiner et al., 2001b) during the late Meishucunian (equiva-lent to the late Tommotian of Siberia). Both lines of evidenceindicate a considerable tectonic and seismic activity duringthe Early Cambrian.

In the region east of Kuanchuanpu the strata overlying theAnabarites trisulcatus – Protohertzina anabarica Zone are

increasingly missing. A thin breccia bed occurs at Shatan onthe top of the Kuanchuanpu Formation, and this indicates areworking and mixing of skeletal fossils from the second SSFassociation (Zhijinites longistriatus, Igorella sp., Bemellacosta, Purella cf. squamulosa, Chancelloria cf. eros, Halki-eria stenobasis) with those of the first zone (Protohertzinaunguliformis, Punctatus emeiensis, Hexaconularia sp.).However, this needs further confirmation due to the lack ofimportant index fossils in this section.

The Southeast Shaanxi – Northwest Hubei region is sepa-rated from the Southwest Shaanxi region by the Sishang –Zhenba – Yudu Fault Zone (Yin et al., 1993) and showsdistinct differences in facies and biostratigraphy. The earliestthree Lower Cambrian SSF zones are completely lacking inthe Southeast Shaanxi – Northwest Hubei region (Fig. 12).Tannuolina, Lapworthella, and Sinosachites also could notbe detected in this region. Instead of this, SSFs of completelydifferent associations were detected in the Xihaoping Mem-ber. They are subdivided here into the following two zones(in ascending order):

• Ninella tarimensis – Cambroclavus fangxianensis As-semblage Zone.

• Rhombocorniculum cancellatum Taxon Range Zone.The older Ninella tarimensis – Cambroclavus fangxian-

ensis Zone is defined here by the joint occurrence of Ninellatarimensis, Cambroclavus fangxianensis, and Cambrothyratruncata. Additional taxa detected in this zone include Cam-brothyra ampulliformis, Yochelcionella cf. chinensis, andnumerous chancelloriids.

Fig. 8. All specimens from the Kuanchuanpu Formation of Xinli section, Nanjiang County, northern Sichuan Province. Thick scale bar equals 500 µm, thin scalebar 100 µm. Samples stored at the collection of Nanjing Institute of Geology and Palaeontology (NIGPAS). 1. Hexaconularia sichuanensis, No NXC9-01. 2.Hexaconularia sichuanensis, No Q5-13. 3. Punctatus emeiensis, lateral view, No NXC12-10. 4. Lopochites latazonalis, No NXC8-23. 5. Siphogonuchitestriangularis, No NXC8-24. 6. Maikhanella multa, No NXC8-22. 7. Mongolodus longispina, No NXC12-12. 8. Acanthocassis orthacanthus, No NXC12-26. 9.Acanthocassis orthacanthus, No NXC12-27. 10. Protohertzina cf. unguliformis, No NXC8-6. 11. Protohertzina unguliformis, No NXC8-4. 12. Protohertzinaanabarica, No NXC8-3. 13. Conotheca subcurvata, No NXC8-6.Fig. 8. Tous les spécimens viennent de la Formation Kuanchuanpu de la coupe de Xinli, Nanjiang County, nord du Sichuan. Barre d’échelle épaisse = 500 µm,barre fine = 100 µm. Exemplaires déposés au Nanjing Institut of Geology and Palaeontology (NIGPAS). 1. Hexaconularia sichuanensis, No NXC9-01. 2.Hexaconularia sichuanensis, No Q5-13. 3. Punctatus emeiensis, vue latérale, No NXC12-10. 4. Lopochites latazonalis, No NXC8-23. 5. Siphogonuchitestriangularis, No NXC8-24. 6. Maikhanella multa, No NXC8-22. 7. Mongolodus longispina, No NXC12-12. 8. Acanthocassis orthacanthus, No NXC12-26. 9.Acanthocassis orthacanthus, No NXC12-27. 10. Protohertzina cf. unguliformis, No NXC8-6. 11. Protohertzina unguliformis, No NXC8-4. 12. Protohertzinaanabarica, No NXC8-3. 13. Conotheca subcurvata, No NXC8-6.

Sanlangpu section,Xixiang County,

South Shaanxi Province

Slp 1

1 m

Con

othe

ca b

revi

ca

Cam

brot

hyra

am

pulli

form

is

Cam

brot

hyra

trun

cata

Cam

broc

lavu

s fa

nxia

ngen

sis

Cha

ncel

loria

? a

rida

Igor

ella

sp.

Hal

kier

ia s

then

obas

is

Cup

ithec

a m

ira

Allo

nnia

err

omen

osa

Allo

nnia

tetr

atha

llis

Arc

hias

tere

lla p

enta

ctin

a

hexa

ctin

ellid

spo

nge

spic

ules

Yoc

helc

ione

lla c

f. ch

inen

sis

Tsun

yidi

scus

Sub

zone

Xihaoping Mb.

DengyingFormation

Gu

ojia

ba

Fo

rmat

ion

poor

ly fo

ssili

fero

us

?

Fig. 9. Stratigraphic column of the Xihaoping Member at Sanlangpu,Xixiang County (Shaanxi Province) including occurrences of Small ShellyFossils.Fig. 9. Colonne stratigraphique de la Formation Xihaoping de Sanlangpu,Xixiang County (Province de Shaanxi) avec indication de la présence deSmall Shelly Fossils.

Xiaowan section,Xixiang County,

South Shaanxi Province

Xiw 103

1 m

XihaopingMember

GuojiabaFormation

Xiw 104

Xiw 105

Xiw 102

Xiw 100

Nin

ella

tarim

ensi

s

Cam

broc

lavu

s fa

ngxi

anen

sis

Con

othe

ca b

revi

ca

Cam

brot

hyra

am

pulli

form

is

Cam

brot

hyra

trun

cata

Turc

uthe

ca lu

bric

a

Igor

ella

sp.

Hal

kier

ia s

then

obas

is

Cup

ithec

a m

ira

Cha

ncel

loria

cf.

eros

Allo

nnia

tetr

atha

llis

Allo

nnia

err

omen

osa

Arc

hias

tere

lla p

enta

ctin

a

hexa

tinel

lid s

pong

e sp

icul

es

cup-

shap

ed m

ollu

scs

inde

t.

DengyingFormation

Fig. 10. Stratigraphic column of the Xihaoping Member at Xiaowan,Xixiang County (Shaanxi Province) including occurrences of Small ShellyFossils.Fig. 10. Colonne stratigraphique de la Formation Xihaoping de Xiaowan,Xixiang County (Province de Shaanxi) avec indication de la présence deSmall Shelly Fossils.

271M. Steiner et al. / Geobios 37 (2004) 259–275

272 M. Steiner et al. / Geobios 37 (2004) 259–275

The overlying Rhombocorniculum cancellatum Zone,which also extends into the lower Shuijingtuo Formation, isdefined here by the occurrence of Rhombocorniculum can-cellatum. It is reported from Xihaoping, Fangxian County,Hubei (Qian et al., 1999) and is possibly missing in the wholesoutheastern Shaanxi. The few reports of Rhombocornicu-lum cancellatum from southeastern Shaanxi (Xie, 1990;Ding et al., 1991) remain questionable. A detailed correlationof the two zones of the Xihaoping Member with the Sinosa-chites flabelliformis – Tannuolina zhangwentangi Zone ofsouthwestern Shaanxi is not yet possible because Tannuolinahas not been reported from Southeast Shaanxi and Northwest

Hubei (Fig. 12). It is worth noting that both Rhombocornicu-lum and Cambroclavus have been reported from the PararaLimestone of South Australia, which has been interpreted tobe of Botoman age (Alexander et al., 2001). As in SouthChina, the two genera do not co-occur in the same strati-graphical level. Cambroclavus only occurs in the lowerParara Limestone, while Rhombocorniculum was recoveredfrom the top of this formation (Alexander et al., 2001). Asimilar SSF association as represented in the XihaopingMember and Shuijingtuo Formation has been reported fromKazakhstan (Missarzhevsky and Mambetov, 1981), whereCambroclavus and Ninella occur in the lower subzone of theRhombocorniculum cancellatum Zone. This interval hasbeen correlated with the upper Atdabanian of the SiberianPlatform (Missarzhevsky and Mambetov, 1981).

The large stratigraphic hiatus, which comprises almost thewhole Meishucunian, is represented in the entire region ofSoutheast Shaanxi and Nordwest Hubei (Fig. 13). This pri-mary hiatus, present in an area of at least 400 × 80 km, alsoindicates strong tectonic activities on the Yangtze Platformduring the Early Cambrian. This and the wide distribution ofbreccias in the other areas of the carbonate platform may berelated to the assembly of Gondwana following the breakupof the supercontinent Rodinia (Powell and Pisarevsky, 2002).

Acknowledgements

We are grateful to Bernd Weber (FU Berlin), Tanja Gold-berg, Harald Strauss (both Münster), Guo Qingjun (Guiy-ang), Zhang Junming, Yang Aihua, He Hongwei (all Nan-jing), and Yang Xianhe (Chengdu) for discussions andsupport in the field. The manuscript has profited considerablyfrom the detailed review by Loren E. Babcock (Columbus)and an anonymous referee. Technical assistance with fossilpicking and acid treatment by Sandra Schochardt and DavidSchmälzle (both TU Berlin) and with SEM by Jörg Nissen(ZELMI, TU Berlin) is warmly acknowledged. This studywas financially supported by DFG (grant ER 96/32-1), NSFC(grants 49972042 and 40172002), MOST of China (grantG2000077700), and CAS (grant KZCX2-116). This is acontribution to the Sino - German bundle project “FromSnowball Earth to the Cambrian Bioradiation- A Multidisci-plinary Analysis of the Yangtze Platform, China”.

Fig. 11. Fossil specimens from the Xihaoping Formation of Sanlangpu section (abbreviation Slp), or Xiaowan section (abbreviation Xiw), Xixiang County,southern Shaanxi Province. Thin scale bar equals 100 µm. Samples stored at TU Berlin collection (TUBACK). 1. Igorella sp., No Slp1-03. 2. Ninella tarimensis,No Xiw104-01. 3. Yochelcionella cf. chinensis, No Slp1-16. 4. Cambrothyra ampulliformis, No Xiw103-05. 5. Cambrothyra truncata, No Xiw103-06. 6. Sixaggregated individuals of Cambrothyra truncata, No Q5-19. 7. Allonnia tetrathallis, No Slp1-06. 8. Cambroclavus fanxiangensis, No Xiw104-07. 9.Cambroclavus fanxiangensis, No Xiw104-08. 10. Chancelloria? arida, No Slp1-04. 11. Conotheca brevica, No Slp1-05. 12. Conotheca brevica, No Slp1-07.Fig. 11. Spécimens de la Formation Xihaoping de la coupe de Sanlangpu (Slp), ou de la section Xiaowan (Xiw), Xixiang County, sud de la Province de Shaanxi.Barre d’échelle épaisse = 100 µm. Exemplaires déposés au TU Berlin (TUBACK). 1. Igorella sp., No Slp1-03. 2. Ninella tarimensis, No Xiw104-01. 3.Yochelcionella cf. chinensis, No Slp1-16. 4. Cambrothyra ampulliformis, No Xiw103-05. 5. Cambrothyra truncata, No Xiw103-06. 6. Six individus agglutinésde Cambrothyra truncata, No Q5-19. 7. Allonnia tetrathallis, No Slp1-06. 8. Cambroclavus fanxiangensis, No Xiw104-07. 9. Cambroclavus fanxiangensis, No

Xiw104-08. 10. Chancelloria? arida, No Slp1-04. 11. Conotheca brevica, No Slp1-05. 12. Conotheca brevica, No Slp1-07.

W ESouthwest Shaanxi Region Southeast Shaanxi -

Northwest Hubei Region

DengyingFormation

nairbmacer

Pnairb

maC re

woL

?GuojiabaFormation

Sinosachites flabelliformis -Tannuolina zhangwentangi

Zone

noitamro

F upnauhcnauK

)rebme

M ilniX

=(

DengyingFormation

poorly fossiliferousInterzone

Watsonella yunnanensisZone

?Zone not recognized*

Anabarites trisulcatus-Protohertzina anabarica

Zone

?

XihaopingMember

Rhombocorniculumcancellatum Zone

Ninella tarimensis -Cambroclavus

fangxianensis Zone

GuojiabaFm.

ShuijingtuoFm.

Fig. 12. Stratigraphic chart of the Lower Cambrian sections of theSouthwest Shaanxi and Southeast Shaanxi – Northwest Hubei regions(* = SSF association possibly comparable with the Siphogonuchites trian-gularis – Paragloborilus subglobosus Zone of Yunnan).Fig. 12. Tableau stratigraphique des coupes du Cambrien inférieur du SW deShaanxi et des régions SE Shaanxi – NW Hubei (* = association à SSF peutêtre comparable à la zone à Siphogonuchites triangularis – Paragloborilussubglobosus du Yunnan).

273M. Steiner et al. / Geobios 37 (2004) 259–275

References

Alexander, E.M., Jago, J.B., Rozanov, A.Yu, Zhuravlev, A.Yu (Eds.), 2001.The Cambrian biostratigraphy of the Stansbury Basin, South Australia.Nauka, Transactions of the Palaeontological Institute, Moscow, 282pp. 1–344.

Bengtson, S., 1985. Taxonomy of disarticulated fossils. Journal of Paleon-tology 59, 1350–1358.

Bengtson, S., 1992. The cap-shaped Cambrian fossil Maikhanella and therelationship between coeloscleritophorans and molluscs. Lethaia 25,401–420.

Bengtson, S., Conway Morris, S., Cooper, B.J., Jell, P.A., Runnegar, B.N.,1990. Early Cambrian fossils from South Australia. Association of Aus-tralasian Palaeontologists, Brisbane.

Bengtson, S., Yue, Z., 1992. Predatorial borings in Late Precambrian miner-alized exoskeletons. Science 257, 367–369.

Bengtson, S., Yue, Z., 1997. Fossilized Metazoan embryos from the earliestCambrian. Science 277, 1645–1648.

Brasier, M.D., 1989. China and the Palaeotethyan Belt (India, Pakistan, Iran,Kazakhstan, and Mongolia). In: Cowie, J.W., Brasier, M.D. (Eds.), ThePrecambrian – Cambrian Boundary. Clarendon Press, Oxford, pp. 40–74.

Conway Morris, S., Chen, M., 1989. Lower Cambrian anabaritids fromsouth China. Geological Magazine 126, 615–632.

Conway Morris, S., Chen, M., 1991. Cambroclaves and paracarinachitids,early skeletal problematica from the Lower Cambrian of South China.Palaeontology 34, 357–397.

Conway Morris, S., Chen, M., 1992. Carinachitiids, Hexangulaconulariids,and Punctatus: Problematic metazoans from the Early Cambrian ofSouth China. Journal of Paleontology 66, 384–406.

Ding, W., Qian,Y., 1988. Late Sinian to Early Cambrian Small Shelly Fossilsfrom Yangjiaping, Shimen, Hunan. Acta Micropalaeontologica Sinica 5,39–55.

Ding, L., Qin, H., Li, Y., 1991. Study on the boundary between Sinian andCambrian in the South of Shaanxi Province, China. Shaanxi Geology 9,96–124.

Ding, L., Zhang, L., Li, Y., Dong, J., 1992. The study of the Late Sinian-Early Cambrian Biota from the Northern Margin of Yangtze Platform.Scientific and Technical Documents Publishing House, Beijing (in Chi-nese, with an English abstract).

He, T., 1987. Early Cambrian conulariids from the Yangtze Platform andtheir early evolution. Journal of the Chengdu College of Geology 14,7–18.

He, S., Yu, G., 1992. The Small Shelly Fossils from the PalaeocambrianMeishucunian Stage in Western Zhejiang. Geology in Zhejiang 8, 1–7.

Landing, E., 1994. Precambrian-Cambrian boundary global stratotype rati-fied and a new perspective of Cambrian time. Geology 22, 179–182.

Li, G., 2000. Early Cambrian phosphatic skeletal fossils from East Yunnanand South Shaanxi. Nanjing Institute of Geology and PalaeontologyNanjing Ph. D. thesis (unpublished).

Fig. 13. Facies reconstruction and distribution of a hiatus on the Yangtze Platform during the Meishucunian Stage of the Lower Cambrian.Fig. 13. Reconstitution des faciès et distribution d’un hiatus sur la plate-forme du Yangtze pendant le Meishucunien (Cambrien inférieur).

274 M. Steiner et al. / Geobios 37 (2004) 259–275

Li, G., Zhang, J., Zhu, M., 2001. Litho- and biostratigraphy of the LowerCambrian Meishucunian Stage in the Xiaotan section, Eastern Yunnan.Acta Palaeontologica Sinica 40 (Supp.), 40–53.

Li, Z., 1984. The discovery and its significance of Small Shelly Fossils inHexi area, Xixiang, Shaanxi. Geology of Shaanxi 2, 73–77.

Luo, H.L., Jiang, Z.W., Song, X.L., Ouyang, L., 1982. The Sinian-Cambrianboundary in eastern Yunnan, China. Yunnan People’s Publishing House.

Luo, H.L., Jiang, Z.W., Wu, W.C., Song, X.L., Ouyang, L., Xing, Y.S.,Liu, G.Z., Zhang, S.S., Tao, Y.G., 1984. Sinian-Cambrian boundarystratotype section at Meishucun, Jinning, Yunnan, China. Yunnan Peo-ple’s Publishing House.

Luo, H.L., Jiang, Z.W., Tang, L., 1994. Stratotype section for Lower Cam-brian stages in China. Yunnan Science and Technology Press, Kunming.

Missarzhevsky, V.V., Mambetov, A.J., 1981. Stratigraphy and fauna ofCambrian and Precambrian boundary beds of Maly Karatau. TrudyAkademii Nauka SSSR, Moskow, 1–90.

Powell, C.M., Pisarevsky, S.A., 2002. Late Neoproterozoic assembly of EastGondwana. Geology 30, 3–6.

Qian, Y., 1977. Hyolitha and some problematica from the lower CambrianMeishucun stage in central and S.W. China. Acta Palaeontologica Sinica16, 255–278.

Qian, Y., 1989. Early Cambrian Small Shelly Fossils of China with specialreference to the Precambrian-Cambrian boundary. Nanjing UniversityPublishing House.

Qian,Y., Bengtson, S., 1989. Palaeontology and biostratigraphy of the EarlyCambrian Meishucunian Stage inYunnan Province, South China. Fossilsand Streta 24, 1–156.

Qian, Y., Chen, M., He, T., Zhu, M., Yin, G., Feng, W., Xu, J., Jiang, Z.,Liu, D., Li, G., Ding, L., Mao, Y., Xiao, B., 1999. Taxonomy andBiostratigraphy of Small Shelly Fossils in China. Science Press, Beijing.

Qian, Y., Li, G., Zhu, M., 2001. The Meishucunian Stage and its SmallShelly Fossil Sequence in China. Acta Palaeontologica Sinica 40(Supp.), 54–62.

Qian,Y., Zhang, S., 1983. Small Shelly Fossils from the Xihaoping Memberof the Tongying Formation in Fangxian County of Hubei Province andtheir stratigraphical significance. Acta Palaeontologica Sinica 22, 82–94.

Steiner, M., 2001. Die fazielle Entwicklung und Fossilverbreitung auf derYangtze Plattform (Südchina) im Neoproterozoikum / frühesten Kam-brium. Freiberger Forschungshefte C492, 1–26.

Steiner, M., Li, G., Qian, Y., Zhu, M., Erdtmann, B.-D., 2003. A LowerCambrian Small Shelly Faunas from Zhejiang (China) and their bios-tratigraphical implications. Progress in Natural Science 13, 852–860.

Steiner, M., Zhu, M., Weber, B., Geyer, G., 2001a. The Lower Cambrian ofEasternYunnan: Trilobite-based biostratigraphy and related faunas. ActaPalaeontologica Sinica 40 (Supp.), 63–79.

Steiner, M., Wallis, E., Erdtmann, B.-D., Zhao, Y., Yang, R., 2001b.Submarine-hydrothermal exhalative ore layers in black shales fromSouth China and associated fossils – insights into a Lower Cambrianfacies and bio-evolution. Palaeogeography, Palaeoclimatology, Palaeo-ecology 169, 165–191.

Xie, Y., 1990. The conodont-like fossils of Early Cambrian in Zhenba,Shanxi. Journal of Chengdu College of Geology 17, 16–22.

Xing, Y., Yue, Z., 1984. The Sinian – Cambrian boundary in southwesternpart of Shaanxi. In: Xing, Y., Ding, Q., Luo, H., He, T., Wang, Y. (Eds.),The Sinian – Cambrian Boundary of China. Geological PublishingHouse, Beijing, Bulletin of the Institute of Geology, Chinese Academyof Geological Sciences, Special Issue, pp. 111–125.

Xing, Y., Ding, Q., Luo, H., He, T., Wang, T., 1984. The Sinian – CambrianBoundary of China. Geological Publishing House, Beijings Bulletin ofthe Institute of Geology, Chinese Academy of Geological Sciences,Special Issue, 1–262.

Yang, X., He, T., 1984. New Small Shelly Fossils from Lower CambrianMeishucun Stage of Nanjiang area, northern Sichuan. ProfessionalPapers in Stratigraphy and Palaeontology 13, 35–47.

Yang, X., He, Y., Deng, S., 1983. On the Sinian-Cambrian boundary and thesmall shelly fossil assemblages in Nanjiang area, Sichuan. Bulletin of theChengdu Institut of Geology and Mineral Resources Chinese Academyof Geological Sciences 4, 91–110.

Yin, J., He, T., Li, S., Chai, X., Wen, C., Yuan, H., Ye, X., 1993. Geologicalevolution and mineralization from the surrounding areas of SichuanBasin and its vicinal regions during the Sinian Subera. Press of ChengduUniversity of Science and Technology.

Yue, Z., 1986. Microstructure and systematic position of Olivooides(Porifera). Bulletin of the Institute of Geology Chinese Academy ofGeological Sciences 14, 147–152.

Yue, Z., Bengtson, S., 1999. Embryonic and post-embryonic development ofthe Early Cambrian cnidarian Olivooides. Lethaia 32, 181–195.

Zhang, X., Pratt, B.R., 1994. Middle Cambrian arthropod embryos withblastomeres. Science 266, 637–639.

Zhu, M., Li, G., Zhang, J., Steiner, M., Qian, Y., Jiang, Z., 2001. EarlyCambrian stratigraphy of EastYunnan, southwestern China: A synthesis.Acta Palaeontologica Sinica 40 (Supp.), 4–39.

275M. Steiner et al. / Geobios 37 (2004) 259–275


Recommended