+ All Categories
Home > Documents > Microelectronic circuits

Microelectronic circuits

Date post: 29-Nov-2023
Category:
Upload: khangminh22
View: 0 times
Download: 0 times
Share this document with a friend
10
Instruments Muitisim software and Cadence PSpice*^’ software. See the back Microelectronic Circuits lllliiiiiiH KNV. 14000650
Transcript

Instruments Muitisim software and Cadence

PSpice* ’̂ software. See the back

Microelectronic Circuits

l lll iiiiiiHKNV. 14000650

rSIXTH EDITION

MicroelectronicCircuitsAdel s. SedraUniversity of Waterloo

Kenneth c. SmithUniversity of Toronto

New York OxfordOXFORD UNIVERSITY PRESS2010

Oxford University Press. Inv.. piiibl!;%hcs v.()t X- lii ihi-r Oxford University's objective of excellence in ivse..ui. h. si. hH)lair.|- ip .m.l educiition.

Oxford New YorkAuckland Cape Town Dar es s.al;uam Hone Knng Karachi Kuala Lumpur Madrid Mclhommie McxicoC'iix Nairobi New Delhi Shanghai Taipei ToimniU)

With offices inArgentina Austria Brazil C h ile Cm 'hRepublic France Greece Guatemala Hungary Italy iapian Poiiand Portugal Singapore South Korea Switzerland Thailianid Turks V Ukraine Vietnam

Copyright © 2010.2004. I99J> f M om UoiverMis Press. Inc.; 1991. 1987 Holt. Rinehart.and Winston, in c .. I 982 C B SC o llegc Publishing

Published by Oxford Universir\ Pn-'SS, Inc.198 Madison Avenue. New York. .Nisw Yuirk lOtiUS http://www.oup.com

Oxford is a registered irademai'k ol lOxiond L msersiiy Press

All rights reserved. No part of thus puhilic:atii >n may be repnxluccd. stored in a retrieval system, or trainsimimed. in anv form or by any means, electronic, mechanical. photoc.up‘_.inig, reciording.or otherwise, without the prior permission of Oxf(.tfd L’niversity Press.

L ib ra ry of Congress Cataioginie-iiu-Pnjhilicialion Data

Sedra. Adel s.Microelectronic circuits / Adel s. .Seidrai. Kenneth c Smith. —6th ed.

p. cm . —(The Oxford scries in drtciricaJ and .(impuler engineering)ISBN 978-0-19 532303*01- Electronic circuits. 2. lntegraiei.1 circunts I.Snm h Kenneth C arless-II. Title.TK7867.S39 2010 6 2 l,3 8 l5 -d c 2 2

2(K)9042633

Multisim and National Instrurriepts are Ir.ndemarks of National Instruments. The Sedra/Smilh, MirroeU'ctonU \ Cir( uiri. fSixtih Ediitiiun book is a product of O xfoid Un,ive'rsii.y PYe-ss, not Nathmal Instruments Corporation or any of its affiliated companies, aind Ox foird University Press is solely respons.iblie lor t he -Sedra Smith bsHik and its content, Neither Oxford Unfversity Press, the Scdrai/.STtniih biooik nor any of the books and other cxvxJis a.ml services offcTCd by Oxford University Press are official publications of Naricnail liiistrunnenits Corporation or any of its aftiliaiied i-'umipaimes. and the' are not affiliated with, endorsed by or sponsored by National liisiiruiinents 'Cnir- poration or any of its affiliated crsnijnaii les

O rCad and PSpice are trademarks iii’ Cade-nce DcMcn Systems. Inc. The SecỊ^Sm iib ’, xtkrorlevionkw Circiiiix, Sixth Ldiiiioin brwk IS a product of Oxford University Pres', noil Cadence Desicn Systems. Inc., of ầny 'fcf Us affiliated companies, and Oxford Uni'veirsity PYrss is solely responsible for the Sedra.s.mioh iNKik and Its content. Neither Oxftird I'n’iscrsiiy Press, the Sedra Smith bsxik. mor any Olf line books and other goods and services offer«d by Oxford kinivcrsity Press are official publications of Cadence Design Sysitenns In»c. or any of its affiliated companies, and they Uire not affiliated with, endorsed by or sponsored by Cadence Design Systems, line .or ani) of its affiliated companies. 77t«' aulhuir'ĩ KfJuiW. ikf Iri ihitnk Cadence D esÌỊn S\'\lemx. Inc. fo r allan inji Oxford Universirv IPrers'i Imc to dừlrihule O rCad demo sofrxeare M iiih imis h<nik.

C o ver Photo: The device is a fully integrated inple band, dual-arm W iM AX RF1C targeted at broadband wireless access ap)plicatiioms. including fixed and mobile termi.nahs. as well as pico and femto base stations. The multiple frequency bands enable equiiprment no Ine readily adapted to different regionad requ.irerncm.s. white the dual-arm (dual-channel) arrangement allows the use of Miultliple-Impuii/ Multiple-Output (M IM O ) techroi'Ogv. 11 illluscrates the high degree of integration required by the latest wireless standards, Iinctorporaiimg high-quality Phase-Locked Lcsiips, Raaio Frequency Low-Noise Amplifiers, Mixers, and Power Amplifier stages, as well asi progrratm- mable baseband fillers and digital C:ircuiiry for control and calibration. (Photo credit: PM C-Sierra, the premier Internet imirrastrucluire solutions provider. N A S D A Q :P \fC 'S i CincuiLs: .Analog (.Active-loaded Differential Amplifier). Digital (CM O S Inverter)

Printing number: 9 8 7 6

M nied in the United Stales of Ancnc.t on acid-free paper

BRIEF TABLE OF CONTENTS

Preface xxii

PA RT I D EV IC ES AND BASIC CIRCUITS 21 Signals and Amplifiers 42 Operational Amplifiers 523 Semiconductors 1244 Diodes 1645 MOS Field-Effect Transistors (MOSFETs)6 Bipolar Junction Transistors (BJTs) 350

230

PA RT II IN TEGRATED-CIRCUIT AM PLIFIERS 4907 Building Blocks of Integrated-Circuit Amplifiers8 Differential and Multistage Amplifiers 5869 Frequency Response 68610 Feedback 80211 Output Stages and Power Amplifiers 91012 Operational Amplifier Circuits 974

492

PARTIN DIGITAL INTEGRATED CIRCU ITS 105813 CMOS Digital Logic Circuits 106014 Advanced MOS and Bipolar Logic Circuits15 Memory Circuits 1202

1142

PART IV FILTER S AND OSCILLATO RS 125216 Filters and Tuned Amplifiers 125417 Signal Generators and Waveform-Shaping Circuits 1334

AppendixesA VLSI Fabrication Technology A-1 (on DVD)B SPICE Device Models and Design and Simulation Examples Using PSpice® and

Multisim^” B-1 (on DVD)C Two-Port Network Parameters C-1 (on DVD)D Some Useful Network Theorems D-1 (on DVD)E Single-Time-Constant Circuits E-1 (on DVD)F S-Domain Analysis: Poles, Zeros, and Bode Plots F-1 (on DVD)G Bibliography G-1 (on DVD)H Standard Resistance Values and Unit Prefixes H-1 I Answers to Selected Problems M

Index IN-1

v ỉ i ỉ Table of Contents

2.7.2 Frequency Response or ihc I 1 ‘ .\\' Loop Amplifier 99

2.8 Large-Signal Operation of Op AmpN 1022.8.1 Output Voltage Saturation 1022.8.2 Output Current Lim its 1(122.8.3 Slew Rate 1042.8.4 Full-Power Bandwidth 106

Summary 107Problems 108

3 Semiconductors 124Introduction 1253.1 Intrinsic Semiconductors 1253.2 Doped Semiconductors 1263.3 Current Flow in Semiconductors l.'2

3.3.1 Drift Current 1323.3.2 Diffusion Current 13.53.3.3 Relationship Between D and// 138

3.4 The pn Junction with Open-Circuit Terminals (Equilibrium) 1383.4.1 Physical Structure 1.383.4.2 Operation with Open-Circuit

Terminals 1393.5 The Junction with Applied Voltaee 14.5

3.5.1 Qualitative Description of Junction Operation 145

3.5.2 The Current-Voltage Relationship of the Junction 147

3.5.3 Reverse Breakdown l.‘̂ 23.6 Capacitive Effects in the pr/Junction 1.54

3.6.1 Depletion or Junction Capacitance 154

3.6.2 Diffusion Capacitance L''6 Summary 157Problems 159

4 Diodes 164Introduction 1654 .1 The Ideal Diode I66

4 .1.1 Current-Voltage Characteristic 1664 .1.2 A Simple Application; The

Rectifier 1674 .1.3 Another Application; Diode Louie

Gates 1704.2 Terminal Characteristics of .iunciion

Diodes 1734.2.1 The Forward-Bias Reuion r s4.2.2 The Reverse-Bias Region4.2.3 The Breakdown Reuion I 's

4.3 Modeling the Diode Forward Characteristic 1794.3.1 The Exponential Mixlel 1794.3.2 Graphical Analysis Using the

Exponential Model 1804.3.3 Iterative Analysis Using the

Exponential Model 1804.3.4 The Need for Rapid Analysis 1K;|4.3.5 The Constant-Voltaue-Drop

Model 1814.3.6 The Ideal-Diode Model 1834.3.7 The Small-Signal Model 1844.3.8 Use of the Diode Forward Dn'ip in

Voltage Regulation 1874.4 Operation in the Reverse Breakdown

Region —Zener Diodes 1894.4.1 Specifying and Modeling the Z'-erner

Diode 1904.4.2 Use of the Zener as a Shunt

Regulator 1914.4.3 Temperature Effects 1944.4.4 A Final Remark 194

4.5 Rectifier Circuits 1944.5.1 The Half-Wave Rectifier 1954.5.2 The Full-Wave Rectifier 1974.5.3 The Bridge Rectifier 1994.5.4 The Rectifier with a Filter

Capacitor—The Peak Reclitiic l-lf-'4.5.5 Precision Half-Wave Rectilie-r - Tifie-

Super Diode 2064.6 Limiting and Clampinc Circifiis 20!7

4.6.1 Limiter Circuits 2074.6.2 The Clamped Capacitor or D ir

Restorer 2104.6.3 The Voltage Doubler 212

4.7 Special Diode Types 2134.7.1 The Schottky-Barricr Diode

(SB D ) 2134.7.2 Varactors 2144.7.3 Photodiodes 2144.7.4 Light-Emitting Diodes (LED>s)i 2214

Summary 215Problems 216

5 MOS Field-Effect Transistors (MOSFETs) 230

Introduction 2315.1 Device Structure and Physical

Operation 232

Table of Contents ix

5.1.1 Device Structure 2325.1.2 Operation with Zero Gate

Voltage 2345.1.3 Creating aChannel forCurrent

Flow 2345.1.4 Applying a Small 7/,„ 2365.1.5 Operation as Vps is Increased 2395.1.6 Operation for a 2425.1.7 The/7-Channel M O S F E T 2445.1.8 Complementary M OS or C M O S 2465.1.9 Operating the M OS Transistor in the

Subthreshold Region 2465.2 Current-Voltage Characteristics 247

5.2.1 Circuit Symbol 2475.2.2 T h e C h a r a c t e r i s t i c s 2485.2.3 The Characteristic 2505.2.4 Finite Output Resistance in

Saturation 2535.2.5 Characteristics of the /7-Channel

M O S F E T 2565.3 M O S F E T Circuits at D C 2585.4 Applying the M O S F E T in Amplifier

Design 2685.4.1 Obtaining a Voltage Amplifier 2685.4.2 The Voltage Transfer Characteristic

(V T C ) 2685.4.3 Biasing the M O S F E T to Obtain

Linear Amplification 2695.4.4 The Small-Signal Voltage Gain 2705.4.5 Determining the V T C by Graphical

Analysis 2745.4.6 Locating the Bias Point Q 275

5.5 Small-Signal Operation and Models 276 5 .5 .Ỉ The D C Bias Point 2765.5.2 The Signal Current in the Drain

Terminal 2775.5.3 Voltage Gain 2795.5.4 Separating the D C Analysis and the

Signal Analysis 2795.5.5 Small-Signal Equivalent Circuit

Models 2805.5.6 The Transconductance 2825.5.7 The T Equivalent Circuit Model 2875.5.8 Summary 290

5.6 Basic M O S F E T Amplifier Configurations 2915.6.1 The Three Basic Configurations 2925.6.2 Characterizing Amplifiers 2935.6.3 The Common-Source

Configuration 2945.6.4 The Common-Source Amplifier with

a Source Resistance 2975.6.5 The Common-Gate Amplifier 3005.6.6 The Common-Drain Amplifier or

Source Follower 3025.6.7 Summary and Comparisons 305

5.7 Biasing in M OS Amplifier Circuits 3065.7.1 Biasing by Fixing F(-s 3075.7.2 Biasing by Fixing V(. and Connecting

a Resistance in the Source 3085.7.3 Biasing Using a Drain-to-Gate

Feedback Resistance 3115.7.4 Biasing Using a Constant-Current

Source 3125.7.5 A Final Remark 314

5.8 Discrete-Circuit M OS Amplifiers 3145.8.1 The Basic Structure 3145.8.2 The Common-Source (CS)

Amplifier 3165.8.3 The Common-Source Amplifier with

a Source Resistance 3185.8.4 The Common-Gate Amplifier 3185.8.5 The Source Follower 3215.8.6 The Amplifier Bandwidth 322

5.9 The Body Effect and Other Topics 3235.9.1 The Role of the Substrate—The

Body Effect 3235.9.2 Modeling the Body Effect 3245.9.3 Temperature Effects 3255.9.4 Breakdown and Input Protection 3255.9.5 Velocity Saturation 3265.9.6 The Depletion-Type M O S F E T 326

Summary 328Problems 329

6 Bipolar Junction Transistors (BJTs) 350

Introduction 3516.1 Device Structure and Physical

Operation 3526.1.1 Simplified Structure and Modes of

Operation 3526.1.2 Operation of the npn Transistor in

the Active Mtxle 3536.1.3 Structure of Actual Transistors 3616.1.4 Operation in the Saturation

Mode 362

xii Table of Contents

Summary 666 Problems 667

9 Frequency Response 686Introduction 6879.1 Low-Frequency ResfX)nse of the c s and

C E Amplifiers 6899.1.1 The c s Amplifier 6899.1.2 The C E Amplifier 694

9.2 Internal Capacitive Effects and (he High- Frequency Model of the M O S F F T and the B JT 7019.2.1 The M O S F E T 7019.2.2 The B JT 706

9.3 High-Frequency Response of the c s and C E Amplifiers 7119.3.1 The Common-Source Amplifier 7129.3.2 The Common-Emitter .Amplifier 717

9.4 Useful Tools for the Analysis of the High- Frequency Response of Amplifiers 7219.4.1 The High-Frequency Gain

Function 7219.4.2 Determining the 3-dB Frequency

L 7219.4.3 Using Open-Circuit Tim e c.’onstanls

for the Approximate Determination of/« 72Ậ

9.4.4 M iller’s Theorem 7279.5 A Closer Look at the High-Frequency

Response of the C S and C F An-jplifiers 7319.5.1 The Equivalent Circuit 7319.5.2 Analysis Using M iller’s

Theorem 7329.5.3 Analysis Using Open-Circuii Time

Constants 7359.5.4 Exact Analysis 7379.5.5 Adapting the Formulas for the Ca.se

of the C E Am plifier 7419.5.6 The Situation when R 1̂ is Low 742

9.6 High-Frequency Response of the C G and Cascode Amplifiers 7469.6.1 High-Frequency Response of the CG

Amplifier 7469.6.2 High-Frequency Response of the

M OS Cascode Amplifier 7509.6.3 High-Frequency Response of the

Bipolar Cascode Amplifier9.7 High-Frequency Response of the Si>urcc

and Emitter Followers 756

9.7.1 The Source 1 '9.7.2 The Emitter Fififou er 5“̂

9.8 High-Frequency Response of Differential Amplifiers 7609.8.1 Analysis of the Resistiv ely l.oiaded

M OS Amplifier ■’609.8.2 Analysis of the .Active-Loaded MOS

Amplifier 7659.9 Other Wideband Amplifier

Configurations 7709.9.1 Obtaining Wideband Amplification

by Source and Emitter Degeneration -70

9.9.2 The C D -C S C C -C E and C D -C E Configurations 773

9.9.3 The C C -C B and C D -C G Configurations 777

9.10 High-Frequency Response of Multi stage Amplifiers 7799.10.1 Frequency Response of the Two-

Stage CM O S Op Amp 7809.10.2 Frequency Respon.se of the Bipolar

Op Amp of Section 8 6.2. 7:83Summary 784 Problems 785

10 Feedback 802Introduction 80310.1 The General Feedback Structure 80-410.2 Some Properties of Negative

Feedback 80910.2.1 Gain Desensitivity10.2.2 Bandwidth Fxton.sion 8|010.2.3 Noise Reduction 8!110.2.4 Reduction in Nonlinear

Distortion 81310.3 The Four Basic Feedback Topologies 814

10.3.1 Voltage Amplifiers 81410.3.2 Current Amplifiers 8!610.3.3 Transconductanee Amptifiers 31910.3.4 Transresistance Amplifiers S 2 :10.3.5 .A Concluding Remark 822

10.4 The Feedback Voltage-Amplifier (Seres- Shunt) 82310.4.1 The Ideal Case 82310.4.2 The Practical Case 82510.4.3 Summary 827

10.5 The Feedback Transconductanee- Amplitier (Series-Series) 8.74

Table of Contents x i ỉ í

10.5.1 The Ideal Case 83410.5.2 The Practical Case 83610.5.3 Summary 836

10.6 The Feedback Transresistance-Amplifier (Shunt-Shunt) 84610.6.1 The Ideal Case 84610.6.2 The Practical Case 84810.6.3 Summary 855

10.7 The Feedback Cuưent-Amplifier (Shunt-Series) 85510.7.1 The Ideal Case 85510.7.2 The Practical Case 856

10.8 Summary of the Feedback Analysis Method 863

10.9 Determining the Loop Gain 86310.9.1 An Alternative Approach for

Finding 86510.9.2 Equivalence of Circuits from a

Feedback-Loop Point of View 86610.10 The Stability Problem 868

10.10.1 The Transfer Function of the Feedback Amplifier 868

10.10.2 The Nyquisl Plot 86910.11 Effect of Feedback on the Amplifier

Poles 87010.11.1 Stability and Pole Location 87110.11.2 Poles of the Feedback

Amplifier 87210.11.3 Amplifier with a Single-Pole

Response 872io .n .4 Amplifier with a Two-Pole

Response 87310.11.5 Amplifier with Three or More

Poles 87710.12 Stability Study Using Bode Plots 879

10.12.1 Gain and Phase Margins 87910.12.2 Effect of Phase Margin on

Closed-Loop Response 88010.12.3 An Alternative Approach for

Investigating Stability 88110.13 Frequency Compensation 884

10.13.1 Theory 88410.13.2 Implementation 88510.13.3 M iller Compensation and Pole

Splitting 886Summary 890 Problems 890

11 Output Stages and Power Amplifiers 910Introduction 91111.1 Classification of Output Stages 91211.2 C lass A Output Stage 913

11.2.1 Transfer Characteristic 91311.2.2 Signal Waveforms 91511.2.3 Power Dissipation 91511.2.4 Power Conversion Efficiency 917

11.3 C lass B Output Stage 91811.3.1 Circuit Operation 91811.3.2 Transfer Characteristic 91911.3.3 Power-Conversion Efficiency 92011.3.4 Power Dissipation 92111.3.5 Reducing Crossover

Distortion 92311.3.6 Single-Supply Operation 924

11.4 C lass A B Output Stage 92411.4.1 Circuit Operation 92411.4.2 Output Resistance 926

11.5 Biasing the C lass A B Circuit 92911.5.1 Biasing Using Diodes 92911.5.2 Biasing Using the

Multiplier 93111.6 C M O S C lass A B Output Stages 933

11.6.1 The C lassical Configuration 93311.6.2 An Alternative C ircuit Utilizing

Common-Source Transistors 93611.7 Power BJTs 943

11.7.1 Junction Temperature 94411.7.2 Thermal Resistance 94411.7.3 Power Dissipation versus

Temperature 94411.7.4 Transistor Case and Heal Sink 94611.7.5 The B JT Safe Operating Area 94911.7.6 Parameter Values of Power

Transistors 95011.8 Variations on the C lass A B

Configuration 95011.8.1 Use of Input Emitter

Followers 95111.8.2 Use of Compound Devices 95211.8.3 Short-Circuit Protection 95411.8.4 Thermal Shutdown 955

11.9 IC Power Amplifiers 95511.9.1 A Fixed-Gain 1C Power

Amplifier 95611.9.2 Power Op Amps 96011.9.3 The Bridge Amplifier 960

x iv Table of Contents

11.10 M OS Power TransistO!' 1̂6::11.10.1 Structure of Lhc Po' v̂er

M O S F E T11.10.2 Characteristics of Power

M O SF ET s 96311.10.3 Temperature Eĩffect;s 9e411.10.4 Comparison wiiih BJTs 96511.10.5 A C la s s A B Omtpiut Stage

Utilizing PoweT M O SFETs 965Summary 967 Problems 968

12 Operational Amplifier Circuits 974

Introduction 97512.1 The Two Stage C M O S O p Amp 976

12.1.1 The Circuit 97712.1.2 Input Common-Miode Range and

Output Swing 9’7712.1.3 Voltage Gain 97812.1.4 Common-Mode R.ejiecition Ratio

(C M RR ) 98112.1.5 Frequency Resp'orise ‘98112.1.6 Slew Rate 98412.1.7 Power-Supply Rejiection Ratio

(PSRR) 98612.1.8 Design TradeijtTs 9W7

12.2 The Folded Cascode CNvlOS Op Amp 99112.2.1 The C ircuit 99112.2.2 Input Common-M<oele Range and

Output Swing 993?12.2.3 Voltage G ain 99i412.2.4 Frequency RespK)iiisc 99612.2.5 Slew Rate 99"12.2.6 Increasing the Inpiui C>onnmon-

Mode Range: Riail-tO'lRail Input Operation 999

12.2.7 Increasing the ()>ut:puji Voltage Range: The Widie-Swimg Current Mirror 1000

12.3 The 741 Op-Amp Cireuiit 1(00212.3.1 Bias Circuit KH)1212.3.2 Short-Circuit Pnottficriiom

Circuitry 100412.3.3 The Input Stage 000412.3.4 The Second Stace 1'00412.3.5 The Output Staine ICK)512.3.6 Device Parameters; 11005

12.4 D C Analysis of the 741 11O016

12 4 ,] Ref'.rrcnvi Bia^ Current Hr( ■12 4.2 Input-Stage Bias 1(107 12 4 3 Input Bias and Offset

Currents 101012 4.4 Input Offset Voltage 1010 12 4 5 Input Common-Msxle Range 1010 12 4.6 Second-Stage Bias 1011 12 4.7 Output-Stage Bias 1011 12 4.8 Summary 1012

12.5 Small-Signal Analysis of the 74! 101 312.5.1 The Input Stage 101312.5.2 The Second Stage 101912.5.3 The Output Stage 1022

12.6 Gam . Frequency Response, and Slew Rate of the ''41 102612.6.1 Small-Signal Gam 1026 12 6 2 Frequency Response 102712.6.3 A Simplified Mixlel 102812.6 4 Slew Rate 102912 6,5 Relalioniship Between/ and

5'/? 103012.7 Mixlern Techniques for the Design of BJT

Op Amps HAl12 7.1 Special PerfVirmance

Requirements' 1031 12 7.2 Bias Design 103"̂12 7.3 Design of Input Stage ti' Ob'ta in

Rad-io-Rai! F,, I, 1035 12 7 4 Common-.Mode Feedback t i I

Control the iX - Voltage ai theO a p m u f I t e In p u t SHỊỈỄ tf.B l

12 7 5 Output-Stage Design for Near Rail-to-Rai! Output Swing 1045

Suirimary K'»50 Pnhiem s 1051

lĩaAầll DIGITAL INTEGRATED ________ CIRCUITS 1058__________

13 CIVIOS Digital Logic Circuits 1060Intrcxluction 106113.1 D ig iu l Logic Inverters 1062

13.1.1 Function of the Inverter 10i6213.1.2 The Voltaue Transfer

Characteristic (V T C ) 106213.1.3 Noise Margins 106413.1.4 The Ideal V T C Ht6613 1,3 I n\ ertcr Impiemeniation 11 )6t6 13.1.(6 Power Dissipation 1078


Recommended