+ All Categories
Home > Documents > Nuclear Data Sheets for A = 222

Nuclear Data Sheets for A = 222

Date post: 01-Mar-2023
Category:
Upload: independent
View: 0 times
Download: 0 times
Share this document with a friend
28
271 Y. A. AKOVALI Oak Ridge National Laboratory Oak Ridge, Tennessee 37831–6371, USA (Received September 5, 1995; Revised January 16, 1996) Abstract: The available nuclear structure information for all nuclei with mass number A=222 is presented. Various decay and reaction data are evaluated and compared. Adopted data, levels, spin, parity, and configuration assignments are given. Cutoff Date: All data received prior to September 1995 have been considered in adopting the properties given in this evaluation. General Policies and Organization of Material: See the January issue of Nuclear Data Sheets. * Research sponsored by the Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corporation for the U.S. Department of Energy under contract DE–AC05–96OR22464 Nuclear Data Sheets 77, 271 (1996) Article No. 0003 0090–3752/96 $12.00 Copyright 1996 by Academic Press, Inc. All rights of reproduction in any form reserved. Nuclear Data Sheets for A = 222 *
Transcript

2 7 1

Y. A. AKOVALIOak Ridge National Laboratory

Oak Ridge, Tennessee 37831–6371, USA

(Received September 5, 1995; Revised January 16, 1996)

A b s t r a c t : T h e a v a i l a b l e n u c l e a r s t r u c t u r e i n f o r m a t i o n f o r a l l n u c l e i w i t h m a s s n u m b e r A = 2 2 2 i s p r e s e n t e d .

V a r i o u s d e c a y a n d r e a c t i o n d a t a a r e e v a l u a t e d a n d c o m p a r e d . A d o p t e d d a t a , l e v e l s , s p i n , p a r i t y , a n d

configuration assignments are given.

Cutoff Date: Al l data received prior to September 1995 have been considered in adopting the propert ies g iven in

this evaluation.

General Policies and Organization of Material: See the January issue of Nuclear Data Sheets.

* R e s e a r c h s p o n s o r e d b y t h e O a k R i d g e N a t i o n a l L a b o r a t o r y , m a n a g e d b y L o c k h e e d M a r t i n E n e r g y R e s e a r c h

Corporation for the U.S. Department of Energy under contract DE–AC05–96OR22464

Nuclear Data Sheets 77, 271 (1996)Article No. 0003

0090–3752/96 $12.00

Copyright 1996 by Academic Press, Inc.

All r ights of reproduction in any form reserved.

Nuclear Data Sheets for A = 222*

2 7 2

NUCLEAR DATA SHEETS

Index for A = 222

Nuclide Data Type Page

Skeleton Scheme for A=222 273222At Adopted Levels 274222Rn Adopted Levels, Gammas 275

226Ra α Decay 276222Fr Adopted Levels 278

226Ac α Decay 278222Ra Adopted Levels, Gammas 279

222Fr β– Decay 281226Th α Decay 285

222Ac Adopted Levels 287226Pa α Decay 287

222Th Adopted Levels, Gammas 288226U α Decay 290

(HI,xnγ ) 291222Pa Adopted Levels 293

226Np α Decay 293222U Adopted Levels 294

2 7 3

NUCLEAR DATA SHEETS

Skeleton Scheme for A=222

10

0%

0.0

54

s2

2 82 5

At 1

37

Q–

≈4

29

0

10

0%

0+

0.0

3.8

23

5 d

S(n

)6

19

0S

Y

22 8

6 8R

a1

38

=4

87

0.6

32

5

10

0%

0+

0.0

16

00

y

22 8

2 6R

n1

36

Q–=

25

21

=5

59

0.3

3

10

0%

2–

0.0

14

.2 m

in

S(n

)5

00

02

2S

(p)

54

30

SY

22 8

6 9A

c 13

7

=5

53

62

1

10

–3%

2

(1)

0.0

29

.37

h

22 8

2 7F

r 13

5

Q–=

20

32

21

10

0%

0+

0.0

38

.0 s

S(p

)6

24

98

S(n

)6

72

08

22 9

6 0T

h1

36

=6

45

1.5

10

10

0%

0+

0.0

30

.57

min

22 8

2 8R

a1

34

=6

68

14

99

% 1

1%

11–

0.0

5.0

s0.0

+x

S(p

)3

64

72

2

S(n

)5

98

05

0

22 9

6 1P

a1

35

=6

98

71

0

74

% 5

0.0

1.8

min

22 8

2 9A

c 13

3

Q+

=2

29

02

1

=7

12

92

0

10

0%

0+

0.0

2.8

ms

S(p

)4

61

05

0

S(n

)7

80

81

6

22 9

6 2U

13

4

=7

70

71

510

0%

0+

0.0

20

0 m

s

22 9

2 0T

h1

32

Q+

=5

91

24

=8

12

96

10

0%

0.0

2.9

ms

S(p

)2

17

07

0

S(n

)6

39

0S

Y

22 9

6 3N

p1

33

=8

20

05

010

0%

0.0

31

ms

22 9

2 1P

a1

31

Q+

=4

76

07

0

=8

80

09

0

10

0%

0+

0.0

1.0

µs

S(p

)3

37

0S

Y

S(n

)8

33

0S

Y

22 9

2 2U

13

0

Q+

=2

23

0S

Y

=9

50

0S

Y

Gr

ou

nd

–Sta

te a

nd

Iso

me

ric

–Le

ve

l P

ro

pe

rti

es

Nu

clid

eL

ev

el

T1

/2D

eca

y M

od

es

22

2A

t0

.05

4 s

10

–=

10

02

22R

n0

.00

+3

.82

35

d 3

=1

00

22

2F

r0

.02

–1

4.2

min

3%

β–=

10

02

22R

a0

.00

+3

8.0

s 5

=1

00

; %

14C

=3

.0×

10

–8 1

02

22A

c0

.01

–5

.0 s

5%

α=

99

1;

%ε+

+=

1 1

0.0

+x

63

s 3

≥8

8;

%IT

≤1

0;

0.7

≤%

ε+%

β+

≤2

22

2T

h0

.00

+2

.8 m

s 3

=1

00

22

2P

a0

.02

.9 m

s +

6–

4%

α=

10

02

22U

0.0

0+

1.0

µs

+1

0–

4%

α=

10

02

26R

a0

.00

+1

60

0 y

7%

α=

10

02

26A

c0

.0(1

)2

9.3

7 h

12

=6

×1

0–

3 2

; ..

.2

26T

h0

.00

+3

0.5

7 m

in 1

0%

α=

10

02

26P

a0

.01

.8 m

in 2

=7

4 5

; ..

.2

26U

0.0

0+

20

0 m

s 5

0%

α=

10

02

26N

p0

.03

1 m

s 8

=1

00

2 7 4

228

25At137

228

25At137NUCLEAR DATA SHEETS

Adopted Levels

Q(β–)≈4290; Q(α )≈4900.

The Q(β–) and Q(α ) values are extrapolated by the evaluator from the Q values for the neighboring nuclei plotted by

93Au05.

The nucleus was produced by 89Bu09 in 232Th(600–MeV p) by spallation with a negative ion source where chemically

pure beams of halogen elements were produced; the products were mass separated. The measured half–lives provided

the information for the definite nuclear assignment of the products.

The calculations of 73Ta30 by using the β–gross theory yielded T1/2≈100 s for the β decay half–li fe of 222At; the

authors of 84Kl06 calculated this half–li fe as 21.5 s by using a microscopic theory.

222At Levels

E(level) T1/2 Comments

0 . 0 5 4 s 1 0 %β–=100.

Only β– decay was observed.

T1/2: measured by 89Bu09.

2 7 5

228

26Rn136–1 22

826Rn136–1NUCLEAR DATA SHEETS

Adopted Levels, Gammas

Q(β–)=25 21 ; S(n)=6190 SY ; Q(α )=5590.3 3 93Au05.

Potential energy and equilibrium deformations were calculated by 94Li05, 88So08, 84Na22, 83Ro14, 82Le19, 81Gy03. The

nuclear binding energies were calculated and incipiency of deformation in this region is discussed in 86Ch23.

For calculations of static quadrupole and hexadecapole moments, see 83Ro14.

See 89De11 for discussions on octupole deformation and E1 transitions.

For calculated of single–partical states and dipole moments as a function of octupole deformation, and for

calculated B(E1)/B(E2) at the equilibrium octupole deformation, see 87Ro08.

Higher order of deformations were considered by 95De13; the level energies of the 2+, 4+ states in the g.s. band and

the 1–,3– states in the octupole–vibrational band were calculated. See 95De13 for calculations, discussions and

comparison with experiments.

222Rn Levels

E(level)† Jπ T1/2 Comments

0 . 0 ‡ 0 + 3 . 8 2 3 5 d 3 %α=100.

%β–<1×10–4 for Eβ–=40 for log f1ut>8.5.

For calculations of partial half–li fe for 14C decay, see 86De32, 86Ir01, 86Pi11.

T1/2: from 72Bu33. Other measurements: 3.825 d 5 (51To25), 3.8229 d 17 (56Ma64), 3.825 d 4

(56Ro31), 3.83 d 3 (58Sh69).

1 8 6 . 2 1 1 ‡ 1 3 2 + 0 . 3 2 n s 2 µ=+0.92 14 (89Ra17).

Gyromagnetic ratio g=0.45 7 by αγ (θ ,H) (70Or02).

T1/2: by (α ) (γ ) (t) (60Be25). Other measurement: 0.31 ns (61Fo08).

Jπ : 186γ to g.s. is E2.

4 4 8 . 3 7 1 2 4 + Jπ : level decays only to the 2+ state. The (α ) (262γ ) (θ ) data of 89Po03 rule out J of 0, 1, 2

and 3. Jπ≠4– by requiring parity conservation for the α transition from the 0+ parent.

6 0 0 . 6 6 § 5 1 – Jπ : γ to g.s. ; the (α ) (601γ ) (θ ) and (α ) (415γ ) (θ ) data rule out 2; Jπ≠1+ from the

parity–conservation requirement in α decays.

6 3 5 . 4 7 § 1 5 3 – Jπ : the γ transition to the 2+ state; the (α ) (449γ ) (θ ) data of 89Po03 rules out 0, 1, 2 and

4; Jπ≠1+, 2– by requiring parity conservation in α decay from its 0+ parent.

† All excited states are from 226Ra α decay.

‡ K=0 g.s. band.

§ K=0 octupole vibrational band.

γ (222Rn)

All γ properties are from 226Ra α decay.

E(level) Eγ Iγ† Mult. α Comments

1 8 6 . 2 1 1 1 8 6 . 2 1 1 1 3 E2 0 . 6 9 2 B(E2)(W.u.)=58 4 .

4 4 8 . 3 7 2 6 2 . 2 7 5

6 0 0 . 6 6 4 1 4 . 6 0 5 6 0

6 0 0 . 6 6 5 1 0 0

6 3 5 . 4 7 4 4 9 . 3 7 1 0

† Relative photon intensity deexciting the level .

0+ 0.0

2+ 186.211

(A) K=0 g.s. band.

(A)0+

(A)2+

1– 600.66

3– 635.47

(B) K=0 octupole

vibrational band.

228

26Rn136

2 7 6

228

26Rn136–2 22

826Rn136–2NUCLEAR DATA SHEETS

226Ra αααα Decay

Eα (g.s. )=4784.34 25 gives Q(α ) (226Ra)=4870.54 25 ; from their mass adjustment, the authors of 93Au05 recommend

Q(α ) (226Ra)=4870.63 25 ; the input value is l isted as Q(α )=4870.70 25 .

α γ ( θ ) : 8 9 P o 0 3

E γ E ( l e v e l ) d e d u c e d J π r e j e c t e d s p i n s

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

2 6 2 4 4 8 4 + 0 , 1 , 2 , 3

4 1 4 6 0 1 1 – 2 , 3

6 0 1 6 0 1 1 – 2 , 3

4 4 9 6 3 5 3 – 0 , 1 , 2 , 4

o t h e r α γ ( θ ) me a s u r eme n t s : 5 4R o 0 6 , 5 4Mi 5 3 .

( α ) ( α ) ( θ ) :

( 2 2 6Ra α ) ( 2 2 2Rn α ) ( θ ) : i s o t r o p i c c o r r e l a t i o n wa s

o b s e r v e d b y 6 8B i 0 8 .

α γ ( θ , H ) : s e e 7 0O r 0 2 , 7 4O r 0 2 .

α γ ( t ) : T1 / 2 ( 1 8 6 l e v e l ) = 0 . 3 2 n s 2 ( 6 0B e 2 5 ) .

Bremsstrahlung emission accompanying the 226Ra α decay was observed by 94Da26.

222Rn Levels

E(level) Jπ T1/2

0 . 0 0 +

1 8 6 . 2 1 1 1 3 2 + 0 . 3 2 n s 2

4 4 8 . 3 7 1 2 4 +

6 0 0 . 6 6 5 1 –

6 3 5 . 4 7 1 5 3 –

α radiations

For theoretical calculations of α–decay widths, see 92De44, 87Be43, 86Ch36, 77Ba70.

EᇠE(level) Iᆧ HF# Comments

4 1 6 0 2 6 3 5 . 4 7 0 . 0 0 0 2 7 5 8 . 6 1 6

4 1 9 1 2 6 0 0 . 6 6 0 . 0 0 1 0 1 4 . 4 5 Eα : 4194.4 3 from level energy and Eα (to g.s. ) .

4 3 4 0 1 4 4 8 . 3 7 0 . 0 0 6 5 3 1 0 . 4 5

4 6 0 1 1 1 8 6 . 2 1 1 5 . 5 5 5 0 . 9 6 1 Eα : the original energy has been increased by 3 keV, as recommended by

91Ry01, because of a change in the calibration energy. Eα=4601.7 2 was

recommended by 83Co22 and 87El01 from measurements of 58Wa16.

Eα=4601.43 26 from Eα (g.s. )=4784.34 25 and E(level) .

4 7 8 4 . 3 4 2 5 0 . 0 9 4 . 4 5 5 1 . 0 Eα : from 71Gr17. The original energy has been decreased by 0.16 keV, as

recommended by 91Ry01.

† For α intensity per 100 decays, multiply by 1.0.

‡ From 63Ba62 except where otherwise noted. Other measurements: 58Wa16, 53Ba29, 49Ro08.

§ α intensity per 100 α decays; Iα ' s are from 63Ba62. The uncertainties on 4784.34α and 4601α are given as recommended by 91Ry01.

# HF(4784α )=1.0 gives r0(222Rn)=1.5397 3 .

γ (222Rn)

γγ : 71Lo19.

X r a y s ( r a d o n ) :

I ( Kα x r a y ) = 0 . 4 1 8% 2 1 , I ( Kβ x r a y ) = 0 . 1 4 5% 9 ( 8 3 S c 1 3 ) ;

I ( L x r a y ) / I ( 1 8 6 γ ) = 0 . 2 3 7 1 2 , I ( K x r a y ) / I ( 1 8 6 γ ) = 0 . 1 9 5 7 ( 7 3De 5 0 ) .

E㇠E(level) Comments

( 3 4 . 8 1 6 ) 6 3 5 . 4 7 Eγ : transition was not observed; its energy is from the level scheme.

Continued on next page (footnotes at end of table)

2 7 7

228

26Rn136–3 22

826Rn136–3NUCLEAR DATA SHEETS

226Ra αααα Decay (continued)

γ (222Rn) (continued)

Eγ‡ E(level) Iγ† Mult. α Comments

1 8 6 . 2 1 1 1 3 1 8 6 . 2 1 1 3 . 5 9 6 E2 0 . 6 9 3 Eγ : from 93Di09 and 77Zo01. Other measured energies: 186.0 1

(69Li10), 185.97 5 (71Lo19), 186.196 12 (74AlZT), 185.8 2

(75Ha31), 186.19 10 (76De48), 186.19 16 (82Ak03). Earlier

measurements: 51Co15, 60St20, 64Ew04.

Iγ : absolute photon intensity per 100 222Ra α decays, as measured by

91Li11. Other absolute measurements: 3.50 5 (83Ol01), 3.51 6

(83Sc13).

Iγ=3.28 3 from intensity balance at the 186–keV level .

Other values: Iγ (186γ ) /Iγ (609γ of 214Bi in equilibrium)= 0.0858 5

(93Di09), 0.0823 3 (83Bu14), 0.092 10 (82Ak03), 0.0907 14

(82Fa10), 0.076 4 (81We18), 0.0900 11 (77Zo01), 0.087 15 (75Ha31),

0.0820 12 (70Mo28), 0.079 8 (64Ew04). Iγ (609γ of 214Bi in

equilibrium)=46.1% 5 is adopted in the Nuclear Data Sheets for

A=214. Other Iγ measurements: 76De48, 74AlZT, 69Li10, 69Wa27,

69Gr33, 67Ma51.

Mult. : from ce ratios measured by 63Go21, 55Ju14, 54Ro05. 73De50

α (K)=0.200 9 , α (L)=0.380 20 were deduced by 73De50 from I(K x

ray)/I(186γ ) , I (L x ray)/I(186γ ) .

( 1 8 7 . 1 0 2 0 ) 6 3 5 . 4 7 Eγ : transition was not observed; its energy is from the level scheme.

I(γ+ce)(34.8γ )+I(γ+ce)(187.1γ )=0.0008 from the intensity balance at

the 635.47–keV level ; the intensity balance at the 448.37–keV

level yields I(γ+ce)(187.1γ )=0.0061 6–0.0065 3 . See the section on 222Rn adopted levels, gammas for the references where E1

transition probabilit ies and E1/E2 ratios were calculated and

discussed in terms of octupole deformations.

2 6 2 . 2 7 5 4 4 8 . 3 7 0 . 0 0 5 0 5 [ E2 ] 0 . 2 1 2 Iγ : from Iγ (262γ ) /Iγ (186γ )=0.0014 2 (93Di09, 71Lo19). Other measured

ratios: 0.0029 (60St20), 0.0025 (56Ha71). I(262 γ )=0.0054 3 from

I(4340α )=0.0065 3 and α (262γ )=0.212.

4 1 4 . 6 0 5 6 0 0 . 6 6 0 . 0 0 0 3 0 [ E1 ] 0 . 0 1 6 4 Iγ : from Iγ (414.6γ ) /Iγ (186γ )=0.000086 (71Lo19). Other measured

ratio: 0.00021 (60St20).

4 4 9 . 3 7 1 0 6 3 5 . 4 7 0 . 0 0 0 1 9 [ E1 ] 0 . 0 1 3 8 Iγ : from Iγ (449γ ) /Iγ (186γ )=5.5×10–5 (71Lo19). Other measured ratio:

9×10–5 (60St20).

6 0 0 . 6 6 5 6 0 0 . 6 6 0 . 0 0 0 4 9 [ E1 ] 0 . 0 0 7 6 6 Iγ : from Iγ (600γ ) /Iγ (186γ )=0.00014 (71Lo19). Other measured ratio:

0.00033 (60St20).

† For absolute intensity per 100 decays, multiply by 1.0.

‡ From 71Lo19 except where noted otherwise. Other measurements: 60St20, 56Ha71.

0+ 0.0 1600 y

%α=100228

68Ra138

Qα=4870.6325

0+ 0.0 1.094.454784.34

2+ 186.211 0.32 ns 0.965.554601

4+ 448.37 10.40.00654340

1– 600.66 4.40.00104191

3– 635.47 8.60.000274160

HFIαEα

Decay Scheme

Intensities: I(γ+ce) per 100 decays by

this branch

186.

211

E2

6.0

8262.

27 [

E2]

0.

0061

414.

60 [

E1]

0.

0003

0

600.

66 [

E1]

0.

0004

9

34.8

187.

10

449.

37 [

E1]

0.

0001

9

228

26Rn136

2 7 8

228

27Fr135

228

27Fr135NUCLEAR DATA SHEETS

Adopted Levels

Q(β–)=2032 21 ; S(n)=5000 22 ; S(p)=5430 SY ; Q(α )=5829 24 93Au05.

222Fr Levels

E(level) Jπ T1/2 Comments

0 . 0 2 – 1 4 . 2 m i n 3 %β–=100.

µ=0.63 1 ; Q=0.51 4 (85Co24,86Ek02).

Jπ : spin measured (atomic–beam magnetic resonance, 78Ek02). Log f t values for β– transitions to

0+ and 4+ states give π=–.

Isomeric shift=–26262 MHZ 3 (85Co24).

See 87Co19 for deduced change in the charge radius relative to 212Fr from their measured isomeric

shift , and for calculated deformation parameter from the electric quadrupole moment.

T1/2: from 73AfZV (14.2 min 3 ) , 76VaZC (14.2 min). Other measurement: 50Hy20 (14.8 min).

Branching: only β– decay was observed. See 85Po11 for calculation of probability for 14C emission.

%α<1 was estimated by 50Hy20 from α systematics. No α decay has been observed.

4 0 2 2 Level populated by 226Ac α decay.

E(level) : from Eα=5399 5 , measured in 226Ac α decay and Q(α ) (226Ac)=5536 21 (93Au05).

226Ac αααα Decay

222Fr Levels

E(level) Jπ T1/2

0 . 0 2 – 1 4 . 2 m i n 3

4 0 2 2

α radiations

Eα E(level) Iα† HF Comments

5 3 9 9 5 4 0 1 0 0 5 1 2 0 Eα : measurement by 75VaZD. Other measurement: 64Mc21.

Iα : only one α group was observed.

HF: r0(222Fr)=1.538 6 , T1/2(226Ac)=29.37 h 12 , measured by 87Mi10 and Q(α ) (226Ac)=5536 21

from 93Au05 are used in calculations.

† For α intensity per 100 decays, multiply by 6×10–5 2 .

2 7 9

228

28Ra134–1 22

828Ra134–1NUCLEAR DATA SHEETS

Adopted Levels, Gammas

Q(β–)=–2290 21 ; S(n)=6720 8 ; S(p)=6249 8 ; Q(α )=6681 4 93Au05.

For calculations of level energies by various methods, some including deformations of order higher than β (2) , and

for discussions on level structure see, for example, 95De13, 87En05, 86Da03, 85Na07, 83Pi04, 83Ia01, 80Sh07 and

70Ne08.

Equilibrium deformations and deformation energies were calculated by 94Cw01, 91Sk01, 88So08, 86Bo19, 86Le05, 84Na22,

83Ro14, 82Le19, 82Du16 and 81Gy03 by various theoretical approaches.

Exotic nuclear shapes, including superdeformation, hyperdeformation and octupole shapes, were calculated and

discussed by 94Cw01, 92Ch20, 92SkZZ, 89De11, 89Eg02, 88Ba48, 88Ro05, 88So08, 87Na10, 87Ro08, 86Bo19, 86Ch23,

84Na22.

See 86Le05, 89De11, 91Eg01, 91Bu10 for calculations of electric–dipole moment, and for discussions on the strong

octupole effects and octupole deformation, as well as higher order of deformations.

The E1, E3 transition probabilit ies and the 0+, 1– energy splitting were calculated by 88Ro02.

For the calculations of B(E1)/B(E2) transition probabilit ies from the K π=0– band, see for example, 86Le05, 93Yo02.

For calculations of 14C emission probability, partial half–lives and branchings by using various models, see 84Po08,

85Po11, 85Sh01, 86De32, 86Gr20, 86Ir01, 86Ka46, 86La01, 86Pi11, 86Po15, 86Ru11, 87Bl04, 87Gu04, 87Iv01, 87Po08,

87Sh04, 88Ba01, 88Bl11, 88Iv02, 88Sh29, 88Ta25, 89Bu06, 89Ci03, 89Ma21, 89Sh37, 90Ba20, 90Bu09, 90Hu07, 90Ka15,

90Sh01, 91Bu01, 92Gu10, 93Bu05, 93De38, 93Go18, 93Gr15, 93Gu11, 93Ka21, 93Si26, 94Bu07, 94De38 and 95Si05.

222Ra Levels

Cross Reference (XREF) Flags

A 226Th α Decay

B 222Fr β– Decay

E(level) Jπ XREF T1/2 Comments

0 . 0 † 0 + AB 3 8 . 0 s 5 %α=100; %14C=3.0×10–8 10 .

T1/2: from measured values of 38.0 s (48St42), 37.5 s 5 (56As38), 39 s 4

(58t025). Other measurement: 82Bo04. 14C branching from measured values of I( 14C)/I(α )=3.7×10–10 6 (85Pr01),

3.1×10–10 10 (85Ho21), and 2.3×10–10 3 (91Hu02). 91Hu02 searched also for any 14C branching to the 3– state in 208Pb at 2614 keV and deduced an upper l imit

of 2×10–10% for its branch.

The isotope shift relative to 214Ra was measured by 88Ah02; the change in the

nuclear mean square charge radius and the change in the quadrupole

deformation parameter were deduced as ∆<r2>=–0.198, and ∆<β2>1/2=0.191. See

also 87We03, 85Ne09.

1 1 1 . 1 2 † 2 2 + AB 0 . 5 2 n s 4 Jπ : 111.12γ to 0+ is E2.

T1/2: by (α ) (ce 111γ ) (t) in 226Th α decay.

2 4 2 . 1 1 ‡ 2 1 – AB < 1 . 2 n s Jπ : 242.11γ to 0+ is E1.

T1/2: by (α ) (242γ ) (t) in 226Th α decay.

3 0 1 . 3 9 † 4 4 + AB < 1 . 4 n s Jπ : 190.27γ to 2+ is E2; α hindrance factor.

T1/2: by (α ) (190γ ) (t) in 226Th α decay.

3 1 7 . 2 9 ‡ 5 3 – AB Jπ : 206.17γ to 2+ level is E1; α hindrance factor; rotational band parameter.

The nuclear electric dipole moment was deduced by 92Ru01 as 0.036 6 fm from the

branching ratio for E1, E2 transitions deexciting the level . The electric

quadrupole moment of 6.74 b 28 for both the g.s. and the Kπ=0– band was

assumed.

4 7 3 . 7 6 ‡ 8 ( 5 – ) AB Jπ : γ to 4+ and γ from 3–; no γ to lower spin members of the g.s. band; f it to

K=0 band.

9 1 4 . 0 § 3 ( 0 + ) A Jπ : gammas to 2+, 1– states; no γ to 0+, 3–, 4+; analogy to the 0+, 916–keV

level in 224Ra.

1 0 2 4 . 9 § 2 2 + AB Jπ : gammas to 0+ and 4+ levels.

1 1 7 0 . 9 2 ( 3 – , 4 + ) B Jπ : γ ' s to 3–, (5–) states; log f t=8.1 3 for β branch from 2– 222Fr.

1 1 7 1 . 6 3 1 + , 1 – , 2 + B Jπ : γ to 0+.

1 2 2 5 . 2 2 1 + , 1 – , 2 + B Jπ : γ to 0+.

1 2 6 5 . 0 3 ( 2 + , 3 ) B Jπ : γ ' s to 2+, 4+; log f t=7.2 for β branch from 2– 222Fr.

1 3 1 0 . 2 3 B

1 3 6 0 . 6 3 B

1 3 7 5 . 7 3 B

1 4 0 2 . 6 2 ( 3 – ) B Jπ : γ ' s to the 1–, 3– states of the K=0 octupole–vibrational band and to the 2+,

4+ states of the g.s. band.

1 4 3 2 . 6 3 1 , 2 , 3 – B Jπ : γ ' s to 1–, 2– states; log f t=7.2 for the β branch from 2– 222Fr.

1 4 3 9 . 9 2 ( 3 – ) B Jπ : γ transitions to 1– and (5–) states.

1 4 9 9 . 5 3 1 – , 2 , 3 – B Jπ : γ transitions to 1–, 3– states.

1 5 5 6 . 1 4 2 + B Jπ : γ transitions to 0+ and 4+ states.

Continued on next page (footnotes at end of table)

2 8 0

228

28Ra134–2 22

828Ra134–2NUCLEAR DATA SHEETS

Adopted Levels, Gammas (continued)

222Ra Levels (continued)

E(level) Jπ XREF Comments

1 6 1 9 . 6 4 B

1 6 4 4 . 9 3 2 + , 3 – B Jπ : γ transitions to 1– and 4+ states.

1 7 5 4 . 4 6 3 – B Jπ : γ transitions to 2+, 4+, (5–) states; log f t=6.3 for the β feeding from 2– 222Fr.

1 8 2 1 . 5 5 1 , 2 , 3 B Jπ : log f t=6.7 for the β branch from 2– 222Fr.

1 8 4 1 . 2 5 1 , 2 , 3 Jπ : log f t=5.8 for the β branch from 2– 222Fr. If Jπ (1645 level)=3–, then Jπ (1841)≠1+.

† K=0 g.s. band.

‡ K=0 octupole vibrational band.

§ K=0 band.

γ (222Ra)

E(level) Eγ† Iγ‡ Mult.§ α Comments

1 1 1 . 1 2 1 1 1 . 1 2 2 1 0 0 E2 6 . 2 6 B(E2)(W.u.)=111 9 .

2 4 2 . 1 1 1 3 1 . 0 0 2 3 2 . 1 1 6 [ E1 ] 0 . 2 5 4 B(E1)(W.u.)>1.5×10–5.

2 4 2 . 1 1 2 1 0 0 5 E1 0 . 0 5 8 0 B(E1)(W.u.)>7.4×10–6.

3 0 1 . 3 9 1 9 0 . 2 7 3 E2 0 . 7 1 6 B(E2)(W.u.)>12.

3 1 7 . 2 9 7 5 . 1 3 2 0 . 0 1 7 4

2 0 6 . 1 7 5 1 0 0 1 0 E1 0 . 0 8 4 7

4 7 3 . 7 6 1 7 2 . 3 7 2

9 1 4 . 0 6 7 1 . 9 3 1 0 0 1 1

8 0 2 . 7 5 2 1 8

1 0 2 4 . 9 7 0 7 . 5 2 1 0 0 5

7 2 3 . 4 4 3 . 4 5

7 8 2 . 8 2 9 8 9

9 1 3 . 7 4 1 7 3

1 0 2 5 . 0 4 6 . 7 1 2

1 1 7 0 . 9 6 9 6 . 9 2 2 8 . 7 5

8 5 3 . 8 2 1 0 0 7

8 6 9 . 6 2 8 1 2 5

1 1 7 1 . 6 9 2 9 . 5 2 1 5 2

1 0 6 0 . 3 2 1 0 0 8

1 1 7 1 . 7 2 5 3 6

1 2 2 5 . 2 9 8 2 . 9 2 9 7 1 9

1 1 1 4 . 3 2 1 0 0 1 9

1 2 2 5 . 2 2 3 8 7

1 2 6 5 . 0 9 6 3 . 6 2 2 6 4

1 1 5 3 . 9 2 1 0 0 1 0

1 3 1 0 . 2 1 0 6 8 . 1 2

1 3 6 0 . 6 1 0 4 3 . 6 2 1 0 0 1 3

1 2 4 9 . 1 2 6 0 1 1

1 3 7 5 . 7 1 1 3 3 . 6 2

1 4 0 2 . 6 2 3 1 . 7 2 1 5 . 2 1 6

3 7 7 . 6 2 2 4 2

1 0 8 5 . 2 2 9 2 1 2

1 1 0 1 . 1 2 1 0 0 1 0

1 1 6 0 . 5 2 1 4 . 4 1 4

1 2 9 1 . 6 2 9 . 6 1 6

1 4 3 2 . 6 1 1 9 0 . 4 3 8 . 5 1 5

1 3 2 1 . 6 2 1 0 0 8

1 4 3 9 . 9 2 6 9 . 0 2 1 3 3

4 1 5 . 0 2 1 1 2

9 6 6 . 2 2 2 3 5

1 1 2 2 . 4 2 4 0 7

1 1 3 8 . 5 2 1 0 0 1 0

1 1 9 8 . 0 2 3 0 5

1 4 9 9 . 5 4 7 4 . 5 3 1 0 0 1 0

1 1 8 2 . 1 3 8 7 1 0

1 2 5 7 . 5 3 3 3 7

1 3 8 8 . 5 3 7 6 1 0

1 5 5 6 . 1 1 2 3 8 . 6 3 1 0 0 1 3

Continued on next page (footnotes at end of table)

2 8 1

228

28Ra134–3 22

828Ra134–3NUCLEAR DATA SHEETS

Adopted Levels, Gammas (continued)

γ (222Ra) (continued)

E(level) Eγ† Iγ‡

1 5 5 6 . 1 1 2 5 4 . 4 4 2 6 3

1 4 4 5 . 2 4 6 9 1 1

1 5 5 6 . 5 4 5 9 1 1

1 6 1 9 . 6 1 3 7 7 . 4 3 1 0 0 1 5

1 5 0 8 . 7 4 2 4 7

1 6 4 4 . 9 6 1 9 . 9 2 3 1 4

E(level) Eγ† Iγ‡

1 6 4 4 . 9 1 3 2 7 . 6 2 1 0 0 9

1 3 4 3 . 3 3 1 0 . 4 1 7

1 4 0 2 . 5 4 2 7 3

1 5 3 4 . 1 4 1 7 3

1 7 5 4 . 4 3 5 1 . 7 2 5 2 1 2

1 2 8 1 . 0 3 3 4 7

E(level) Eγ† Iγ‡

1 7 5 4 . 4 1 4 3 6 . 4 3 1 0 0 7

1 4 5 3 . 4 3 4 5 1 0

1 6 4 3 . 9 3 4 4 1 2

1 8 2 1 . 5 1 5 7 9 . 4 4

1 8 4 1 . 2 1 9 6 . 3 2 1 0 0 1 3

1 5 9 9 . 6 4 1 6 5

† From 226Th α decay and 222Fr β– decay. The uncertainties of γ ' s deexciting the levels above 1 MeV have been increased because

of a poor energy f it to the level scheme; therefore, the E γ values have been rounded off here. See 222Fr β– decay section for

the experimental values l isted by the authors.

‡ Relative photon intensity deexciting each level .

§ From ce work in 226Th α decay. Multipolarities inside the square brackets are from the level scheme.

0+ 0.0

2+ 111.12

4+ 301.39

(A) K=0 g.s.

band.

(A)0+

(A)2+

1– 242.11

(A)4+

3– 317.29

(5–) 473.76

(B) K=0 octupole

vibrational band.

(A)0+

(A)2+

(B)1–

(A)4+

(B)3–

(0+) 914.0

2+ 1024.9

(C) K=0 band.

228

28Ra134

222Fr ββββ– Decay

The 222Fr β– decay scheme is presented as constructed by 92Ru01 based on their β–gated γγ–coincidence measurements.

The decay scheme was built upon the previously known levels which were established up to the 1170–keV level .

222Ra Levels

E(level) Jπ T1/2

0 . 0 0 + 3 8 . 0 s 5

1 1 1 . 1 2 2 2 +

2 4 2 . 1 1 2 1 –

3 0 1 . 3 9 4 4 +

3 1 7 . 2 9 5 3 –

4 7 3 . 7 6 8 ( 5 – )

1 0 2 4 . 9 2 2 +

1 1 7 0 . 9 2 ( 3 – , 4 + )

E(level) Jπ

1 1 7 1 . 6 3 1 + , 1 – , 2 +

1 2 2 5 . 2 2 1 + , 1 – , 2 +

1 2 6 5 . 0 3 ( 2 + , 3 )

1 3 1 0 . 2 3

1 3 6 0 . 6 3

1 3 7 5 . 7 3

1 4 0 2 . 6 2 ( 3 – )

1 4 3 2 . 6 3 1 , 2 , 3 –

E(level) Jπ

1 4 3 9 . 9 2 ( 3 – )

1 4 9 9 . 5 3 1 – , 2 , 3 –

1 5 5 6 . 1 4 2 +

1 6 1 9 . 6 4

1 6 4 4 . 9 3 2 + , 3 –

1 7 5 4 . 4 6 3 –

1 8 2 1 . 5 5 1 , 2 , 3

1 8 4 1 . 2 5 1 , 2 , 3

2 8 2

228

28Ra134–4 22

828Ra134–4NUCLEAR DATA SHEETS

222Fr ββββ– Decay (continued)

β– radiations

Singles β spectrum was measured by 75We23. The spectrum shows a f lat tail of low intensity and extended to much

higher energy than the main portion of the data. After subtraction of this tail (which was assumed due to α

particles from 222Ra), an F–K analysis gives Eβ (max)=1780 20 for the endpoint which does not agree with the Eβ–

(to 111.12 level) .

Eβ– E(level) Iβ–† Log f t

( 1 9 1 2 1 ) 1 8 4 1 . 2 0 . 1 0 6 5 . 8

( 2 1 1 2 1 ) 1 8 2 1 . 5 0 . 0 1 6 4 6 . 7

( 2 7 8 2 1 ) 1 7 5 4 . 4 0 . 1 0 3 1 6 6 . 3

( 3 8 7 2 1 ) 1 6 4 4 . 9 0 . 1 2 6 6 . 7

( 4 1 2 2 1 ) 1 6 1 9 . 6 0 . 0 4 9 8 7 . 2

( 4 7 6 2 1 ) 1 5 5 6 . 1 0 . 0 6 9 1 0 7 . 2

( 5 3 3 2 1 ) 1 4 9 9 . 5 0 . 1 1 7 1 6 7 . 2

( 5 9 2 2 1 ) 1 4 3 9 . 9 0 . 3 4 5 6 . 9

( 5 9 9 2 1 ) 1 4 3 2 . 6 0 . 1 4 7 2 1 7 . 2

( 6 2 9 2 1 ) 1 4 0 2 . 6 0 . 6 5 1 0 6 . 7

( 6 5 6 2 1 ) 1 3 7 5 . 7 0 . 0 3 7 6 8 . 0

( 6 7 1 2 1 ) 1 3 6 0 . 6 0 . 0 5 2 9 7 . 9

Eβ– E(level) Iβ–† Log f t

( 7 2 2 2 1 ) 1 3 1 0 . 2 0 . 0 2 2 5 8 . 3

( 7 6 7 2 1 ) 1 2 6 5 . 0 0 . 3 4 5 7 . 2

( 8 0 7 2 1 ) 1 2 2 5 . 2 0 . 0 8 7 1 5 7 . 9

( 8 6 0 2 1 ) 1 1 7 1 . 6 0 . 7 8 1 1 7 . 1

( 8 6 1 2 1 ) 1 1 7 0 . 9 0 . 0 7 4 8 . 1

( 1 0 0 7 2 1 ) 1 0 2 4 . 9 0 . 8 5 1 2 7 . 3

( 1 7 1 5 2 1 ) 3 1 7 . 2 9 5 4 9 6 . 3

( 1 7 3 1 2 1 ) 3 0 1 . 3 9 0 . 3 7 6 9 . 4 1 u

( 1 7 9 0 2 1 ) 2 4 2 . 1 1 1 . 7 4 7 . 9

( 1 9 2 1 2 1 ) 1 1 1 . 1 2 3 8 1 2 6 . 2

( 2 0 3 2 ‡ 2 1 ) 0 . 0 3 3 ≥ 8 . 5 1 u

† From intensity balance at each level .

‡ Existence of this branch is questionable.

γ (222Ra)

Relative photon intensities were normalized by 92Ru01 to I γ (324.2γ from 222Ra)=2.77 8 per 100 222Ra decays. This

value was measured absolutely by 69Pe17, and it has been adopted by the evaluator. However, 92Ru01 did not provide

their measured Iγ (324γ ) relative to the Iγ ' s given here. From the γ–transition intensities shown on the decay

scheme of 92Ru01, Iγ normalization=0.49 6 ; an assumption of any β feeding to the g.s. to be negligible yields I γ

normalization=0.51 6 ; by requiring that the log f1ut for a β feeding to the g.s. is >8.5, Iβ is calculated to be

<7%. Iβ (g.s. )=3% 3 yields Iγ normalization=0.50 6 .

βγ , βγγ : see 92Ru01.

X r a y s ( Ra ) :

E I ( x r a y ) / I ( 2 0 6 γ )

8 5Go 0 5 8 5Go 0 5 c a l c u l a t e d

– – – – – – – – – – – – – – – – – – – – – – – – –

8 8 . 5 0 . 1 4 3 2 0 0 . 1 1 1 1 6 Kα x r a y

1 0 0 . 0 0 . 0 2 7 5 3 5 0 . 0 3 2 5 Kβ x r a y

Eγ‡ E(level) Iㆧ Mult.# α Comments

x 5 4 . 1 4 2 0 . 0 3 0 5

7 5 . 1 3 2 3 1 7 . 2 9 0 . 0 1 7 4 [ E2 ] 3 7 . 5

1 1 1 . 1 1 1 1 1 1 . 1 2 2 6 . 2 2 6 E2 6 . 2 6

1 3 0 . 9 8 1 2 4 2 . 1 1 1 . 2 5 1 2 ( E1 ) 0 . 2 5 4

1 7 2 . 3 7 2 4 7 3 . 7 6 0 . 1 2 1 [ E1 ] 0 . 1 3 0

1 9 0 . 2 4 2 3 0 1 . 3 9 1 . 1 9 1 E2 0 . 7 1 6

1 9 6 . 3 1 4 1 8 4 1 . 2 0 . 0 8 1 [ D , E2 ] 1 . 3 1 2

2 0 6 . 1 7 5 3 1 7 . 2 9 1 0 0 1 0 E1 0 . 0 8 4 7 Eγ=206.18 2 (92Ru01), 206.10 4 (85Go05); 206.23 5 from 226Th α

decay.

x 2 1 8 . 6 6 4 0 . 1 2 1

x 2 2 1 . 3 6 2 0 . 5 2 5

x 2 2 4 . 1 0 2 0 . 1 9 2

2 3 1 . 6 7 4 1 4 0 2 . 6 0 . 0 7 6 8 [ D , E2 ] 0 . 8 7 α : α (E1)=0.0643, α (M1)=1.53, α (E2)=0.356.

2 4 2 . 1 1 1 2 4 2 . 1 1 3 . 9 4 E1 0 . 0 5 8 0

2 6 8 . 9 9 4 1 4 3 9 . 9 0 . 0 4 0 8 0 . 5 3 4 8 α : α (E1)=0.0454, α (M1)=1.01, α (E2)=0.217.

3 5 1 . 7 5 4 1 7 5 4 . 4 0 . 0 3 7 8 [M1 , E2 ] 0 . 2 9 1 9 α (M1)=0.484, α (E2)=0.0973.

3 7 7 . 6 4 4 1 4 0 2 . 6 0 . 1 2 1 [ E1 ] 0 . 0 2 1 3

4 1 5 . 0 5 4 1 4 3 9 . 9 0 . 0 3 2 6 [ E1 ] 0 . 0 0 0 3 0

x 4 5 5 . 3 7 7 0 . 0 1 8 4

4 7 4 . 4 5 9 1 4 9 9 . 5 0 . 0 7 9 8

6 1 9 . 9 5 4 1 6 4 4 . 9 0 . 0 7 2 8

6 9 6 . 8 8 5 1 1 7 0 . 9 0 . 0 4 6 8

7 0 7 . 5 4 3 1 0 2 4 . 9 0 . 8 9 4 [ E1 ] 0 . 0 0 6 0 2

7 2 3 . 4 5 4 1 0 2 4 . 9 0 . 0 3 0 4 [ E2 ] 0 . 0 1 7 3

Continued on next page (footnotes at end of table)

2 8 3

228

28Ra134–5 22

828Ra134–5NUCLEAR DATA SHEETS

222Fr ββββ– Decay (continued)

γ (222Ra) (continued)

Eγ‡ E(level) Iㆧ Mult.# α

7 8 2 . 7 7 3 1 0 2 4 . 9 0 . 8 7 8 [ E1 ] 0 . 0 0 4 9 9

x 8 3 1 . 5 8 5 0 . 0 3 6 5

x 8 4 6 . 7 2 8 0 . 0 7 0 1 4

8 5 3 . 7 8 8 1 1 7 0 . 9 0 . 1 6 1

8 6 9 . 6 2 1 1 7 0 . 9 0 . 1 3 4

9 1 3 . 6 9 5 1 0 2 4 . 9 0 . 1 5 2

9 2 9 . 4 7 8 1 1 7 1 . 6 0 . 1 4 2

9 6 3 . 6 1 6 1 2 6 5 . 0 0 . 1 4 2

9 6 6 . 2 4 9 1 4 3 9 . 9 0 . 0 7 0 1 4

9 8 2 . 9 0 8 1 2 2 5 . 2 0 . 0 7 2 1 4

1 0 2 5 . 0 2 8 1 0 2 4 . 9 0 . 0 6 0 1 0

1 0 4 3 . 6 0 9 1 3 6 0 . 6 0 . 0 6 5 8

1 0 6 0 . 3 3 5 1 1 7 1 . 6 0 . 9 2 7

1 0 6 8 . 0 8 8 1 3 1 0 . 2 0 . 0 4 3 8

1 0 8 5 . 2 0 5 1 4 0 2 . 6 0 . 4 6 6

1 1 0 1 . 0 9 5 1 4 0 2 . 6 0 . 5 0 5

1 1 1 4 . 2 6 8 1 2 2 5 . 2 0 . 0 7 4 1 4

1 1 2 2 . 4 1 9 1 4 3 9 . 9 0 . 1 2 2

1 1 3 3 . 6 1 8 1 3 7 5 . 7 0 . 0 7 4 8

1 1 3 8 . 4 7 5 1 4 3 9 . 9 0 . 3 0 3

1 1 5 3 . 8 7 5 1 2 6 5 . 0 0 . 5 4 5

x 1 1 5 6 . 7 5 9 0 . 0 4 4 9

1 1 6 0 . 5 2 8 1 4 0 2 . 6 0 . 0 7 2 7

1 1 7 1 . 6 9 8 1 1 7 1 . 6 0 . 4 9 5

1 1 8 2 . 0 5 8 1 4 9 9 . 5 0 . 0 6 9 8

1 1 9 0 . 4 1 1 4 3 2 . 6 0 . 0 2 3 4

1 1 9 7 . 9 9 8 1 4 3 9 . 9 0 . 0 8 9 1 5

1 2 2 5 . 2 4 8 1 2 2 5 . 2 0 . 0 2 8 5

1 2 3 8 . 6 0 8 1 5 5 6 . 1 0 . 0 5 4 7

1 2 4 9 . 1 1 1 3 6 0 . 6 0 . 0 3 9 7

1 2 5 4 . 4 2 1 5 5 6 . 1 0 . 0 1 4 3

1 2 5 7 . 5 1 1 4 9 9 . 5 0 . 0 2 6 5

1 2 8 0 . 9 9 9 1 7 5 4 . 4 0 . 0 2 4 5

1 2 9 1 . 6 1 8 1 4 0 2 . 6 0 . 0 4 8 8

x 1 2 9 5 . 6 1 0 . 0 2 8 5

1 3 2 1 . 6 5 6 1 4 3 2 . 6 0 . 2 7 2

1 3 2 7 . 5 8 6 1 6 4 4 . 9 0 . 2 3 2

1 3 4 3 . 3 1 1 6 4 4 . 9 0 . 0 2 4 4

1 3 7 7 . 4 1 1 6 1 9 . 6 0 . 0 8 0 9

1 3 8 8 . 5 1 1 4 9 9 . 5 0 . 0 6 0 8

1 4 0 2 . 5 2 1 6 4 4 . 9 0 . 0 6 2 7

1 4 3 6 . 4 1 1 7 5 4 . 4 0 . 0 7 1 7

1 4 4 5 . 2 2 1 5 5 6 . 1 0 . 0 3 7 6

1 4 5 3 . 4 1 1 7 5 4 . 4 0 . 0 3 2 6

x 1 5 0 2 . 3 1 0 . 0 5 0 9

1 5 0 8 . 7 2 1 6 1 9 . 6 0 . 0 1 9 4

1 5 3 4 . 1 2 1 6 4 4 . 9 0 . 0 3 9 7

1 5 5 6 . 5 2 1 5 5 6 . 1 0 . 0 3 2 6

1 5 7 9 . 4 2 1 8 2 1 . 5 0 . 0 3 2 6

1 5 9 9 . 6 2 1 8 4 1 . 2 0 . 0 1 3 4

1 6 4 3 . 9 1 1 7 5 4 . 4 0 . 0 3 1 8

† For absolute intensity per 100 decays, multiply by 0.50 6 .

‡ From 92Ru01, except where noted. Other measurements: 85Go05.

§ Relative photon intensities, measured by 92Ru01.

# From 226Th α decay. The multipolarities in square brackets are from the level scheme.

x γ ray not placed in level scheme.

2 8 4

228

28Ra134–6 22

828Ra134–6NUCLEAR DATA SHEETS

222Fr ββββ– Decay (continued)

2–

0.0

14

.2 m

in

–=

10

0

22 8

2 7F

r 13

5

Q–=

20

32

21

0+

0.0

38

.0 s

≥8

.51

u3

2+

11

1.1

26

.23

8

1–

24

2.1

17

.91

.7

4+

30

1.3

99

.41

u0

.37

3–

31

7.2

96

.35

4

(5–

)4

73

.76

2+

10

24

.97

.30

.85

(3–

,4+

)1

17

0.9

8.1

0.0

7

1+

,1–

,2+

11

71

.67

.10

.78

1+

,1–

,2+

12

25

.27

.90

.08

7

(2+

,3)

12

65

.07

.20

.34

13

10

.28

.30

.02

2

13

60

.67

.90

.05

2

13

75

.78

.00

.03

7

(3–

)1

40

2.6

6.7

0.6

5

1,2

,3–

14

32

.67

.20

.14

7

(3–

)1

43

9.9

6.9

0.3

4

1–

,2,3

–1

49

9.5

7.2

0.1

17

2+

15

56

.17

.20

.06

9

16

19

.67

.20

.04

9

2+

,3–

16

44

.96

.70

.12

3–

17

54

.46

.30

.10

3

1,2

,31

82

1.5

6.7

0.0

16

1,2

,31

84

1.2

5.8

0.1

0

Lo

g f

tIβ

D

eca

y S

che

me

Inte

nsi

tie

s: I

(γ+

ce)

pe

r 1

00

de

cay

s b

y t

his

bra

nch

111.11 E2 95

130.98 (E1)

0.78

242.11 E1 2.1

190.24 E2 1.02

75.13 [E2]

0.33

206.17 E1 54

172.37 [E1]

0.068

707.54 [E1]

0.45

723.45 [E2]

0.015

782.77 [E1]

0.44

913.69 0.075

1025.02 0.030

696.88 0.023

853.78 0.080

869.6 0.065

929.47 0.070

1060.33 0.46

1171.69 0.25

982.90 0.036

1114.26 0.037

1225.24 0.014

963.61 0.070

1153.87 0.27

1068.08 0.022

1043.60 0.033

1249.1 0.020

1133.61 0.037

231.67 [D,E2]

0.07

377.64 [E1]

0.061

1085.20 0.23

1101.09 0.25

1160.52 0.036

1291.61 0.024

1190.4 0.0115

1321.65 0.135

268.99 0.031

415.05 [E1]

0.016

966.24 0.035

1122.41 0.060

1138.47 0.150

1197.99 0.045

474.45 0.040

1182.05 0.035

1257.5 0.013

1388.5 0.030

1238.60 0.027

1254.4 0.0070

1445.2 0.019

1556.5 0.016

1377.4 0.040

1508.7 0.0095

619.95 0.036

1327.58 0.115

1343.3 0.0120

1402.5 0.031

1534.1 0.020

351.75 [M1,E2]

0.024

1280.99 0.012

1436.4 0.036

1453.4 0.016

1643.9 0.016

1579.4 0.016

196.31 [D,E2]

0.09

1599.6 0.0065

22 8

2 8R

a1

34

2 8 5

228

28Ra134–7 22

828Ra134–7NUCLEAR DATA SHEETS

226Th αααα Decay

222Ra Levels

α γ ( t ) :

( 6 2 3 4 α ) ( c e 1 1 1 γ ) ( t ) T1 / 2 ( 1 1 1 l e v e l ) = 0 . 5 2 n s 4 6 0B e 2 5

( α ) ( 2 4 0 γ ) ( t ) T1 / 2 ( 2 4 2 l e v e l ) < 1 . 2 n s 5 6 S t 2 3

( α ) ( 1 9 0 γ ) ( t ) T1 / 2 ( 3 0 1 l e v e l ) < 1 . 4 n s 5 6 S t 2 3

E(level) Jπ T1/2

0 . 0 0 + 3 8 . 0 s 5

1 1 1 . 1 2 2 2 + 0 . 5 2 n s 4

2 4 2 . 1 1 2 1 – < 1 . 2 n s

3 0 1 . 3 9 4 4 + < 1 . 4 n s

3 1 7 . 2 9 5 3 –

4 7 3 . 7 6 8 ( 5 – )

9 1 4 . 0 3 ( 0 + )

1 0 2 4 . 9 2 2 +

α radiations

For theoretical calculations of α–decay probabilit ies, see, for example, 86Ch36, 80Ka41, 79Po23.

EᇠE(level) Iᆧ HF# Comments

( 5 3 3 3@ 6 ) 1 0 2 4 . 9 0 . 0 0 0 1 7 4 4 . 0 1 0

( 5 4 4 2@ 6 ) 9 1 4 . 0 0 . 0 0 0 3 4 4 8 . 2 1 0

( 5 8 7 4@ 6 ) 4 7 3 . 7 6 0 . 0 0 0 2 3 2 2 2 0 0 2 0 0

6 0 2 8 5 3 1 7 . 2 9 0 . 2 0 6 9 1 3 . 9 7 Iα : 0.22% was measured by 75VaZD.

6 0 4 0 5 3 0 1 . 3 9 0 . 1 8 7 1 1 1 8 . 1 1 1 Iα : 0.2% was measured by 75VaZD.

6 0 9 9 5 2 4 2 . 1 1 1 . 2 6 5 5 . 0 2 Iα : the measured values are 1.7% (56As38), 1.2% (63Le17), 1.3% 2 (75VaZD).

6 2 3 4 5 1 1 1 . 1 2 2 2 . 8 2 1 . 0 8 2 Iα : measurement of 69Pe17. Other measured values: 19.0% 15 (56As38), 20%

(61Ru06), 23.0% 23 (75VaZD). 23.1% 16 from level scheme.

6 3 3 6 . 8 1 0 0 . 0 7 5 . 5 3 1 . 0 Iα : from sum of Iα ' s . Iα=75.3% 3 is recommended by 91Ry01. The measured

intensities are 79% (56As38), 78% (61Ru06), 75% 8 (75VaZD). Iα=75.2 16

from Iγ ' s .

† For α intensity per 100 decays, multiply by 1.0.

‡ The energies of α ' s to the g.s. and to the 111–keV level are given as recommended by 91Ry01 from E α measurements of 56As38 and

75VaZD. The energies measured by 56As38 are increased 4.6 keV, the E α (0) and Eα (111 level) measured by 75VaZD are decreased

0.4 keV and 6.1 keV, respectively, by 91Ry01 because of changes in calibration energies. All other E α ' s are calculated by the

evaluator from Eα (g.s. ) and E(level) .

§ Deduced from level scheme, except for Iα (to g.s. ) and Iα (to 111 level) , as indicated.

# HF(α to g.s. )=1.0 gives r 0(222Ra)=1.5382 5 . T1/2(226Th)=30.57 min 10 , measured by 87Mi10, and Q(α ) (226Th)=6451.5 10

of 93Au05 are used in calculations. See 90Bu30 for a semiclassical calculation of nuclear radius and for systematics of T 1/2(α )

and r0 values. See also 77Ba70.

@ α has not been observed.

γ (222Ra)

γγ : see 76Ku08, 56As38.

αγ : see 63Le17, 69Pe17, 69Br10.

αγ (θ ) : see 71He19, 54St02.

Eγ‡ E(level) Iㆧ Mult. α Comments

( 7 5 . 1 3 # 2 ) 3 1 7 . 2 9 3 . 2 × 1 0 – 5@ 8 [ E2 ] 3 7 . 5

1 1 1 . 1 2 3 1 1 1 . 1 2 3 . 2 9 2 0 E2 6 . 2 6 Iγ : 3.3% 2 was measured by 69Pe17.

Mult. : Ice measurements: L12:L3:M23:N=

17.0 22 :11.6 19 :9.5 17 :3.2 7 (67LoZZ); α (L2)=2.4 4 , α (L)=4.1 5

(74Va28). Ice 's given here were normalized to Ice(K)(230 γ of 226Ac decay)=5.45. For absolute Ice 's per 100 α decays, they

should be multiplied by 0.269 18 .

α : 6.24 25 was deduced by 69Pe17 from αγ data.

1 3 1 . 0 2 5 2 4 2 . 1 1 0 . 2 7 8 1 3 ( E1 ) 0 . 2 5 4 Mult. : no ce l ines were observed (69Br10).

1 7 2 . 3 3 4 7 3 . 7 6 0 . 0 0 0 2 0 2 [ E1 ] 0 . 1 3 0 Transition was observed only in γγ–coincidence spectra.

Continued on next page (footnotes at end of table)

2 8 6

228

28Ra134–8 22

828Ra134–8NUCLEAR DATA SHEETS

226Th αααα Decay (continued)

γ (222Ra) (continued)

Eγ‡ E(level) Iㆧ Mult. α Comments

1 9 0 . 3 0 5 3 0 1 . 3 9 0 . 1 0 9 6 E2 0 . 7 1 6 Mult. : from ce data of 76Ku08 (measured ce intensities were not

given). Only E2 multipolarity yields an intensity balance at

the 301.42–keV level .

2 0 6 . 2 3 5 3 1 7 . 2 9 0 . 1 8 9 8 E1 0 . 0 8 4 7 Mult. : from ce data of 76Ku08 (measured ce intensities were not

given). Only E1 multipolarity is consisted with the intensity

balance at the 317.35 level .

2 4 2 . 1 2 5 2 4 2 . 1 1 0 . 8 6 6 4 0 E1 0 . 0 5 8 0 Mult. : α (K)exp≈0.06 (estimated by the evaluator from the (α ) (ce)

spectrum shown by 69Br10).

6 7 1 . 9 3 9 1 4 . 0 0 . 0 0 0 2 8 3

7 0 7 . 5 5 1 0 2 4 . 9 0 . 0 0 0 0 6& 2

7 2 3 . 4 # 4 1 0 2 4 . 9 0 . 0 0 0 0 0 2@ 1

7 8 3 . 0 5 1 0 2 4 . 9 0 . 0 0 0 0 9& 3

8 0 2 . 7 5 9 1 4 . 0 0 . 0 0 0 0 6 2

9 1 3 . 7 # 4 1 0 2 4 . 9 0 . 0 0 0 0 1 0@ 4

1 0 2 5 . 0 # 4 1 0 2 4 . 9 0 . 0 0 0 0 0 4@ 2

† For absolute intensity per 100 decays, multiply by 1.0.

‡ From 76Ku08. Other measurements: 74Va28, 69Br10, 56Sm88, 56As38.

§ From 76Ku08. Relative photon intensities were normalized by 76Ku08 to I(324 γ of 222Ra α decay)=2.77% (taken from 69Pe17) to

obtain intensities per 100 α decays.

# This γ was not observed in 226Th α decay; its energy is the adopted value from 222Fr β– decay.

@ From relative branching deexciting the level , as measured in 222Fr β– decay.

& Iγ (783γ ) /Iγ (707γ )=0.98 9 was measured in 222Fr β– decay.

0+ 0.0 30.57 min

%α=100229

60Th136

Qα=6451.510

0+ 0.0 38.0 s 1.075.56336.8

2+ 111.12 0.52 ns 1.0822.86234

1– 242.11 <1.2 ns 5.01.266099

4+ 301.39 <1.4 ns 18.10.1876040

3– 317.29 13.90.2066028

(5–) 473.76 22000.00023

(0+) 914.0 8.20.00034

2+ 1024.9 4.00.00017

HFIαEα

Decay Scheme

Intensities: I(γ+ce) per 100 decays by

this branch

111.

12 E

2 2

3.9

131.

02 (

E1)

0.

349

242.

12 E

1 0

.92

190.

30 E

2 0

.187

75.1

3 [E

2]

0.00

12

206.

23 E

1 0

.205

172.

3 [E

1]

0.00

0226

671.

9 0

.000

28

802.

7 0

.000

06

707.

5 0

.000

06

723.

4 0

.000

002

783.

0 0

.000

09

913.

7 0

.000

010

1025

.0

0.00

0004

228

28Ra134

2 8 7

228

29Ac133

228

29Ac133NUCLEAR DATA SHEETS

Adopted Levels

Q(β–)=–591 24 ; S(n)=5980 50 ; S(p)=3647 22 ; Q(α )=7129 20 93Au05.

222Ac Levels

E(level) Jπ T1/2 Comments

0 . 0 1 – 5 . 0 s 5 %α=99 1 ; %ε+%β+=1 1 .

Possible ε branching was estimated by 66Wa23 as 1 to 2% from Iα (7.13–MeV α ) of 218Rn shown in 222Ac

α spectrum by 64Mc21.

Jπ : favored α decay (HF=2.6) to 1– g.s. of 218Fr.

T1/2: from measured values of 5.5 s 5 (52Me13) and 4.2 s 5 (58To25). Other measurement: 5 s 1

(72Es03).

Assignment: daughter 226Pa (52Me13, 64Mc21, 68Ha14).

0 . 0 + x 6 3 s 3 %α≥88; %IT≤10; 0.7≤%ε+%β+≤2 (72Es03).

%IT was deduced by 72Es03 from ratio of Iα ' s of 5–s 222Ac and 63–s 222Ac.

%ε+%β+ was deduced by 72Es03 from the intensities of α ' s from 218Rn, 214Po and 63–s 222Ac.

E(level) : x=E(level in 218Fr fed by 7000α of 63–s isomer)–(14 21 ) , deduced from Eα=7013 2 and

7000 20 of 5.0–s and 63–s state α decay, respectively.

T1/2: from measured values of 66 s 3 (72Es03), 62 s 5 (73Mo07), 60 s 4 (82Bo04).

Assignment: Pb(18O,pxn) excit (72Es03); parent of 218Fr (7870α ) , parent of 214At (8810α ) , parent of 218Rn (7130α ) , parent of 5–s 222Ac (72Es03).

On the basis of measured production cross–section ratio, 72Es03 suggested that the 63–s isomeric

state has higher spin than the spin of 5.0–s g.s.

4 1 1 4 Level seen in 226Pa α decay.

1 3 7 1 4 Level seen in 226Pa α decay.

226Pa αααα Decay

For a review of α decay from oriented nuclei , see 92Wo14.

222Ac Levels

E(level) Jπ

0 . 0 1 –

4 1 1 4

1 3 7 1 4

α radiations

EᆠE(level) Iᇧ HF#

6 7 2 9 1 0 1 3 7 1 9 1

6 8 2 4 1 0 4 1 4 6 4 . 7

6 8 6 4 1 0 0 . 0 5 2 6 . 0

† Measured by 64Mc21. Original energies have been increased by 6 keV because of a change in the calibration energy of the 227Pa α

from 6460 to 6465.8 3 , recommended by 91Ry01. Other measurements: 51Me10, 68Ha14, 88Hu08.

‡ From 64Mc21.

§ For α intensity per 100 decays, multiply by 0.74 5 .

# r0(222Ac)=1.536 4 is used in calculations.

2 8 8

229

20Th132–1 22

920Th132–1NUCLEAR DATA SHEETS

Adopted Levels, Gammas

Q(β–)=–4760 70 ; S(n)=7808 16 ; S(p)=4610 50 ; Q(α )=8129 6 93Au05.

For calculations of equilibrium deformations and discussions of deformation parameters see, for example, 82Du16,

82Le19, 83Ro14, 84Na22, 88So08, 89Eg02.

For studies on the shapes of the rotating nuclei , see 87Na10, 85Na07, 84Fr06 and 84Na08.

Theoretical intrinsic–dipole moments were calculated by 91Bu10 by including β (2) – β (8) deformations which were

taken from 88So08. The macroscopic dipole moment was calculated by 86Do03 by using the ground–state deformation

parameters of 84Na22.

Theoretical values of the reduced dipole and quadrupole transition probabilit ies were calculated, and their ratios

were compared with experimental ratios by 95De13, 93Dz01, 88Ot02, 87Ka37, 87Na10, 86Le05.

The level energies of the g.s. band up to the 26+ state and of the octupole–vibrational band up to the 25– state

were calculated by 95De13 by considering higher order of deformations. See 95De13 for calculations, discussions

and comparison with experiments. See also 88Na08, 88Ot02.

The changes in calculated binding energies due to varying the 2 6 pole deformation parameters were studied by 86Ch23.

Possible decay by 26Ne emission was studied and partial half–li fe relative to α decay half–li fe was calculated by

90Sh01.

222Th Levels

Cross Reference (XREF) Flags

A 226U α Decay

B (HI,xnγ )

E(level) Jπ† XREF T1/2‡ Comments

0 . 0 § 0 + AB 2 . 8 ms 3 %α=100.

Branching: only α decay has been observed.

%ε<1.3×10–8 from log f t>5.9 for an ε branch to g.s.

T1/2: from 70Va13. Other measurements: 4 ms 1 (70To07), 2.6 ms 6 (90AnZU), 2.2 ms 2

(91AnZZ).

1 8 3 . 3 § 2 + AB 2 4 0 p s 2 0

4 3 9 . 8 § 4 + B 4 6 p s 6

4 6 7 . 0 # 3 – B

6 5 1 . 0 # 5 – B

7 5 0 . 0 § 6 + B ≤ 4 5 p s

9 2 3 . 5 # 7 – B

1 0 9 3 . 5 § 8 + B

1 2 5 5 . 3 # 9 – B

1 4 6 1 . 1 § 1 0 + B

1 6 2 2 . 6 # 1 1 – B

1 8 5 0 . 7 § 1 2 + B

2 0 1 5 . 5 # 1 3 – B

2 2 5 9 . 7 § 1 4 + B

2 4 3 1 . 9 # 1 5 – B

2 6 8 7 . 8 § 1 6 + B

2 8 7 3 . 0 # 1 7 – B

3 1 3 3 . 5 § 1 8 + B

3 3 4 0 . 7 # 1 9 – B

3 5 9 6 . 0 § 2 0 + B

3 8 3 5 . 5 # 2 1 – B

4 0 7 7 . 6 § 2 2 + B

4 3 4 9 . 5 # 2 3 – B

4 5 7 7 . 9 § 2 4 + B

4 8 8 2 . 5 ? # ( 2 5 – ) B

5 0 9 7 . 9 ? § ( 2 6 + ) B

† All excited state properties are from (HI,xnγ ) reaction data. Jπ are based upon γ multipolarities and fits to rotational bands.

‡ The excited state half–lives were measured by 85Bo32. See (HI,xn γ ) reaction section.

§ Kπ=0+ g.s. band.

# Kπ=0– octupole–vibrational band.

2 8 9

229

20Th132–2 22

920Th132–2NUCLEAR DATA SHEETS

Adopted Levels, Gammas (continued)

γ (222Th)

E(level) Eγ† Mult.‡ α I(γ+ce)§ Comments

1 8 3 . 3 1 8 3 . 3 E2 0 . 9 3 1 B(E2)(W.u.)=74 7 .

4 3 9 . 8 2 5 6 . 5 E2 0 . 2 8 3 B(E2)(W.u.)=108 15 .

4 6 7 . 0 2 8 3 . 7

6 5 1 . 0 2 1 1 . 2 E1 0 . 0 8 3 6

7 5 0 . 0 9 9 . 1 ( E1 ) 0 . 1 2 2 7 1 . 6 B(E1)(W.u.)≥0.0015.

3 1 0 . 2 E2 0 . 1 5 5 1 0 0 B(E2)(W.u.)≥27.

9 2 3 . 5 1 7 3 . 3 E1 0 . 1 3 4 1 0 0

2 7 2 . 5 ( E2 ) 0 . 2 3 2 8 . 7

1 0 9 3 . 5 1 7 0 . 4 E1 0 . 1 4 0 1 0 0

3 4 3 . 5 E2 0 . 1 1 5 2 6 . 3

1 2 5 5 . 3 1 6 1 . 2 E1 0 . 1 6 0 1 0 0

3 3 1 . 8 E2 0 . 1 2 7 3 1 . 8

1 4 6 1 . 1 2 0 6 . 4 E1 0 . 0 8 8 1 0 0

3 6 7 . 6 E2 0 . 0 9 5 1 8 . 3

1 6 2 2 . 6 1 6 0 . 9 ( E1 ) 0 . 1 6 0 1 0 0

3 6 7 . 3 E2 0 . 0 9 5 4 3 . 1

1 8 5 0 . 7 2 2 8 . 5 E1 0 . 0 7 0 0 1 0 0

3 8 9 . 6 E2 0 . 0 8 1 3 2 6 . 5

2 0 1 5 . 5 1 6 4 . 6 E1 0 . 1 5 2 1 0 0

3 9 2 . 9 E2 0 . 0 7 9 5 4 7 . 5

2 2 5 9 . 7 2 4 4 . 3 E1 0 . 0 5 9 7 1 0 0

4 0 9 . 0 E2 0 . 0 7 1 5 1 5 . 3

2 4 3 1 . 9 1 7 2 . 0 ( E1 ) 0 . 1 3 7 1 0 0

4 1 6 . 4 E2 0 . 0 6 8 3 7 3 . 8

2 6 8 7 . 8 2 5 6 . 1 E1 0 . 0 5 3 6 1 0 0

4 2 8 . 1 E2 0 . 0 6 3 6 6 0

2 8 7 3 . 0 1 8 5 . 0 ( E1 ) 0 . 1 1 5 1 0 0

4 4 1 . 1 E2 0 . 0 5 8 9 8 3 . 5

3 1 3 3 . 5 2 6 0 . 2 1 0 0

4 4 5 . 7 2 8 . 2

3 3 4 0 . 7 2 0 7 . 5 1 0 0

4 6 7 . 7 5 4 . 0

3 5 9 6 . 0 2 5 5 1 0 0

4 6 2 . 5 E2 0 . 0 5 2 4 4 0 . 0

3 8 3 5 . 5 2 3 9 . 2 1 0 0

4 9 4 . 8 3 3 . 3

4 0 7 7 . 6 2 4 3 1 0 0

4 8 1 . 6 6 5 . 0

4 3 4 9 . 5 2 7 3

5 1 4

4 5 7 7 . 9 2 2 8 ≈ 1 1 0

5 0 0 . 3 1 0 0

4 8 8 2 . 5 ? 3 0 4 #

5 3 3 . 3

5 0 9 7 . 9 ? 2 1 7 #

5 2 0 . 0

† From (HI,xnγ ) data.

‡ All γ properties are from (HI,xnγ ) reaction data.

§ Relative transition intensity deexciting each level .

# Placement of transition in the level scheme is uncertain.

2 9 0

229

20Th132–3 22

920Th132–3NUCLEAR DATA SHEETS

Adopted Levels, Gammas (continued)

0+ 0.0

2+ 183.3

4+ 439.8

(B)5–

6+ 750.0

(B)7–

8+ 1093.5

(B)9–

10+ 1461.1

(B)11–

12+ 1850.7

(B)13–

14+ 2259.7

(B)15–

16+ 2687.8

(B)17–

18+ 3133.5

(B)19–

20+ 3596.0

(B)21–

22+ 4077.6

(B)23–

24+ 4577.9

(B)(25–)

(26+) 5097.9

(A) K ππππ=0+ g.s. band.

(A)2+

(A)4+

3– 467.0

5– 651.0

(A)6+

7– 923.5

(A)8+

9– 1255.3

(A)10+

11– 1622.6

(A)12+

13– 2015.5

(A)14+

15– 2431.9

(A)16+

17– 2873.0

(A)18+

19– 3340.7

(A)20+

21– 3835.5

(A)22+

23– 4349.5

(A)24+

(25–) 4882.5

(B) K ππππ=0– octupole–vibrational

band.

229

20Th132

226U αααα Decay

222Th Levels

E(level) Jπ

0 . 0 0 +

1 8 3 . 3 2 +

α radiations

Branching: only α decay of 226U was observed.

Eα‡ E(level) Iᆇ HF§

7 4 2 0 2 0 1 8 3 . 3 1 5 5 1 . 4 6

7 5 7 0 2 0 0 . 0 8 5 5 1 . 0

† For α intensity per 100 decays, multiply by 1.0.

‡ Measurement by 89An13.

§ HF(7570α )=1.0 yields r0(222Th)=1.550 13 . T1/2(226U)=200 ms 50 (93AnZS) and Q(α ) (226U)=7707 15 are used in calculations.

2 9 1

229

20Th132–4 22

920Th132–4NUCLEAR DATA SHEETS

(HI,xn γγγγ)

208Pb(18O,4nγ ) , 208Pb(17O,3nγ ) pulsed beams, E≈95 MeV (83Wa20).

208Pb(18O,4nγ ) , E=88–96 MeV (85Bo32).

208Pb(18O,4nγ ) , E=95 MeV (87KoZF).

208Pb(18O,4nγ ) E=94 MeV (88ScZN, 88HaZJ).

γγ , γ (θ ) : 83Wa20, 85Bo32.

From the experimental B(E1)/B(E2) ratios which were calculated from the γ intensities, the octupole deformation of

0.25 was inferred by 86Sc18. Numerous theoretical calculations have been done for the deformation parameters of

the ground state and high–spin states. See the adopted levels for the references.

222Th Levels

E(level) Jπ‡ T1/2†

0 . 0 § 0 +

1 8 3 . 3 § 2 + 2 4 0 p s 2 0

4 3 9 . 8 § 4 + 4 6 p s 6

4 6 7 . 0 # 3 –

6 5 1 . 0 # 5 –

7 5 0 . 0 § 6 + ≤ 4 5 p s

9 2 3 . 5 # 7 –

1 0 9 3 . 5 § 8 +

1 2 5 5 . 3 # 9 –

E(level) Jπ‡

1 4 6 1 . 1 § 1 0 +

1 6 2 2 . 6 # 1 1 –

1 8 5 0 . 7 § 1 2 +

2 0 1 5 . 5 # 1 3 –

2 2 5 9 . 7 § 1 4 +

2 4 3 1 . 9 # 1 5 –

2 6 8 7 . 8 § 1 6 +

2 8 7 3 . 0 # 1 7 –

3 1 3 3 . 5 § 1 8 +

E(level) Jπ‡

3 3 4 0 . 7 # 1 9 –

3 5 9 6 . 0 § 2 0 +

3 8 3 5 . 5 # 2 1 –

4 0 7 7 . 6 § 2 2 +

4 3 4 9 . 5 # 2 3 –

4 5 7 7 . 9 § 2 4 +

4 8 8 2 . 5 ? # ( 2 5 – )

5 0 9 7 . 9 ? § ( 2 6 + )

† Measured by 85Bo32 by recoil shadow method.

‡ From 83Wa20, 85Bo32 and 88HaZJ.

§ K=0 g.s. band.

# K=0 octupole vibrational band.

γ (222Th)

Eγ† E(level) Mult.§ α I(γ+ce)‡

9 9 . 1 7 5 0 . 0 ( E1 ) 0 . 1 2 2 3 3 . 0

x 1 3 1 . 2 # E1 0 . 2 6 1 7@ 1

x 1 4 4 . 9 # E1 0 . 2 0 6 7@ 1

1 6 0 . 9 1 6 2 2 . 6 E1 0 . 1 6 0 2 9

1 6 1 . 2 1 2 5 5 . 3 E1 0 . 1 6 0 5 0

1 6 4 . 6 2 0 1 5 . 5 E1 0 . 1 5 2 2 2 . 1

1 7 0 . 4 1 0 9 3 . 5 E1 0 . 1 4 0 5 9 . 4

1 7 2 . 0 2 4 3 1 . 9 ( E1 ) 0 . 1 3 7 1 4 . 5

1 7 3 . 3 9 2 3 . 5 E1 0 . 1 3 4 6 8 . 6

1 8 3 . 3 1 8 3 . 3 E2 0 . 9 3 1 1 0 0

1 8 5 . 0 2 8 7 3 . 0 ( E1 ) 0 . 1 1 5 7 . 9

x 1 9 9 . 6 # E1 0 . 0 9 6 4@ 1

2 0 6 . 4 1 4 6 1 . 1 E1 0 . 0 8 8 4 7

2 0 7 . 5 3 3 4 0 . 7 [ E1 ] 0 . 0 8 7 5

2 1 1 . 2 6 5 1 . 0 E1 0 . 0 8 3 6 6 5 . 7

2 1 7 a 5 0 9 7 . 9 ?

2 2 8 4 5 7 7 . 9 [ E1 ] 0 . 0 7 0 0 ≈ 1

2 2 8 . 5 1 8 5 0 . 7 E1 0 . 0 7 0 0 2 3

x 2 3 1 . 8 # E1 0 . 0 6 7 4 4@ 1

2 3 9 . 2 3 8 3 5 . 5 [ E1 ] 0 . 0 6 2 7 3

2 4 3 4 0 7 7 . 6 [ E1 ] 0 . 0 6 0 4 2

2 4 4 . 3 2 2 5 9 . 7 E1 0 . 0 5 9 7 1 7

x 2 5 1 . 0 # E2 0 . 3 0 4 2 3@ 2

2 5 5 3 5 9 6 . 0 [ E1 ] 0 . 0 5 4 1 4

2 5 6 . 1 2 6 8 7 . 8 E1 0 . 0 5 3 6 1 0

2 5 6 . 5 4 3 9 . 8 E2 0 . 2 8 3 1 1 8

2 6 0 . 2 3 1 3 3 . 5 [ E1 ] 0 . 0 5 1 7 7 . 8

2 7 2 . 5 9 2 3 . 5 ( E2 ) 0 . 2 3 2 6 . 0

Eγ† E(level) Mult.§ α I(γ+ce)‡

2 7 3 4 3 4 9 . 5 [ E1 ] 0 . 0 4 6 4 ≈ 1

2 8 3 . 7 4 6 7 . 0 5 . 0

x 2 9 5 . 5 # 5@ 1

3 0 4 a 4 8 8 2 . 5 ?

3 1 0 . 2 7 5 0 . 0 E2 0 . 1 5 5 4 6 . 1

x 3 2 1 . 9 # E2 0 . 1 3 9 6@ 1

3 3 1 . 8 1 2 5 5 . 3 E2 0 . 1 2 7 1 5 . 9

3 4 3 . 5 1 0 9 3 . 5 E2 0 . 1 1 5 1 5 . 6

3 6 7 . 3 1 6 2 2 . 6 E2 0 . 0 9 5 1 2 . 5

3 6 7 . 6 1 4 6 1 . 1 E2 0 . 0 9 5 8 . 6

3 8 9 . 6 1 8 5 0 . 7 E2 0 . 0 8 1 3 6 . 1

3 9 2 . 9 2 0 1 5 . 5 E2 0 . 0 7 9 5 1 0 . 5

4 0 9 . 0 2 2 5 9 . 7 E2 0 . 0 7 1 5 2 . 6

4 1 6 . 4 2 4 3 1 . 9 E2 0 . 0 6 8 3 1 0 . 7

x 4 2 3 . 3 # E2 0 . 0 6 5 4 8@ 1

4 2 8 . 1 2 6 8 7 . 8 E2 0 . 0 6 3 6 6 . 0

4 4 1 . 1 2 8 7 3 . 0 E2 0 . 0 5 8 9 6 . 6

4 4 5 . 7 3 1 3 3 . 5 [ E2 ] 0 . 0 5 7 4 2 . 2

4 6 2 . 5 3 5 9 6 . 0 E2 0 . 0 5 2 4 1 . 6

4 6 7 . 7 3 3 4 0 . 7 [ E2 ] 0 . 0 5 1 0 2 . 7

4 8 1 . 6 4 0 7 7 . 6 [ E2 ] 0 . 0 4 7 4 1 . 3

x 4 8 5 . 8 # E2 0 . 0 4 6 5 3@ 1

4 9 4 . 8 3 8 3 5 . 5 [ E2 ] 0 . 0 4 4 5 1 . 1

5 0 0 . 3 4 5 7 7 . 9 [ E2 ] 0 . 0 4 3 1 0 . 9

5 1 4 4 3 4 9 . 5 [ E2 ] 0 . 0 4 0 4

5 2 0 . 0 5 0 9 7 . 9 ? [ E2 ] 0 . 0 3 9 3 0 . 7

5 3 3 . 3 4 8 8 2 . 5 ? [ E2 ] 0 . 0 3 7 1 0 . 8

† Energies measured by 83Wa20 and 85Bo32, 88HaZJ are in excellent agreement. E γ ' s of 88HaZJ are given, except for those

transitions not placed on the level scheme. Other measurements: 84Bu38, 87KoZF.

‡ Relative transition intensities, as shown by 88HaZJ on their level scheme, are given, except where noted. The intensities are

normalized to I(γ+ce)(183.3γ )=100.

§ From ce work of 85Bo32 and γ (θ ) measurements of 83Wa20. Multipolarities in square brackets are from the level scheme.

Footnotes continued on next page

2 9 2

229

20Th132–5 22

920Th132–5NUCLEAR DATA SHEETS

(HI,xn γγγγ) (continued)

γ (222Th) (continued)

# From 85Bo32. In the authors ' later work, 88HaZJ, although some additional γ ' s with lower intensities were placed on the level

scheme, these unplaced γ ' s are not mentioned. It is not clear whether or not their assignments to the 222Th level scheme should

be considered questionable.

@ From 85Bo32.

a Placement of transition in the level scheme is uncertain.

x γ ray not placed in level scheme.

0+ 0.0

2+ 183.3 240 ps

4+ 439.8 46 ps

3– 467.0

5– 651.0

6+ 750.0 ≤45 ps

7– 923.5

8+ 1093.5

9– 1255.3

10+ 1461.1

11– 1622.6

12+ 1850.7

13– 2015.5

14+ 2259.7

15– 2431.9

16+ 2687.8

17– 2873.0

18+ 3133.5

19– 3340.7

20+ 3596.0

21– 3835.5

22+ 4077.6

23– 4349.5

24+ 4577.9

(25–) 4882.5

(26+) 5097.9

Level Scheme

Intensities: relative I(γ+ce)

183.

3 E

2 1

00

256.

5 E

2 1

18

283.

7 5

.0

211.

2 E

1 6

5.7

99.1

(E

1)

33.0

310.

2 E

2 4

6.1

173.

3 E

1 6

8.6

272.

5 (E

2)

6.0

170.

4 E

1 5

9.4

343.

5 E

2 1

5.6

161.

2 E

1 5

0

331.

8 E

2 1

5.9

206.

4 E

1 4

7

367.

6 E

2 8

.6

160.

9 E

1 2

9

367.

3 E

2 1

2.5

228.

5 E

1 2

3

389.

6 E

2 6

.1

164.

6 E

1 2

2.1

392.

9 E

2 1

0.5

244.

3 E

1 1

7

409.

0 E

2 2

.6

172.

0 (E

1)

14.5

416.

4 E

2 1

0.7

256.

1 E

1 1

0

428.

1 E

2 6

.0

185.

0 (E

1)

7.9

441.

1 E

2 6

.6

260.

2 [E

1]

7.8

445.

7 [E

2]

2.2

207.

5 [E

1]

5

467.

7 [E

2]

2.7

255

[E1]

4

462.

5 E

2 1

.6

239.

2 [E

1]

3

494.

8 [E

2]

1.1

243

[E1]

2

481.

6 [E

2]

1.3

273

[E1]

≈1

514

[E2]22

8 [E

1]

≈1

500.

3 [E

2]

0.9

304

533.

3 [E

2]

0.8

217

520.

0 [E

2]

0.7

229

20Th132

2 9 3

229

21Pa131

229

21Pa131NUCLEAR DATA SHEETS

Adopted Levels

Q(β–)=–2230 SY ; S(n)=6390 SY ; S(p)=2170 70 ; Q(α )=8800 90 93Au05.

Assignment: 209Bi(16O,3n), 206Pb(19F,3n), excit (70Bo13); 184W(40Ar,pn) E=165–202 MeV, excit (79Sc09); parent of

218Ac (9210α ) (70Bo13,79Sc09); parent of 214Fr (8430α ) (79Sc09).

222Pa Levels

E(level) T1/2 Comments

0 . 0 2 . 9 ms + 6 – 4 %α=100.

Branching: only α decay was observed.

%ε+%β+≈4×10–4 from gross β– decay calculations (73Ta30).

For calculation of heavy–ion emission probabilit ies, see 85Po14.

T1/2: from 79Sc09. Other measurement: 5.7 ms 5 (70Bo13).

0 + x †

6 0 + x † 3 0

† Level was observed in 226Np α decay.

226Np αααα Decay

Q(α ) (226Np)=8205 20+E(level in 222Pa populated by the 8060α ) . 93Au05 give Q(α ) (226Np)=8200 50 .

T1/2(226Np)=31 ms 8 , measured by 90Ni05.

222Pa Levels

E(level)

0 . 0 + x

6 0 + x 3 0

α radiations

Branching: only α decay of 226Np was observed.

EᇠE(level) Iᆧ HF#

8 0 0 0 2 0 6 0 + x 5 0 1 5 1 . 7 7

8 0 6 0 2 0 0 . 0 + x 5 0 1 5 2 . 6 1 1

† For α intensity per 100 decays, multiply by 1.0.

‡ Measurement by 93AnZS. Only one α group at 8044 20 was observed by 90Ni05.

§ α intensity per 100 α decay, measured by 93AnZS.

# r0(222Pa)=1.53 2 is used in calculations.

2 9 4

229

22U130

229

22U130NUCLEAR DATA SHEETS

Adopted Levels

S(n)=8330 SY ; S(p)=3370 SY ; Q(α )=9500 SY 93Au05.

Assignment: natural W(40Ar,xn) E=180 MeV; products were separated from the primary beam by the velocity f i lter;

parent of 214Ra (7.16–MeV α ) (83Hi12).

For calculation of nuclear–potential minimum and equilibrium deformations, see 88So08, 84Na22, 82Le19.

222U Levels

E(level) Jπ T1/2 Comments

0 . 0 0 + 1 . 0 µ s + 1 0 – 4 %α=100.

%ε+%β+<1×10–6 from gross β– decay calculations (73Ta30).

Only α decay was observed.

T1/2: from 83Hi12. α peak observed at 12.08 MeV was interpreted as the superposition of 222U

and 218Th (T1/2=122 ns) decays. The half–li fe of 1.0 µs was calculated from correlated

7.16–MeV (of granddaughter 214Ra) and 12.08–MeV α–peak rates. The r0(218Th) parameter

deduced from HF(α to g.s. from 222U)=1.0 by using Q(α ) (222U)=9500 100 , Iα (to g.s. )=80% 20

and T1/2(α )=1.0 µs +10–4 is consistent with the local systematics.

2 9 5

NUCLEAR DATA SHEETS

REFERENCES FOR A= 2 2 2

4 8 S t 4 2 M.H.Studier, E.K.Hyde – Phys.Rev. 74, 591 (1948)

4 9R o 0 8 S.Rosenblum, M.Guillot , G.Bastin–Scoffier – Compt.Rend. 229, 191 (1949)

5 0Hy 2 0 E.K.Hyde, A.Ghiorso – UCRL–593 (1950)

5 1C o 1 5 J.M.Cork, C.E.Branyan, A.E.Stoddard, H.B.Keller, J.M.LeBlanc, W.J.Childs – Phys.Rev. 83, 681 (1951)

5 1Me 1 0 W.W.Meinke, A.Ghiorso, G.T.Seaborg – Phys.Rev. 81, 782 (1951)

5 1 T o 2 5 J.Tobailem – Compt.Rend. 233, 1360 (1951)

5 2Me 1 3 W.W.Meinke, A.Ghiorso, G.T.Seaborg – Phys.Rev. 85, 429 (1952)

5 3Ba 2 9 G.Bastin–Scoffier, J.Santana–Dionisio – Compt.Rend. 236, 1016 (1953)

5 4Mi 5 3 J.C.D.Milton, J.S.Fraser – Phys.Rev. 95, 628A (1954)

5 4R o 0 5 R.R.Roy, M.L.Goes – Compt.Rend. 238, 469 (1954)

5 4R o 0 6 R.R.Roy, M.L.Goes – Compt.Rend. 238, 581 (1954)

5 4 S t 0 2 F.Stephens,Jr. , F.Asaro, I .Perlman – Phys.Rev. 96, 1568 (1954)

5 5 J u 1 4 M.K.Juric, D.M.Stanojevic – Bull .Inst.Nuclear Sci . 'Boris Kidrich' 5, 15 (1955)

5 6A s 3 8 F.Asaro, I .Perlman – Phys.Rev. 104, 91 (1956)

5 6Ha 7 1 G.Harbottle, M.McKeown, G.Scharff–Goldhaber – Phys.Rev. 103, 1776 (1956)

5 6Ma 6 4 P.C.Marin – Brit .J.Appl.Phys. 7, 188 (1956)

5 6R o 3 1 J.Robert – J.Phys.Radium 17, 605 (1956)

5 6 Sm8 8 W.G.Smith, F.Asaro, J.M.Hollander – Phys.Rev. 104, 99 (1956)

5 6 S t 2 3 D.Strominger – Thesis, Univ.California (1956); UCRL–3374 (1956)

5 8 Sh 6 9 N.S.Shimanskaia – Pribory i Tekh.Ekspt. No.2, 95 (1958); Instr.Exptl . Techniques No.2, 283 (1958)

5 8 T o 2 5 P.A.Tove – Arkiv Fysik 13, 549 (1958)

5 8Wa 1 6 R . J . W a l e n , G . B a s t i n – C o m p t . R e n d . C o n g r . I n t e r n . P h y s . N u c l . , P a r i s ( 1 9 5 8 ) , P . G u g e n b e r g e r , E d . , D u n o d , P a r i s , p . 9 1 0

(1959)

6 0B e 2 5 R.E.Bell , S.Bjornholm, J.C.Severiens – Kgl.Danske Videnskab.Selskab, Mat.–fys.Medd. 32, No.12 (1960)

6 0 S t 2 0 F.S.Stephens, F.Asaro, I .Perlman – Phys.Rev. 119, 796 (1960)

6 1 F o 0 8 R.Foucher – Thesis, University of Paris (1961)

6 1Ru 0 6 C.P.Ruiz – Thesis, Univ. California (1961); UCRL–9511 (1961)

6 3Ba 6 2 G.Bastin–Scoffier, C.F.Leang, R.J.Walen – J.Phys. 24, 854 (1963)

6 3Go 2 1 M.T.Goncalves – Compt.Rend. 257, 887 (1963)

6 3 L e 1 7 C.M.Lederer – Thesis, Univ.California (1963); UCRL–11028 (1963)

6 4Ew0 4 G.T.Ewan, A.J.Tavendale – Can.J.Phys. 42, 2286 (1964)

6 4Mc 2 1 J.D.McCoy – Soc.Sci .Fennica, Commentationes Phy.Math. 30, No.4 (1964)

6 6Wa 2 3 A.H.Wapstra, N.B.Gove – Nucl.Data B1, No.5 (1966)

6 7 L o Z Z W.Lourens – Thesis, Technische Hogeschool Delft (1967)

6 7Ma 5 1 H.Maria – Compt.Rend. 265B, 1138 (1967)

6 8B i 0 8 M.M.Biswas, B.K.Gupta, P.K.Sen, P.C.Bhattacharya – Z.Naturforsch. 23a, 1673 (1968)

6 8Ha 1 4 R.L.Hahn, M.F.Roche, K.S.Toth – Nucl.Phys. A113, 206 (1968)

6 9B r 1 0 J.–P.Briand, P.Chevallier, A.Touati – Compt.Rend. 268B, 1105 (1969)

6 9G r 3 3 K . Y . G r o m o v , B . M . S a b i r o v , J . J . U r b a n e t s – I z v . A k a d . N a u k S S S R , S e r . F i z . 3 3 , 1 6 4 6 ( 1 9 6 9 ) ; B u l l . A c a d . S c i . U S S R , P h y s . S e r .

33, 1510 (1970)

6 9 L i 1 0 E.W.A.Lingeman, J.Konijn, P.Polak, A.H.Wapstra – Nucl.Phys. A133, 630 (1969)

6 9 P e 1 7 A.Peghaire – Nucl.Instr.Methods 75, 66 (1969)

6 9Wa 2 7 G.Wallace, G.E.Coote – Nucl.Instr.Methods 74, 353 (1969)

7 0B o 1 3 J.Borggreen, K.Valli , E.K.Hyde – Phys.Rev. C2, 1841 (1970)

7 0Mo 2 8 R.S.Mowatt – Can.J.Phys. 48, 2606 (1970)

7 0Ne 0 8 K.Neergard, P.Vogel – Nucl.Phys. A149, 217 (1970)

7 0O r 0 2 B.Orre, A.Linnfors, F.Falk, J.E.Thun, L.Johansson – Nucl.Phys. A148, 516 (1970)

7 0 T o 0 7 D.F.Torgerson, R.D.Macfarlane – Nucl.Phys. A149, 641 (1970)

7 0Va 1 3 K.Valli , E.K.Hyde, J.Borggreen – Phys.Rev. C1, 2115 (1970)

7 1G r 1 7 B.Grennberg, A.Rytz – Metrologia 7, 65 (1971)

7 1He 1 9 W.H.A.Hesselink, M.van Kampen – Z.Phys. 247, 161 (1971)

7 1 L o 1 9 W.Lourens, A.H.Wapstra – Z.Phys. 247, 147 (1971)

7 2Bu 3 3 D.K.Butt, A.R.Wilson – J.Phys.(London) A5, 1248 (1972)

7 2E s 0 3 K.Eskola – Phys.Rev. C5, 942 (1972)

7 3A f ZV V . P . A f a n a s e v , T s . V y l o v , N . A . G o l o v k o v , I . I . G r o m o v a , B . S . D z h e l e p o v , R . B . I v a n o v , A . K o l a c h k o v s k i , M . A . M i k h a i l o v ,

Yu.V.Norseev, V.G.Chumin – Symp.Nucl.Spectrosc.Nucl.Theory, 13th, Dubna, p.161 (1973); JINR–D6–7094 (1973)

7 3De 5 0 A.G.de Pinho, M.Weksler – Z.Naturforsch. 28a, 1635 (1973)

7 3Mo 0 7 D.Molzahn, R.Brandt – Phys.Rev. C7, 2596 (1973)

7 3 T a 3 0 K.Takahashi, M.Yamada, T.Kondoh – At.Data Nucl.Data Tables 12, 101 (1973)

7 4A l ZT V.S.Aleksandrov, T.Vylov, T.M.Muminov, B.P.Osipenko – JINR–PL–7308 (1974)

7 4O r 0 2 B.Orre, L.O.Norlin, F.Falk, K.Johansson, T.Noreland, A.Arnesen – Phys.Lett. 51B, 39 (1974)

7 4Va 2 8 V . M . V a k h t e l , T . V y l o v , N . A . G o l o v k o v , B . S . D z h e l e p o v , R . B . I v a n o v , A . L y a t u s h i n s k i , M . A . M i k h a i l o v a , A . V . M o z z h u k h i n ,

V . O . S e r g e e v , V . G . C h u m i n – I z v . A k a d . N a u k S S S R , S e r . F i z . 3 8 , 1 6 3 9 ( 1 9 7 4 ) ; B u l l . A c a d . S c i . U S S R , P h y s . S e r . 3 8 , N o . 8 , 6 8

(1974)

7 5Ha 3 1 A.Hachem – C.R.Acad.Sci . , Ser.B 281, 45 (1975)

7 5Va ZD V . M . V a k h t e l , N . A . G a l o v k o v , B . S . D z h e l e p o v , R . B . I v a n o v , A . L y a t u s h i n s k i , M . A . M i k h a i l o v a , A . V . M o z z h u k h i n , V . G . C h u m i n –

Program and Theses, Proc.23rd Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei , Leningrad, p.156 (1975)

7 5We 2 3 L.Westgaard, K.Aleklett , G.Nyman, E.Roeckl – Z.Phys. A275, 127 (1975)

2 9 6

NUCLEAR DATA SHEETS

REFERENCES FOR A= 2 2 2 ( CONT I NUED )

7 6De 4 8 R.J.de Meijer, R.Braams – Ingenieur (The Hague) 88, 400 (1976)

7 6Ku 0 8 W . K u r c e w i c z , N . K a f f r e l l , N . T r a u t m a n n , A . P l o c h o c k i , J . Z y l i c z , K . S t r y c z n i e w i c z , I . Y u t l a n d o v – N u c l . P h y s . A 2 7 0 , 1 7 5

(1976)

7 6Va ZC V . M . V a k h t e l , T . V y l o v , N . A . G o l o v k o v , V . M . G o r o z h a n k i n , B . S . D z h e l e p o v , R . B . I v a n o v , M . A . M i k h a i l o v a , V . G . C h u m i n –

Program and Theses, 26th Ann.Conf.Nucl.Spectros. , Baku, p.134 (1976)

7 7Ba 7 0 M.K.Basu – Indian J.Phys. 51A, 15 (1977)

7 7 Z o 0 1 V.Zobel, J.Eberth, U.Eberth, E.Eube – Nucl.Instrum.Methods 141, 329 (1977)

7 8Ek 0 2 C.Ekstrom, S.Ingelman, G.Wannberg, M.Skarestad – Phys.Scr. 18, 51 (1978)

7 9 P o 2 3 D.N.Poenaru, M.Ivascu, A.Sandulescu – J.Phys.(Paris) , Lett. 40, L–465 (1979)

7 9 S c 0 9 K . – H . S c h m i d t , W . F a u s t , G . M u n z e n b e r g , H . – G . C l e r c , W . L a n g , K . P i e l e n z , D . V e r m e u l e n , H . W o h l f a r t h , H . E w a l d , K . G u t t n e r –

Nucl.Phys. A318, 253 (1979)

8 0Ka 4 1 S.G.Kadmensky, S.D.Kurgalin – Izv.Akad.Nauk SSSR, Ser.Fiz. 44, 1955 (1980)

8 0 Sh 0 7 R.K.Sheline – Phys.Rev. C21, 1660 (1980)

8 1Gy 0 3 A.Gyurkovich, A.Sobiczewski, B.Nerlo–Pomorska, K.Pomorski – Phys.Lett. 105B, 95 (1981)

8 1We 1 8 W.Westmeier – Nucl.Instrum.Methods 180, 205 (1981)

8 2Ak 0 3 H.Akcay, G.Mouze, D.Maillard, Ch.Ythier – Radiochem.Radioanal.Lett. 51, 1 (1982)

8 2B o 0 4 J.D.Bowman, R.E.Eppley, E.K.Hyde – Phys.Rev. C25, 941 (1982)

8 2Du 1 6 J.Dudek, W.Nazarewicz, Z.Szymanski – Phys.Rev. C26, 1708 (1982)

8 2 F a 1 0 M.A.Farouk, A.M.Al–Soraya – Nucl.Instrum.Methods 200, 593 (1982)

8 2 L e 1 9 G.A.Leander, R.K.Sheline, P.Moller, P.Olanders, I .Ragnarsson, A.J.Sierk – Nucl.Phys. A388, 452 (1982)

8 3Bu 1 4 D.D.Burgess, R.J.Tervo – Nucl.Instrum.Methods 214, 431 (1983)

8 3C o 2 2 N.Coursol , F.Lagoutine – Int.J.Appl.Radiat.Isotop. 34, 1269 (1983)

8 3H i 1 2 R.Hingmann, H.–G.Clerc, C.–C.Sahm, D.Vermeulen, K.–H.Schmidt, J.G.Keller – Z.Phys. A313, 141 (1983)

8 3 I a 0 1 F.Iachello – Nucl.Phys. A396, 233c (1983)

8 3O l 0 1 D.G.Olson – Nucl.Instrum.Methods 206, 313 (1983)

8 3 P i 0 4 R.Piepenbring – Phys.Rev. C27, 2968 (1983)

8 3R o 1 4 P.Rozmej, B.Nerlo–Pomorska, K.Pomorski – Nucl.Phys. A405, 252 (1983)

8 3 S c 1 3 U.Schotzig, K.Debertin – Int.J.Appl.Radiat.Isotop. 34, 533 (1983)

8 3Wa 2 0 D.Ward, G.D.Dracoulis, J.R.Leigh, R.J.Charity, D.J.Hinde, J.O.Newton – Nucl.Phys. A406, 591 (1983)

8 4Bu 3 8 J . D . B u r r o w s , P . A . B u t l e r , K . A . C o n n e l l , G . D . J o n e s , A . N . J a m e s , A . M . Y . E l – L a w i n d y , T . P . M o r r i s o n , J . S i m p s o n , R . W a d s w o r t h

– Nucl.Instrum.Methods 227, 259 (1984)

8 4 F r 0 6 S.Frauendorf, V.V.Pashkevich – Phys.Lett. 141B, 23 (1984)

8 4K l 0 6 H.V.Klapdor, J.Metzinger, T.Oda – At.Data Nucl.Data Tables 31, 81 (1984)

8 4Na 0 8 W . N a z a r e w i c z , P . O l a n d e r s , I . R a g n a r s s o n , J . D u d e k , G . A . L e a n d e r – P h y s . R e v . L e t t . 5 2 , 1 2 7 2 ( 1 9 8 4 ) ; E r r a t u m

Phys.Rev.Lett. 53, 2060 (1984)

8 4Na 2 2 W.Nazarewicz, P.Olanders, I .Ragnarsson, J.Dudek, G.A.Leander, P.Moller, E.Ruchowska – Nucl.Phys. A429, 269 (1984)

8 4 P o 0 8 D.N.Poenaru, M.Ivascu, A.Sandulescu, W.Greiner – J.Phys.(London) G10, L183 (1984)

8 5B o 3 2 W.Bonin, H.Backe, M.Dahlinger, S.Glienke, D.Habs, E.Hanelt, E.Kankeleit , B.Schwartz – Z.Phys. A322, 59 (1985)

8 5C o 2 4 A . C o c , C . T h i b a u l t , F . T o u c h a r d , H . T . D u o n g , P . J u n c a r , S . L i b e r m a n , J . P i n a r d , J . L e r m e , J . L . V i a l l e , S . B u t t g e n b a c h ,

A.C.Mueller, A.Pesnelle, and the ISOLDE Collaboration – Phys.Lett. 163B, 66 (1985)

8 5Go 0 5 N.A.Golvkov, B.S.Dzhelepov, R.B.Ivanov, M.A.Mikhailova – Izv.Akad.Nauk SSSR, Ser.Fiz. 49, 21 (1985)

8 5Ho 2 1 E.Hourani, M.Hussonnois, L.Stab, L.Bril lard, S.Gales, J.P.Schapira – Phys.Lett. 160B, 375 (1985)

8 5Na 0 7 W.Nazarewicz, P.Olanders – Nucl.Phys. A441, 420 (1985)

8 5Ne 0 9 R.Neugart – Hyperfine Interactions 24, 159 (1985)

8 5 P o 1 1 D.N.Poenaru, M.Ivascu, A.Sandulescu, W.Greiner – Phys.Rev. C32, 572 (1985)

8 5 P o 1 4 D.N.Poenaru, M.Ivascu – J.Phys.(Paris) , Lett. 46, L591 (1985)

8 5 P r 0 1 P.B.Price, J.D.Stevenson, S.W.Barwick, H.L.Ravn – Phys.Rev.Lett. 54, 297 (1985)

8 5 Sh 0 1 Y.–J.Shi, W.J.Swiatecki – Phys.Rev.Lett. 54, 300 (1985)

8 6B o 1 9 P.Bonche, P.H.Heenen, H.Flocard, D.Vautherin – Phys.Lett. 175B, 387 (1986)

8 6Ch 2 3 R.R.Chasman – Phys.Lett. 175B, 254 (1986)

8 6Ch 3 6 M.L.Chaudhury, S.M.Chatterjee – Fizika(Zagreb) 18, 161 (1986)

8 6Da 0 3 H.J.Daley, B.R.Barrett – Nucl.Phys. A449, 256 (1986)

8 6De 3 2 H.G.de Carvalho, J.B.Martins, O.A.P.Tavares – Phys.Rev. C34, 2261 (1986)

8 6Do 0 3 C.O.Dorso, W.D.Myers, W.J.Swiatecki – Nucl.Phys. A451, 189 (1986)

8 6Ek 0 2 C.Ekstrom, L.Robertsson, A.Rosen – Phys.Scr. 34, 624 (1986)

8 6G r 2 0 M.Greiner, W.Scheid – J.Phys.(London) G12, L229 (1986)

8 6 I r 0 1 M.Iriondo, D.Jerrestam, R.J.Liotta – Nucl.Phys. A454, 252 (1986)

8 6Ka 4 6 S.G.Kadmensky, V.I .Furman, Yu.M.Chuvilsky – Izv.Akad.Nauk SSSR, Ser.Fiz. 50, 1786 (1986)

8 6 L a 0 1 S.Landowne, C.H.Dasso – Phys.Rev. C33, 387 (1986)

8 6 L e 0 5 G.A.Leander, W.Nazarewicz, G.F.Bertsch, J.Dudek – Nucl.Phys. A453, 58 (1986)

8 6 P i 1 1 G.A.Pik–Pichak – Yad.Fiz. 44, 1421 (1986)

8 6 P o 1 5 D.N.Poenaru, W.Greiner, M.Ivascu, D.Mazilu, I .H.Plonski – Z.Phys. A325, 435 (1986)

8 6Ru 1 1 V . A . R u b c h e n y a , V . P . E i s m o n t , S . G . Y a v s h i t s – I z v . A k a d . N a u k S S S R , S e r . F i z . 5 0 , 1 0 1 6 ( 1 9 8 6 ) ; B u l l . A c a d . S c i . U S S R ,

Phys.Ser. 50, No.5, 184 (1986)

8 6 S c 1 8 P . S c h u l e r , C h . L a u t e r b a c h , Y . K . A g a r w a l , J . D e B o e r , K . P . B l u m e , P . A . B u t l e r , K . E u l e r , C h . F l e i s c h m a n n , C . G u n t h e r ,

E.Hauber, H.J.Maier, M.Marten–Tolle, Ch.Schandera, R.S.Simon, R.Tolle, P.Zeyen – Phys.Lett. 174B, 241 (1986)

8 7B e 4 3 T.Berggren, P.Olanders – Nucl.Phys. A473, 189 (1987)

8 7B l 0 4 R.Blendowske, T.Fliessbach, H.Walliser – Nucl.Phys. A464, 75 (1987)

2 9 7

NUCLEAR DATA SHEETS

REFERENCES FOR A= 2 2 2 ( CONT I NUED )

8 7C o 1 9 A . C o c , C . T h i b a u l t , F . T o u c h a r d , H . T . D u o n g , P . J u n c a r , S . L i b e r m a n , J . P i n a r d , M . C a r r e , J . L e r m e , J . L . V i a l l e ,

S.Buttgenbach, A.C.Mueller, A.Pesnelle, and the ISOLDE Collaboration – Nucl.Phys. A468, 1 (1987)

8 7E l 0 1 Y.A.Ellis–Akovali – Nucl.Data Sheets 50, 229 (1987)

8 7En 0 5 J.Engel, F.Iachello – Nucl.Phys. A472, 61 (1987)

8 7Gu 0 4 R.K.Gupta, S.Gulati , S.S.Malik, R.Sultana – J.Phys.(London) G13, L27 (1987)

8 7 I v 0 1 M.Ivascu, A.Sandulescu, I .Sil isteanu – Rev.Roum.Phys. 32, 549 (1987)

8 7Ka 3 7 A.B.Kabulov – Izv.Akad.Nauk SSSR, Ser.Fiz. 51, 939 (1987)

8 7Ko ZF T.Kohno, Y.Gono, Ch.Briancon, F.A.Beck, and the Chateau de Cristal Collaboration – RIKEN–86, p.17 (1987)

8 7Mi 1 0 G.J.Miller, J.C.McGeorge, I .Anthony, R.O.Owens – Phys.Rev. C36, 420 (1987)

8 7Na 1 0 W.Nazarewicz, G.A.Leander, J.Dudek – Nucl.Phys. A467, 437 (1987)

8 7 P o 0 8 D.N.Poenaru, M.Ivascu, D.Mazilu, I .H.Plonski – Rev.Roum.Phys. 32, 283 (1987)

8 7R o 0 8 L.M.Robledo, J.L.Egido, J.F.Berger, M.Girod – Phys.Lett. 187B, 223 (1987)

8 7 Sh 0 4 Y.–J.Shi, W.J.Swiatecki – Nucl.Phys. A464, 205 (1987)

8 7We 0 3 K . W e n d t , S . A . A h m a d , W . K l e m p t , R . N e u g a r t , E . W . O t t e n , H . H . S t r o k e , a n d t h e I S O L D E C o l l a b o r a t i o n – Z . P h y s . D 4 , 2 2 7

(1987)

8 8Ah 0 2 S . A . A h m a d , W . K l e m p t , R . N e u g a r t , E . W . O t t e n , P . – G . R e i n h a r d , G . U l m , K . W e n d t , a n d t h e I S O L D E C o l l a b o r a t i o n – N u c l . P h y s .

A483, 244 (1988)

8 8Ba 0 1 F.Barranco, R.A.Broglia, G.F.Bertsch – Phys.Rev.Lett. 60, 507 (1988)

8 8Ba 4 8 F.Barranco, E.Vigezzi , R.A.Broglia, G.F.Bertsch – Phys.Rev. C38, 1523 (1988)

8 8B l 1 1 R.Blendowske, H.Walliser – Phys.Rev.Lett. 61, 1930 (1988)

8 8Ha Z J D . H a b s , D . S c h w a l m , B . S c h w a r t z , M . D a h l i n g e r , E . K a n k e l e i t , R . S . S i m o n , H . B a c k e , J . D . B u r r o w s , P . A . B u t l e r – P r o c . o f t h e

C o n f . o n H i g h – S p i n N u c l e a r S t r u c t u r e a n d N o v e l N u c l e a r S h a p e s , A p r i l 1 3 – 1 5 , 1 9 8 8 , A r g o n n e N a t i o n a l L a b o r a t o r y ,

Argonne, Il l inois; ANL–PHY–88–2, p.121 (1988)

8 8Hu 0 8 M.Huyse, P.Dendooven, K.Deneffe – Nucl.Instrum.Methods Phys.Res. B31, 483 (1988)

8 8 I v 0 2 M.Ivascu, I .Sil isteanu – Nucl.Phys. A485, 93 (1988)

8 8Na 0 8 E . G . N a d z h a k o v , I . N . M i k h a i l o v – I z v . A k a d . N a u k S S S R , S e r . F i z . 5 2 , 1 1 1 ( 1 9 8 8 ) ; B u l l . A c a d . S c i . U S S R , P h y s . S e r . 5 2 , N o . 1 ,

104 (1988)

8 8O t 0 2 T.Otsuka, M.Sugita – Phys.Lett. 209B, 140 (1988)

8 8R o 0 2 L.M.Robledo, J.L.Egido, B.Nerlo–Pomorska, K.Pomorski – Phys.Lett. 201B, 409 (1988)

8 8R o 0 5 P.Rozmej, S.Cwiok, A.Sobiczewski – Phys.Lett. 203B, 197 (1988)

8 8 S c ZN B.Schwartz, D.Habs, D.Schwalm, M.Dahlinger, E.Kankeleit , H.Folger, R.S.Simon – GSI–88–1, p.33 (1988)

8 8 Sh 2 9 G.Shanmugam, B.Kamalaharan – Phys.Rev. C38, 1377 (1988)

8 8 S o 0 8 A.Sobiczewski, Z.Patyk, S.Cwiok, P.Rozmej – Nucl.Phys. A485, 16 (1988)

8 8 T a 2 5 A.V.Tarakanov, V.M.Shilov – Yad.Fiz. 48, 109 (1988); Sov.J.Nucl.Phys. 48, 68 (1988)

8 9An 1 3 A . N . A n d r e e v , D . D . B o g d a n o v , A . V . E r e m i n , A . P . K a b a c h e n k o , O . A . O r l o v a , G . M . T e r – A k o p y a n , V . I . C h e p i g i n – Y a d . F i z . 5 0 , 6 1 9

(1989)

8 9Bu 0 6 B.Buck, A.C.Merchant – Phys.Rev. C39, 2097 (1989)

8 9Bu 0 9 D . G . B u r k e , H . F o l g e r , H . G a b e l m a n n , E . H a g e b o , P . H i l l , P . H o f f , O . J o n s s o n , N . K a f f r e l l , W . K u r c e w i c z , G . L o v h o i d e n , K . N y b o ,

G . N y m a n , H . R a v n , K . R i i s a g e r , J . R o g o w s k i , K . S t e f f e n s e n , T . F . T h o r s t e i n s e n , a n d t h e I S O L D E C o l l a b o r a t i o n – Z . P h y s .

A333, 131 (1989)

8 9C i 0 3 N.Cindro, M.Bozin – Phys.Rev. C39, 1665 (1989)

8 9De 1 1 V.Yu.Denisov – Yad.Fiz. 49, 644 (1989)

8 9Eg 0 2 J.L.Egido, L.M.Robledo – Nucl.Phys. A494, 85 (1989)

8 9Ma 2 1 S.S.Malik, R.K.Gupta – Phys.Rev. C39, 1992 (1989)

8 9 P o 0 3 R . J . P o y n t e r , P . A . B u t l e r , G . D . J o n e s , R . J . T a n n e r , C . A . W h i t e , J . R . H u g h e s , S . M . M u l l i n s , R . W a d s w o r t h , D . L . W a t s o n ,

J.Simpson – J.Phys.(London) G15, 449 (1989)

8 9Ra 1 7 P.Raghavan – At.Data Nucl.Data Tables 42, 189 (1989)

8 9 Sh 3 7 Y.Shi, W.J.Swiatecki – Chin.J.Nucl.Phys. 11, No. 4, 31 (1989)

9 0An ZU A.N.Andreev , D .D .Bogdanov , A .V .Eremin , A .P .Kabachenko , O .N .Malyshev , G .M.Ter–Akopyan , V . I .Chep ig in – J INR–P7–90–232

(1990)

9 0Ba 2 0 F.Barranco, G.F.Bertsch, R.A.Broglia, E.Vigezzi – Nucl.Phys. A512, 253 (1990)

9 0Bu 0 9 B.Buck, A.C.Merchant – J.Phys.(London) G16, L85 (1990)

9 0Bu 3 0 B.Buck, A.C.Merchant, S.M.Perez – Phys.Rev.Lett. 65, 2975 (1990)

9 0Hu 0 7 M.Hussonnois, J.F.Le Du, L.Bril lard, G.Ardisson – Phys.Rev. C42, R495 (1990); Erratum Phys.Rev. C43 916 (1991)

9 0Ka 1 5 S.G.Kadmensky, S.D.Kurgalin, V.I .Furman, Yu.M.Chuvilsky – Yad.Fiz. 51, 50 (1990); Sov.J.Nucl.Phys. 51, 32 (1990)

9 0N i 0 5 V . N i n o v , F . P . H e s s b e r g e r , P . A r m b r u s t e r , S . H o f m a n n , G . M u n z e n b e r g , M . L e i n o , Y . F u j i t a , D . A c k e r m a n n , W . M o r a w e k ,

A.Luttgen – Z.Phys. A336, 473 (1990)

9 0 Sh 0 1 G.Shanmugam, B.Kamalaharan – Phys.Rev. C41, 1184 (1990)

9 1An Z Z A . N . A n d r e e v , D . D . B o g d a n o v , A . V . E r e m i n , A . P . K a b a c h e n k o , O . N . M a l y s h e v , G . M . T e r – A k o p y a n , V . I . C h e p i g i n – P r o g r a m a n d

Thesis, Proc.41st Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei , Minsk, p.120 (1991)

9 1Bu 0 1 B.Buck, A.C.Merchant, S.M.Perez – J.Phys.(London) G17, L91 (1991)

9 1Bu 1 0 P.A.Butler, W.Nazarewicz – Nucl.Phys. A533, 249 (1991)

9 1Eg 0 1 J.L.Egido, L.M.Robledo – Nucl.Phys. A524, 65 (1991)

9 1Hu 0 2 M.Hussonnois, J.F.Le Du, L.Bril lard, J.Dalmasso, G.Ardisson – Phys.Rev. C43, 2599 (1991)

9 1 L i 1 1 W.–J.Lin, G.Harbottle – J.Radioanal.Nucl.Chem. 153, 137 (1991)

9 1Ry 0 1 A.Rytz – At.Data Nucl.Data Tables 47, 205 (1991)

9 1 S k 0 1 J.Skalski – Phys.Rev. C43, 140 (1991)

9 2Ch 2 0 R.R.Chasman – Phys.Lett. 280B, 187 (1992)

2 9 8

NUCLEAR DATA SHEETS

REFERENCES FOR A= 2 2 2 ( CONT I NUED )

9 2De 4 4 D.S.Delion, A.Insolia, R.J.Liotta – Phys.Rev. C46, 1346 (1992)

9 2Gu 1 0 R.J.Gupta, S.Singh, R.K.Puri, A.Sandulescu, W.Greiner, W.Scheid – J.Phys.(London) G18, 1533 (1992)

9 2Ru 0 1 E.Ruchowska, J.Zylicz, C.F.Liang, P.Paris, Ch.Briancon – J.Phys.(London) G18, 131 (1992)

9 2 S k Z Z J . S k a l s k i , P . – H . H e e n e n , P . B o n c h e , H . F l o c a r d , J . M e y e r – P r o c . I n t . C o n f . N u c l e a r S t r u c t u r e a t H i g h A n g u l a r M o m e n t u m ,

Ottawa, p.260 (1992); AECL–10613 (1992)

9 2Wo 1 4 J.Wouters, P.De Moor, P.Schuurmans, N.Severijns, W.Vanderpoorten, L.Vanneste – Hyperfine Interactions 75, 381 (1992)

9 3An ZS A . N . A n d r e y e v , D . D . B o g d a n o v , V . I . C h e p i g i n , M . F l o r e k , A . P . K a b a c h e n k o , O . N . M a l y s h e v , S . S h a r o , G . M . T e r – A k o p i a n ,

M . V e s e l s k y , A . V . Y e r e m i n – P r o c . 6 t h I n t e r n . C o n f . o n N u c l e i F a r f r o m S t a b i l i t y + 9 t h I n t e r n . C o n f . o n A t o m i c M a s s e s a n d

Fundamental Constants, Bernkastel–Kues, Germany, 19–24 July, 1992, R.Neugart, A.Wohr, Eds. , p.759 (1993)

9 3Au 0 5 G.Audi, A.H.Wapstra – Nucl.Phys. A565, 1 (1993)

9 3Bu 0 5 B.Buck, A.C.Merchant, S.M.Perez, P.Tripe – Phys.Rev. C47, 1307 (1993)

9 3De 3 8 D.S.Delion, A.Insolia, R.J.Liotta – J.Phys.(London) G19, L189 (1993)

9 3D i 0 9 O.Diallo, G.Mouze, C.Ythier, J.F.Comanducci – Nuovo Cim. 106A, 1321 (1993)

9 3Dz 0 1 A . Y a . D z y u b l i k , V . Y u . D e n i s o v – Y a d . F i z . 5 6 , N o 3 , 3 0 ( 1 9 9 3 ) ; P h y s . A t o m i c N u c l e i 5 6 , 3 0 3 ( 1 9 9 3 ) ; C O R R I G E N D A

Phys.Atomic Nuclei 57, 1275 (1994)

9 3Go 1 8 M.Goncalves, S.B.Duarte – Phys.Rev. C48, 2409 (1993)

9 3G r 1 5 A.F.Grashin, A.D.Efimenko – Bull .Rus.Acad.Sci .Phys. 57, 824 (1993)

9 3Gu 1 1 R.K.Gupta, M.Horoi, A.Sandulescu, M.Greiner, W.Scheid – J.Phys.(London) G19, 2063 (1993)

9 3Ka 2 1 S . G . K a d m e n s k y , S . D . K u r g a l i n , V . I . F u r m a n , Y u . M . C h u v i l s k y – Y a d . F i z . 5 6 , N o 8 , 8 0 ( 1 9 9 3 ) ; P h y s . A t o m i c N u c l e i 5 6 , 1 0 3 8

(1993)

9 3 S i 2 6 I.Sil isteanu, M.Ivascu, I .Rotter – Roum.J.Phys. 38, 55 (1993)

9 3Y o 0 2 N.Yoshinaga, T.Mizusaki, T.Otsuka – Nucl.Phys. A559, 193 (1993)

9 4Bu 0 7 B.Buck, A.C.Merchant, S.M.Perez, P.Tripe – J.Phys.(London) G20, 351 (1994)

9 4Cw0 1 S.Cwiok, W.Nazarewicz, J.X.Saladin, W.Plociennik, A.Johnson – Phys.Lett. 322B, 304 (1994)

9 4Da 2 6 A . D ' A r r i g o , N . V . E r e m i n , G . F a z i o , G . G i a r d i n a , M . G . G l o t o v a , T . V . K l o c h k o , M . S a c c h i , A . T a c c o n e – P h y s . L e t t . 3 3 2 B , 2 5

(1994)

9 4De 3 8 D.S.Delion, A.Insolia, R.J.Liotta – J.Phys.(London) G20, 1483 (1994)

9 4 L i 0 5 X.Li, J.Dudek – Phys.Rev. C49, R1250 (1994)

9 5De 1 3 V.Yu.Denisov, A.Ya.Dzyublik – Nucl.Phys. A589, 17 (1995)

9 5 S i 0 5 I.Sil isteanu, W.Scheid – Phys.Rev. C51, 2023 (1995)


Recommended