+ All Categories
Home > Documents > One million years of cultural evolution in a stable environment at Atapuerca (Burgos, Spain)

One million years of cultural evolution in a stable environment at Atapuerca (Burgos, Spain)

Date post: 23-Apr-2023
Category:
Upload: independent
View: 0 times
Download: 0 times
Share this document with a friend
17
One million years of cultural evolution in a stable environment at Atapuerca (Burgos, Spain) J. Rodríguez a, * , F. Burjachs b , G. Cuenca-Bescós c , N. García d, e , J. Van der Made f , A. Pérez González a , H.-A. Blain g , I. Expósito g , J.M. López-García g , M. García Antón h , E. Allué g , I. Cáceres g , R. Huguet g , M. Mosquera g , A. Ollé g , J. Rosell g , J.M. Parés a , X.P. Rodríguez g , C. Díez i , J. Rofes d , R. Sala g , P. Saladié g , J. Vallverdú g , M.L. Bennasar g , R. Blasco g , J.M. Bermúdez de Castro a , E. Carbonell g, j, 1 a Centro Nacional de Investigación sobre la Evolución Humana, Avenida de la Paz 28, 09004 Burgos, Spain b ICREA Research Professor at Institut Català de Paleoecologia Humana i Evolució Social, Plaça Imperial Tarraco 1, 43005 Tarragona, Spain c Area de Paleontología, Facultad de Ciencias, Universidad de Zaragoza, c/Pedro Cerbuna, 12, 50009 Zaragoza, Spain d Departamento de Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain e Centro de Investigación (UCM-ISCIII) de Evolución y Comportamiento Humanos, c/Sinesio Delgado, 4 (Pabellón 14), 28029 Madrid, Spain f Departamento de Paleobiología, Museo Nacional de Ciencias Naturales, C.S.I.C., José G. Abascal 2, 28006 Madrid, Spain g IPHES (Institut Català de Paleoecologia Humana i Evolució Social). Área de Prehistòria, Universitat Rovira i Virgili, Plaça Imperial Tarraco 1, 43005 Tarragona, Spain h Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain i Dpto. CC. Históricas. Laboratorio de Prehistoria. IþDþI, Plaza Misael Bañuelos, Universidad de Burgos 09001 Burgos, Spain j IPHES. Àrea de Prehistòria, Universitat Rovira i Virgili, Imperial Tarraco 1, 43005 Tarragona, Spain article info Article history: Received 16 June 2009 Received in revised form 16 February 2010 Accepted 16 February 2010 Available online 23 March 2010 abstract The present paper analyses the evidence provided by three sites (Sima del Elefante, Gran Dolina, and Galería) located in the Trinchera del Ferrocarril of the Sierra de Atapuerca. These three sites are cave inllings that contain sediments deposited from approximately 1.2 Ma to 200 kyr. Pollen, herpeto- fauna, and small and large mammal remains are used as proxies to obtain a general picture of the environmental changes that occurred at the Sierra de Atapuerca throughout the one million-year period represented at these sites. Similarly, cultural changes are tracked analyzing the evidence of human behavior obtained from the study of several bone and lithic assemblages from these three sites. At least three periods with different cultural features, involving technology, subsistence and behavior, are determined from the available evidence. The rst two periods correspond to the Mode 1 tech- nology and Homo antecessor: the rst is dated around 1.2 to 1.0 Ma and reects opportunistic behavior both in technology and subsistence. The second period is around 800 kyr BP. Mode 1 technology is still maintained, but subsistence strategies include systematic hunting and the use of base camps. The third period is dated between 500 ka and 200 ka and corresponds to the Mode 2 technology and the acquisition of directional hunting and other organizational strategies by Homo heidelbergensis. A transition from Mode 2 to Mode 3 seems to appear at the end of this time-range, and may reect the early phases of a fourth cultural change. With regard to the environment, our main conclusion is that there was an absence of extremely harsh conditions at Atapuerca throughout this time period. The presence of Mediterranean taxa was constant and the dominant landscape was a savannah-like open environment, probably with small forest patches. An alternation of Mediterranean and mesic species * Corresponding author. Tel.: þ34 947 255006. E-mail addresses: [email protected] (J. Rodríguez), [email protected] (F. Burjachs), [email protected] (G. Cuenca-Bescós), [email protected] (N. García), [email protected] (J. Van der Made), [email protected] (A. Pérez González), [email protected] (I. Blain), [email protected] (I. Expósito), [email protected] (J.M. López-García), [email protected] (M. García Antón), [email protected] (E. Allué), [email protected] (I. Cáceres), [email protected] (R. Huguet), [email protected] (M. Mosquera), [email protected] (A. Ollé), [email protected] (J. Rosell), [email protected] (J.M. Parés), [email protected] (X.P. Rodríguez), [email protected] (C. Díez), [email protected] (J. Rofes), [email protected] (R. Sala), [email protected] (P. Saladié), [email protected] (J. Vallverdú), [email protected] (M.L. Bennasar), [email protected] (R. Blasco), [email protected] (J.M. Bermúdez de Castro), [email protected] (E. Carbonell). 1 Visiting Professor IVPP (Beijing). Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev 0277-3791/$ e see front matter Ó 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.quascirev.2010.02.021 Quaternary Science Reviews 30 (2011) 1396e1412
Transcript

lable at ScienceDirect

Quaternary Science Reviews 30 (2011) 1396e1412

Contents lists avai

Quaternary Science Reviews

journal homepage: www.elsevier .com/locate/quascirev

One million years of cultural evolution in a stable environment at Atapuerca(Burgos, Spain)

J. Rodríguez a,*, F. Burjachs b, G. Cuenca-Bescós c, N. García d,e, J. Van der Made f, A. Pérez González a,H.-A. Blain g, I. Expósito g, J.M. López-García g, M. García Antón h, E. Allué g, I. Cáceres g, R. Huguet g,M. Mosquera g, A. Ollé g, J. Rosell g, J.M. Parés a, X.P. Rodríguez g, C. Díez i, J. Rofes d, R. Sala g, P. Saladié g,J. Vallverdú g, M.L. Bennasar g, R. Blasco g, J.M. Bermúdez de Castro a, E. Carbonell g, j,1

aCentro Nacional de Investigación sobre la Evolución Humana, Avenida de la Paz 28, 09004 Burgos, Spainb ICREA Research Professor at Institut Català de Paleoecologia Humana i Evolució Social, Plaça Imperial Tarraco 1, 43005 Tarragona, SpaincArea de Paleontología, Facultad de Ciencias, Universidad de Zaragoza, c/Pedro Cerbuna, 12, 50009 Zaragoza, SpaindDepartamento de Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, 28040 Madrid, SpaineCentro de Investigación (UCM-ISCIII) de Evolución y Comportamiento Humanos, c/Sinesio Delgado, 4 (Pabellón 14), 28029 Madrid, SpainfDepartamento de Paleobiología, Museo Nacional de Ciencias Naturales, C.S.I.C., José G. Abascal 2, 28006 Madrid, Spaing IPHES (Institut Català de Paleoecologia Humana i Evolució Social). Área de Prehistòria, Universitat Rovira i Virgili, Plaça Imperial Tarraco 1, 43005 Tarragona, SpainhDepartamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, SpainiDpto. CC. Históricas. Laboratorio de Prehistoria. IþDþI, Plaza Misael Bañuelos, Universidad de Burgos 09001 Burgos, Spainj IPHES. Àrea de Prehistòria, Universitat Rovira i Virgili, Imperial Tarraco 1, 43005 Tarragona, Spain

a r t i c l e i n f o

Article history:Received 16 June 2009Received in revised form16 February 2010Accepted 16 February 2010Available online 23 March 2010

* Corresponding author. Tel.: þ34 947 255006.E-mail addresses: [email protected] (J. R

García), [email protected] (J. Van der Made)Expósito), [email protected] (J.M. López-Ga(I. Cáceres), [email protected] (R. Huguet)[email protected] (J.M. Parés), josepedro.rod(R. Sala), [email protected] (P. Saladié),(R. Blasco), [email protected] (J.M. Bermúdez de Cast

1 Visiting Professor IVPP (Beijing).

0277-3791/$ e see front matter � 2010 Elsevier Ltd.doi:10.1016/j.quascirev.2010.02.021

a b s t r a c t

The present paper analyses the evidence provided by three sites (Sima del Elefante, Gran Dolina, andGalería) located in the Trinchera del Ferrocarril of the Sierra de Atapuerca. These three sites are caveinfillings that contain sediments deposited from approximately 1.2 Ma to 200 kyr. Pollen, herpeto-fauna, and small and large mammal remains are used as proxies to obtain a general picture of theenvironmental changes that occurred at the Sierra de Atapuerca throughout the one million-yearperiod represented at these sites. Similarly, cultural changes are tracked analyzing the evidence ofhuman behavior obtained from the study of several bone and lithic assemblages from these three sites.At least three periods with different cultural features, involving technology, subsistence and behavior,are determined from the available evidence. The first two periods correspond to the Mode 1 tech-nology and Homo antecessor: the first is dated around 1.2 to 1.0 Ma and reflects opportunistic behaviorboth in technology and subsistence. The second period is around 800 kyr BP. Mode 1 technology is stillmaintained, but subsistence strategies include systematic hunting and the use of base camps. The thirdperiod is dated between 500 ka and 200 ka and corresponds to the Mode 2 technology and theacquisition of directional hunting and other organizational strategies by Homo heidelbergensis.A transition from Mode 2 to Mode 3 seems to appear at the end of this time-range, and may reflect theearly phases of a fourth cultural change. With regard to the environment, our main conclusion is thatthere was an absence of extremely harsh conditions at Atapuerca throughout this time period. Thepresence of Mediterranean taxa was constant and the dominant landscape was a savannah-like openenvironment, probably with small forest patches. An alternation of Mediterranean and mesic species

odríguez), [email protected] (F. Burjachs), [email protected] (G. Cuenca-Bescós), [email protected] (N., [email protected] (A. Pérez González), [email protected] (I. Blain), [email protected] (I.rcía), [email protected] (M. García Antón), [email protected] (E. Allué), [email protected], [email protected] (M. Mosquera), [email protected] (A. Ollé), [email protected] (J. Rosell),[email protected] (X.P. Rodríguez), [email protected] (C. Díez), [email protected] (J. Rofes), [email protected]@prehistoria.urv.cat (J. Vallverdú), [email protected] (M.L. Bennasar), [email protected]), [email protected] (E. Carbonell).

All rights reserved.

J. Rodríguez et al. / Quaternary Science Reviews 30 (2011) 1396e1412 1397

as the dominant component of the tree storey was induced by the climatic cycles, and steppes spreadacross the landscape during the drier periods. In any case, it is not possible to establish clear cut-offpoints separating entirely different environmental episodes. Our results show no evidence of anyrelationship between environmental change and cultural change at the Sierra de Atapuerca.

� 2010 Elsevier Ltd. All rights reserved.

1000m.

1000m.

..1025

m.

1025m.

50 100 m.0

Spain

Madrid

BurgosAtapuerca

Portugal

42º 21’N

3º 31’ W

Galería

Sima del Elefante

Gran Dolina

Trincheradel Ferrocarril

Fig. 1. Map of the sites at the Trinchera del Ferrocarril (Atapuerca, Burgos, Spain).

1. Introduction

The time period from the late Early Pleistocene to the end of theMiddle Pleistocene was an era of cyclic climatic changes (Berger,1988; Rial, 1999). This period also saw the human settlement ofEurope by Homo antecessor, (Carbonell et al., 2008a) and its even-tual substitution in the fossil record by Homo heidelbergensis(Arsuaga et al., 1997). From a cultural point of view, this period alsorecords the appearance in Europe of Mode 1 and Mode 2 techno-logical complexes, and even the transition to Mode 3.

Technological Modes were defined by Clark in 1968 (Clarke,1968). They provide a general framework to define the similaritiesamong the stone tool assemblages, grouping them into differentproduction techniques. As a summarized by Foley andMirazon Lahr(2003, pp 114) “Mode 1, comprising the Oldowan and Asian PebbleTool and Chopping Tool Traditions, constituted the simplestmode ofproduction, the striking of a flake off a core. The number of flakescould vary, but what held this system of production together wasthe simple platforms and lack of preparation involved. (.). Mode 2saw the development of two elements (.). Thefirst of thesewas theability to strike off relatively large flakes (.) suitable for a greateramount of invasive retouch. (.). The resultwas the bifacial traditionthat is represented by the Acheulean and its variants. Mode 3represents a major shift in the output of lithic production, althoughit shares with Mode 2 elements of the way tools are produced. Thekey difference is that the core is prepared (.). The outcome isa much more diverse set of finished tools, and hence a greaterpotential for variability and a greater emphasis on smaller items.”(For an extensive explanation, see Foley and Mirazon Lahr, 2003).We should clarify that preparation of cores already occurred duringMode 2, but it was during Mode 3 that this preparation developed,acquired complexity and became generalized.

The Sierra de Atapuerca includes several archaeological andpaleontological sites with a record of all these environmentaland cultural events at a local scale. Sima del Elefante, Gran Dolinaand Galería, three sites located in the Trinchera del Ferrocarril(Railway Trench), provide evidence of both environmental (macroand microvertebrates and/or pollen remains) and cultural (stonetools and/or modified bones) changes for the 1.2 to 0.2 Ma period.In addition, these three sites have yielded human fossils (Bermúdezde Castro and Rosas, 1992; Carbonell et al., 1995, 2008a). Conse-quently, the sites in the Atapuerca Trinchera del Ferrocarril providea unique opportunity to track the environmental and culturalchanges in an European locality over a one million-year periodcovering several climatic cycles, and recording different techno-logical complexes from Mode 1 to the transition to Mode 3.

A traditional premise states that environmental changes drivefaunal and cultural evolution, suggesting that the emergence oftechnology is a result of environmental changes that led the Africanforest landscapes to contract and the savannas to develop between2.8 and 2.5 Ma (De Menocal, 1995; Vrba et al., 1995). The oppositeview highlights the importance of social and demographic factorsas a motor of cultural changes (Carbonell et al., 1999a), and viceversa (Carbonell et al., 2008b).

The aim of this paper is to summarize information fromdifferent sources to obtain a general picture of the environmentaland cultural changes throughout the Atapuerca sequence, and to

evaluate the possible existence of correlations between culturaland environmental changes.

2. The Trinchera del Ferrocarril sites

The Sierra de Atapuerca is situated 15 km east of Burgos (Spain)and contains several archaeological and palaeontological sitesdating from the Early Pleistocene to the Holocene (Arsuaga et al.,1997; Carbonell et al., 1999b,c, 2008a, Carretero et al., 2008;Vergés et al., 2008; García and Arsuaga, 2011). Within the Sierra deAtapuerca, the Trinchera del Ferrocarril includes three sites: Simadel Elefante, Gran Dolina and Galería (Fig. 1). These sites are Pleis-tocene karstic deposits that were cut by a railway trench, outcrop-ping their entire stratigraphic sequences at Gran Dolina and Galería,

J. Rodríguez et al. / Quaternary Science Reviews 30 (2011) 1396e14121398

and most of it at Sima del Elefante. For a detailed description of thegeology of Sierra de Atapuerca see Pérez-González et al. (2001) andParés and Pérez-Gozález (1999).

The Sima del Elefante (TE) site is a cave infill with a stratigraphicsuccession 16 m thick. This site has been systematically excavatedsince 1996 (Rosas et al., 2006). The TE infill has been divided into 16stratigraphic units, named TE7 to TE21 from bottom to top (Rosaset al., 2006). The lower stratigraphic units TE7 to TE16 (Fig. 2a) aredated as Early Pleistocene on the basis of their faunal content,reversed polarity and two dates based on the radioactive decay ofcosmogenic 26Al and 10Be (Carbonell et al., 2008a), whilst units TE17to TE21 date to the Middle and Late Pleistocene (Table 1 and Fig. 3).A hominin mandible fragment, and a phalanx attributed to Homo

Fig. 2. Sections of Sima del Elefante (a), Gran Dolina (b) and Trinchera Galería (c) sites.TZ (Trinchera Zarpazos) is a gallery only partially filled with sediments. The asteriskmarks the position of the Matuyama-Brunhes boundary. Heights are measured fromthe railway trench floor.

antecessorwere found in 2008 and 2009 respectively in the TE9 unitassociated to a number of stone tools (Carbonell et al., 2008a). Theseare the oldest human remains that have been found in Europe.

The Gran Dolina (TD) site is a cave infill 18 m thick locatedapproximately 200 m from the Sima del Elefante site (see Fig. 1).The Gran Dolina stratigraphic succession was divided into 11stratigraphic units named TD1 to TD11 from bottom to top by Giland Hoyos (1987) and reviewed by Parés and Pérez-González(1999). We follow here the nomenclature published by PÉrezGonzález et al. (2001) for the Gran Dolina sequence, which is notentirely coincident with the nomenclature used by other authors(Table 2 and supplementary material). A polarity reversal, inter-preted as the Matuyama-Brunhes boundary (Parés and Pérez-González, 1999), has been detected between the TD7 and TD8units, allowing the division of the stratigraphic sequence into anEarly Pleistocene section (TD1-2 to TD7) and a Middle Pleistocenesection (TD8-TD11) coinciding with a gap in the fauna at TD7-TD8as observed by Cuenca-Bescós et al. (2001). Several dates (Table 1and Fig. 3) obtained by luminescence and combining electronicspin resonance and uranium series (ESR/U-Th) techniques confirmthis interpretation (Falguères et al., 2001). The Gran Dolina TD6 unitis famous for its so-called “Aurora stratum” (Table 2), correspond-ing to the stratigraphic subunit TD6-2 (Bermúdez de Castro et al.,2008), which yielded an impressive collection of human remainsattributed to Homo antecessor which were associated with abun-dant stone tools and faunal remains (Carbonell et al., 1995, 2005).

The Galería (TG) site is located less than 50 m south-east of GranDolina (Fig. 1). Galería is a cave infill with a stratigraphic succession17 m thick, which has been divided into six lithostratigraphic unitsnamed G I to G VI from bottom to top (Fig. 2c). A polarity reversalattributed to the Matuyama-Brunhes boundary (Pérez-Gonzálezet al., 1999) has been identified inside the lowest unit (G I), whichcontainsno faunal nor archaeological items. The twomiddleunitsG IIandG III are subdivided into four subunits: G IIa, G IIb, G IIIa andG IIIbfrom bottom to top. They have yielded abundant macro and micro-vertebrate fossils and a rich collection of stone tools dating to the500 ka to 250 ka time interval by ESR/U-Th and luminescence tech-niques (Berger et al., 2008). Two human fossils attributed to Homoheidelbergensis, corresponding to cranial and mandibular fragmentswere found in these middle units (Bermúdez de Castro and Rosas,1992; Arsuaga et al., 1999). The three uppermost units, G IV to G VIare sterile in vertebrate remains and archaeological material: G Vbeing the last unit of infilling as G VI is an edaphic formation.

3. Chronology

As stated above, the oldest layer excavated to date in Trincheradel Ferrocarril is TE9 with an estimated age of 1.2e1.1 Ma(Carbonell et al., 2008a), whilst the youngest is G IV with an age ofapproximately 200 ka (Table 1). The identification of theMatuyama-Brunhes boundary in the three sites and the abundantabsolute dates available allow us to accurately correlate the threesections so as to obtain a combined sequence for a time periodabout one million years long (Fig. 3 and Table 1). It is important tonote that, although some of these dates are inconsistent, they arecoherent if both dating methods (ESR/U-Th and Luminescence) areconsidered separately and the confidence intervals are taken intoaccount. In addition, ESR/U-Th tends to provide older dates thanluminescence for the more recent units and younger ones for theolder units (Fig. 2). Taking all these restrictions into consideration,reliable correlations may be established between the three strati-graphic sequences.

Six Faunal Units (FU 1 to FU 6) based on the distribution ofvertebrate faunal assemblages have been established for the threesites in Trinchera del Ferrocarril (Cuenca-Bescós and García, 2007;

Table 1Absolute dates for Galería, Gran Dolina and Sima del Elefante. ESR/U-Th: Electro Spin Resonance combined with U-series; IRSL: Infrared Stimulated Luminescence;TL¼Thermoluminescence.

Site Unit Age Sample Method Reference

Galería GIV top 211þ/�32 e ESR/U-ThGIV bottom 185þ/�26 TL97-14 IRSL Berger et al., 2008GIIIb 256þ/�23 Mean TL98-17 y TL97-24 TL & IRSL Berger et al., 2008GIIIb 256þ/�33 e ESR/U-Th Berger et al., 2008GIIIa 466þ/�39 Mean TL98-15 y TL97-19 Luminescence Berger et al., 2008GIIa-top 422þ/�55 TL98-12 Luminescence Berger et al., 2008GIIa-bottom 503þ/�95 TL97-06 Luminescence Berger et al., 2008

Gran Dolina TD11 240þ/�44 OSL97-33 IRSL Berger et al., 2008TD10-1a 337þ/�29 Mean ATA9707. ATA9705, ATA9610 ESR/U-Th Falguères et al., 1999TD10-1 bottom 379þ/�57 ESR-ATA0606 ESR/U-Th Falguères et al., 1999TD10-2 244þ/�26 Mean 97-28, 97-45, 98-23 Luminescence Berger et al., 2008TD10-2 337þ/�51 ESR-ATA9703 ESR/U-Th Falguères et al., 1999TD10-2 418þ/�63 ESR-ATA9608 ESR/U-Th Falguères et al., 1999TD10-3 430þ/�59 TL98-20 Luminescence Berger et al., 2008TD9 480þ/�130 TL97-53 Luminescence Berger et al., 2008TD8 602þ/�52 Mean AT9604, AT9605, AT9702 ESR/U-Th Falguères et al., 1999TD8 820þ/�140 TL97-49 Luminescence Berger et al., 2008TD7 bottom 960þ/�120 TL97-41 Luminescence Berger et al., 2008TD6-2 731þ/�63 Mean AT9601, AT9602, AT9603 ESR/U-Th Falguères et al., 1999

Sima del Elefante TE9 1220þ/�140 CTE9b CSM Carbonell et al., 2008TE7 1130þ/�180 CTE7 CSM Carbonell et al., 2008

J. Rodríguez et al. / Quaternary Science Reviews 30 (2011) 1396e1412 1399

CuencaBescós et al., 2009a). FU1 is representedby the lowerunits ofSima del Elefante (TE8-TE14) and includes species more primitivethan those present in post-Jaramillo faunal localities such as Allo-phaiomys lavocati, Castillomys rivas, Asoriculus gibberodon and Cro-cidura kornfeldi. Concerning largemammals, FU1 is characterized bythe presence of Villafranchian species like Pannonictis nestii (Garcíaet al., 2008), cf. Baranogale antiqua, Mustela cf. palerminea/praeni-valis, Vulpes cf. alopecoides and Lynx cf. issiodoerensis. As regardsungulates, the remains of Bison sp. indicate an age younger than 1.2Ma, consistent with the available absolute date for TE9 (Fig. 3).Amajor faunal turnover separates this Faunal Unit from FU 2, whichis represented at Gran Dolina TD3-TD4. Faunal Unit 2 is character-ized by the first appearance of advanced vole species such as Allo-phaiomys chalinei, Terricola arvalidens and Iberomys huescarensis, thelocal appearance of Cervus elaphus, Sus scrofa, and the first Europeanrecord of the spotted hyena (Crocuta crocuta) in TD3-TD4 (van derMade, 2001; García and Arsuaga, 2001a,b). Both Cervus elaphusand Sus scrofa are recordedbelow theMatuyama-Brunhes boundaryonly inAtapuerca and in theGerman site ofDornDürkheim (Franzenet al., 2000). Themain characteristic of Faunal Units FU 3 and FU 4 isthe presence of the large red-toothed shrew Dolinasorex glyphodon(Rofes and Cuenca-Bescós, 2009a), whilst FU 5 is represented by theTD7 and TD8 assemblages and it is characterized by the last occur-rences of primitive vole forms. A second major turnover is detectedin the transition fromFU5 to FU 6 coincidentwith the limit betweenTD8 and TD8-9. FU 5 still includes species typical of the later part ofthe Early Pleistocene likeMimomys savini andmany other taxa. TD8also registers the last appearance of Stephanorhinus etruscus andEucladoceros giulii in general, the last occurrence in Atapuerca ofCanismosbachensis, and Panthera gombaszoegensis and thefirst localoccurrence of Megaloceros solilhacus. The younger Faunal Unit atTrinchera del Ferrocarril (FU 6) includes the upper levels of GranDolina (TD8, TD10 and TD11), the middle units of Galería (GII andGIII), the upper levels of Sima del Elefante (TE18 and TE19) and Simade los Huesos (SH) sequence and it is characterized by the presenceof species typical of the Middle Pleistocene like Terricola ata-puerquensis, Iberomys brecciensis, and Allocricetus correzensis, theappearance of Dama clactoniana, an evolved form of Cervus elaphus,Stephanorhinus hemitoechus, Equus ferus, Equus hydruntinus, Bisonschoetensacki, Panthera leo, Canis lupus, Vulpes vulpes and thesubspecies Cuon alpinus europaeus.

4. Evidence of environmental change

4.1. Small vertebrates

Most stratigraphic units from the sites in Trinchera del Ferro-carril contain remains of small vertebrates, whose distribution issummarized in Table 3. The small-vertebrate fossil remains used forthis study consist of disarticulated bone fragments collected byscreen-washing during the 1991 to 2007 excavation campaigns atSierra de Atapuerca. Roughly 25 tons of sediment were water-screened in each campaign using superimposed 10, 5 and 0.5 mmmesh screens (Cuenca-Bescós et al., 1995, 1997, 1999, 2001, 2005,2009a; Blain et al., 2008, 2009; Rofes and Cuenca-Bescós,2009a,b). More than 70.000 fragments corresponding toa minimum number of 13,314 small vertebrates, representing atleast 82 taxa, were recovered with this procedure.

The sample analyzed in the present study is composed ofmandibles, maxillae and isolated teeth that are loose or in situ, andabundant postcranial elements. Identification at species level isbased on isolated mandibles and teeth and in exceptional cases onthe most diagnostic postcranial elements, such as the humerus ofinsectivores; amphibians and squamates are largely based on thepost-cranial elements. The determinations are based on theworks ofChaline (1972), vanderMeulen (1973), Reumer (1984), Agustí (1991),Bailon (1991, 1999), Agustí et al. (1993), Cuenca-Bescós et al. (1995),Laplana and Cuenca-Bescós (2000), Blain (2005), Minwer-Barakat(2005), Rofes and Cuenca-Bescós (2006, 2009a,b), Minwer-Barakatet al. (2007), and De Marfà (2008), among many others.

The method of habitat weighting (Evans et al., 1981; Andrews,2006) was used to infer environmental information from the pres-ence of small vertebrates (amphibians, squamates, and smallmammals) at the Atapuerca sites. Thismethod assigns to each taxona probability of being found in each habitat type according to theirpresent distribution in the Iberian Peninsula. Habitats were classi-fied into four types in accordance with Cuenca-Bescós et al. (2005,2009b) and Blain et al. (2008): 1) open dry: meadows underseasonal climate regime; 2) open moist: evergreen meadow withdense pastures and suitable topsoil; 3) woodland: mature forestincluding woodland margins and forest patches, with moderateground cover; 4) water: streams, lakes and ponds. The squamateand amphibian fossils from the Trinchera del Ferrocarril sites belong

Table 2Lithostratigraphic subunits of Gran Dolina (Pérez-González et al., 2001) and corre-spondence with previously published names. TD11 in van der Made (2001) corre-sponds only to the Top of TD10-1.

LithostratigraphicUnits

Lithostratigraphicsubunits

Oldusage

References

TD11 TD11 van der Made (2001)TD10 TD10-1 TD11

TD10-2TD10-3TD10-4

TD8-9 TD8b Cuenca-Bescós et al.(2001), López Antoñanzasand Cuenca-Bescós (2002)

TD8 TD8a López Antoñanzas andCuenca-Bescós (2002)

TD7 TD7-1TD7-2TD7-3TD7-4

TD6 TD6-1 TD6TD6-2 TD6 “Aurora” Carbonell et al. (1995),

Pares andPérez-González (1995)

TD6-3 TD6

TD5TD5þ TD3-TD4? TDE5 van der Made (2001)TD3-TD4 TDW4b van der Made (2001),

Rodríguez (2001)TDW4

TE19

GIV

TD11

GIIIb

TD10-1

TD10-2

GIIIa

GIIb

TD10-3

GIIa

TD9

TD8-9

TD8

TD7

TD6-1

TD6-2

TD6-3

TD5

TD5+TD3-TD4?

TD3-4

TE14

TE13

TE12

TE11

TE10

TE9

TE7

Normalpolarity

Reversed

polarity

FU 1

FU 2

FU 3

FU 4

FU 5

FU 6

01002003004005006007008009001000110012001300140015001600 Kyr.

Matuyam

aBrunhes

Jaramillo

Fig. 3. Relative and absolute ages for the stratigraphic units of Sima del Elefante (TE),Gran Dolina (TD) and Galería (G), according to different methods. The symbols indicatethe mean and the bars two standard deviations above and below the mean for eachsample. Open squares: radioactive decay of cosmogenic 26Al and 10Be; vertical lines:Luminescence; Open dots: Combined Electron Spin Resonance and Uranium Series;open triangle: Infrared Stimulated Luminescence. Faunal units FU 1 to FU 6 are basedon micromammals as shown on Table 3 and “polarity” refers to the magnetizationdirection recorded in the sediments. The chronology of the Jaramillo event and theMatuyama-Brunhes boundary are indicated as vertical lines for reference. (Data fromFalguères et al., 1999; Berger et al., 2008; Carbonell et al., 2008a,b).

J. Rodríguez et al. / Quaternary Science Reviews 30 (2011) 1396e14121400

to living species, whose ecological requirements are reliably known.This knowledge allows us to assign a different probability ofoccurrence to each species for each habitat (Table 4) based on itscurrent distribution (Pleguezuelos et al., 2002; Velasco et al., 2005.As an example, and according to Table 4, the marble newt (Triturusmarmoratus) has a probability of 0.4 of being found in an open-humid meadow, 0.2 of being found in a woodland and 0.4 of beingfound in awater edge. On the other hand, smallmammals have been

considered as indicative of a single habitat (probability 1 for theselected habitat and 0 for the rest, Table 4) based on the presentdistribution of the genus reported by Palombo and Gisbert (2005).We are aware that this is a deliberate underestimation of theadaptability of small mammals, but most small mammal speciespresent at the Trinchera del Ferrocarril sites lack recent represen-tatives and this approach has the advantage of requiring fewerassumptions than assigning probabilities of occurrence for differenthabitats. The frequencies in Fig. 4 represent the percentage of theMinimum Number of Individuals indicative of the four habitats ineach sample. Table 5 shows the number of species and minimumnumber of individuals (MNI) by stratigraphic unit.

The environmental information provided by small vertebrates issummarized in Fig. 4. Small mammal assemblages from the lowerlevels of Sima del Elefante (TE8-TE14) are characterized by thedominance of species suggesting openmoist habitats. The presenceof several taxa indicative of riparian or aquatic environments suchas a desman (Galemys cf. kormosi), shrew (Asoriculus gibberodon),and beaver (Castor fiber) is remarkable. The interpretation ofa landscape with water courses and/or lagoon environments isreinforced by the presence of waterfowl (Anas sp.) and a whitetailed eagle (Haliaetus albicilla) (Rosas et al., 2006). Conversely, thepercentage of open moist and water edge reptile and amphibianspecies is moderate and the spectrum is dominated by speciesindicative of an open dry environment (Fig. 4a).

The single sample from TD5þTD3-TD4 unit containing smallmammals is dominated by openmoist species (Fig. 4). However, theamphibian and reptile assemblage from this unit suggests a mosaicenvironment and discards the existence of very extreme conditions(Fig. 4). This discrepancy may be partially explained by differencesin the accumulation agent and partially by the relatively low rich-ness of the mammalian assemblage (MNI¼ 338) (Table 5). A slightincrease of open dry and water edge mammals occurs at TD5. Theherpetofauna indicates a slightly drier climate at TD6-2 (Fig. 4) incomparison with TD6-3, together with an increase of open

Table 3Stratigraphical distribution of small vertebrate species in the Trinchera del Ferrocarril sites. Faunal units FU1 to FU6 were defined by Cuenca Bescós and García (2007) andCuenca Bescós et al. (2009a). The letters “ja” refer to the subspecies Microtus agrestis jansoni.

(continued on next page)

J. Rodríguez et al. / Quaternary Science Reviews 30 (2011) 1396e1412 1401

Table 3 (continued)

J. Rodríguez et al. / Quaternary Science Reviews 30 (2011) 1396e14121402

environments (Blain et al., 2008). However, the presence of Castorfiber at TD6-2 (“Aurora stratum”) is notable, being an indicator ofthe existence of a permanent water stream in the surroundings.Similarly, birds at TD6 are predominantly species of open countryand bushland habitats, whilst the presence of waterfowl (Anas sp.)and waders (Limosa limosa, Scolopax rusticola) constitute additionalevidence supporting the existence of a large body of water(Sánchez-Marco, 1999). TD7 is extremely poor in small vertebrateremains, but the spectrum of squamate and amphibian speciesindicates a high diversity of habitats (Fig. 4a).

With reference to the Middle Pleistocene assemblages, themoderate abundance of woodland species at TD8 (Fig. 4), togetherwith the presence of thermophilous amphibians and squamatessuch as Blanus cinereus, Pelobates cultripes and Rhinechis scalaris

indicate that there were no harsh conditions during this period,contrary to what was suggested by Lopez-Antoñanzas and Cuenca-Bescós (2002). Small mammal and herpetofauna spectra are bothdominated by species indicative of open environments and thepresence of Galemys sp. and Castor fiber at TD8 proves the existenceof permanent water streams in this period. Fig. 4 suggests a tran-sition inside TD8-9 unit from dry open woodlands to a more openand humid environment. The small mammal assemblage fromTD10-4 is absolutely dominated by open moist habitat species(Fig. 4) but, again, the amphibian and squamate assemblagessuggest a different and more diverse landscape (Fig. 4). The smallmammal spectrum from the roughly contemporary GIIa unit ofGalería is also dominated by open habitat species, but with a higherpercentage of open dry habitat species. Open moist habitat

Table 4Habitat classification of amphibians, squamates and small mammals used to drawFig. 4a. The numbers represent the probability of finding the taxon in each habitat.All mammalian genera are considered indicators of a single habitat (see text).

Open-drymeadow androcky habitats

Open-humidmeadow

Woodlandand woodlandmargin

Wateredge

AMPHIBIASalamandra salamandra 0.4 0.5 0.1Triturus marmoratus 0.4 0.2 0.4Alytes obstetricans 0.6 0.2 0.2Pelobates cultripes 0.8 0.2Pelodytes punctatus 0.6 0.2 0.2Bufo bufo 0.1 0.3 0.4 0.2Bufo calamita 1Hyla arborea 0.5 0.2 0.3Rana sp. 0.4 0.4 0.2Pelophylax sp. 1

SQUAMATABlanus cinereus 0.45 0.1 0.45Anguis fragilis 0.25 0.75Natrix maura 1Natrix natrix 0.5 0.25 0.25Coronella austriaca 0.25 0.5 0.25Coronella girondica 0.5 0.25 0.25Rhinechis scalaris 0.5 0.25 0.25Vipera aspis 0.25 0.25 0.5Vipera latasti 0.75 0.25

MAMMALIACrocidura 1Suncus 1Erinaceus 1Sorex 1Talpa 1Beremendia 1Neomys 1Galemys 1Asoriculus 1Myotis 1Rhinolophus 1Miniopterus 1Marmota 1Pliomys 1Allocricetus 1Allophaiomys 1Iberomys 1Terricola 1Stenocranius 1Hystrix 1Microtus 1Micromys 1Apodemus 1Castillomys 1Clethrionomys 1Eliomys 1Arvicola 1Mimomys 1Castor 1Oryctolagus 1Lepus 1

J. Rodríguez et al. / Quaternary Science Reviews 30 (2011) 1396e1412 1403

mammals completely dominate the TD10-3 to TD10-1 spectra(Fig. 4b). Woodland rodents and insectivores are virtually absent inthese assemblages but woodland amphibians and squamates arewell represented (Fig. 4a). Units GIIb and GIII from Galería, similarin age to TD10-3 and TD10-2, also indicate open landscapes butthey contain a higher abundance of open dry habitat species.A precise correlation of the upper levels of Sima del Elefante is notpossible at present. In any case, the small mammal assemblage ofTE19 indicates a remarkable diversity of habitats, with a largeproportion of “open moist” and woodland habitat species.

In summary, although some small vertebrate assemblagesinclude steppe or cold adapted species, for example Stenocranius

gregaloides or Allocricetus bursae (Lopez Antoñanzas and Cuenca-Bescós, 2002), they are always accompanied by temperate oreven thermophilous species such as Hystrix refossa or Crocidura sp.It is remarkable that the herpetofauna assemblage always includesa significant woodland component. Furthermore, the paleo-temperatures estimated by Blain et al. (2008) for the Atapuerca areafrom the Gran Dolina amphibian and squamate assemblages arealways warmer compared with current temperatures in the Burgosarea, and the differences observed in estimated temperatures for“cold” and “warm” periods are only about 2 �C. Similarly, estimatedannual precipitations range from 750 mm in the drier period to1049 mm in the more humid period (Blain et al., 2008), whilstcurrent annual precipitation in Burgos is about 570 mm.

4.2. Large mammals

The stratigraphic distribution of largemammals, defined here asthe species in the orders Primates, Proboscidea, Carnivora, Peri-ssodactyla and Artiodactyla is shown in Tables 6 and 7. The envi-ronmental information provided by the large mammal assemblageof the lower levels of Sima del Elefante (TE8-TE14) is limited. Allspecies represented are of temperate affinity or, at least, no speciesunequivocally indicative of arid or cold environments are present.The presence of Pannonictis nestii in TE9 and TE10 suggests theexistence of a riparian environment in the vicinity, whilst thepresence of Hippopotamus in TE14 indicates the existence of eithera deep water stream or a permanent lagoon.

The assemblage from the lower levels of Gran Dolina (TD3-TD4to TD8) includes the presence of the spotted hyena, an opportu-nistic hunter/scavenger adapted to open landscapes, although theEuropean jaguar (Panthera gombaszoegensis), an ambush hunter, isalso present at Atapuerca in this period, suggesting the existence offorested areas. Again, this association does not include any speciesindicative of a cold environment. The overwhelming dominance ofDama vallonnetensis, in TD8 and the presence of Hippopotamus sp.suggest relatively humid and temperate conditions.

Large-sized lions (P. leo) first occur in Atapuerca at the Sima delosHuesos (w0.5ka; Bischoff et al., 2007), and successively occupiedthe Middle Pleistocene ecosystems at the Sierra (Table 6). Lions aresocial predators, adapted to hunt in open landscapes, whilst dholes(Cuon alpinus) and wolves (Canis lupus), the other two large pred-ators of this period at Atapuerca, are both social ambushingcarnivores that may be found in a wide range of habitats.

As in the case of small vertebrates, large mammal assemblageslack any element unequivocally indicative of harsh conditions andmost species may be considered catholic or temperate. AlthoughOvibos moschatus is a typical arctic inhabitant, the presence of itsrelated species cf. Praeovibos priscus at TD7 should not be inter-preted as indicative of glacial conditions, as Praeovibos was asso-ciated with temperate taxa, such as Hippopotamus, during thePleistocene (van der Made, 2001). The genusMacaca, present in thelower levels of Sima del Elefante and in the Gran Dolina TD8 unit, iscommonly found in Early Villafranchianwoodlands associatedwithrelatively humid areas, although from MN17 (2.0 Ma) it inhabiteda wide range of humidity (Delson, 1980; Eronen and Rook, 2004).Furthermore, the continuous presence of megaherbivores in all theassemblages supports the persistent existence of open woodlandand/or grassland habitats throughout the entire sequence.

The results of isotopic stable analyses, an additional source ofenvironmental information for FU6, suggest the coexistence of treesand open landscapes. Red deer remains from Galería GII and GIIIunits demonstrate that this species lived in open forests or grass-lands (García et al., 2009). Although red deer has traditionally beenconsidered a forest indicator, it is actually amixed feeder able to livein very different habitat types (Geist,1998). On the other hand, other

G IIab

G III

G IIaTD10-4

G IIb

BRUNHES

MATUYAMA

herpetofauna small mammals

palynology

20 40 60 80 10020 40 60 80 10020 40 60 80 100%NMI % taxa%NMI

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

sample

GIV

TD11

GIIIb

TD10-1

TD10-2

TD10-3

TD8-9

TD8

TD7-3 and TD7-4TD6-1TD6-2

TD6-3

TD5

TD5+TD3-TD4?

TE8 to TE14

TE19UNITSwo

odland

openmoist

wateredge

opendry

conifers

openmoist

wateredge

opendry

woodland

openmoist

wateredge

opendry

mesictrees

Poaceae

Mediterranean

Fig. 4. Environmental changes at Atapuerca from three different proxies: squamates and amphibians, small mammals and pollen analysis. Stratigraphic units from TrincheraElefante (TE), Gran Dolina (TD) and Galería (G) have been arranged in temporal sequence from the oldest to the youngest based on stratigraphic sequences (Fig. 2) and informationon Fig. 3. For small mammals and herpetofauna the x-axis represents the percentage of the minimum number of individuals, whilst for pollen samples it represents the percentageof the total number of pollen grains. See text for additional information.

Table 5Species richness and minimum number of individuals (MNI) in the stratigraphicunits analyzed in Fig. 4.

Herpetofauna Small Mammals

Unit Sp. richness MNI Sp. richness MNI

TE19 e e 17 52TD10-1 9 151 16 540TD10-2 11 338 17 756GIII e e 16 1552GIIb e e 14 331TD10-3 15 1209 18 2327GIIa e e 16 652TD10-4 15 347 13 227TD8-9 15 201 9 28TD8 14 199 15 121TD7 3/4 9 24 e e

TD6-1 14 747 13 297TD6-2 12 234 8 32TD6-3 16 1201 21 542TD5 11 423 20 460TD5þ TD3-4 13 1098 18 338TE8-14 17 1532 21 1548

J. Rodríguez et al. / Quaternary Science Reviews 30 (2011) 1396e14121404

taxa from this stratigraphic unit, such as the herbivorous cave bears(Ursus deningeri), and fallow deer, displayed more negative d13Cvalues, suggesting these taxa preferred more forested areas.

4.3. Vegetation

Since the 1980s several sediment samples have been takenalong the exposed sections of the three sites at Trinchera del Fer-rocarril (Sima del Elefante, Gran Dolina, and Galería). However, thepollen concentration of many of these samples is too poor towarrant any environmental interpretation. Few samples have morethan 300 pollen grains and spores and most fail to meet therequirements to carry out statistical analyses because of their lowdiversity. The extremely low concentration of pollen and spores(0e664 grains/gram of dry sediment) is likely to be explained bythe highly oxidative sedimentary environment of the karstic cavi-ties (Carrión et al., 2009). With regard to macroremains, therecovery of charcoal fragments from Early and Middle Pleistocenedeposits is exceptional, mainly because of postdepositionalalterations. The important postdepositional processes suffered bycharcoals make it difficult to identify them taxonomically, since inmost cases charcoal remains are preserved just as microcharcoals,which can be quantified but not determined taxonomically.

Table 6Stratigraphic distribution of Carnivora at Sima del Elefante (TE), Gran Dolina (TD), Galería(G), and the nearby site of Sima de los Huesos (SH).

J. Rodríguez et al. / Quaternary Science Reviews 30 (2011) 1396e1412 1405

Although we are aware of all these caveats, we present here theavailable evidence with the aim of providing a “coarse-grained”picture of environmental conditions prevailing in the Atapuercaarea during the one million-year time interval represented at theTrinchera del Ferrocarril sites.

A composite palynological sequence for Gran Dolina and Galeríahas been obtained by correlating the lithostratigraphic units of thetwo sites as explained above (Fig. 4). Regular samples were takenevery five centimeters from Galería GIII and GIV units (García Antónand Sainz Ollero, 1991) and these were treated using the traditionalchemical method (Sittler, 1955). The samples included in this anal-ysis were chosen from the existing set, taken every 10, 20 or 30 cmdepending on the characteristic or interest of the units. They weretreated according to the technique of Goeury and de Beaulieu (1979)but slightly modified following the directives of Girard and Renault-Miskovsky (1969) and the protocol developed in Burjachs (1990) andBurjachs et al. (2003). Only samples with more than 100 pollengrains were included in Fig. 4 (see supplementary material).

Charcoal remains were recovered manually and observed usinga metallographic microscope with reflected light with �5 to �50magnifications. Each charcoal piece was fragmented by hand inorder to observe the three anatomical sections that permit taxo-nomic identification.

Fig. 4 summarizes the information provided by the pollenanalyses using the ecological classification of taxa shown in Table 8.The extremely low concentration of pollen and spores in thesamples from the lower levels of Sima del Elefante prevents theirinclusion in the figure. The only point worthy of mention is that thefloristic composition of these samples is similar to the rest of thesequence, with conifers, deciduous and evergreen Quercus as treespecies, and Asteraceae and Poaceae as herbaceous taxa (seeSupplementary Material), together with the presence of

Mediterranean taxa like Olea-Phillyrea. Acer and Quercus charcoalsthat have been identified in the Sima del Elefante TE9 unit. Thesamples from the upper levels of Sima del Elefante (TE15-TE19) aresterile in pollen content, although a number of charcoals have beenfound at TE19. These show the presence of a Pinus sylvestris-type inthis unit. The presence of Mediterranean taxa is continuous alongthe Gran Dolina and Trinchera Galería stratigraphic successions,although sometimes they are dominant and sometimes not (Fig.4c). From a floristic point of view, the presence of tertiary relictspecies at the lower levels of Gran Dolina (Taxodium-type, Pinushaploxylon-type, Carya and Cedrus) should be highlighted (seeSupplementary Material). Mediterranean taxa are scarce in TD5,where conifers and Poaceae dominate the spectrum. A moderateincrease in the presence of open dry taxa occurs in several samplesfrom TD6-3 to TD6-1, although this should not be interpreted asindicative of cold steppes but of steppe habitats in a mosaicenvironment. The high abundance of Celtis seeds at TD6-2 isremarkable proof of Mediterranean conditions. A cold steppewould be incompatible with the abundance of Mediterraneanspecies and the significant presence of mesic taxa in these samples.

Mediterranean taxa dominate in TD7 and TD8 at the expense ofa decrease in the abundance of Poaceae (Fig. 4) but the relativeabundances of these two groups are again similar at TD8-9. The twosamples at the top of TD8 show a dominance of the mesic trees overthe Mediterranean taxa and a drastic reduction in conifers,suggesting a period of increased humidity. Interestingly enough themacrovertebrate fossils from TD8, that indicate a humid environ-ment, come from this part of the sequence. TD8 also records the lastappearance of relict taxa, a change in floristic composition thatcoincides with the major turnover event registered for both macroand microvertebrates. The single sample from the bottom of TD10(TD10-4) shows a significant increase of Poaceae at the expense of

Table 7Stratigraphic distribution of the Ungulates, Subungulates and Primates of Sima del Elefante (TE), Gran Dolina (TD) and Galería (G).

J. Rodríguez et al. / Quaternary Science Reviews 30 (2011) 1396e14121406

Mediterranean species and mesic trees, suggesting moreopen landscapes. This pattern is more extreme in the samples fromTD10-3, where the abundance of Mediterranean species is extremelylow and Poaceae dominate the spectrum, although the presence ofmesic trees in these samples does not suggest a really harshenvironment. The three samples from TD10-2 indicate a climaticimprovement marked by a recovery of the Mediterranean compo-nent of the flora, which becomes dominant at TD10-1, matched bya higher abundance of mesic trees (Fig. 4). The temporal sequence iscompleted with the samples taken at TD11 and Galería GIIIb and GIVunits, since the samples from GII and GIIIa were extremely poor inpollen and spores. Mediterranean taxa suffered a significant dimi-nution at GIIIb, accompanied by an increase of open-moist speciesand, in some samples, also of conifers and steppe species. GarcíaAntón and Sainz Ollero (1991) established five Pollen Zones for theGIIIb-GIV sequence. The samples from the GIIIb unit correspond totheir Pollen Zones I and II, and are dominated by open moist andmesic taxa, as are the samples from the bottom of the GIV unit, cor-responding to Pollen Zones IIIeV of García Antón and Sainz Ollero(1991). A group of samples at the middle of the GIV sequence,which does not contain faunal nor archaeological remains, showsa highly impoverished spectrum dominated by conifers and steppeelements and almost devoid of Mediterranean taxa. These samplesare the only evidence of a harsh, cold and arid, environment in theentire sequence of Trinchera del Ferrocarril and constitute the PollenZone IV of García Antón and Sainz Ollero (1991). The last Pollen Zone(V) identified by García Antón and Sainz Ollero (1991) also hasa composition similar to that observed at the lower zone III, domi-nated by Mediterranean taxa.

5. Cultural evidence

The palaeoanthropological and archaeological record of the TE9stratigraphic unit of Sima del Elefante constitutes the oldest-knownsite in Trinchera del Ferrocarril, and even in Europe, with homininfossils and evidence of human activity. The presence of a mandiblefragment attributed to Homo antecessor in TE9 (Carbonell et al.,2008a), allows us to consider this species as the hominin inhabit-ing the Sierra de Atapuerca at that time. AMode 1 lithic assemblagecomposed of 32 artifacts made of Neogene and Cretaceous cherthas been recovered from TE9. Both these raw materials wereavailable within a radius of 2 km from Sima del Elefante and thepresence of small waste flakes and two chert flakes apparentlybelonging to the same core suggest that hominins probably knap-ped inside the cave. Knapping strategies were simple and aimed atproducing simple flakes using unidirectional knapping. Some longbones of large herbivores from TE9 show evidence of homininprocessing in search of bone marrow or other nutritional resources.Several bones with cut marks and/or percussion marks have alsobeen recovered at other Early Pleistocene stratigraphic units ofSima del Elefante. Mammals of a wide range of body sizes wereconsumed, from rabbits to large bovids, suggesting opportunisticdietary habits (Huguet, 2007). Other evidence points to an earlyaccess to the carcasses, although it is not possible to determine ifthe animals were hunted or scavenged.

More recent evidence of human behavior at Atapuerca is locatedat the base of Gran Dolina, in the TD3-TD4 unit. The TD3-TD4 boneassemblage is interpreted as the result of two independentprocesses: the accumulation of largemammals in a natural trap and

Table 8Ecological classification of pollen taxa used to draw Fig. 4.

Group Taxa

Conifers PinusCupressaceaeTaxodium-typePinus haploxylonetypePiceaCedrus.

Mesic trees BetulaQuercus deciduousCorylusLigustrumCaryaAcerPrunusTiliaCarpinusCastanea etypeFagusJuglans.

Open moist PlantagoRanunculaceae

Water edge AlnusFraxinusUlmusSalixViburnum-SambucusPopulusCyperaceaeTypha-Sparganium.

Poaceae Poaceae.

Mediterranean Quercus evergreenOlea-PhillyreaCeltisPistaciaCoriariaMyrtus.

Open dry CistaceaeEphedraArtemisiaChenopodiaceaeeAmaranthaceaeCerealia-typeAsteraceae.

J. Rodríguez et al. / Quaternary Science Reviews 30 (2011) 1396e1412 1407

the attritional accumulation of bears which died during hiberna-tion (Rosell, 1998). Carnivore tooth marks, cut marks and evidenceof anthropic breakage are occasionally present in some elements,proving that both carnivores and hominins sporadically exploitedthis opportunistic trophic resource (Huguet, 2007). Only fivequartzite artifacts, two flakes and three flaked cobbles, have beenrecovered from TD3-4, although four unidentifiable chert frag-ments were also recovered. As in the TE9 assemblage they can beassigned to a Mode 1 technology.

All these early occupations at Atapuerca seem to be sporadic, ascharacterized by their low intensity, an apparently opportunisticbehavior and a lack of specialization. The lithic assemblages areattributable toMode 1 technology, and show low technological andraw material diversity, although the scarcity of items argues forcaution in the interpretation of this pattern.

A very different picture is shown at TD6-2 (“Aurora stratum”)where several episodes of high intensity occupation arerepresented. The lithic assemblage is also of Mode 1 technologybut a high diversity of knapping strategies has been observed andseven different kinds of raw material have been identified,although almost half of the artifacts are made of Neogene chert(Carbonell et al., 1999d; Rodríguez, 2004a). All of the piecesproduced and used during the entire chaîne opératoire, as well as

several groups of refittings have been identified in the TD6-2assemblage, proving that hominins knapped inside the cave. Theincreased complexity that characterize the technological behaviorof the Homo antecessor population represented at TD6-2 is paral-leled by a more complex trophic behavior, as evidenced by thebone assemblage recovered at the “Aurora stratum” (TD6-2). Highlevels of anthropization characterize the assemblage, and all thestages of carcass processing have been documented (Díez et al.,1999; Rosell, 2001; Huguet, 2007; Saladié, 2009), from skinningto bone marrow extraction and including defleshing and visceralremoval. Primary and early accesses to animals by hominids isreported by Díez et al. (1999), suggesting hunting activities.A different treatment of the carcasses consumed depending uponthe animal body size is also evident. Skeletal elements of smallsized prey species (up to 100 kg) are evenly represented, sug-gesting they were transported to the site as complete carcasses. Onthe other hand, axial elements of the largest mammals are scarce,since they were probably butchered far away and only some partswere taken to the cave. The high taxonomic diversity of theassemblage, eight ungulate species and six carnivores plus H.antecessor is remarkable and points towards a non selectivehunting behavior. Nevertheless, the most striking feature of thebehavior of Homo antecessor documented at TD6-2 is probably thepractice of cannibalism (Fernández-Jalvo et al., 1996). More than150 human fossil remains belonging to a minimum of 10 individ-uals including children, juveniles and young adults have beenrecovered (Bermúdez de Castro et al., 2008). The butcheringtechniques observed on the hominin bones, aimed at meat andmarrow extraction, and the pattern of post- processing discard ofthese remains, identical to the treatment observed for animalbones, is an argument against a ritual significance of this behavior.In addition, the large amount of biomass represented by the TD6-2bone assemblage contradicts the hypothesis of an incidentalbehavior in response to a starvation episode. Thus, this behaviorhas been interpreted as “nutritional” or “gastronomic” canni-balism associated with long periods in which humans werefeeding on other humans as part of their regular diet (Fernández-Jalvo et al., 1999; Bermúdez de Castro et al., 2006).

Evidence of a different cultural behavior at Atapuerca in theMiddle Pleistocene comes from the Galería GII and GIIIa strati-graphic units. Galería is a horizontal cavity with a 7e9 m longvertical duct to the surface, which acted as a pit fall trap (Huguetet al., 2001; Pérez-González et al., 2001). Ungulates, mainly juve-nile horses and deer, accidentally fell through the pit hole and bothhominins and carnivores entered the cave in search of carrion.Carnivore activity is intense in the GII and GIII bone assemblages,but carnivore access to the carcasses was secondary in most cases.Under-representation of the skeletal elements associated with largemuscular masses and the predominance of axial and cranialelements suggest transport of large meat portions outside of thecavity for later consumption. As for the stone artifacts, they presentthe characteristics typical of Mode 2 techno-complex and, thus, theyrepresent amajor changewhen comparedwith the TD6 assemblage.Large shaped tools are well represented, many of them on flakes,such as handaxes and cleavers. Some of these tools lack the earlystages of the chaîne opératoire, which suggest that they wereproduced outside the cave (Carbonell et al., 2001). Diversity of rawmaterials is high, although all could be found inside a 2e5 km radiusaround the site (Gabarró et al., 1999; García-Antón et al., 2002). Thatdifferent rawmaterials were selected to make different instrumentsis evidence of complex behavior (Mosquera, 1998). Some knappingtechniques that were common in the TD6-2 assemblage disappearand new ones are used for the first time at Atapuerca. Use-wearanalyses carried out on stone tools support the zooarchaeologicaldata (Ollé et al., 2005), and have documented mainly butchering

J. Rodríguez et al. / Quaternary Science Reviews 30 (2011) 1396e14121408

activities, some hide working and the sporadic work on plantmaterial (Marquez et al., 1999, 2001; Ollé, 2003). Regarding thehominin species that carried out these activities, the mandiblefound in the lower levels has been attributed to Homoheidelbergensis by Bermúdez de Castro and Rosas (1992).

A different occupation is documented in the slightly morerecent TD10-2 unit of Gran Dolina, adding to our understanding ofthe behavioral variability of this hominin population. The boneassemblage is dominated by remains of a small species of bison(Bison sp.) and all the stages of the process of carcass exploitationare documented, evidencing intensive use of this trophic resource.From a technological point of view, the artifact assemblageexhibits low raw material diversity and is dominated by chertartifacts.

The more recent cultural evidence at the Trinchera del Ferro-carril sites comes from the TD10-1 unit of Gran Dolina and GIIIbunit of Galería. These units are roughly coetaneous (Fig. 2),although GIIIb appears to be slightly younger. As in the former case,they document two different behaviors of allegedly the samepopulation, since Galería was a natural trap and TD10-1 representsa base camp. Occupationwas particularly intense at TD10-1, shownby the fact that more than 80,000 bones and bone fragments and20,000 artifacts and debris have been recovered from an 80 m2

excavation. This different occupational use of the two cavitiesprobably explains the scarcity of artifacts and the absence of theearly stages of the technological chaîne opértoire at Galería GIII,making it difficult to compare the two artifact assemblages.Centripetal cores tending to Levallois characterize the TD10-1assemblage, evidencing a transition towards a Mode 3technology. Processing of animal carcasses continues to be intense,although large bovids are substituted by medium sized ungulates(cervids and horses) as the main animal resource.

The attribution of the lithic industries of Galería and TD10 toHomo heidelbergensis is sustained by the presence of a mandible ofthis species at the lower levels of Galería. Here H. heidelbergensis isconsidered a Middle Pleistocene European species ancestral to H.

Table 9Summary of environmental and cultural changes in Atapuerca. Cultural Phases, Faunaa tentative interpretation based on the evidences summarized in Fig. 4.

Layer Technological Mode Human

Middle Pleistocene No Fauna GIV

FU6 GIIIb Mode 2TD10-1 Mode 2/3TD10-2 Mode 2GIIIa Mode 2TD10-3 Mode 2GIIb Mode 2GIIa Mode 2 H. heidelTD10-4 Mode 2TD8-9

FU5 TD8Early Pleistocene TD7

FU4 TD6-1 Mode 1TD6-2 Mode 1 H. antec

FU3 TD6-3TD5

? TD3-TD4+TD5?FU2 TD3-TD4 Mode 1FU1 TE14

TE13TE12TE11TE10TE9 Mode 1 H. antec

neanderthalensis, as proposed by Rosas and Bermúdez de Castro(1998).

6. Discussion

Climatic change around 1.2e1 Ma lead to a predominance of the100 ka Milankovich cycles, which are related to the well knownglacial cycles (De Menocal, 1995). This is reflected in a major faunalturnover in Europe, with many extinctions and dispersals (e.g. vander Made, 2005, Fig. 4.2; van der Made, 2011). In mid-latitudeEurope (north of the Pyrenees) or Eurasia this is noted in analternation of glacial and interglacial faunas. During glacials theclosed environment of the taiga disappeared and the tundra andsteppe united into what is called the “Mammoth steppe” (Guthrie,1990), in which a fauna lived that includes mammoths, woollyrhinoceroses and other mammals (Kahlke, 1999). This “glacial”fauna derived mainly from the faunas that lived during interglacialtimes in the tundra, steppe and mountains. The “interglacial” faunasurvived during glacial times in the Southern peninsulas of Europeand parts of Asia, such as Anatolia - northern Iran in the west andChina in the east. In this context, the lack of evidence of harshclimatic conditions or extreme environments at Atapuerca duringthe 1.2 Ma to 250 Ka time interval, shown in the previous sections,reflects the prevalence of warm and equable conditions in SouthernEurope during this period. The only evidence suggesting a possibleextremely cold period leading to a cold steppe landscape is found inthe composition of two pollen samples fromGalería GIV unit, datedaround 200 kyr, a period without evidence of human presence atAtapuerca. Interestingly, steppe environments have been alsoinferred for other sites in the center of the Iberian Peninsula ofsimilar or younger age (Ruiz Zapata et al., 2004; Carrión et al.,2007). However, apart from this episode, the rest of the pollensamples show, in varying proportions, a continuous presence ofMediterranean taxa and mesic trees. In addition, the herpetofaunasupports the permanent existence of woodland areas, althoughspecies linked to open (moist or dry) habitats always dominate the

l Units (FU) and technological Modes are defined in the text. The environment is

species Cultural Environment

Open woodland and meadowsSteppeOpen wooland and meadows

Phase III Open woodland and meadowsPhase III Mediterranean open woodlandPhase III Mediterranean open WoodlandPhase III Mediterranean open woodlandPhase III Moist meadows with scattered treesPhase III Open Woodland and meadows

bergensis Phase III Open Woodland and meadowsPhase III Moist meadows with scattered trees

Open woodland and meadowsHumid temperate open woodlandMediterranean open woodland

Phase II Open woodland and steppeessor Phase II Open woodland and steppe

Open woodland and steppeOpen arid(?)Open woodland and moist meadows

Phase I Open woodland and moist meadowsPhase I Temperate open woodlands and meadows with lagoons.Phase I Temperate open woodlands and meadows with lagoons.Phase I Temperate open woodlands and meadows with lagoons.Phase I Temperate open woodlands and meadows with lagoons.Phase I Temperate open woodlands and meadows with lagoons.

essor Phase I Temperate open woodlands and meadows with lagoons.

J. Rodríguez et al. / Quaternary Science Reviews 30 (2011) 1396e1412 1409

spectra. On the contrary, small mammals suggest an almost abso-lute dominance of open habitats, with a continuous predominanceof “open moist” habitat species over “open dry” habitat ones. Here“open moist” refers to prairie environments, whilst the open drycategory is equivalent to steppes. Thus, typical cold steppe speciesare absent from the Atapuerca small mammals record and the sameis true for the large mammals, since all the species present may beconsidered catholic or temperate.

The apparent contradictions between the environments indi-cated by theherpetofauna and the smallmammalsmay be explainedas the result of either the differential biases introduced by theiraccumulation agents or of methodological artifacts. It is conceivablethat different agents sampling different habitats from a complexlandscape, as is probably the case at Atapuerca (Fernández-Jalvo,1994, 1999; Rosas et al., 1999; Blain et al., 2008, 2009), wouldproduce assemblages that were apparently disharmonious. Con-cerning methodological artifacts, herpetofauna and small mammalsare environmental proxies with different resolution. Distributionand diversity of reptiles and amphibians are tightly controlled byclimate (Whittaker et al., 2007) and, thus, we may regard them asreliable climate proxies. In addition all herpetofaunal remainsidentified at Atapuerca belong to living species (Blain et al., 2008,2009), whose habitat requirements are well known, and each ofthese species may be assigned a probability of occurrence for eachhabitat. Conversely, most of the small mammals identified at theTrinchera del Ferrocarril sites lack recent representatives and theirhabitat requirements have been extrapolated from closely relatedliving species, assigning a single habitat type to each species. Fewsmall European mammals may be classified as strictly woodlandspecies, but most of the open country species may also be found inwoodlands (Mitchell-Jones et al., 1999). This methodological artifacthelps to explain the underrepresentation of woodlands in thelandscapes inferred from the small mammal assemblages.

Pollen spectra show the continuous presence of conifers, mesicand Mediterranean trees (evergreen Quercus, Olea-Phillyrea, Pista-cia, Myrtus) in varying proportions, together with Poaceae and opendry species. These pollen spectra suggest two possible landscapes:a mosaic of woodland and open habitats or a savanna-like openwoodland. The abundance of megaherbivoresand the scarcity offorest adapted mammals are incompatible with the existence oflarge forested areas, however a significant tree component isalways present in the pollen samples. In addition, the structures ofthe mammalian paleocommunities living at Atapuerca throughoutthis period resemble in some aspects recent savanna communities(Rodríguez, 2001), which supports the second interpretation.

We have divided the sequence of cultural changes recorded atAtapuerca into three well differentiated phases (Table 9). The firstphase includes the oldest occupations, found at the lower levels ofSima del Elefante and Gran Dolina TD3-TD4. These are low intensityoccupations, characterized by very simple knapping strategies, verylow raw material diversity and an apparently opportunisticbehavior. Temperate open woodlands seem to have dominated thelandscape at this time. This was probably one of the most humidperiods at Atapuerca, since several proxies point towards a signifi-cant presence of meadows and/or lagoons.

A major cultural change is observed in the second phase, rep-resented by Dolina TD6-1 and TD6-2 assemblages and chronolog-ically corresponding to the end of the Early Pleistocene. The lithicassemblage still presents the characteristics typical of Mode 1technology, but knapping strategies are more complex and diver-sified, and a wide variety of raw materials is present. Although thisdevelopment may be a false reflection of lithic abundance at TD6,regarding the scarcity in earlier phases, the rest of the homininactivities support a more complex behavior: primary access,probably corresponding to opportunistic hunting, is well

documented at TD6-2 and cannibalism was apparently a commonpractice (Fernández-Jalvo et al., 1999). Finally, TD6-2 represents upto now the earliest base camp known at Atapuerca. Open wood-lands also dominated the landscape coinciding with this culturalphase, although more Mediterranean in character than in theprevious phase (Table 9). In addition, some periods within thisphase were probably dominated by steppes.

The third phase corresponds to the second half of the MiddlePleistocene (roughly 500e200 ka) and it is represented by theGalería GII-GIII assemblages and the Gran Dolina TD10-4 to TD10-1assemblages. This phase represents a major cultural change,marked by the appearance of a well developed Mode 2 technology.Both sites document two different and complementary behaviorsof the Homo heidelbergensis populations: use of an opportunisticbut well controlled resource at Galería and systematic huntingreflected at the Gran Dolina TD10-2 and TD10-1 base camp, withhigher directionality as regards the TD6 base camp. Also, thepresence in Galería of tools made outside the cave, suggests thesehominins were not entirely opportunistic, but that they controlledand used their landscapes with a premeditated behavior to plantheir activities. Finally, the presence in the TD10-1 assemblage ofsome characteristics that suggest a shift towards a Mode 3 tech-nology may be reflecting the appearance of a fourth episode ofcultural change. Again, open although not tree-less landscapesdominated throughout this cultural phase (Table 9). A particularlyopen landscape may correspond to TD10-4 and, especially to TD10-3, where Poaceae pollen is extremely abundant, Mediterraneanspecies are scarce in the pollen spectra and the small mammalassemblages are devoid of woodland species. However, otherperiods inside this phase were dominated by open woodlandssimilar in character to those inferred for the two previous culturalphases.

It is important to note that the first two cultural phases corre-spond to Homo antecessor, whilst the third one was developed bya different hominin species, namely Homo heidelbergensis. Unfor-tunately, the lithostratigraphic units separating TD6 from TD10 (i.e.TD7 and TD8) lack human remains and evidence of human activity.Thus, with the evidence currently at hand, it is not possible todeduce if the third phase developed out of the local Early Pleisto-cene culture or if it was an innovation produced elsewhere thatreplaced the pre-existent local culture. What seems evident is thatthese three cultural phases cannot be clearly related to any episodeof environmental change.

It has been proposed that the early human presence in Europe(e.g. before 0.5 Ma) was discontinuous (for instance, Dennell andRoebroeks, 1996) and one of the reasons alleged for this disconti-nuity is glacial cyclicity. By now many localities, other than Ata-puerca, testify to a human presence in Europe before 0.5 Ma ago,including Barranco Léon 5, Fuente Nueva 3 (Oms et al., 2000),Vallonnet (Yokoyama et al., 1988), and Isernia (Coltorti et al., 2005).The evidence shown here supports the prevalence of temperatehabitats at Atapuerca during much of the time between the earliesthuman arrival and about 0.5 Ma, when Homo heidelbergensis andMode 2 appeared. This suggests that Southern Europe may havebeen continuously inhabited during this period of about 0.7 Maduration and reflects the ecological preferences of Homo antecessorfor the warmer and more equitable conditions of Southern Europeas suggested by several authors (Roebroeks, 2001; van der Made,1999). From a local point of view, the replacement of H. ante-cessor by H. heidelbergensismay be considered as part of the faunalturnover separating Faunal Unit FU 6 from FU 5. However, thisseems to be a purely taxonomic turnover, since the assemblagesfrom FU 1 to FU 5 are not essentially different to those from FU 6 onthe basis of their ecological characteristics. For instance: Stepha-norhinus etruscus, Equus altidens, Dama vallonnetensis and Bison cf.

J. Rodríguez et al. / Quaternary Science Reviews 30 (2011) 1396e14121410

voigtstedtensis are replaced by Stephanorhinus hemitoechus, Equusferus, Dama dama clactoniana and Bison schoetensacki/Bison sp. Thelack of correlation between this turnover and any significantecological change and the existence of a remarkable stability in theecological composition of the mammalian paleocommunities atAtapuerca were previously highlighted by Rodríguez (2004b).

7. Conclusions

It is apparent that faunal and cultural changes are not related toenvironmental change at Atapuerca. This result is especiallyunexpected in the case of faunal changes, since they are usuallyinterpreted in terms of climate change (Azanza et al., 2000; Agustíet al., 2001). More data are needed from other similarly longtemporal sequences in order to determine if this was just a localphenomenon or a continental scale pattern.

Twomajor local faunal changes have been detected: one around1Ma ago and the other one around 600e500 ka. The first transitionoccurred during Cultural Phase I, represented at TE9 and TD3-TD4by Homo antecessor and Mode 1 technology, without anyapparent effect on hominid behavior. No faunal or environmentalchanges occurred during the transition towards the second culturalphase represented at TD6 around 800 ka ago, and characterized bynew subsistence and technological strategies. The faunal changearound 600e500 ka includes the replacement of Homo antecessorby H. heidelbergensis and coincides with the transition fromCultural Phase II to Cultural Phase III, although it is not related toany significant environmental transition. This third cultural phaseranges between 500 kae200 ka and is represented at Galería andTD10 by Mode 2 technology and systematic and directionalhunting. Finally, no faunal or environmental changes are related tothe transition to Mode 3 detected in TD10-1.

From a technological point of view, there is no way at present toevaluate whether Mode 2 emerged from the local Mode 1 inAtapuerca. Mode 1 from TD6-2 seems to be more evolved than thatfrom TE9 and TD3-4, although both these latter levels yielded fewartifacts. The matter of whether a similar process of technologicalchange may have eventually produced Mode 2 cannot be answeredas yet: a hiatus of approximately 200 kawithout hominin activities,represented by TD7 and TD8 levels, makes it impossible to link bothtechnologies. At around 500 ka a different hominin speciesappeared, and it is probably not a coincidence that at the same timeMode 2 dispersed relatively quickly throughout Europe. Bycontrast, the TD10-1 lithic assemblage suggests that an incipientMode 3 may have emerged at Atapuerca from the local Mode 2.

Acknowledgements

The authors wish to thank J. Carrión, J. Rose and C. Stringer fortheir kind invitation to participate in this volume and R. Quam forcomments on themanuscript. This research has been funded by theMICINN projects CGL2009-12703-C03-01, CGL2009-12703-C03-02and CGL2009-12703-C03-03 and CGL2006-04548/BTE the JCyL GR249-2008; and the MICINN project HAR2008-01984/HIST. We arealso indebted to Fundación Atapuerca, Grupos Consolidados delGobierno de Aragón and University of Zaragoza for the supportprovided to this work. Fieldwork at Atapuerca is funded by theJunta de Castilla y León. R. Blasco is beneficiary of a FI Grant fromGeneralitat de Catalunya and financed by the European SocialFound. P Saladié recieved a reaserch grant from Fundación Ata-puerca/Duques de Soria and R. Huguet from Fundación Atapuerca.J.M.L.-G. has been supported by a postdoctoral grant from Juan de laCierva Subprogram, with the financial sponsorship of the SpanishMinistry of Science and Innovation.

Appendix. Supplementary information

Supplementary material associated with this article can befound in the online version at doi:10.1016/j.quascirev.2010.02.021.

References

Agustí, J., 1991. The Allophaiomys complex in Southern Europe. Geobios 25,133e144.

Agustí, J., Castillo, C., Galobart, A., 1993. Heterochronic evolution in the Late Plio-ceneeEarly Pleistocene arvicolids of the Mediterranean area. QuaternaryInternational 19, 51e56.

Agustí, J., Oms, O., Remacha, E., 2001. Long Plio-Pleistocene terrestrial record ofclimate change and mammal turnover in Southern Spain. Quaternary Research56, 411e418.

Andrews, P., 2006. Taphonomic effects of faunal impoverishment and faunal mix-ing. Palaeogeography, Palaeoclimatology, Palaeoecology 241, 572e589.

Arsuaga, J.L., Bermúdez de Castro, J.M., Carbonell, E. (Eds.), 1997. The Sima de losHuesos hominid Site. Journal of Human Evolution 33 (special issue 2e3),105e421.

Arsuaga, J.L., Gracia, A., Lorenzo, C., Martínez, I., Pérez, P.J., 1999. Resto craneal deGalería/Cueba de los Zarpazos (Sierra de Atapuerca, Burgos). In: Carbonell, E.,Rosas, A., Díez, J.C. (Eds.), Atapuerca: ocupaciones humanas y paleoecología delyacimiento de galería. Junta de Castilla y Leon, Valladolid, pp. 233e235.

Azanza, B., Alberdi, M.T., Prado, J.L., 2000. Large mammal turnover pulses correlatedwith latest Neogene glacial trends in the northwestern Mediterranean region.In: Hart, M.B. (Ed.), Climates: Past and Present. Geological Society, London,Special Publications, pp. 161e170.

Bailon, S., 1991. Amphibiens et reptiles du Pliocène et du Quaternaire de France etd'Espagne: mise en place et évolution des faunes. Thèse 3ème cycle, Universitéde Paris VII, France.

Bailon, S., 1999. Différenciation ostéologique des Anoures (Amphibia, Anura) deFrance. In: Desse, J., Desse-Berset, N. (Eds.), Fiches d'ostéologie animale pourl'archéologie, Série C: varia. Centre de Recherches Archéologiques e CNRS, pp.3e41.

Berger, A., 1988. Milankovitch theory and climate. Reviews of Geophysics 26 (4),624e657.

Berger, G.W., Pérez-González, A., Carbonell, E., Arsuaga, J.L., Bermúdez de Castro, J.-M., Ku, T.-L., 2008. Luminescence chronology of cave sediments at the Ata-puerca paleoanthropological site, Spain. Journal of Human Evolution 55,300e311.

Bermúdez de Castro, J.M., Rosas, A., 1992. A human mandible fragment from theAtapuerca Trench (Burgos, Spain). Journal of Human Evolution 22, 41e46.

Bermúdez de Castro, J.M., Carbonell, E., Gómez, A., Mateos, A., Martinón-Torres, M.,Muela, A., Rodríguez, J., Sarmiento, S., Varela, S., 2006. Paleodemografía delhipodigma de fósiles de homínidos del nivel TD6 de Gran Dolina (Sierra deAtapuerca, Burgos): estudio preliminar. Estudios Geologicos 62, 145e154.

Bermúdez de Castro, J.M., Pérez-González, A., Martinón-Torres, M., Gómez-Robles, A., Rosell, J., Prado, L., Sarmiento, S., Carbonell, E., 2008. A new earlyPleistocene hominin mandible from Atapuerca-TD6, Spain. Journal of HumanEvolution 55, 729e735.

Bischoff, J.L., Williams, R.W., Rosenbauer, R.J., Aramburu, A., Arsuaga, J.L., García, N.,Cuenca-Bescós, G., 2007. High-resolution U-series dates from the Sima de losHuesos hominids yields 600þ/-66 kyrs: implications for the evolution of theearly Neanderthal lineage. Journal of Archaeological Science 34, 763e770.

Blain, H.-A., 2005. Contribution de la Paléoherpétofaune (Amphibia et Squamata) àla connaisance de l'évolution du climat et du paysage du Pliocène supérieur auPléistocene moyen d'Espagne. Thèse de Doctorat du Muséum National d'His-toire Naturelle, Paris, France.

Blain, H.-A., Bailon, S., Cuenca-Bescós, G., 2008. The Early-Middle Pleistocenepalaeoenvironmental change based on the squamate reptile and amphibianproxies at the Gran Dolina site, Atapuerca, Spain. Palaeogeography, Palae-oclimatology, Palaeoecology 261, 177e192.

Blain, H.-A., Bailon, S., Cuenca-Bescós, G., Arsuaga, J.L., Bermúdez de Castro, J.M.,Carbonell, E., 2009. Long-term climate record inferred from Early-MiddlePleistocene amphibian and squamate reptile assemblages at the Gran Dolinacave, Atapuerca, Spain. Journal of Human Evolution 56, 55e65.

Burjachs, F., 1990. Palinologia dels dòlmens de l'Alt Empordà i dels dipòsits qua-ternaris de la cova de l'Arbreda (Serinyà, Pla de l'Estany) i del Pla de l'Estany(Olot, Garrotxa). Evolució del paisatge vegetal i del clima des de fa més de140.000 anys al N.E de la Península Ibèrica. Publicacions de la UniversitatAutònoma de Barcelona. Barcelona.

Burjachs, F., López-Sáez, J.A., Iriarte, M.J., 2003. Metodología arqueopalinológica. In:Buxó, R., Piqué, R. (Eds.), La recogida de muestras en arqueobotánica: objetivos ypropuestasmetodológicas.Museud'ArqueologiadeCatalunya, Barcelona,pp.11e18.

Carbonell, E., Bermúdez de Castro, J.M., Arsuaga, J.L., Díez, J.C., Rosas, A., Cuenca-Bescós, G., Sala, R., Mosquera, M., Rodríguez, X.P., 1995. Lower Pleistocenehominids and artifacts from Atapuerca TD6 (Spain). Science 269, 826e830.

Carbonell, E., Mosquera, M., Rodríguez, X.P., Sala, R., van der Made, J., 1999a. Out ofAfrica: the dispersal of the earliest technical systems reconsidered. Journal ofAnthropological Archaeology 18, 119e136.

Carbonell, E., Esteban, M., Martín Nájera, A., Mosquera, M., Rodríguez, X.P., Ollé, A.,Sala, R., Vergés, J.M., Bermúdez de Castro, J.M., Ortega Martínez, A.I., 1999b. The

J. Rodríguez et al. / Quaternary Science Reviews 30 (2011) 1396e1412 1411

Pleistocene site of Gran Dolina, Sierra de Atapuerca, Spain: a history of thearchaeological investigations. Journal of Human Evolution 37, 313e324.

Carbonell, E., Rosas, A., Díez, J.C. (Eds.), 1999c. Atapuerca: ocupaciones humanas ypaleoecología del yacimiento de galería. Junta de Castilla y Leon, Valladolid.

Carbonell, E., García-Antón, M.D., Mallol, C., Mosquera, M., Ollé, A., Rodríguez, X.P.,Soahnouni, M., Sala, R., Vergés, J.M., 1999d. The TD6 level lithic industry fromGran Dolina, Atapuerca (Burgos, Spain): production and use. Journal of HumanEvolution 37, 653e693.

Carbonell, E., Mosquera, M., Ollé, A., Rodríguez, X.P., Sahnouni, M., Sala, R.,Vergès, J.M., 2001. Structure morphotechnique de l'industrie lithique du Pléis-tocène infériur et moyen d'Atapuerca (Burgos, Espagne). L'Anthropologie 105,259e280.

Carbonell, E., Bermúdez de Castro, J.M., Arsuaga, J.L., Allue, E., Bastir, M., Benito, A.,Cáceres, I., Canals, T., Díez, J.C., Van der Made, J., Mosquera, M., Ollé, A., Pérez-González, A., Rodríguez, J., Rodríguez, X.P., Rosas, A., Rosell, J., Sala, R.,Vallverdú, J., Vergés, J.M., 2005. An Early Pleistocene hominin mandible fromAtapuerca-TD6, Spain. Proceedings of the National Academy of Sciences of theUnited States of America 102, 5674e5678.

Carbonell, E., Bermúdez de Castro, J.M., Parés, J.M., Pérez-González, A., Cuenca-Bescós, G., Olle, A., Mosquera, M., Huguet, R., van der Made, J., Rosas, A., Sala, R.,Vallverdú, J., García, N., Granger, D.E., Martinón-Torres, M., Rodríguez, X.P.,Stock, G.M., Vergès, J.M., Allué, E., Burjachs, F., Cáceres, I., Canals, A., Benito, A.,Díez, C., Lozano, M., Mateos, A., Navazo, M., Rodríguez, J., Rosell, J., Arsuaga, J.L.,2008a. The first hominin of Europe. Nature 452, 465e470.

Carbonell, E., Mosquera, M., Rodríguez, X.P., Bermúdez de Castro, J.M., Burjachs, F.,Rosell, J., Sala, R., Vallverdú, J., 2008b. Eurasian Gates: the earliest humandispersals. Journal of Anthropological Research 64, 195e228.

Carretero, J.M., Ortega, A.I., Juez, L., Pérez González, A., Arsuaga, J.L., PérezMartínez, R., Ortega, M.C., 2008. A late Pleistocene-early Holocene archaeo-logical sequence of Portalón de Cueva Mayor (Sierra de Atapuerca, Burgos,Spain). Munibe: Antropología y arqueología 59, 67e80.

Carrión, J.S., Scott, L., Arribas, A., Fuentes, N., Gil-Romera, G., Montoya, E., 2007.Pleistocene landscapes in central Iberia inferred from pollen analysis of hyenacoprolites. Journal of Quaternary Science 22, 191e202.

Carrión, J.S., Fernández, S., González-Sampériz, P., Leroy, S.A.G., Bailey, G.N., López-Sáez, J.A., Burjachs, F., Gil-Romera, G., García-Antón, M., Gil-García, M.J., Parra, I.,Santos, L., López-García, P., Yll, E.I., Dupré, M., 2009. Quaternary pollen analysisin the Iberian Peninsula: the value of negative results. Internet Archaeology 25,1e53. http://intarch.ac.uk/journal/issue25/5/toc.html.

Chaline, J., 1972. Les rongeurs du Pléistocène moyen et supérieur de France. Cahiersde Paléontologie. C.N.R.S., Paris, France.

Clarke, D., 1968. Analytical archaeology. Methuen, London.Coltorti, M., Feraud, G., Marzoli, A., Peretto, C., Ton-That, T., Voinchet, P., Bahain, J.-J.,

Minelli, A., Thun Hohenstein, U., 2005. New 40Ar/39Ar, stratigraphic andpalaeoclimatic data on the Isernia La Pineta Lower Paleolithic site, Molise, Italy.Quaternary International 131, 11e22.

Cuenca-Bescós, G., García, N., 2007. Biostratigraphic sucession of the Early andMiddle Pleistocene mammal faunas of the Atapuerca cave sites (Burgos, Spain).Courier Forschunginstitut Senckenberg 259, 99e110.

Cuenca-Bescós, G., Canudo, J.I., Laplana, C., 1995. Los Arvicólidos (Rodentia, Mam-malia) de los niveles inferiores de Gran Dolina (Pleistoceno Inferior, Atapuerca,Burgos, España). Revista Española de Paleontología 10, 202e218.

Cuenca-Bescós, G., Laplana Conesa, C., Canudo, J.I., Arsuaga, J.L., 1997. Smallmammals from Sima de los Huesos. Journal of Human Evolution 33, 175e190.

Cuenca-Bescós, G., Laplana, C., Canudo, J.I., 1999. Biochronological implications ofthe Arvicolidae (Rodentia, Mammalia) from the Lower Pleistocene hominidbearing level of Trinchera Dolina 6 (TD6, Atapuerca, Spain). Journal of HumanEvolution 37, 353e373.

Cuenca-Bescós, G., Canudo, J.I., Laplana, C., 2001. La séquence des rongeurs(Mammalia) des sites du Pléistocene inférieur et moyen d'Atapuerca (Burgos,Espagne). L'Antrhopologie 105, 115e130.

Cuenca-Bescós, G., Rofes, J., García-Pimienta, J.C., 2005. Early Europeans and envi-ronmental change across the EarlyeMiddle Pleistocene transition: smallmammalian evidence fromTrinchera Dolina cave, Atapuerca, Spain. In:Head, M.J., Gibbard, P.L. (Eds.), EarlyeMiddle Pleistocene Transitions: theLandeOcean Evidence. Geological Society of London Special Publication, vol.247, pp. 277e286.

Cuenca-Bescós, G., Rofes, J., López-García, J.M., Blain, H.-A., De Marfà, R., Galindo-Pellicena, M.A., Bennàsar-Serra, M. Ll., Melero-Rubio, M., Arsuaga, J.L., Bermú-dez de Castro, J.M., Carbonell, E., 2009a. Biochronology of Spanish Quaternarysmall vertebrate faunas. Quaternary International. doi:10.1016/j.quaint.2009.06.007.

Cuenca-Bescós, G., Straus, L.G., González Morales, M., García Pimienta, J.C., 2009b.The reconstruction of past environments through small mammals: from theMousterian to the Bronze Age in El Miron Cave (Cantabria, Spain). Journal ofArchaeological Science 36, 947e955.

Delson, E., 1980. Fossil Macaques, Phyletic Relationships and a Scenario ofDeployment. In: Lindburg, D.G. (Ed.), The Macaques: Studies in Ecology,Behavior and Evolution. Van Nostrand Reinhold Comp., New York, pp. 10e30.

Dennell, R., Roebroeks, W., 1996. The earliest colonization of Europe: the shortchronology revisited. Antiquity 70, 535e542.

De Marfà, R., 2008. Oryctolagus giberti n. sp. (Lagomorpha, Mammalia) du Pléis-tocène inférieur de Cueva Victoria (Murcia, Espagne). Comptes Rendus Palevol7, 305e313.

De Menocal, P.B., 1995. Plio-Pleistocene African Climate. Science 270, 53e58.

Díez, J.C., Fernández-Jalvo, Y., Rosell, J., Cáceres, I., 1999. Zooarchaeology andtaphonomy of Aurora stratum (Gran Dolina, Sierra de Atapuerca, Spain). Journalof Human Evolution 37, 623e652.

Eronen, J.T., Rook, L., 2004. The Mio-Pliocene European primate fossil record:dynamics and habitat tracking. Journal of Human Evolution 47 (5), 323e341.

Evans, E.M.N., Van Couvering, J.A.H., Andrews, P., 1981. Palaeoecology of MioceneSites in Western Kenya. Journal of Human Evolution 10, 99e116.

Falguères, C., Bahain, J.-J., Yokoyama, Y., Arsuaga, J.L., Bermúdez de CAstro, J.M.,Carbonell, E., Bischofgf, J.L., Dolo, J.M., 1999. Earliest humans in Europe: the ageof TD6 Gran Dolina, Atapuerca, Spain. Journal of Human Evolution 37, 343e352.

Falguères, C., Bahain, J.-J., Yokoyama, Y., Bischoff, J.L., Arsuaga, J.L., Bermúdez deCastro, J.M., Carbonell, E., Dolo, J.M., 2001. Datations par RPE et U-Th des sitesPleistocenes d'Atapuerca: Sima de los Huesos, Trinchera Dolina et TrincheraGalería. Bilan géochronologique. L'Anthropologie 105, 71e81.

Fernández-Jalvo, Y., 1994. Small mammal taphonomy at la Trinchera de Atapuerca(Burgos Spain). A remarkable example of taphonomic criteria used for strati-graphic correlations and paleoenvironment interpretations. Palaeogeography,Palaeoclimatology, Palaeoecology 114, 167e195.

Fernández-Jalvo, Y., 1999. Tafonomía de micromamíferos del yacimiento de Galeríade Atapuerca (Burgos). In: Carbonell, E., Rosas, A., Díez, J.C. (Eds.), Atapuerca:ocupaciones humanas y paleoecología del yacimiento de Galería. Junta deCastilla y León, Valladolid, pp. 95e128.

Fernández-Jalvo, Y., Díez, J.C., Bermúdez de Castro, J.M., Carbonell, E., Arsuaga, J.L.,1996. Evidence of Early cannibalism. Science 271, 277e278.

Fernández-Jalvo, Y., Díez, C., Cáceres, I., Rosell, J., 1999. Human cannibalism in theEarly Pleistocene of Europe (Gran Dolina, Sierra de Atapuerca, Burgos, Spain).Journal of Human Evolution 37, 591e622.

Foley, R., Mirazón-Lahr, M., 2003. On Stony Ground: Lithic technology, human evolu-tion, and the emergence of culture. Evolutionary Anthropology 12, 109e122.

Franzen, J.L., Glizzoi, E., Jellinek, T., Scholger, R., Weidenfeller, M., 2000. Die spä-taltpleistozäne Fossilllagerstätte Dorn-Dürkheim 3 und ihre Bedeurtung für dieRekonstruction der Entwicklung des rheinischen Flusssystems. Senck-enbergiana Lethaea 80, 305e353.

Gabarró, J.M., García Antón, M.D., Gitralt, S., Mallol, C., Sala, R., 1999. Análisis de lacaptación de las materias primas líticas en el conjunto técnico del Modo 2 deGalería. In: Carbonell, E., Rosas, A., Díez, J.C. (Eds.), Atapuerca: ocupacioneshumanas y paleoecología del yacimiento de Galería. Junta de Castilla y León,Valladolid, pp. 83e297.

García Antón, M., Sainz Ollero, H., 1991. Pollen record from the middle PleistoceneAtapuerca site (Burgos, Spain). Palaeoclimatology, Palaeogeography, Palae-oecology 85, 199e206.

García-Antón, M.D., Morant, N., Mallol, C., 2002. L'approvisionnement en matièrespremières lithiques au Pléistocène inférieur et moyen dans la Sierra de Ata-puerca, Burgos (Espagne). L'Anthropologie 106, 41e55.

García, N., Arsuaga, J.L., 2001a. Ursus dolinensis a new species of early Pleistoceneursid from Trinchera Dolina, Atapuerca (Spain). C.R. Academy of Science ParísScience de la Terre et des Planetes 332, 717e725.

García, N., Arsuaga, J.L., 2001b. Les carnivores (Mammalia) des sites du pleistocèneancien et moyen d'Atapuerca (Espagne). L'Anthropologie 105, 83e93.

García, N., Arsuaga, J.L., Bermúdez de Castro, J.M., Carbonell, E., Rosas, A., Huguet, R.,2008. The Epivillafranchian carnivore Pannonictis (Mammalia, Mustelidae) fromSima del Elefante (Sierra de Atapuerca, Spain) and a revision of the Eurasianoccurrences from a taxonomic perspective. Quaternary International Quaternaryof Baikalia: Stratigraphy, Paleontology and Paleoenvironments of the Plioce-neePleistocene of Transbaikalia and Interregional Correlations 179, 42e52.

García, N., Arsuaga, J.L., 2011. The Sima de los Huesos (Burgos, northern Spain):palaeoenvironment and habitats of Homo heidelbergensis during the MiddlePleistocene. Quaternary Science Reviews 30, 1413e1419.

García, N., Feranec, R.S., Arsuaga, J.L., Bermúdez de Castro, J.M., Carbonell, E., 2009.Isotopic analysis of the ecology of herbivores and carnivores from the MiddlePleistocene deposits of the Sierra De Atapuerca, northern Spain. Journal ofArchaeological Science 36, 1142e1151.

Geist, V., 1998. Deer of the World. Stackpole Books, Mechanicsburg.Gil, E., Hoyos, M., 1987. Contexto estratigráfico. In: Aguirre, E., Carbonell, E., Ber-

múdez de Castro, J.M. (Eds.), El hombre fósil de Ibeas y el Pleistoceno de laSierra de Atapuerca. Junta de Castilla y León. Consejería de Cultura y BienestarSocial, Valladolid, pp. 47e55.

Girard, M., Renault-Miskovsky, J., 1969. Nouvelles techniques de préparation enPalynologie appliqués à trois sediments du Quaternaire final de l'Abri Cornille(Istres Bouches du Rhône). Bulletin A.F.E.Q 4, 275e284.

Goeury, Cl., de Beaulieu, J.-L.,1979. Àproposde la concentrationdupollen à l'aidede laliqueur de Thoulet dans les sédiments minéraux. Pollen et Spores 21, 239e251.

Guthrie, R.D., 1990. Frozen fauna of the Mammoth steppe. The story of Blue Babe.The University of Chicago Press, Chicago & London.

Huguet, R., 2007. Primeras ocupaciones humanas en la Península Ibérica: Paleo-economía en la Sierra de Atapuerca (Burgos) y la cuenca de Guadix-Baza(Granada) durante el Pleistoceno inferior. Ph.D. Thesis. Universidad Rovira iVirgili. Tarragona, Spain.

Huguet, R., Díez, C., Rosell, J., Cáceres, I., Moreno, M.V., Ibáñez, N., Saladié, P., 2001.Le gisement de Galería (Sierra de Atapuerca, Burgos, Espagne): un modèlearchéozoologique de gestion du territoire au Pléistocene. L'Anthropologie 105,237e257.

Kahlke, R.D., 1999. The history of the origin, evolution and dispersal of the LatePleistocene Mammuthus-Colodonta faunal complex in Eurasia (largemammals). Fenske Companies, Rapid City.

J. Rodríguez et al. / Quaternary Science Reviews 30 (2011) 1396e14121412

Laplana, C., Cuenca-Bescós, G., 2000. Una nueva especie de Microtus (Allophaiomys)(Arvicolidae, Rodentia, Mammalia) en el Pleistoceno Inferior de la Sierra deAtapuerca (Burgos, España). Revista Española de Paleontología 15, 77e87.

López-Antoñanzas, Cuenca-Bescós, G., 2002. The Gran Dolina site (Lower to MiddlePleistocene, Atapuerca, Burgos, Spain): new palaeoenvironmental data basedon the distribution of small mammals. Palaeogeography, Palaeoclimatology,Palaeoecology 186, 311e334.

van der Made, J., 1999. Ungulates from Atapuerca TD6. Journal of Human Evolution37, 389e414.

van der Made, J., 2001. Les Ongulés d'Atapuerca. Stratigraphie et biogéographie.L'Anthropologie 105, 95e113.

van der Made, J., 2005. La fauna del Pleistoceno europeo. In: Carbonell, E. (Ed.),Homínidos: las primeras ocupaciones de los continentes. Ariel, Barcelona, pp.394e432.

van der Made, J., 2011. Biogeography and climatic change as a context to humandispersal out of Africa and within Eurasia. Quaternary Science Reviews 30,1353e1367.

Márquez, B., Ollé, A., Sala, R., 1999. Análisis microscópico de los instrumentos deGalería (Sierra de Atapuerca). Actividades desarrolladas y formas de uso. In:Carbonell, E., Rosas, A., Díez, J.C. (Eds.), Atapuerca: ocupaciones humanas ypaleoecología del yacimiento de Galería. Junta de Castilla y León, Valladolid, pp.353e370.

Márquez, B., Ollé, A., Sala, R., Vergès, J.M., 2001. Perspectives méthodologiques del'analyse fonctionnelle des ensembles lithiques du Pléistocène inférieur etmoyen d'Atapuerca (Burgos, Espagne). L'Anthropologie 105, 281e299.

van der Meulen, A., 1973. Middle Pleistocene smaller mammals from the MontePeglia (Orvieto, Italy), with special reference to the phylogeny of Microtus(Arvicolidae, Rodentia). Quaternaria 17, 1e144.

Minwer-Barakat, R., 2005. Roedores e insectívoros del Turoliense superior y elPlioceno del sector central de la Cuenca de Guadix. PhD thesis, University ofGranada, Granada, Spain.

Minwer-Barakat, R., García-Alix, A., Freudenthal, M., 2007. Blarinoides aliciae sp.nov., a new Soricidae (Mammalia, Lipotyphla) from the Pliocene of Spain.Comptes Rendus Palevol 6, 281e289.

Mitchell-Jones, A.J., Amori, G., Bogdanowicz, W., Krystufek, B., Reijnders, P.J.H.,Spitzenberger, F., Stubbe, M., Thissen, J.B.M., Vohralík, V., Zima, J., 1999. The atlasof European mammals. Academic Press, London-San Diego.

Mosquera, M., 1998. Differential raw material use in the Middle Pleistocene ofSpain: the evidence from Sierra de Atapuerca, Torralba, Ambrona and Aridos.Cambridge Archaeological Journal 8 (1), 15e28.

Ollé, A., 2003. Variabilitat i patrons funcionals en els sistemes tècnics de Mode 2.Anàlisi de les deformacions d'ús en els conjunts lítics del Riparo Esterno deGrotta Paglicci (Rignano Garganico, Foggia), Áridos (Arganda, Madrid) i Galería-TN (Sierra de Atapuerca, Burgos). Ph.D. Thesis. Universidad Rovira i Virgili,Tarragona, Spain.

Ollé, A., Cáceres, I., Vergès, J.M., 2005. Human occupations at Galeria site (Sierra deAtapuerca, Burgos, Spain) after the technological and taphonomical data. In:Molines, N., Moncel, M.-H., Monnier, J.-L. (Eds.), Les premiers peuplements enEurope. Colloque international: Données récentes sur les modalités depeuplement et sur le cadre chronostratigraphique, géologique et paléo-géographique des industries du Paléolithique ancien et moyen en EuropeBritish Archaeological Series, International Series, S1364. John and Erika HedgesLtd, Oxford, pp. 269e280.

Oms, O., Parés, J.M., Martínez-Navarro, B., Agustí, J., Toro, I., Martínez-Fernández, G.,Turq, A., 2000. Early human occupation of Western Europe: paleomagneticdates for two paleolithic sites in Spain. Proceedings of National Academy ofSciences of United States of America 97, 10666e10670.

Palombo, J.L., Gisbert, J., 2005. Atlas de los Mamíferos Terrestres de España.Dirección General para la Biodiversidad-SECEM-SECEMU, Madrid.

Parés, J.M., Pérez-González, A., 1995. Paleomagnetic Age for Hominid fossils atAtapuerca Archaeological site. Nature 269, 830e832.

Parés, J.M., Pérez-Gozález, A., 1999. Magnetochronology and stratigraphy at GranDolina section, Atapuerca (Burgos, Spain). Journal of Human Evolution 37,325e342.

Pérez-González, A., Parés, J.M., Gallardo, J., Aleixandre, T., Ortega, A.I., Pinilla, A.,1999. Geología y estratigrafía del relleno de Galería de la Sierra de Atapuerca,(Burgos). In: Carbonell, E., Rosas, A., Díez, J.C. (Eds.), Atapuerca: ocupacioneshumanas y paleoecología del yacimiento de Galería. Junta de Castilla y Leon,Valladolid, pp. 31e42.

Pérez-González, A., Parés, J.M., Carbonell, E., Aleixandre, T., Ortega, A.I., Benito, A.,Martín Merino, M.A., 2001. Géologie de la Sierra de Atapuerca et stratigraphiedes remplissages karstiques de Galería et Dolina (Burgos, Spain). L'An-thropologie 105, 27e44.

Pleguezuelos, J.M., Márquez, M., Lizana, M., 2002. Atlas y libro rojo de los Anfibios yReptiles de España. Dirección General de Conservación de la Naturaleza e

Asociación Herpetológica Española, Madrid.

Reumer, J.W.F., 1984. Ruscinian and early Pleistocene Soricidae (Insectivora, Mam-malia) from Tegelen (The Netherlands) and Hungary. Scripta Geologica 73,1e173.

Rial, J.A., 1999. Pacemaking the ice ages by frequency modulation of earth orbitaleccentricity. Science 285, 564e568.

Rodríguez, J., 2001. Structure de la communauté de mammifères pléistocenes deGran Dolina (Sierra de Atapuerca, Burgos, Espagne). L'Anthropologie 105,131e157.

Rodríguez, X.P., 2004a. Technical systems of lithic production in the lowerandMiddlePleistocene of the Iberian Peninsula. B.A.R. International Series 1323, 1e199.

Rodríguez, J., 2004b. Stability in Pleistocene Mediterranean mammalian commu-nities. Palaeogeography, Palaeoclimatology, Palaeoecology 207, 1e22.

Roebroeks, W., 2001. Hominid behaviour and the earliest occupation of Europe: anexploration. Journal of Human Evolution 41, 437e461.

Rofes, J., Cuenca-Bescós, G., 2006. First evidence of the Soricidae (Mammalia)Asoriculus gibberodon (Petényi, 1864) in the Pleistocene of North Iberia. RivistaItaliana di Paleontologia e Stratigrafia 112, 301e315.

Rofes, J., Cuenca-Bescós, G., 2009a. A new genus of red-toothed shrew (Mammalia,Soricidae) from the Early Pleistocene of Gran Dolina (Atapuerca, Burgos, Spain),and a phylogenetic approach to the Eurasiatic Soricinae. Zoological Journal ofthe Linnean Society 155, 904e925.

Rofes, J., Cuenca-Bescós, G., 2009b. First record of Beremendia fissidens (Mammalia,Soricidae) in the Pleistocene of the Iberian Peninsula, with a review of thebiostratigraphy, biogeography and palaeoecology of the species. ComptesRendus Palevol 8, 21e37.

Rosas, A., Bermúdez de Castro, J.M., 1998. The Mauer mandible and the significanceof Homo heidelbergensis. Geobios 31, 126e137.

Rosas, A., Artusi, E., Cuenca, G., Laplana, C., Rodríguez, J., 1999. Asociaciones demicrovertebrados en el yacimiento mesopleistoceno de Galería, Sierra de Ata-puerca. In: Carbonell, E., Rosas, A., Díez, J.C. (Eds.), Atapuerca: ocupacioneshumanas y paleoecología del yacimiento de Galería. Junta de Castilla y León,Valladolid, pp. 129e134.

Rosas, A., Huguet, R., Pérez-González, A., Carbonell, E., Bermúdez de Castro, J.M.,Vellverdú, J., Van der Made, J., Allué, E., García, N., Martínez-Pérez, R., Sala, R.,Saladié, P., Benito, A., Martínez-Maza, C., Bastir, M., Sánchez, A., Parés, J.M.,2006. The “sima del Elefante” cave site at Atapuerca (Spain). Estudios Geo-lógicos 62, 327e348.

Rosell, J., 1998. Les premières occupations humaines à la Sierra de Atapuerca(Burgos, Espagne): les niveaux TDW-4 et TDW-4b. Économie Préhistorique: lescomportements de subsistance au Paléolithique. XVIIIe. Rencontres Inter-nationales d'Archéologie et d'Histoire d'Antibes. Sophia Antipolis, France, pp.153e162.

Rosell, J., 2001. Patrons d'Aprofitament de les Biomasses Animals durant el PleistocèInferior i Mig (Sierra de Atapuerca, Burgos) i Superior (Abric Romaní,Barcelona). Ph.D. Thesis. Universitat Rovira i Virgili, Tarragona, Spain.

Ruiz Zapata, M.B., Dorado, M., Valdeolmillos, A., Gil García, M.J., Martín Arroyo, T.,Pérez González, A., 2004. Registro paleoambiental y paleoclimático del Pleis-toceno medio y superior en depósitos fluviales del Valle del río Tajo (Toledo). In:Miscelanea en Homenaje a Emiliano Aguirre. Paleontología, Museo Arqueoló-gico Regional, Alcalá de Henares, vol. II, pp. 507e518.

Saladié, P., 2009. Mordiscos de omnívoros. Aproximación experimental y aplicaciónzooarqueológica en la Sierra de Atapuerca. Ph. D. Thesis. Universidad Rovira iVirgili, Tarragona. Spain.

Sánchez-Marco, A., 1999. Implications of the avifauna for palaeoecology in theearly Pleistocene of the Iberian Peninsula. Journal of Human Evolution 37,375e388.

Sittler, C., 1955. Méthodes et tecniques physicho-chimiques de préparation dessédiments en vue de leur analyse pollinique. Rev. Inst. Fr. Petrol., Annales desComb. Liq. 10, 103e114.

Velasco, J.C., Lianza, M., Román, J., Delibes de Castro, M., Fernández, J., 2005. Guía delos Peces, Anfibios, Reptiles y Mamíferos de Castilla y León. Náyade, Valladolid.

Vergés, J.M., Allué, E., Angelucci, D., Burjachs, F., Carrancho, A., Cebrià, A.,Expósito, I., Fontanals, M., Moral, S., Rodríguez, A., Vaquero, M., 2008. Losniveles neolíticos de la cueva de El Mirador (Sierra de Atapuerca, Burgos):nuevos datos sobre la implantación y el desarrollo de la economía agropecuariaen la submeseta norte. Hernández, M., Soler, Actas del IV Congreso del NeolíticoPeninsular. Museo Arqueológico de Alicante, Alicante, Spain. pp. 418e427.

Vrba, E.S., Denton, G.H., Partridge, T.C., Burckle, L.H. (Eds.), 1995. Paleoclimate andevolution,withemphasis onhumanorigins. YaleUniversityPress,NewHaven,CT.

Whittaker, R.J., Nogues-Bravo, D., Araújo, M.B., 2007. Geographical gradients ofspecies richness: a test of the water-energy conjecture of hawkins et al. (2003)using European data for five taxa. Global Ecology & Biogeography 16, 76e89.

Yokoyama, Y., Bibron, R., Falguères, C., 1988. Datation absolue desPlanchers sta-lagmitiques de la grotte du Vallonnet à Roquebrune-Cap-martin (Alpes-Mari-times) France, par larésonance de spin électronique (ESR). L'Anthropologie(Paris) 92, 429e436.


Recommended