+ All Categories
Home > Documents > Os primeiros 62 AGNs observados com o SDSS-IV MaNGA

Os primeiros 62 AGNs observados com o SDSS-IV MaNGA

Date post: 26-Feb-2023
Category:
Upload: khangminh22
View: 0 times
Download: 0 times
Share this document with a friend
116
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE F ´ ISICA DEPARTAMENTO DE ASTRONOMIA Os primeiros 62 AGNs observados com o SDSS-IV MaNGA: Popula¸ oes Estelares Espacialmente Resolvidas ? ıcolas Dullius Mallmann Disserta¸c˜ ao realizada sob orienta¸c˜ ao do Prof. Dr. Rog´ erio Riffel e apresentada ao Programa de P´ os-Gradua¸c˜ ao em F´ ısica da Universidade Federal do Rio Grande do Sul como requisito parcial para a obten¸c˜ao do t´ ıtulo de Mestre em F´ ısica. Porto Alegre, RS, Brasil Abril de 2018 ? Trabalho financiado pelo CNPq e pelo LIneA
Transcript

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SULINSTITUTO DE FISICA

DEPARTAMENTO DE ASTRONOMIA

Os primeiros 62 AGNs observados

com o SDSS-IV MaNGA:

Populacoes Estelares Espacialmente Resolvidas?

Nıcolas Dullius Mallmann

Dissertacao realizada sob orientacao do

Prof. Dr. Rogerio Riffel e apresentada

ao Programa de Pos-Graduacao em Fısica

da Universidade Federal do Rio Grande do

Sul como requisito parcial para a obtencao

do tıtulo de Mestre em Fısica.

Porto Alegre, RS, Brasil

Abril de 2018

? Trabalho financiado pelo CNPq e pelo LIneA

Agradecimentos

Ao Rogerio Riffel que, alem de um otimo orientador, possui a paciencia de um

santo, o companheirismo de um irmao e o ouvido de um psicologo.

Aos meus amigos e colegas do departamento pelos encontros festivos, jogos de

volei e futsal e quaisquer momentos de descontracao, fundamentais para a minha

sanidade.

A minha famılia, em especial aos meus pais, meu irmao e minha prima (Luana

Dullius), pelo apoio e carinho que me fornecem... dos mais variados e peculiares

jeitos, sejam eles um abraco, alguns tapinhas nas costas ou ate mesmo um golpe de

jiu-jitsu enquanto cozinho.

ResumoUma das vertentes de estudo da evolucao de galaxias se concentra nos processos de

alimentacao (feeding) e de retroalimentacao (feedback) do nucleo ativo de galaxias

(active galactic nucleus ; AGN). AGNs sao fenomenos muito energeticos, podendo

alterar a distribuicao de materia (estelar e gasosa) no seu entorno. Neste trabalho

apresentamos mapas de populacoes estelares espacialmente resolvidos, perfis radiais

medios e gradientes destes para as primeiras 62 galaxias com nucleo ativo, obser-

vadas no Mapping Nearby Galaxies at APO do Sloan Digital Sky Survey IV, para

estudar os efeitos de AGNs no historico de formacao estelar das galaxias hospedei-

ras. Esses resultados, derivados com sıntese de populacoes estelares (utilizando o

codigo starlight), sao comparados com os derivados para uma amostra de galaxias

inativas cujas propriedades foram pareadas com as ativas. A fracao de populacoes

estelares jovens (t < 40.1Myr) em AGNs de alta luminosidade e maior nas regioes

mais internas (R ≤ 0.5Re) quando comparadas com a amostra de controle; AGNs de

baixa luminosidade, por outro lado, apresentam fracoes muito similares de estrelas

jovens as das galaxias de controle para toda a regiao estudada (1Re). A fracao de

populacoes estelares de idade intermediaria (40.1Myr < t ≤ 2.6Gyr) em galaxias

ativas aumenta radialmente, com um aumento significativo se comparadas com as

galaxias de controle. As regioes centrais das galaxias (tanto ativas quanto inativas)

sao dominadas por populacoes velhas (t > 2.6Gyr), cuja fracao diminui com o raio.

Tambem comparamos os resultados (diferencas entre AGNs e controles) de galaxias

hospedeiras early e late-type e nao encontramos nenhuma diferenca significativa.

Em resumo, nossos resultados sugerem que a atividade dos AGNs mais luminosas

seja alimentada por um suprimento recente de gas, que, por sua vez, tambem ativou

formacao estelar recente (t ≤ 40Myr) nas regioes centrais.

AbstractOne of the main open problems in galaxy evolution’s studies concentrates on the

feeding and feedback processes generated by the active galactic nuclei (AGN). AGN

are very energetic phenomena that can alter their surrounding environment (stel-

lar or gaseous). In this work, we present spatially resolved stellar population age

maps, average radial profiles and gradients for the first 62 Active Galactic Nuclei

observed with SDSS-IV’s Mapping Nearby Galaxies at APO survey (MaNGA) to

study the effects of the active nuclei on the star formation history of the host gala-

xies. These results, derived with stellar population synthesis (using the starlight

code), are compared with a control sample of non-active galaxies matching the pro-

perties of the AGN hosts. We find that the fraction of young stellar populations

(t < 40.1Myr) in high-luminosity AGN is higher in the inner (R ≤ 0.5Re) regions

when compared with the control sample; low-luminosity AGN, on the other hand,

present very similar fractions of young stars to the control sample hosts for the

entire studied range (1Re). The fraction of intermediate age stellar populations

(40.1Myr < t ≤ 2.6Gyr) of the AGN hosts increases outwards, with a clear enhan-

cement when compared with the control sample. The inner region of the galaxies

(AGN and control galaxies) presents a dominant old stellar population (t > 2.6Gyr),

whose fraction decreases outwards. We also compare our results (differences between

AGN and control galaxies) for the early and late-type hosts and find no significant

differences. In summary, our results suggest that the most luminous AGN seems

to have been triggered by a recent supply of gas that has also triggered recent star

formation (t ≤ 40Myr) in the central region.

Abreviaturas

AGN: Nucleo Ativo de Galaxia (Active Galactic Nucleus).

APO: Apache Point Observatory.

IFU: Unidade de campo integral (Integral Field Unit).

MaNGA: Mapping Nearby Galaxies at APO.

MNRAS: Monthly Notes of the Royal Astronomical Society.

SDSS: Sloan Digital Sky Survey.

SFH: Historico de Formacao Estelar (Star Formation History).

SMBH: Buraco Negro Supermassivo (Supermassive Black Hole).

SSP: Populacao estelar simples (Simple Stellar Population).

Conteudo

Conteudo V

Lista de Figuras 1

1 Introducao 2

1.1 Galaxias de Nucleo Ativo . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivacao e Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Os primeiros 62 AGNs do MaNGA 7

2.1 MaNGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Nossa Amostra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 O Software megacube 11

3.1 Extracao de Dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Sıntese de Populacoes Estelares . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 O Codigo starlight . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Analise dos Dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Artigo 19

5 Consideracoes Finais 35

5.1 Perspectivas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Participacao em Outros Trabalhos 37

Referencias Bibliograficas 39

Apendice A: Comparacoes AGN-Controles 48

V

Lista de Figuras

1.1 SFH e crescimento do SMBH. . . . . . . . . . . . . . . . . . . . . . . 4

2.1 IFU do MaNGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Diagramas BPT e WHAN da amostra de AGNs. . . . . . . . . . . . . 9

2.3 Distribuicoes de propriedades das amostras. . . . . . . . . . . . . . . 10

3.1 Fluxograma do megacube. . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Fluxograma da sub-rotina do megacube. . . . . . . . . . . . . . . . 13

3.3 Sıntese Espectral. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Exemplo de perfis da galaxia MaNGA-ID 1-211082. . . . . . . . . . . 18

1

Capıtulo 1

Introducao

1.1 Galaxias de Nucleo Ativo

Uma fracao1 das galaxias observaveis no universo emite alta luminosidade, se com-

paradas com galaxias de mesmas caracterısticas, proveniente de regioes centrais

extremamente compactas. Essas regioes, denominadas de nucleos ativos de galaxias

(Active Galactic Nucleus; AGN), sao caracterizadas por luminosidades bolometricas

da ordem de 1042 a 1048 ergs/s, volumes compactos de 1 pc3 e altas taxas de variacao

da luminosidade com o tempo (Beckmann & Shrader, 2012). A energia luminosa

destes objetos, quando comparada com a energia emitida pelas estrelas da galaxia

hospedeira, nao pode ser explicada via processos de fusao termonuclear, como acon-

tece no interior estelar. A hipotese mais aceita para explicar o fenomeno de AGNs

envolve a conversao de energia potencial em energia radiativa atraves da acrescao

de materia a um buraco negro supermassivo (supermassive black hole; SMBH). A

materia, ao se aproximar do SMBH, espirala e forma um disco de acrescao que,

devido a viscosidade, fricciona e emite energia (Krolik, 1999). O disco de acrescao

e composto por uma camada interna mais quente e, por isso, mais espessa e uma

camada externa mais fria e estreita, cuja espessura aumenta com a distancia ao

SMBH (Carroll & Ostlie, 2006). AGNs tambem apresentam jatos relativısticos de

partıculas, possivelmente carregadas pelo campo magnetico, que, ao entrar em con-

tato com o meio interestelar, transferem sua energia e geram lobulos de emissao em

radio. Alem disso, estes objetos apresentam intensas linhas de emissao que por vezes

podem ser muito alargadas (podendo chegar a 10 000 km/s em casos extremos). Os

AGNs sao classificados de acordo com a sua luminosidade e com a presenca ou nao de

1Se considerarmos objetos de baixa luminosidade, como os LINERs (Low Ionization EmissionLine Regions), essa fracao pode chegar a 50% (Ho, 2008).

2

Introducao 3

uma componente alargada nas linhas de emissao, oriundas de transicoes permitidas.

A fase de nucleo ativo caracteriza um estagio crıtico da evolucao de galaxias.

Uma vez que o disco de acrescao e formado no entorno do SMBH, processos de

feedback comecam a acontecer, como: jatos de partıculas relativısticas emitidos da

parte interna do disco de acrescao, ventos emanando da regiao externa deste e ra-

diacao emitida pelo plasma quente do disco ou de sua coroa (Elvis, 2000, Ciotti

et al., 2010). Acredita-se que os processos de feeding (alimentacao do AGN) e fe-

edback (resposta do AGN) conectam o crescimento do SMBH com o crescimento de

suas galaxias hospedeiras (figura 1.1), e sao reivindicados como responsaveis pela

correlacao entre a massa do SMBH e a massa do bojo da galaxia (Somerville et al.,

2008, Kormendy & Ho, 2013). Em outras palavras, ha um cenario de co-evolucao,

onde o fluxo de gas (feeding) no kiloparsec central de galaxias, quando na fase ativa,

resulta no crescimento do bojo2 da galaxia em consonancia com o crescimento do

SMBH (Ferrarese & Merritt, 2000, Gebhardt et al., 2000). Desde os estudos pionei-

ros de Terlevich e seus colaboradores (Terlevich et al., 1990) sugere-se que o excesso

observado no azul e a diluicao das linhas em absorcao no espectro nuclear de AGNs

e devido as estrelas massivas jovens. Estudos posteriores utilizando espectroscopia

de fenda longa (Kauffmann et al., 2003, Cid Fernandes et al., 2004, Riffel et al.,

2009) encontraram um excesso nas contribuicoes de populacoes jovens das galaxias

ativas quando comparadas com as nao ativas. Esse resultado levou a proposicao de

um cenario evolutivo onde o fluxo de gas para a regiao nuclear da galaxia dispara a

formacao estelar na regiao circumnuclear que e, entao, seguida pela ignicao do pro-

cesso de atividade nuclear (Storchi-Bergmann et al., 2001, Hopkins, 2012). Neste

cenario o chamado feedback positivo do AGN poderia atuar como um catalisador e

induzir a formacao estelar na galaxia hospedeira, pois este aumenta a turbulencia

no meio interestelar como previsto por simulacoes (Gaibler et al., 2012, Ishibashi &

Fabian, 2012, Wagner et al., 2012, Zubovas et al., 2013, Bieri et al., 2015, Zubovas

& Bourne, 2017) e detectado em poucos objetos (Cresci et al., 2015, Maiolino et al.,

2017).

Modelos e simulacoes modernas de inflows de gas em torno da regiao nuclear

de galaxias predizem episodios de formacao estelar circumnuclear (Kormendy &

Ho, 2013, Heckman & Best, 2014, Zubovas & Bourne, 2017). Contudo, a partir de

estudos observacionais, nao ha um consenso se a alimentacao do AGN e a formacao

estelar ocorrem simultaneamente (Kawakatu & Wada, 2008), ou se essa alimentacao

acontece em uma fase posterior ao surto de formacao estelar (Cid Fernandes et al.,

2Somente bojo classico.

Introducao 4

Figura 1.1: Historico de formacao estelar (linha preta) e diferentes medidas da taxade crescimento de SMBH: Shankar et al. (2009) em vermelho, Aird et al. (2010) emverde e Delvecchio et al. (2014) em azul. Figura retirada de Madau & Dickinson(2014).

Introducao 5

2005, Davies et al., 2007, 2009) ou se essa nao esta relaciona com nenhuma formacao

estelar recente (Sarzi et al., 2007, Hicks et al., 2013). Neste contexto, e fundamental

para esse debate investigar se ha alguma associacao entre a formacao estelar e a

atividade nuclear levando em consideracao, particularmente, diferentes regimes de

luminosidade do AGN. Alguns resultados da literatura (Kauffmann et al., 2003,

Davies et al., 2007, Esquej et al., 2014, Ruschel-Dutra et al., 2017) sugerem que

estrelas jovens nas vizinhancas do AGN sao apenas encontradas em Seyferts com

LAGN & 1043 erg/s (i.e. taxas de acrescao acima de∼ 10−3M�/yr). Portanto, outros

processos de feeding menos eficientes podem ser suficientes para fornecer material ao

SMBH em taxas de acrescao menores. De fato, muitos dos resultados inconclusivos

em AGNs do Universo local podem ser atribuıdos a luminosidade como sendo um

“parametro oculto”, ja que as analises anteriores, de AGN do universo local, foram

focadas em objetos de baixa luminosidade (e.g. Davies et al., 2007).

Durante os ultimos anos um grande esforco observacional vem sendo feito para

tentar compreender essa co-evolucao atraves do estudo do historico de formacao

estelar e da cinematica estelar, ambos, espacialmente resolvidos nas dezenas de par-

secs centrais das AGNs. O nosso grupo, ate o presente momento, estudou poucas

galaxias Seyfert do universo local utilizando cubos de dados na regiao do infraver-

melho proximo. Um dos principais resultados e que existe uma correlacao espacial

entre estrelas com baixa dispersao de velocidades e populacoes estelares de idade in-

termediaria (Riffel et al., 2010, 2011, Storchi-Bergmann et al., 2012, Schonell et al.,

2017, Diniz et al., 2017). Vale ressaltar que, apesar de inumeros estudos do historico

de formacao estelar (Star Formation History ; SFH) em galaxias terem utilizado cu-

bos de dados (e.g. de Amorim et al., 2017, Goddard et al., 2017a,b, Zheng et al.,

2017, Sanchez et al., 2017,e referencias), ate onde sabemos, nao existe nenhum es-

tudo focado em AGNs explorando, por exemplo, os efeitos da luminosidade do AGN

no SFH das galaxias hospedeiras.

1.2 Motivacao e Objetivos

Um importante avanco na compreensao do AGN e seu papel na distribuicao das

populacoes estelares pode ser alcancado atraves de uma investigacao da presenca

ou nao de estrelas jovens ou de idades intermediarias nas poucas centenas de pc do

nucleo ativo. Neste contexto: (i) se estrelas jovens dominam a contribuicao lumi-

nosa, a alimentacao do AGN e a formacao estelar ocorrem concomitantemente; (ii)

se estrelas de idade intermediarias dominarem a populacao estelar, a alimentacao

Introducao 6

do AGN seria devida a massa ejetada pelas estrelas evoluıdas, assim a fase de AGN

seria posterior a fase de formacao estelar (post-starburt phase); (iii) se apenas en-

contrarmos populacoes estelares velhas o inflow de gas para o AGN e eficiente e

a formacao estelar nao ocorre. Pelo dito acima fica evidente que para o avanco na

compreensao dos processos envolvidos na alimentacao do SMBH e necessario mapear

as populacoes estelares nas regioes centrais de uma amostra de AGNs e compara-la

com uma amostra de galaxias inativas com mesmas caracterısticas.

Nosso objetivo aqui e fazer um estudo piloto e mapear espacialmente o historico

de formacao estelar em AGNs e compara-lo com o de galaxias inativas com as mesmas

propriedades das galaxias hospedeiras de AGNs (ex. luminosidade, massa estelar,

tipo de Hubble, etc), e estudar os efeitos da luminosidade do AGN na formacao

estelar. Para tal, selecionamos os primeiros 62 AGNs observados no survey Mapping

Nearby Galaxies at Apache Point Observatory (MaNGA) e criamos uma amostra

de controle composta por galaxias inativas para comparacao. O MaNGA e a selecao

da amostra sao descritos no Cap. 2.

Capıtulo 2

Os primeiros 62 AGNs do MaNGA

2.1 MaNGA

MaNGA e um dos tres principais programas do Sloan Digital Sky Survey de quarta

geracao (SDSS-IV). O projeto, liderado por Kevin Bundy (Bundy et al., 2015),

tem como objetivo investigar a estrutura cinematica e composicao quımica do gas e

estrelas e, com isso, entender a evolucao das galaxias e os processos que regulam a

formacao de suas componentes. Para tal, o MaNGA ira mapear o fluxo de ∼ 10 000

galaxias proximas (〈z〉 ≈ 0.03) com massas estelares M? > 109M� ate o final do

projeto (em 2020).

O MaNGA utiliza um telescopio de 2,5 metros do Sloan, dedicado ao SDSS, no

Apache Point Observatory (APO). As observacoes sao feitas com unidades de campo

integral (Integral Field Unit ; IFU) compostos por um conjunto de 19 a 127 fibras

opticas agrupados em estruturas hexagonais, cobrindo campos de 12′′ a 32′′. Uma

(a) (b)

Figura 2.1: Exemplo (a) de um conjunto de fibras do IFU do MaNGA, compostopor 127 fibras, e (b) do campo de observacao para a galaxia MaNGA ID 1-114306.

7

Os primeiros 62 AGNs do MaNGA 8

imagem do IFU pode ser vista na figura 2.1a e um exemplo do campo observado na

figura 2.1b. Cada fibra alimenta um dos dois espectrografos BOSS, desenvolvidos

anteriormente para o SDSS-III (Smee et al., 2013), que sao capazes de fornecer

uma cobertura espectral de 3600 A a 10300 A, com um poder de resolucao medio

de R ∼ 2000. Para uma leitura mais tecnica do design do IFU e estrategias de

observacao, recomenda-se ler Drory et al. (2015) e Law et al. (2015).

2.2 Nossa Amostra

A amostra de 62 AGNs utilizada nesse trabalho e uma subamostra das 2778 galaxias

do MaNGA Public Launch 5 (MPL-5), selecionada por Rembold et al. (2017). Da-

dos espectrais dessas galaxias, obtidas no Data Release 12 (DR12) do SDSS-III,

foram utilizados para calcular tanto fluxos de linhas quanto larguras equivalentes

(Hβ, Hα, [OIII]λ5007, [NII]λ6584). Com os valores de fluxos e larguras equivalen-

tes, a identificacao das galaxias ativas foi realizada empregando dois diagramas di-

agnostico, BPT (Baldwin et al., 1981) que envolve as razoes de linhas [NII]λ6584/Hα

× [OIII]λ5007/Hβ e WHAN (Cid Fernandes et al., 2010, 2011) que usa a razao

[NII]λ6584/Hα × EW(Hα). Esses diagramas foram desenvolvidos para identificar o

mecanismo de ionizacao do gas que produz as linhas de emissao observadas. Para

que uma galaxia observada pelo MaNGA fosse classificada como AGN e, consequen-

temente, adicionada a nossa amostra, ela deve ser classificada como AGN em ambos

os diagramas citados – ver figura 2.2. A necessidade de utilizar ambos os diagra-

mas se da pelo fato do diagrama BPT nao diferenciar AGNs com baixa ionizacao

de galaxias com linhas de emissao geradas por estrelas evoluıdas de baixa massa,

caracterizadas por EW(Hα) < 3 A (Cid Fernandes et al., 2010).

Uma segunda amostra, contendo galaxias inativas do MPL-5, foi selecionada

atraves do pareamento de propriedades fısicas dos AGNs desse trabalho. Para cons-

truir essa amostra, foram selecionadas diversas galaxias inativas, para cada AGN,

cujo redshift z e massa estelar M? nao diferissem por 30% dos respectivos valores

da galaxia ativa. Atraves da analise morfologica (razao dos eixos, tipo de Hubble,

presenca de barras, etc.), o numero de candidatas a controle foi reduzido, chegando

em alguns casos a duas galaxias por AGN. Para manter a amostra de controle mais

homogenea, foram escolhidas apenas as 2 melhores galaxias de controle para cada

galaxia ativa. A selecao resultou em uma amostra de controle com 109 objetos (ao

inves de 124) pois 12 objetos da amostra de controle foram pareados com mais de

um AGN. A figura 2.3 mostra a distribuicao das amostras desse trabalho para qua-

Os primeiros 62 AGNs do MaNGA 9

Figura 2.2: Diagramas BPT e WHAN gerados para a amostra do MPL-5 doMaNGA. Pontos cinzas sao todas as galaxias com linhas de emissao do MPL-5,pontos pretos (azuis) sao os AGNs confirmadas da amostra principal (amostra au-xiliar – galaxias nao pertencentes ao plano original de observacao do MaNGA) doMPL-5. Figura retirada de Rembold et al. (2017).

tro propriedades. Para mais detalhes da selecao das amostras, ver Rembold et al.

(2017).

Os primeiros 62 AGNs do MaNGA 10

Figura 2.3: Distribuicao das duas amostras, AGNs e galaxias de controle, paraquatro propriedades. Para o redshift, massa estelar e magnitudes na banda r asduas amostras sao semelhantes. Ja para a luminosidade L[O III], a distribuicao degalaxias ativas esta deslocada em relacao a das controles pois L[O III] e um indicadorda intensidade do AGN. Figura retirada de Rembold et al. (2017).

Capıtulo 3

O Software megacube

Um software, chamado megacube, foi desenvolvido para realizar a sıntese de po-

pulacoes estelares de mais de 150 cubos de dados, cada qual com centenas de espec-

tros. Esse software foi projetado para trabalhar com diversos cubos de dados em

paralelo, utilizando processos filhos independentes. As figuras 3.1 e 3.2 apresentam

os fluxogramas do megacube e de um processo filho, respectivamente.

O primeiro passo realizado pelo megacube e carregar um arquivo de confi-

guracao geral, responsavel pelo controle do fluxo de operacoes dos processos filhos.

Apos a leitura, o programa importa os modulos e funcoes necessarios, alem de ob-

ter a lista de cubos de dados, indicados no arquivo de configuracao. O programa,

entao, distribui as funcoes e cubos de dados para processos filhos que, por sua vez,

sao executados em paralelo (o numero de processos filhos simultaneos e indicado por

um parametro). Quando o todos os cubos de dados foram processados, o programa

termina.

Uma das preocupacoes com a criacao do megacube foi desenvolver uma fer-

ramenta que pudesse ser rapidamente adaptada para: (i) trabalhar com cubos de

dados de diferentes surveys, (ii) executar diferentes codigos de sıntese de populacoes

estelares (ou ate mesmo outras funcoes computacionais, como algoritmos para me-

didas de fluxos de linhas) e (iii) gerar diferentes resultados conforme o objetivo do

trabalho. Com isso em mente, desenvolvemos esse codigo com capacidade modular,

ou seja, pedacos do codigo sao carregados dinamicamente atraves dos parametros

do arquivo de configuracao. Alem disso, para que a comunicacao entre os diferentes

modulos possa acontecer, a passagem de parametros e feita atraves da atualizacao

do arquivo de configuracao.

Nesse trabalho, desenvolvemos tres modulos: extracao, sıntese e analise. A figura

3.2 esquematiza a execucao dos tres modulo pelos processos filhos do megacube.

11

O Software megacube 12

Início.

Lê oarquivo de

configuraçãogeral.

Importa os módulose funções indicadas

pelo arquivo de configuração.

Obtém lista de dados de entrada

(cubos do MaNGA).

Lista dedadosvazia?

Fim.

Sim

Distribui osdados restantes paran processos filhos.

Não

Processo filho 1.

Processo filho 2.

Processo filho 3.

Processo filho n.

...

Espera atéalgum processo

filho terminara subrotina.

MEGACUBE

Figura 3.1: Fluxograma esquematizando o programa megacube.

O Software megacube 13

Início. ProcessoFilho

Primeiro Módulo:Extração

Lê arquivo deconfiguração.

Atualizaarquivo de

configuração.

Segundo Módulo:Síntese

Terceiro Módulo:Análise

input

Atualizaarquivo de

configuração.

input

Fim.

Espectrosextraídos.

output

input

Espectrossintetizados.

output

inputAtualiza

arquivo deconfiguração.

Cubo de dados,mapas, perfis,

gradientes, etc.

Figura 3.2: Fluxograma esquematizando a sub-rotina do megacube.

O Software megacube 14

Descrevemos as funcoes dos tres modulos nas secoes 3.1, 3.2, 3.3.

3.1 Extracao de Dados

O modulo de extracao foi desenvolvido para converter os espectros dos cubos de

dados do MaNGA para um formato aceito pelo programa de sıntese de populacoes

estelares (nesse trabalho, starlight, sec. 3.2.1). Os espectros sao preparados, antes

da extracao, conforme as seguintes etapas:

• Aplicacao do filtro Butterworth bidimensional para remover dados espurios

(sem a necessidade de combinar spaxels do cubo, como no metodo Voronoi

binning). Essa filtragem permite uma exploracao dos parametros espaciais

sem grandes perdas de resolucao;

• Aplicacao da correcao por avermelhamento galatico usando o os mapas de

Schlegel (Schlegel et al., 1998) e da lei de avermelhamento CCM (Cardelli

et al., 1989);

• Correcao do deslocamento redshift usando os parametros fornecidos pelas ta-

belas de dados do MaNGA (drpall), valores do SDSS-III;

• Espectros com sinal ruıdo SNR< 10, calculados dentro dos limites 5650-

5750 A, foram excluıdos da sıntese.

Apos as correcoes, arquivos ASCII foram criados para cada spaxel contendo

quatro parametros: comprimento de onda λ, fluxo fλ, incerteza eλ e a mascara mλ

(indicando se os dados contem problemas).

3.2 Sıntese de Populacoes Estelares

A funcao principal desse modulo e executar o codigo de sıntese de populacoes estela-

res starlight (Cid Fernandes et al., 2004, 2005). Para tal, sao gerados arquivos de

configuracao necessarios para realizar a sıntese. Alem disso, esse modulo pode sub-

dividir a lista dos espectros para que mais de uma instancia do codigo starlight

possa rodar em paralelo e, assim, acelerar o processo de sıntese do cubo inteiro. Um

exemplo de espectro sintetizado pode ser visto na figura 3.3.

O Software megacube 15

Figura 3.3: Exemplo de sıntese espectral para o spaxel central da galaxia MaNGA ID1-635503. O primeiro painel mostra o espectro observado em preto e o sintetizadoem vermelho, ambos normalizados em λ0 = 5700A. O segundo painel mostra oresıduo da sıntese. Linhas em emissao nao sao ajustadas pela sıntese de populacoesestelares.

O Software megacube 16

3.2.1 O Codigo starlight

starlight e uma ferramenta de sıntese de populacoes estelares cuja funcao e buscar

o melhor espectro sintetizado a partir de um espectro observado. Para tal finalidade,

o programa utiliza um conjunto base de N? modelos – nesse trabalho, modelos de

populacoes estelares simples (simple stellar populations ; SSPs), ou seja, populacoes

de estrelas com mesma idade e mesma metalicidade. Sao utilizados SSPs calculadas

por Bruzual & Charlot (2003), cujos parametros variam entre 3 metalicidades (Z

= 0.002, 0.04 e 0.05) e 15 idades (10 Myr ≤ t ≤ 13 Gyr), por serem amplamente

utilizados na literatura. Uma lei de potencia do tipo Fν ∝ ν−1.5 foi utilizada em

conjunto com as SSPs para dar conta do contınuo do espectro gerado pelo nucleo

ativo. O programa trabalha com a seguinte equacao para o espectro modelo:

Mλ = Mλ0

[N?∑n=1

xj bj,λ rλ

]⊗G(v?, σ?) (3.1)

na qual Mλ0 e o fluxo sintetico no comprimento de onda normalizado em λ0, j

representa cada uma das SSPs da base utilizada, bj,λ e o espectro da SSP, rλ e

a componente de avermelhado da SSP e xj e o vetor de populacao. A soma e

convoluıda com uma distribuicao gaussiana representada por G(v?, σ?), onde v? e

a velocidade central da distribuicao e σ? e a dispersao de velocidades. Para obter

os melhores resultados, o starlight busca minimizar uma funcao que represente

o afastamento do espectro sintetizado com relacao ao observado – quanto maior o

valor, pior e a sıntese. A funcao utilizada e o χ2 :

χ2 =

λf∑λi

[(Oλ −Mλ)ωλ]2 (3.2)

onde Oλ e o espectro medido, Mλ e o espectro sintetizado, wλ e o peso correspondente

ao comprimento de onda λ (cujo valor pode ser nulo a fim de mascarar, por exemplo,

as linhas de emissao de AGNs ou dados espurios) e λ percorre todo o intervalo de

comprimentos de onda escolhido para a sıntese.

3.3 Analise dos Dados

O terceiro modulo desenvolvido para o megacube utiliza os cubos de dados esten-

didos criados pelo modulo da sıntese para gerar os seguintes resultados:

• Mapas RGB: mapa representando, de modo qualitativo, a distribuicao relativa

O Software megacube 17

de populacoes com diferentes idades. O calculo dos mapas e feito relacionando

as cores vermelha, verde e azul aos mapas de populacoes velhas, de idade

intermediaria e jovens, respectivamente;

• Perfis radiais medios: para cada mapa estudado neste trabalho, foram gerados

30 perfis radiais igualmente espacados, com um deslocamento angular maximo

de θmax = tan−1[b/a] (relativo ao semieixo maior), onde a e o comprimento do

semieixo maior e b do semieixo menor (ver figura 3.4). Optamos por nao gerar

perfis proximos ao semieixo menor devido a inclinacao da galaxia, que implica

em perfis mais distorcidos, obscurecidos e ruidosos. Calculamos, entao, os

perfis radiais medio e do desvio padrao.

• Gradientes radiais: com os perfis medios, foram calculados gradientes utili-

zando regressao linear para tres limites de distancia radial (em unidades de

raio efetivo Re; 0.0-0.5 Re, 0.5-1.0 Re e 0.0-1.0 Re)

• Figuras comparativas: para cada trio de galaxias, isto e, AGN e suas duas

galaxias controle, foram geradas figuras comparando mapas, perfis medios e

gradientes;

• Perfis agrupados em luminosidade de [O III]λ5007: para comparar os efei-

tos dos AGNs no historico de formacao estelar, agrupamos as galaxias ativas

conforme a luminosidade da linha de emissao do [OIII]λ5007, subdividindo

em cinco intervalos de log L[O III] [ergs/s]: 39-39.75, 39.75-40.25, 40.25-40.75,

40.75-41.25 e 41.25-42. Para cada grupo, geramos o perfil medio das galaxias

ativas, das respectivas galaxias de controle e das diferencas dos perfis das

AGNs e controles.

O Software megacube 18

Figura 3.4: Exemplo de perfis obtidos para a galaxia MaNGA-ID 1-211082. Adirecao do eixo maior e indicada pela linha azul tracejada. As semi-retas em verme-lho representam as direcoes dos perfis calculados para a galaxia. O angulo maximoentre o eixo maior e um perfil qualquer e de θmax ≈ 20.5 para essa galaxia.

Capıtulo 4

Artigo

Neste capıtulo apresentamos os resultados da sıntese de populacao estelar dos primei-

ros 62 AGNs e uma comparacao destes com os objetos de controle. Tais resultados

sao apresentados em formato de artigo, publicado no Monthly Notices of the Royal

Astronomical Society (MNRAS), Mallmann et al. (2018). Por questoes esteticas, op-

tamos por colocar neste capıtulo apenas as paginas do corpo do artigo. O apendice

do artigo foi colocado em anexo a essa dissertacao (apendice A).

19

MNRAS 000, 1–15 (2017) Preprint 11 June 2018 Compiled using MNRAS LATEX style file v3.0

The first 62 AGN observed with SDSS-IV MaNGA - II:resolved stellar populations

Nıcolas Dullius Mallmann1,2,? Rogerio Riffel1,2, Thaisa Storchi-Bergmann1,2,

Sandro Barboza Rembold2,3, Rogemar A. Riffel2,3, Jaderson Schimoia1,2,3,

Luiz Nicolaci da Costa2, Vladimir Avila-Reese4, Sebastian F. Sanchez4,

Alice D. Machado2,3, Rafael Cirolini2,3, Gabriele S. Ilha2,3, Janaına C. do Nascimento1,21Departamento de Astronomia, Universidade Federal do Rio Grande do Sul - Av. Bento Goncalves 9500, Porto Alegre, RS, Brazil.2Laboratorio Interinstitucional de e-Astronomia, Rua General Jose Cristino, 77 Vasco da Gama, Rio de Janeiro, Brazil, 20921-4003Departamento de Fısica, Centro de Ciencias Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil4Instituto de Astronomıa, Universidad Nacional Autonoma de Mexico, A. P. 70-264, C.P. 04510, Mexico, D.F., Mexico

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACTWe present spatially resolved stellar population age maps, average radial profilesand gradients for the first 62 Active Galactic Nuclei (AGN) observed with SDSS-IV MaNGA to study the effects of the active nuclei on the star formation history ofthe host galaxies. These results, derived using the starlight code, are compared witha control sample of non-active galaxies matching the properties of the AGN hosts. Wefind that the fraction of young stellar populations (SP) in high-luminosity AGN ishigher in the inner (R ≤ 0.5 Re) regions when compared with the control sample;low-luminosity AGN, on the other hand, present very similar fractions of young starsto the control sample hosts for the entire studied range (1 Re). The fraction of in-termediate age SP of the AGN hosts increases outwards, with a clear enhancementwhen compared with the control sample. The inner region of the galaxies (AGN andcontrol galaxies) presents a dominant old SP, whose fraction decreases outwards. Wealso compare our results (differences between AGN and control galaxies) for the earlyand late-type hosts and find no significant differences. In summary, our results suggestthat the most luminous AGN seems to have been triggered by a recent supply of gasthat has also triggered recent star formation (t ≤ 40 Myrs) in the central region.

Key words: galaxies: active – galaxies: stellar content – galaxies: star formation

1 INTRODUCTION

An important galaxy evolution stage is characterized by theActive Galactic Nuclei (AGN), a phenomenon that occurswhen the galaxy’s supermassive black hole (SMBH) is ac-creting matter from its surroundings, i.e., the accretion disk.Subsequent feedback processes start to happen, comprisingradiation emitted by the hot gas in the accretion disc or byits corona, jets of relativistic particles, and winds emanatingfrom outer regions of the disk.

Current models and simulations of gas inflows on tensto hundreds of parsec (pc) scales around galaxy nuclei leadto episodes of circumnuclear star formation (Kormendy &Ho 2013; Heckman & Best 2014; Zubovas & Bourne 2017).Zubovas & Bourne (2017) suggests that there is a critical

? E-mail: [email protected]

AGN luminosity in which the feedback of the nuclear ac-tivity increases the fragmentation of the gas clouds. Abovethis luminosity threshold, the feedback is powerful enoughto remove the gas efficiently and stop fragmentation; forAGN luminosities under this threshold, however, the feed-back is not efficient to compress the gas to high densitiesand enhance fragmentation. However, there is no consensuson whether AGN fueling occurs at the same time as the starformation (Kawakatu & Wada 2008), or follows it duringa post-starburst phase (Cid Fernandes et al. 2005; Davieset al. 2007, 2009) or if it is not associated with any recentstar formation (Sarzi et al. 2007; Hicks et al. 2013).

A breakthrough in understanding the relation betweenthe AGN and the surrounding stellar population can bereached by a simple, but thorough, investigation of whetheryoung or intermediate age stars are present within few hun-dred pc of the AGN. If the youngest stellar types are present,

© 2017 The Authors

2 N. D. Mallmann et al.

AGN fueling is coeval with star formation; if instead inter-mediate age stars dominate the stellar population, fuelingwould be driven by a post-starburst and, thus the AGNphase would follow the starburst phase; finding only old starswould imply that gas inflow to the AGN is not necessarilylinked to star formation.

Over the last few years, major observational effort tounderstand this co-evolution between AGN and the circum-nuclear stellar population is being made using spatially re-solved stellar population studies in large samples of galax-ies (Goddard et al. 2017; Zheng et al. 2017). These studies,however, are not focused on comparing AGN hosts with non-active galaxies. One recent effort focusing on such kind ofcomparison was made by Sanchez et al. (2017) who foundthat AGN hosts are mostly morphologically early-type orearly-spirals and that for a given morphology, AGN hostsare more massive, more compact, more centrally peaked, andrather pressure than rotationally-supported systems whencompared to the non-active galaxies. However, these studiesdid not use a selected control sample of galaxies to match thefundamental properties of the AGN sample, nor consideredthe dependence on the AGN luminosities.

This is the second paper of a series in which we aim atstudying the resolved stellar population as well as the gasemission properties of the AGN host galaxies observed withMaNGA and compare them with those of a control sampleof non-active galaxies. In Paper I (Rembold et al. 2017),we have presented the AGN sample so far observed withMaNGA (available through the MPL-5) and have defineda control sample matching the AGN host galaxies in termsof galaxy masses, morphology, distance and inclination. InPaper I we have also characterized the stellar populationproperties of the AGN hosts as compared with those of thecontrol sample for the single aperture SDSS-III spectrumthat covers the inner 3” diameter nuclear region, using spec-tral synthesis via the starlight program (Cid Fernandeset al. 2005).

Aimed at investigating the relation between the nuclearactivity and the hosts’ star formation history (SFH), in thepresent paper (Paper II), we use the MaNGA datacubes ofthe AGN and control sample defined in Paper I to obtainthe resolved SFH and stellar population properties for theseobjects. These properties were compared between the AGNhosts and inactive galaxies in different luminosity ranges.This paper is organized as follows: brief description of theMaNGA subsample chosen for this work (Section 2); themethod of stellar population synthesis as well as the baseset of simple stellar populations (Section 3); the results ofthe synthesis for the AGN and control sample (Section 4);a discussion comparing the stellar populations of AGN andcontrol galaxies (Section 5); and a conclusion in Section 6.

2 DATA

The study of spatially resolved properties in galaxies werealways undermined by the small sample size of past integralfield spectroscopy surveys, not to mention the less numer-ous AGN. To address this problem, the Mapping NearbyGalaxies at Apache Point Observatory (MaNGA) survey(Bundy et al. 2015) was developed to observe a large sampleof nearby galaxies with integral field spectroscopy.

MaNGA is part of the fourth generation Sloan Digi-tal Sky Survey (SDSS IV) along with APOGEE-2 (Majew-ski et al. 2017) and eBOSS (Dawson et al. 2016). The sur-vey aims to provide optical spectroscopy (3600 A-10400 A)of ∼ 10, 000 nearby galaxies (with 〈z〉 ≈ 0.03). The observa-tions are carried with fiber bundles of different sizes (19-127fibers) covering a field of 12′′ to 32′′ in diameter. The se-lected sample is divided into “primary” and “secondary” tar-gets, the former are observed up to 1.5 effective radius (Re)whilst the latter is observed up to 2.5 Re. For more details,see Drory et al. (2015); Law et al. (2015); Yan et al. (2015);Yan et al. (2016).

The data used in the present work is a sub-sample ofMaNGA data (Law et al. 2016, MPL-5’s Data ReductionPipeline, DRP) selected in Paper I. In short, the AGN wereselected from the MaNGA sample by crossmatching themwith SDSS-III data products, using then the BPT diagram[O iii]/Hβ vs. [N ii]/Hα (Baldwin et al. 1981) to select theAGN. In addition, we have used the WHAN diagram (CidFernandes et al. 2010; Cid Fernandes et al. 2011) to elimi-nate from the AGN sample the“LIERs”, or“fake AGN”. Theresulting AGN sample contains 62 objects. To study the re-lationship between AGN and the stellar populations of thehost, we have chosen two control galaxies to match each ofthe selected AGN hosts. The matching was done accord-ing to the morphology (using concentration and asymmetryindices), axial ratios, redshifts, galaxy inclination, and to-tal stellar masses. For more details regarding the AGN andcontrol sample selection, see Rembold et al. (2017).

3 STELLAR POPULATION SYNTHESIS

We have used stellar population synthesis technique in orderto derive the SFH of the galaxies of the AGN and controlsamples. We first briefly describe of the fitting code used.We then present a summary of the data preparation andprocessing pipeline we have developed to manage the fittingprocess.

3.1 Fitting code

To disentangle the contribution of each stellar population tothe integrated spectra of each spaxel in the datacubes weemployed the starlight code (Cid Fernandes et al. 2005).In summary, this code combines the spectra of a base set ofN? template spectra bj,λ – usually, simple stellar population(SSP) covering a range of ages and metallicities – in orderto reproduce the observed spectra Oλ. To generate the mod-eled spectra Mλ, the SSPs are normalized at an arbitraryλ0 wavelength, reddened by the term rλ = 10−0.4(Aλ−Aλ0 ),weighted by the population vector xj (which represents thefractional contribution of the jth SSP to the light at the nor-malization wavelength λ0), and convolved with a Gaussiandistribution G(v?, σ?) to account for the effects of velocityshifts in the central velocity v? and velocity dispersion σ?.The model spectrum can be expressed as:

Mλ = Mλ0

[N?∑n=1

xj bj,λ rλ

]⊗ G(v?, σ?) (1)

where Mλ0 is the synthetic flux at the wavelength λ0. To

MNRAS 000, 1–15 (2017)

The first 62 AGN in MaNGA - II: resolved stellar populations 3

find the best parameters for the fit, the code searches for the

minimum of χ2 =∑λ f

λi[(Oλ−Mλ)ωλ]2, where ωλ is the inverse

of the error, using a simulated annealing plus Metropolisscheme. Further details on the code can be found in CidFernandes et al. (2005).

The base set used in the spectral synthesis is a reducednumber of the SSPs calculated by Bruzual & Charlot (2003).It comprises N? = 46 elements (45 SSPs + 1 featurelesscontinuum – FC – function of the form Fν ∝ ν−1.5 to rep-resent the AGN emission), spanning 15 ages (0.001, 0.003,0.005, 0.010, 0.025, 0.040, 0.101, 0.286, 0.640, 0.905, 1.43,2.50, 5.00, 11.00 and 13.00 Gyrs) and 3 metallicities (0.1,1 and 2.5 Z�). The addition of a power law is necessaryto account for the AGN continuum (Cid Fernandes et al.2004; Riffel et al. 2009). For the foreground extinction, weused the Cardelli et al. (1989, CCM) law, with RV = 3.1.The adopted normalization wavelength was λ0 = 5700 Aand the synthesis was performed for the spectral range from3800 A to 7000 A.

3.2 Data Management

In order to improve the management of the data which in-cludes starlight inputs and outputs, the compilation ofthe results and the analysis, we developed a software calledmegacube. This software is designed to work with threemain modules set up by a general configuration file. Themodular approach was chosen with adaptability in mind,e.g., if a module was programmed to work with MaNGAdatacubes’ extraction, we could replace it with one that ex-tracts another survey’s datacubes. The modules used in thiswork are (in order of execution):

i) Data preparation: This module is used to processand convert the MaNGA datacubes to a data format suitablefor the chosen stellar population fitting code (starlight).The main steps are as follows:

• Filtering of the spectra using a two-dimensional but-terworth filter to remove spurious data (e.g., spiked values)and increase the signal to noise ratio, without combiningadjacent spaxel, thus allowing to a better exploration of thespatial resolution. A better description of this technique canbe found in Riffel et al. (2016);• Galactic reddening correction of each spaxel using the

Schlegel extinction maps (Schlegel et al. 1998) and the CCMreddening law;• Redshift correction using the SDSS-III redshift pro-

vided in the drpall tables of the MaNGA database;• Estimation of the signal to noise ratio (SNR) in the

wavelength range 5650-5750 A for every spaxel;• Spaxels with SNR < 10 were excluded when performing

the fitting. This was done in order to have a good compro-mise between the spatial coverage and the reliability of thefitting results (see Cid Fernandes et al. 2004, for details).

ii) Spectral Fitting: This module is used to invokethe fitting code and compile its results as described below:

• Setting up all the configuration files needed for the fits;• Fitting each individual spaxel with starlight;• Derivation of mean ages and metallicities, as well as star

formation rates, from the starlight output;• Inclusion of both standard starlight output and derived

parameters to the original datacubes as additional exten-sions.

iii) Analysis: This module uses the fitting results toproduce maps and radial plots (see Section 4 for a betterdescription):

• RGB maps: Qualitative representation of the spatiallyresolved stellar population age distribution for each galaxy,where the colors (red, green, and blue) represent three mainage bins (see Sect. 4);• Comparison figures: for each trio of galaxies (AGN and

its two controls), panels showing the relevant properties(maps of stellar population properties derived from starlightand/or SDSS-III combined ugriz images);• Radial profiles and gradients: for each galaxy and prop-

erty, a mean profile (as well as its mean gradient value –calculated as a function of R, dX/dR) is calculated to usefor quantitative comparisons;• Gradients table: as result of the analysis, we have also

generated a Table showing the gradients of the profiles forthree different bins in terms of effective radius Re;• [O iii] λ5007 luminosity L[O iii]binned radial profiles:

Radial profiles of the stellar population properties where theprofiles for the AGN (and corresponding controls) are binnedin groups according to the AGN luminosity. These profilesare shown also for AGN subsamples binned according to thehost galaxy type: early and late-type.

It is worth mentioning that a similar organizer tool wasdeveloped by de Amorim et al. (2017) for the Calar AltoLegacy Integral Field Area (CALIFA) survey, which is a pi-oneer project of integral field spectroscopy legacy surveys.

4 RESULTS

The spectral synthesis gives as results, a number of outputparameters, but we are mostly interested in xj – the frac-tional contribution of each SSP to the total light at the nor-malization wavelength λ0, that gives the SFH of each spaxel,and from which we also obtain the mean age for each spaxel,representing the age of the stellar populations as a single pa-rameter. In addition, a valuable byproduct of the fitting isthe amount of extinction in the line of sight, parameterizedby the visual extinction AV. In Figs. 1 and 2 we illustrate thederived data products (maps, radial profiles and gradients)for two AGN and their respective control sample galaxies;the equivalent plots for the remaining of the sample is avail-able in the Appendix.

In order to represent the galaxies’ ages distribution witha single parameter at each spaxel, we calculated their lightweighted mean age (Cid Fernandes et al. 2005), as follows:

〈log tL〉 =∑N?

j=1 xj log(tj )∑N?j=1 xj

, (2)

where tj is the age of the template j. The distributions ofmean age are shown in the bottom row of the bottom leftpanels of Figs. 1 and 2.

As stated by Cid Fernandes et al. (2005), small differ-ences in ages of individual SSPs are washed away in real databy noise effects. We therefore rebinned the population vec-tors in six stellar population components (SPCs): xyy (1 Myr

MNRAS 000, 1–15 (2017)

4 N. D. Mallmann et al.SD

SS Im

age

1-44379 1-211082 1-135371

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

0.55 0.23 -0.30

0.18 -0.06 0.50

0.47 0.20 0.15

17.43 5.85 2.61

7.57 4.14 11.17

15.91 5.65 8.83

49.45 21.40 35.64

18.47 10.02 28.29

33.71 23.83 28.80

-58.84 -30.36 -38.25

-27.27 -14.84 -39.61

-46.93 -30.19 -37.76

-1.24 -0.53 -0.52

-0.58 -0.27 -0.83

-1.08 -0.52 -0.71

Re = 5.8 kpc Re = 7.1 kpc Re = 5.9 kpc

A V (d

ex)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.2

0.4

0.6

0.8

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure 1. Comparison between a late-type AGN and its control galaxies. Left side panels - Top set of panels: SDSS image (the MaNGA

field is indicated in magenta). Second row: composed RGB image using the binned population vectors [blue: young (XY: t≤40 Myr); green:intermediate age (XI: 40 <≤< 2.5Gyr); red: old (XO: t > 2.5Gyr)]. Bottom set of panels: From top to bottom: visual extinction (AV),

XY, XI, XO and mean age (< t >) maps. For display purposes we used tick marks separated by 5”. The solid horizontal line in the AVmaps represent 1 Re . Right side panels - Top: summary table with the mean gradient values for each property in 3 different Re ranges.Bottom: average radial profiles, up to 1 Re , for AGN (red color) and control (blue and green colors). Shaded area represents 1σ standard

deviation. For profiles smaller than 1 Re the gradients were calculated using extrapolated values.

MNRAS 000, 1–15 (2017)

The first 62 AGN in MaNGA - II: resolved stellar populations 5SD

SS Im

age

1-95092 1-210962 1-251279

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

0.25 0.06 -0.04

-0.11 0.23 0.20

0.13 0.13 0.20

9.34 0.02 2.26

-2.53 0.34 4.71

4.42 0.07 5.16

41.95 61.83 26.68

-2.00 22.34 22.69

17.22 46.69 34.60

-54.64 -63.42 -32.24

-0.26 -28.06 -35.09

-24.99 -48.96 -44.75

-0.87 -0.59 -0.37

-0.09 -0.90 -0.53

-0.47 -0.64 -0.65

Re = 4.2 kpc Re = 8.7 kpc Re = 4.4 kpc

A V (d

ex)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.1

0.2

0.3

0.4

0.5

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure 2. Comparison between an early-type AGN and its control galaxies. See Fig. 1 for description.

≤ t ≤ 10 Myr), xyo (10 Myr < t ≤ 40 Myr), xiy (40 Myr < t≤ 286 Myr), xii (286 Myr < t ≤ 905 Myr), xio (905 Myr < t≤ 2.5 Gyr), and xo (2.5 Gyr < t ≤ 13 Gyr).

We have also grouped the stellar population vector inthree major age bins, described as follows:

• Young Age: XY = xyy + xyo

• Intermediate Age: XI = xiy + xii + xio• Old Age: XO = xo

In order to visualize the spatial distribution of the pop-ulations’ relative contributions in a qualitative way, RGBimages of the galaxies were created by assigning the 3 col-ors (red, green, blue) to the binned population vectors: Red

MNRAS 000, 1–15 (2017)

6 N. D. Mallmann et al.

-10.75 -5.375 0.0 5.375 10.75arcsec

-10.75

-5.375

0.0

5.375

10.75

arcs

ec

1-23979b/a 0.625 max 32.0

Figure 3. Example of radial profile cuts on the normalizationflux map of a galaxy (MaNGA ID: 1-23979) with ≈ 32 degrees

of angle displacement from the major-axis (indicated with a blue

dashed line). Red line segments are the radial profile cuts usedto calculate the mean radial profile. Profiles closer to the minor

axis were excluded to reduce any effects of projection (the more

edge-on the galaxy is, the greater the projection distortion).

represents the old XO (2.5 Gyr < t ≤ 13 Gyr), green the inter-mediate age XI (40 Myr < t ≤ 2.6 Gyr), and blue the youngstellar populations XY (1 Myr ≤ t ≤ 40 Myr).

In the bottom right of Figs. 1 and 2 we show meanradial profiles, up to 1.0 Re, for each galaxy and property,derived using a nearest neighbor interpolation method togenerate continuous values between pixel transitions andto remove abrupt changes due to spatially discrete maps.We opted for 30 equally spaced radial profiles in the galaxyplane limited to angular distances from the major axis ofθmax = tan−1(b/a) degrees, where a and b are, respectively,the semi-major and semi-minor axis of the SDSS galaxy im-age, obtained from the MaNGA’s drpall table (calculatedusing Sersic profiles), as illustrated in Fig. 3. The reasonfor this choice of maximum displacement from the majoraxis was the fact that profiles closer to the minor axis, whenprojected, resulted too noisy, possibly due to obscuration ef-fects when the galaxies are too inclined relative to the line ofsight. Mean profiles were then calculated for each propertymap by averaging all these profiles.

We have also calculated the mean gradients of eachproperty (using the mean radial profiles) for 3 different re-gions: from 0.0 to 0.5 Re, 0.5 to 1.0 Re, and 0.0 to 1.0Re. Since we are comparing relatively low luminosity activegalaxies with a matched control sample of non-active galax-ies, the major differences should be detected in their nuclearregions. Thus, the division we used was decided based onqualitative observation of the average radial profiles, whichrevealed, in most galaxies, a trend of slope changes close to0.5 Re. Some values had to be extrapolated to a constantslope since the radial profiles could not reach 1.0 Re due topoor signal to noise ratio. These gradients for AV, XY, XIand XO, together with the gradients in mean age, are shownin a Table in the top right corner of Figs. 1 and 2.

4.1 AGN hosts versus control galaxies

For each one of the AGN we show the radial variation ofthe derived properties compared to the two control galaxiesin the Appendix. As an example, we have selected to showtwo typical sets of results in Figs. 1 and 2, the results for one“late-type” AGN (MaNGA ID 1-44379) and one “early-type”AGN (MaNGA ID 1-95092) and their control galaxies.

In the case of the late-type AGN of Fig. 1, it shows thatthe RGB maps are dominated by the contribution of oldpopulations in the centers for both the AGN hosts and thecontrol galaxies. Just outward of the nucleus, younger pop-ulations dominate the AGN and the control galaxy CRT2 abit further out, while the control galaxy CRT1 shows largercontribution of older age components also outside the nu-cleus. The extinction at the nucleus is stronger for the sec-ond control than the AGN while outwards they reach similarvalues that are higher than those of the first control. Regard-ing the contribution of the different stellar population agebins to the light at 5700 A, there is no difference betweenthe AGN and the controls for the youngest age bins, whilefor the intermediate age one, its contribution in the AGN islarger than in its control galaxies at all radii. There is also adifference for the old age bin XO, that is lower in the AGNthan in the control galaxies everywhere inside Re. These re-sults also reflect in the mean age < t >: the mean age of thestellar population is lower everywhere in the galaxy for theAGN than for the control galaxies. The table listing the gra-dients also show differences between the AGN and controlgalaxies: for the inner radial bin (0-0.5 Re) and for the fullradial range (0-1.0 Re), the AGN host galaxy shows steepergradients than the controls for all properties.

The early-type AGN case of Fig. 2 shows higher con-tribution of the old component in the central regions of thegalaxies for the AGN and its controls. In this case, however,the AGN’s RGB map shows a more homogeneous popula-tion throughout the galaxy, whilst the control galaxies’ RGBmaps show an older central region surrounded by a youngerpopulation outwards. The extinction for the AGN is largercompared with its control galaxies as can be seen in the AVprofiles. Although the AV maps show higher values for thecontrol galaxies, they are concentrated closer to the limitsof SNR ≤ 10, thus less reliable. The population profiles showa more constant distribution of ages for the AGN inside theR ≤ 1.0 Re, specially between 0.5 and 1.0 Re. This behavioris reflected in the low gradient values of the 0.5 − 1.0 Re bincompared to the control galaxies. The mean age < t > profileof the AGN shows a younger population over almost all ofthe 0−1.0 Re range, similar to the late-type case (Fig. 1. Thegradients table shows that the outer region (0.5−1.0 Re) hasa different behavior for the AGN compared to the controlgalaxies (which, in turn, behave similarly).

5 DISCUSSION

In order to test for a possible relation between the AGNluminosity and the star formation history, we compare thestellar population profiles derived for the AGN and controlsbuilding average profiles for each of five L([O iii]) bins. Wegrouped them in bins of log10 L[O iii]as follows: 39 to 39.75,39.75 to 40.25, 40.25 to 40.75, 40.75 to 41.25, and 41.25 to42, using the values for L[O iii]listed in Paper I.

MNRAS 000, 1–15 (2017)

The first 62 AGN in MaNGA - II: resolved stellar populations 7

0.0 0.2 0.4 0.6 0.8 1.00

5

10

15

20

AGNs

5

25

18

10

4

xyy + xyo - ALL39.0 - 39.7539.75 - 40.2540.25 - 40.7540.75 - 41.2541.25 - 42.0

0.0 0.2 0.4 0.6 0.8 1.00

5

10

15

20

Cont

rol

10

50

36

20

8

0.0 0.2 0.4 0.6 0.8 1.0R/Re

5

0

5

10

15

AGNs

- Co

ntro

l 10

50

36

20

8

0.0 0.2 0.4 0.6 0.8 1.00

5

10

15

201

12

3

3

1

xyy + xyo - EARLY

0.0 0.2 0.4 0.6 0.8 1.00

5

10

15

202

24

6

6

2

0.0 0.2 0.4 0.6 0.8 1.0R/Re

5

0

5

10

152

24

6

6

2

0.0 0.2 0.4 0.6 0.8 1.00

5

10

15

204

13

13

6

2

xyy + xyo - LATE

0.0 0.2 0.4 0.6 0.8 1.00

5

10

15

208

26

26

12

4

0.0 0.2 0.4 0.6 0.8 1.0R/Re

5

0

5

10

158

26

26

12

4

Figure 4. L[O iii]binned mean radial profiles for the xyy (1 Myr ≤ t ≤ 10 Myr) and xyo (10 Myr < t ≤ 40 Myr) components combined.

Each color pertains to the same L[O iii]range for every plot. The columns represent the groups of AGN used to calculate the averageprofiles for the AGN, its control galaxies, and their differences. The groups are, from left to right: all AGN, early-type AGN, late-type

AGN. The rows, from top to bottom, show the average profiles for the AGN, the control galaxies (of the respective AGN group), and

the differences. The colored numbers to the right of every plot are the quantity of galaxies used to calculate the mean profile of the samecolor.

0.0 0.2 0.4 0.6 0.8 1.00

5

10

15

20

AGNs

5

25

18

10

4

xiy - ALL39.0 - 39.7539.75 - 40.2540.25 - 40.7540.75 - 41.2541.25 - 42.0

0.0 0.2 0.4 0.6 0.8 1.00

5

10

15

20

Cont

rol

10

50

36

20

8

0.0 0.2 0.4 0.6 0.8 1.0R/Re

5

0

5

10

AGNs

- Co

ntro

l 10

50

36

20

8

0.0 0.2 0.4 0.6 0.8 1.00

5

10

15

201

12

3

3

1

xiy - EARLY

0.0 0.2 0.4 0.6 0.8 1.00

5

10

15

202

24

6

6

2

0.0 0.2 0.4 0.6 0.8 1.0R/Re

5

0

5

10 2

24

6

6

2

0.0 0.2 0.4 0.6 0.8 1.00

5

10

15

204

13

13

6

2

xiy - LATE

0.0 0.2 0.4 0.6 0.8 1.00

5

10

15

208

26

26

12

4

0.0 0.2 0.4 0.6 0.8 1.0R/Re

5

0

5

10 8

26

26

12

4

Figure 5. L[O iii]binned mean radial profiles for the xiy components (40 Myr < t ≤ 286 Myr). See figure 4 for the description.

.

In Figures 4 to 9 we show the mean radial profiles forthe different age bins (see § 4 as well as for the mean ages).In order to see if there are differences in these profiles forearly and late type galaxies, we show the results both forall the galaxies grouped together and also separated in earlyand late-type hosts. In the top panels we show the results for

the AGN hosts, in the middle panel for the correspondingcontrols and in the bottom panels the difference betweenAGN and controls. In each panel we show the five rangesof L[O iii]color coded and the respective number of objects(colored numbers) included in the average calculation. It isimportant to note that some of the AGN are not classified as

MNRAS 000, 1–15 (2017)

8 N. D. Mallmann et al.

0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

AGNs

5

25

18

10

4

xii - ALL39.0 - 39.7539.75 - 40.2540.25 - 40.7540.75 - 41.2541.25 - 42.0

0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

Cont

rol

10

50

36

20

8

0.0 0.2 0.4 0.6 0.8 1.0R/Re

20

0

20

40

AGNs

- Co

ntro

l 10

50

36

20

8

0.0 0.2 0.4 0.6 0.8 1.00

20

40

601

12

3

3

1

xii - EARLY

0.0 0.2 0.4 0.6 0.8 1.00

20

40

602

24

6

6

2

0.0 0.2 0.4 0.6 0.8 1.0R/Re

20

0

20

402

24

6

6

2

0.0 0.2 0.4 0.6 0.8 1.00

20

40

604

13

13

6

2

xii - LATE

0.0 0.2 0.4 0.6 0.8 1.00

20

40

608

26

26

12

4

0.0 0.2 0.4 0.6 0.8 1.0R/Re

20

0

20

408

26

26

12

4

Figure 6. L[O iii]binned mean radial profiles for the xii components (286 Myr < t ≤ 905 Myr). See figure 4 for the description.

0.0 0.2 0.4 0.6 0.8 1.00

10

20

30

40

AGNs

5

25

18

10

4

xio - ALL39.0 - 39.7539.75 - 40.2540.25 - 40.7540.75 - 41.2541.25 - 42.0

0.0 0.2 0.4 0.6 0.8 1.00

10

20

30

40

Cont

rol

10

50

36

20

8

0.0 0.2 0.4 0.6 0.8 1.0R/Re

10

0

10

20

AGNs

- Co

ntro

l 10

50

36

20

8

0.0 0.2 0.4 0.6 0.8 1.00

10

20

30

401

12

3

3

1

xio - EARLY

0.0 0.2 0.4 0.6 0.8 1.00

10

20

30

402

24

6

6

2

0.0 0.2 0.4 0.6 0.8 1.0R/Re

10

0

10

20 2

24

6

6

2

0.0 0.2 0.4 0.6 0.8 1.00

10

20

30

404

13

13

6

2

xio - LATE

0.0 0.2 0.4 0.6 0.8 1.00

10

20

30

408

26

26

12

4

0.0 0.2 0.4 0.6 0.8 1.0R/Re

10

0

10

20 8

26

26

12

4

Figure 7. L[O iii]binned mean radial profiles for the xio components (905 Myr < t ≤ 2.5 Gyr). See figure 4 for the description.

early or late-type (because they could not be clearly classi-fied, e.g. could be the result of mergers), so the sum of earlyand late-type galaxies may not represent the total numberof objects (left column).

As can be seen in Fig. 4, the clearest difference in theprofiles occurs for the highest [O iii] luminosity AGN, thatshow higher contribution of the young age component thanthe controls along the whole galaxy 1. In addition, the be-

1 It is worth mentioning that we have inspected carefully the fits

havior seems not to depend on the type of host galaxy (earlyor late-type), at least up to 0.6Re. We note that this bin hasonly 4 galaxies, but if we look at the profiles individually, wefind the same behavior in each one of them. Comparing withthe non-active galaxies, the corresponding profiles are sim-ilar to the other luminosity bins. For the late-type sources,

for the highest luminosity AGN, where differences in the youngpopulation were detected, and no problems with the synthesis

quality were found.

MNRAS 000, 1–15 (2017)

The first 62 AGN in MaNGA - II: resolved stellar populations 9

0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

100

AGNs

5

25

18

10

4

xo - ALL

39.0 - 39.7539.75 - 40.2540.25 - 40.7540.75 - 41.2541.25 - 42.0

0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

100

Cont

rol

10

50

36

20

8

0.0 0.2 0.4 0.6 0.8 1.0R/Re

80

60

40

20

0

20

AGNs

- Co

ntro

l 10

50

36

20

8

0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

1001

12

3

3

1

xo - EARLY

0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

1002

24

6

6

2

0.0 0.2 0.4 0.6 0.8 1.0R/Re

80

60

40

20

0

202

24

6

6

2

0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

1004

13

13

6

2

xo - LATE

0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

1008

26

26

12

4

0.0 0.2 0.4 0.6 0.8 1.0R/Re

80

60

40

20

0

208

26

26

12

4

Figure 8. L[O iii]binned mean radial profiles for the xo components (2.5 Gyr < t ≤ 13 Gyr). See figure 4 for the description.

0.0 0.2 0.4 0.6 0.8 1.08

9

10

11

AGNs

5

25

18

10

4

log tL - ALL39.0 - 39.7539.75 - 40.2540.25 - 40.7540.75 - 41.2541.25 - 42.0

0.0 0.2 0.4 0.6 0.8 1.08

9

10

11

Cont

rol

10

50

36

20

8

0.0 0.2 0.4 0.6 0.8 1.0R/Re

1

0

1

AGNs

- Co

ntro

l 10

50

36

20

8

0.0 0.2 0.4 0.6 0.8 1.08

9

10

111

12

3

3

1

log tL - EARLY

0.0 0.2 0.4 0.6 0.8 1.08

9

10

112

24

6

6

2

0.0 0.2 0.4 0.6 0.8 1.0R/Re

1

0

1 2

24

6

6

2

0.0 0.2 0.4 0.6 0.8 1.08

9

10

114

13

13

6

2

log tL - LATE

0.0 0.2 0.4 0.6 0.8 1.08

9

10

118

26

26

12

4

0.0 0.2 0.4 0.6 0.8 1.0R/Re

1

0

1 8

26

26

12

4

Figure 9. L[O iii]binned mean radial profiles for the mean age (〈log t 〉). See figure 4 for the description.

there is a clear shift in the slope at ∼ 0.7Re, for larger val-ues of Re it follows the other luminosity ranges. This, andthe fact that the differences have a slightly negative slope inall morphology groups, suggests that the AGN may enhancethe star formation process in the nuclear region (Re . 0.6).

A similar excess in the AGN as compared to controlsis also observed in the intermediate age bins xiy and xiishown in Figs. 5 and 6, although the excess seems to occurfarther from the center. A comparison between Figs. 4, 5and 6 suggests an age stratification with radius for the high-est luminosity sources, showing a larger fraction of younger

stars in the central region, with the intermediate age starscontributing more to the light in the outer regions. Regard-ing the old component, Fig. 7 shows that, as expected, thehigh-luminosity AGN has less contribution of this compo-nent than the controls, with differences ranging from ∼20%to 60%. A small trend can be observed also in this figure, inthe sense that a similar although smaller difference is alsoobserved for the second luminosity bin, with the third andfourth bins showing almost no difference when comparedwith the controls, while the lowest luminosity bin showing

MNRAS 000, 1–15 (2017)

10 N. D. Mallmann et al.

0

5

10

15

39.0

0 - 3

9.75

0

5

10

15

39.7

5 - 4

0.25

0

5

10

15

40.2

5 - 4

0.75

0

5

10

15

40.7

5 - 4

1.25

0.0 - 0.5 Re0.5 - 1.0 Re

0.0 - 1.0 Re

0

5

10

15

41.2

5 - 4

2.00

Figure 10. Young stellar population xy contribution for five different bins of luminosity (39-39.75, 39.75-40.25, 40.25-40.75, 40.75-41.25,

41.25-42), calculated for three different regions (0.0-0.5 Re , 0.5-1.0 Re , 0.0-1.0 Re). Each color represents a different AGN grouping: greenfor the late-type AGN, red for the early-type AGN, and blue for all the AGN sample. Solid lines correspond to the active galaxies and

dashed lines to the control galaxies.

the opposite: the controls having less contribution of the oldcomponent than the AGN.

In order to compare the galaxies using a single parame-ter we plot the radial profiles of their mean ages (see §4) inFig. 9. It is clear from this figure that the higher luminosityAGN hosts are younger than the control galaxies in the en-tire studied region (1Re). We interpret these results as due tothe fact that AGN hosts do prefer the “outside-in” scenariofor the recent star formation, while the galaxy’s global stel-lar formation history (SFH) is better described by an insideout scenario. This may reflect the idea that the active nuclei

can drive the star formation process in the circumnuclearregion.

Although the differences in the stellar population of thestrongest AGN, when compared with the controls, were ev-ident, a problem arises when trying to analyze other lumi-nosity bins: the differences between the radial profiles aretoo noisy. In order to circumvent this problem, we binnedthe profiles into three regions (0.0-0.5 Re, 0.5-1.0 Re, and 0.0-1.0 Re) and the stellar populations into XY, XI, xO. We alsoplotted the contribution of the FC using these radial bins toinspect the light contribution of the AGN continuum. Fig-

MNRAS 000, 1–15 (2017)

The first 62 AGN in MaNGA - II: resolved stellar populations 11

0255075

100

39.0

0 - 3

9.75

0255075

100

39.7

5 - 4

0.25

0255075

100

40.2

5 - 4

0.75

0255075

100

40.7

5 - 4

1.25

0.0 - 0.5 Re0.5 - 1.0 Re

0.0 - 1.0 Re

0255075

100

41.2

5 - 4

2.00

Figure 11. Intermediate age stellar population xi for different bins of luminosity, calculated for three different regions. See Fig. 10.

ures 10-14 show the results of this exercise2. What clearlyemerges from this test is that the youngest SPs are concen-trated in the inner 0.5 Re of the most luminous AGN hosts(Fig. 10) – where the FC signature is the strongest (Fig.14) – and intermediate age ones are located in regions withradius R & 0.5 Re (see Fig. 11) for all AGN luminosities. Inaddition, the contribution of these stellar population compo-nents are much larger in the AGN hosts (circles) than thatin the control galaxies (triangles) in the case of the high-est luminosity AGN. Another result shown by these plots

2 Some galaxies have limited Re coverage, meaning that thestatistics gets weaker with radial distance. We addressed this

problem by using radial intervals (0.5 Re).

is that the youngest age contributions increase outwards forlate-type galaxies (both controls and AGN – except the mostluminous AGN).

Figs. 12 and 13 show that the strongest (highest lu-minosity) AGN present, in general, younger SPs than theircontrol objects. In addition these plots do allow us to betteranalyze the other luminosity bins. For log(L[O iii] between40.75 and 41.25 (the second most luminous bin) no signif-icant differences can be seen for the younger populations,while the intermediate age contributions are higher for theAGN, being slightly more concentrated at the outer region(R & 0.5 Re). For the remaining luminosity bins a similarbehavior is observed, however, when looking to the overall

MNRAS 000, 1–15 (2017)

12 N. D. Mallmann et al.

0255075

100

39.0

0 - 3

9.75

0255075

100

39.7

5 - 4

0.25

0255075

100

40.2

5 - 4

0.75

0255075

100

40.7

5 - 4

1.25

0.0 - 0.5 Re0.5 - 1.0 Re

0.0 - 1.0 Re

0255075

100

41.2

5 - 4

2.00

Figure 12. Old stellar population xo for different bins of luminosity, calculated for three different regions. See Fig. 10.

mean values (right side of Fig. 11) it is clear that the differ-ence vanishes with luminosity decrease.

In the case of the old stellar population bin, the contri-bution of this population in the AGN hosts is lower than thatobserved in the control objects, and a decrease is observedfrom the center outwards. A significant difference betweenactive and non-active sources is seen for the two highest lu-minosity bins, specially when using the overall mean values(right side plot). We also separate the objects according totheir Hubble types (color coded) and no clear difference isobserved between early and late-type galaxies when compar-ing active and non-active hosts.

The above results reinforce literature results (Remboldet al. 2017; Kauffmann et al. 2003), in the sense that when

comparing low and high luminosity AGN, the contributionof old stellar populations decreases, while that of the youngerstellar populations increases in the latter. However, our re-sults do additionally show that this is specially enhancedin the circumnuclear regions (R ≤ 0.5 Re) indicating thatthe the inflow of material feeding the AGN is partially be-ing used to form stars. In addition, we suggest that thesenuclear starbursts could at least be partially related to apositive AGN feedback, which may be inducing star forma-tion in the host galaxy through enhancing the gas turbu-lence in the interstellar medium. Such a positive feedbackis predicted by simulations (Gaibler et al. 2012; Ishibashi &Fabian 2012; Wagner et al. 2012; Zubovas et al. 2013; Bieriet al. 2015; Zubovas & Bourne 2017) and was already de-

MNRAS 000, 1–15 (2017)

The first 62 AGN in MaNGA - II: resolved stellar populations 13

8.59.09.5

10.010.5

39.0

0 - 3

9.75

8.59.09.5

10.010.5

39.7

5 - 4

0.25

8.59.09.5

10.010.5

40.2

5 - 4

0.75

8.59.09.5

10.010.5

40.7

5 - 4

1.25

0.0 - 0.5 Re0.5 - 1.0 Re

0.0 - 1.0 Re

8.59.09.5

10.010.5

41.2

5 - 4

2.00

Figure 13. Mean age 〈log t 〉 for different bins of luminosity, calculated for three different regions. See Fig. 10.

tected in a few objects (Cresci et al. 2015; Maiolino et al.2017).

As can be seen from Figs.10 to 13 in general we ob-serve that the fraction of young and intermediate age stellarpopulations increases with the radius, while in the case ofthe old population, it decreases. These results support theprevious findings reported by Sanchez et al. (2013), Ibarra-Medel et al. (2016) and Goddard et al. (2017) favoring aninside-out scenario for the formation of galaxies. However,when considering the most luminous AGN, it no longer ap-plies, and it seems that these AGN have been triggered by arecent supply of gas that has also triggered a recent star for-mation in their central regions. Our findings are opposite tothe results of Goddard et al. (2017) in the case of early-typesources, we derive a slightly negative gradient while they de-

rived a slightly positive one for this Hubble class3. On theother hand, our findings seem to agree with those of Ibarra-Medel et al. (2016), who showed that the radial stellar massgrowth histories of early-type galaxies are on average nearlyinside-out, though with a trend much less pronounced thanthat of the late-type galaxies.

6 CONCLUSIONS

We studied the stellar content of the first 62 AGN observedwith SDSS-IV MaNGA and compared them with a matchedsample of inactive galaxies presented in Paper I. We con-structed spatially resolved stellar population age maps, cor-responding average radial profiles and gradients for thesesources using the starlight code, aimed at studying the

3 Note, however, that we are studying the inner 1 Re (they used

1.5 Re) and a smaller sample than that studied by these authors.

MNRAS 000, 1–15 (2017)

14 N. D. Mallmann et al.

0

5

10

15

39.0

0 - 3

9.75

0

5

10

15

39.7

5 - 4

0.25

0

5

10

15

40.2

5 - 4

0.75

0

5

10

15

40.7

5 - 4

1.25

0.0 - 0.5 Re0.5 - 1.0 Re

0.0 - 1.0 Re

0

5

10

15

41.2

5 - 4

2.00

Figure 14. Featureless continuum for different bins of luminosity, calculated for three different regions. See Fig. 10.

effects of the AGN on the star formation history of the hostgalaxies.

We found that the fraction of the young stellar popula-tion (t . 40 Myr) is related with the AGN luminosity. Forhigh-luminosity AGN (L[O iii] & 1041.25 ergs/s) it increasesin the inner (R ≤ 0.5Re) regions when compared with the ob-jects in the control sample. In the case of the low-luminosityAGN, both AGN and control sample hosts, present verysimilar fractions of young stars. This result indicates thatthe inflow of material, besides feeding the nuclear engine, isbeing used to form new stars, thus rejuvenating the stellarcontent of the nuclear region of the AGN hosts. In addi-tion, this very young starburst could also be enhanced bya positive AGN feedback produced by the high-luminosityAGN.

The fraction of the intermediate age, XI (40 Myr < t ≤2.6 Gyr), SP of the AGN hosts slightly increase outwards,with a clear enhancement over the entire galaxy when com-pared with the control sample. In addition, our results show

that the inner region of the galaxies are dominated by an oldSP, whose fraction decreases outwards. These results sup-port the previous findings of the CALIFA team (Sanchezet al. 2013), supporting an inside-out scenario for the galax-ies’ star formation history.

We also investigated for differences on the star forma-tion histories between the different Hubble types. No sig-nificant differences were found between early and late-typehosts galaxies.

From our results we suggest that an outside in scenariobetter describes the recent star formation in the AGN hosts,while an inside out scenario represents better the older gen-erations of stars.

ACKNOWLEDGEMENTS

We thank the anonymous referee for the useful commentsand suggestions. NDM thanks to CNPq for financial sup-

MNRAS 000, 1–15 (2017)

The first 62 AGN in MaNGA - II: resolved stellar populations 15

port. R.R. Thanks to FAPERGS and CNPq for financialsupport.

Funding for the Sloan Digital Sky Survey IV has beenprovided by the Alfred P. Sloan Foundation, the U.S. De-partment of Energy Office of Science, and the ParticipatingInstitutions. SDSS acknowledges support and resources fromthe Center for High-Performance Computing at the Univer-sity of Utah. The SDSS web site is www.sdss.org.

SDSS is managed by the Astrophysical Research Con-sortium for the Participating Institutions of the SDSS Col-laboration including the Brazilian Participation Group, theCarnegie Institution for Science, Carnegie Mellon Univer-sity, the Chilean Participation Group, the French Par-ticipation Group, Harvard-Smithsonian Center for Astro-physics, Instituto de Astrofısica de Canarias, The JohnsHopkins University, Kavli Institute for the Physics andMathematics of the Universe (IPMU) / University of Tokyo,Lawrence Berkeley National Laboratory, Leibniz Institut furAstrophysik Potsdam (AIP), Max-Planck-Institut fur As-tronomie (MPIA Heidelberg), Max-Planck-Institut fur As-trophysik (MPA Garching), Max-Planck-Institut fur Ex-traterrestrische Physik (MPE), National Astronomical Ob-servatories of China, New Mexico State University, NewYork University, University of Notre Dame, ObservatorioNacional / MCTI, The Ohio State University, Pennsylva-nia State University, Shanghai Astronomical Observatory,United Kingdom Participation Group, Universidad NacionalAutonoma de Mexico, University of Arizona, Universityof Colorado Boulder, University of Oxford, University ofPortsmouth, University of Utah, University of Virginia, Uni-versity of Washington, University of Wisconsin, VanderbiltUniversity, and Yale University.

REFERENCES

Baldwin J. A., Phillips M. M., Terlevich R., 1981, PASP, 93, 5

Bieri R., Dubois Y., Silk J., Mamon G. A., 2015, ApJ, 812, L36

Bruzual G., Charlot S., 2003, MNRAS, 344, 1000

Bundy K., et al., 2015, ApJ, 798, 7

Cardelli J. A., Clayton G. C., Mathis J. S., 1989, ApJ, 345, 245

Cid Fernandes R., Gu Q., Melnick J., Terlevich E., Terlevich R.,Kunth D., Rodrigues Lacerda R., Joguet B., 2004, MNRAS,

355, 273

Cid Fernandes R., Mateus A., Sodre L., Stasinska G., GomesJ. M., 2005, MNRAS, 358, 363

Cid Fernandes R., Stasinska G., Schlickmann M. S., Mateus A.,

Vale Asari N., Schoenell W., Sodre L., 2010, MNRAS, 403,

1036

Cid Fernandes R., Stasinska G., Mateus A., Vale Asari N., 2011,

MNRAS, 413, 1687

Cresci G., et al., 2015, ApJ, 799, 82

Davies R. I., Muller Sanchez F., Genzel R., Tacconi L. J., Hicks

E. K. S., Friedrich S., Sternberg A., 2007, ApJ, 671, 1388

Davies R. I., Maciejewski W., Hicks E. K. S., Tacconi L. J., GenzelR., Engel H., 2009, ApJ, 702, 114

Dawson K. S., et al., 2016, Astron. J., 151

Drory N., et al., 2015, AJ, 149, 77

Gaibler V., Khochfar S., Krause M., Silk J., 2012, MNRAS, 425,438

Goddard D., et al., 2017, MNRAS, 465, 688

Heckman T. M., Best P. N., 2014, ARA&A, 52, 589

Hicks E. K. S., Davies R. I., Maciejewski W., Emsellem E., MalkanM. A., Dumas G., Muller-Sanchez F., Rivers A., 2013, ApJ,

768, 107

Ibarra-Medel H. J., et al., 2016, MNRAS, 463, 2799

Ishibashi W., Fabian A. C., 2012, MNRAS, 427, 2998

Kauffmann G., et al., 2003, MNRAS, 346, 1055Kawakatu N., Wada K., 2008, ApJ, 681, 73

Kormendy J., Ho L. C., 2013, ARA&A, 51, 511Law D. R., et al., 2015, AJ, 150, 19

Law D. R., et al., 2016, Astron. J.

Maiolino R., et al., 2017, Nature, 544, 202Majewski S. R., et al., 2017, AJ, 154, 94

Rembold S. B., et al., 2017, MNRAS, 472, 4382

Riffel R., Pastoriza M. G., Rodrıguez-Ardila A., Bonatto C., 2009,MNRAS, 400, 273

Riffel R. A., et al., 2016, MNRAS, 461, 4192

Sanchez S. F., et al., 2013, A&A, 554, A58Sanchez S. F., et al., 2017, preprint, (arXiv:1709.05438)

Sarzi M., Allard E. L., Knapen J. H., Mazzuca L. M., 2007, MN-

RAS, 380, 949Schlegel D. J., Finkbeiner D. P., Davis M., 1998, ApJ, 500, 525

Wagner A. Y., Bicknell G. V., Umemura M., 2012, ApJ, 757, 136Yan R., et al., 2015, Astron. J.

Yan R., et al., 2016, AJ, 152, 197

Zheng Z., et al., 2017, MNRAS, 465, 4572Zubovas K., Bourne M. A., 2017, MNRAS, 468, 4956

Zubovas K., Nayakshin S., Sazonov S., Sunyaev R., 2013, MN-

RAS, 431, 793de Amorim A. L., et al., 2017, MNRAS, 471, 3727

APPENDIX A: AGN - CONTROL GALAXIESCOMPARISON IMAGES

All the comparisons between AGN and its control galaxieswill be available online.

This paper has been typeset from a TEX/LATEX file prepared by

the author.

MNRAS 000, 1–15 (2017)

Capıtulo 5

Consideracoes Finais

Apresentamos aqui um estudo do historico de formacao estelar espacialmente resol-

vido dos primeiros 62 AGNs observados no projeto MaNGA em comparacao com os

resultados de galaxias de controle. Nosso principais resultados estao listados abaixo.

• A contribuicao de estrelas jovens esta relacionada com a luminosidade do AGN:

Ha um aumento consideravel na fracao de populacoes estelares jovens nas

regioes internas (R ≤ 0.5Re) dos AGNs mais luminosas da amostra quando

comparadas com as fracoes das respectivas galaxias de controle. Para o caso

de AGNs de baixa luminosidade, essa fracao se assemelha a das inativas;

• O resultado acima indica que o fluxo de material para as regioes nucleares,

alem de alimentar o AGN, esta sendo usado para formar novas estrelas e, por

isso, rejuvenescendo o conteudo estelar das regioes centrais das galaxias ativas.

Sugerimos que o feedback positivo produzido por AGNs de alta luminosidade

pode ser um possıvel candidato para deflagrar a formacao estelar;

• Ha indıcios de formacao estelar de dentro para fora (cenario inside-out): A

fracao de populacoes intermediarias em AGNs aumenta radialmente e, quando

comparadas com as galaxias inativas, apresentam aumento consideravel so-

bre toda regiao estudada (1Re). Alem disso, as galaxias sao dominadas por

populacoes velhas nas regioes centrais, mas apresentam decrescimo da contri-

buicao de estrelas velhas com o raio.

• Nao observamos diferencas entre galaxias early- e late-type do ponto de vista

do nosso estudo.

Com esses resultados, sugerimos que a formacao estelar em galaxias ativas de

alta luminosidade e melhor descrita por um cenario de formacao outside-in, enquanto

35

Resultados e Discussao 36

que um cenario inside-out melhor representa a distribuicao das populacoes estelares

mais velhas da galaxias.

Como subproduto desenvolvemos um codigo capaz de manipular cubos de dados

do MaNGA, realizar sıntese de populacoes estelares e gerar resultados de forma

automatizada e paralelizada. Alem disso, o codigo possui capacidade modular e, por

isso, possibilita uma facil implementacao de diferentes funcoes de extracao, analise

e geracao de resultados.

5.1 Perspectivas

Com a crescente amostra de galaxias observadas pelo MaNGA, a quantidade de

AGNs devera crescer (com um valor estimado de ∼ 300 ate 2020). Propomos utili-

zar os metodos desenvolvidos para esse trabalho em uma amostra mais completa de

AGNs e galaxias controle (ja sendo construıda) melhorando a estatıstica para AGNs

mais luminosos. Tambem iremos aprimorar o metodo utilizando diferentes modelos

de populacoes estelares para fins de comparacao, como os de Maraston (2005) e Vaz-

dekis et al. (2010). Alem disso, o software megacube desenvolvido nesse trabalho

sera documentado e disponibilizado em uma versao publica.

Capıtulo 6

Participacao em Outros Trabalhos

O desenvolvimento da ferramenta megacube possibilitou ao autor participar de

outros artigos, listados abaixo, onde sua principal contribuicao foi gerar os mapas

de populacoes estelares dos cubos de dados (ou espectros de fenda longa) bem como

gerar mapas de diferentes propriedades, permitindo sua rapida analise.

• SDSS-IV MaNGA: stellar population gradients as a function of galaxy envi-

ronment. Goddard, D., Thomas, D., Maraston, C., Westfall, K.,

Etherington, J., Riffel, R., Mallmann, N. D., Zheng, Z., Argudo-

Fernandez, M., Bershady, M., Bundy, K., Drory, N., Law, D.,

Yan, R., Wake, D., Weijmans, A., Bizyaev, D., Brownstein, J.,

Lane, R. R., Maiolino, R., Masters, K., Merrifield, M., Nits-

chelm, C., Pan, K., Roman-Lopes, A., Storchi-Bergmann, T.. DOI:

”10.1093/mnras/stw2719”.

• SDSS-IV MaNGA: Spatially resolved star formation histories in galaxies as a

function of galaxy mass and type. Goddard, D., Thomas, D., Maraston,

C., Westfall, K., Etherington, J., Riffel, R., Mallmann, N. D.,

Zheng, Z., Argudo-Fernandez, M., Lian, J., Bershady, M., Bundy,

K., Drory, N., Law, D., Yan, R., Wake, D., Weijmans, A., Bizyaev,

D., Brownstein, J., Lane, R. R., Maiolino, R., Masters, K., Mer-

rifield, M., Nitschelm, C., Pan, K., Roman-Lopes, A., Storchi-

Bergmann, T., Schneider, D. P.. DOI: ”10.1093/mnras/stw3371”.

• The first 62 AGNs observed with SDSS-IV MaNGA - I. Their characteriza-

tion and definition of a control sample. Rembold, S. B., Shimoia, J. S.,

Storchi-Bergmann, T., Riffel, R., Riffel, R. A., Mallmann, N. D.,

37

Participacao em Outros Trabalhos 38

do Nascimento, J. C., Moreira, T. N., Ilha, G. S., Machado, A. D.,

Cirolini, R., da Costa, L. N., Maia, M. A. G., Santiago, B. X.,

Schneider, D. P., Wylezalek, D., Bizyaev, D., Pan, K., Muller-

Sanchez, F.. DOI: ”10.1093/mnras/stx2264”.

O autor tambem contribuiu com um artigo (em preparacao) utilizando o parte do

codigo megacube.

• The first 62 AGN observed with SDSS-IV MaNGA - IV: gas excitation and

surface mass density distribution. Janaına C. do Nascimento, Thaisa

Storchi-Bergmann, Nıcolas D. Mallmann, Rogerio Riffel, Gabri-

ele S. Ilha, Rogemar A. Riffel, Sandro B. Rembold, Jaderson

Shimoia, Luiz Nicolaci da Costa, Marcio A.G. Maia.

Referencias Bibliograficas

[1] AIRD, J., NANDRA, K., LAIRD, E. S., GEORGAKAKIS, A., ASHBY, M. L. N.,

BARMBY, P., COIL, A. L., HUANG, J.-S., KOEKEMOER, A. M., STEIDEL,

C. C., WILLMER, C. N. A. The evolution of the hard X-ray luminosity function

of AGN. MNRAS, v. 401, p. 2531–2551, February 2010.

[2] BALDWIN, J. A., PHILLIPS, M. M., TERLEVICH, R. Classification parameters

for the emission-line spectra of extragalactic objects. PASP, v. 93, p. 5–19,

February 1981.

[3] BECKMANN, V., SHRADER, C. R. Active Galactic Nuclei: August 2012.

[4] BIERI, R., DUBOIS, Y., SILK, J., MAMON, G. A. Playing with Positive Feed-

back: External Pressure-triggering of a Star-forming Disk Galaxy. ApJ, v. 812,

p. L36, October 2015.

[5] BRUZUAL, G., CHARLOT, S. Stellar population synthesis at the resolution of

2003. MNRAS, v. 344, p. 1000–1028, October 2003.

[6] BUNDY, K., BERSHADY, M. A., LAW, D. R., YAN, R., DRORY, N., MAC-

DONALD, N., WAKE, D. A., CHERINKA, B., SANCHEZ-GALLEGO,

J. R., WEIJMANS, A.-M., THOMAS, D., TREMONTI, C., MASTERS, K.,

COCCATO, L., DIAMOND-STANIC, A. M., ARAGON-SALAMANCA, A.,

AVILA-REESE, V., BADENES, C., FALCON-BARROSO, J., BELFIORE, F.,

BIZYAEV, D., BLANC, G. A., BLAND-HAWTHORN, J., BLANTON, M. R.,

BROWNSTEIN, J. R., BYLER, N., CAPPELLARI, M., CONROY, C., DUT-

TON, A. A., EMSELLEM, E., ETHERINGTON, J., FRINCHABOY, P. M.,

FU, H., GUNN, J. E., HARDING, P., JOHNSTON, E. J., KAUFFMANN, G.,

KINEMUCHI, K., KLAENE, M. A., KNAPEN, J. H., LEAUTHAUD, A., LI,

C., LIN, L., MAIOLINO, R., MALANUSHENKO, V., MALANUSHENKO, E.,

MAO, S., MARASTON, C., MCDERMID, R. M., MERRIFIELD, M. R., NI-

CHOL, R. C., ORAVETZ, D., PAN, K., PAREJKO, J. K., SANCHEZ, S. F.,

39

SCHLEGEL, D., SIMMONS, A., STEELE, O., STEINMETZ, M., THANJA-

VUR, K., THOMPSON, B. A., TINKER, J. L., VAN DEN BOSCH, R. C. E.,

WESTFALL, K. B., WILKINSON, D., WRIGHT, S., XIAO, T., ZHANG, K.

Overview of the SDSS-IV MaNGA Survey: Mapping nearby Galaxies at Apache

Point Observatory. ApJ, v. 798, p. 7, January 2015.

[7] CARDELLI, J. A., CLAYTON, G. C., MATHIS, J. S. The relationship between

infrared, optical, and ultraviolet extinction. ApJ, v. 345, p. 245–256, October

1989.

[8] CARROLL, B. W., OSTLIE, D. A. An introduction to modern astrophysics

and cosmology: July 2006.

[9] CID FERNANDES, R., GU, Q., MELNICK, J., TERLEVICH, E., TERLEVICH,

R., KUNTH, D., RODRIGUES LACERDA, R., JOGUET, B. The star for-

mation history of Seyfert 2 nuclei. MNRAS, v. 355, p. 273–296, November

2004.

[10] CID FERNANDES, R., MATEUS, A., SODRE, L., STASINSKA, G., GOMES,

J. M. Semi-empirical analysis of Sloan Digital Sky Survey galaxies - I. Spectral

synthesis method. MNRAS, v. 358, p. 363–378, April 2005.

[11] CID FERNANDES, R., STASINSKA, G., MATEUS, A., VALE ASARI, N. A

comprehensive classification of galaxies in the Sloan Digital Sky Survey: how

to tell true from fake AGN? MNRAS, v. 413, p. 1687–1699, May 2011.

[12] CID FERNANDES, R., STASINSKA, G., SCHLICKMANN, M. S., MATEUS,

A., VALE ASARI, N., SCHOENELL, W., SODRE, L. Alternative diagnostic

diagrams and the ‘forgotten’ population of weak line galaxies in the SDSS.

MNRAS, v. 403, p. 1036–1053, April 2010.

[13] CIOTTI, L., OSTRIKER, J. P., PROGA, D. Feedback from Central Black Holes in

Elliptical Galaxies. III. Models with Both Radiative and Mechanical Feedback.

ApJ, v. 717, p. 708–723, July 2010.

[14] CRESCI, G., MAINIERI, V., BRUSA, M., MARCONI, A., PERNA, M., MAN-

NUCCI, F., PICONCELLI, E., MAIOLINO, R., FERUGLIO, C., FIORE, F.,

BONGIORNO, A., LANZUISI, G., MERLONI, A., SCHRAMM, M., SILVER-

MAN, J. D., CIVANO, F. Blowin’ in the Wind: Both “Negative” and “Positive”

Feedback in an Obscured High-z Quasar. ApJ, v. 799, p. 82, January 2015.

[15] DAVIES, R. I., MACIEJEWSKI, W., HICKS, E. K. S., TACCONI, L. J., GEN-

ZEL, R., ENGEL, H. Stellar and Molecular Gas Kinematics Of NGC 1097:

Inflow Driven by a Nuclear Spiral. ApJ, v. 702, p. 114–128, September 2009.

[16] DAVIES, R. I., MULLER SANCHEZ, F., GENZEL, R., TACCONI, L. J., HICKS,

E. K. S., FRIEDRICH, S., STERNBERG, A. A Close Look at Star Formation

around Active Galactic Nuclei. ApJ, v. 671, p. 1388–1412, December 2007.

[17] DE AMORIM, A. L., GARCıA-BENITO, R., CID FERNANDES, R., CORTIJO-

FERRERO, C., GONZALEZ DELGADO, R. M., LACERDA, E. A. D., LOPEZ

FERNANDEZ, R., PEREZ, E., VALE ASARI, N. The PyCASSO database:

spatially resolved stellar population properties for CALIFA galaxies. MNRAS,

v. 471, p. 3727–3752, November 2017.

[18] DELVECCHIO, I., GRUPPIONI, C., POZZI, F., BERTA, S., ZAMORANI, G.,

CIMATTI, A., LUTZ, D., SCOTT, D., VIGNALI, C., CRESCI, G., FELTRE,

A., COORAY, A., VACCARI, M., FRITZ, J., LE FLOC’H, E., MAGNELLI,

B., POPESSO, P., OLIVER, S., BOCK, J., CAROLLO, M., CONTINI, T.,

LE FEVRE, O., LILLY, S., MAINIERI, V., RENZINI, A., SCODEGGIO, M.

Tracing the cosmic growth of supermassive black holes to z 3 with Herschel.

MNRAS, v. 439, p. 2736–2754, April 2014.

[19] DINIZ, M. R., RIFFEL, R. A., RIFFEL, R., CRENSHAW, D. M., STORCHI-

BERGMANN, T., T., , FISCHER, C., SCHMITT, H. R., KRAEMER, S. B.

Disentangling the near infrared continuum spectral components of the inner

500 pc of Mrk 573: two-dimensional maps. ArXiv e-prints, April 2017.

[20] DRORY, N., MACDONALD, N., BERSHADY, M. A., BUNDY, K., GUNN, J.,

LAW, D. R., SMITH, M., STOLL, R., TREMONTI, C. A., WAKE, D. A.,

YAN, R., WEIJMANS, A. M., BYLER, N., CHERINKA, B., COPE, F., EI-

GENBROT, A., HARDING, P., HOLDER, D., HUEHNERHOFF, J., JAEH-

NIG, K., JANSEN, T. C., KLAENE, M., PAAT, A. M., PERCIVAL, J., SAY-

RES, C. The MaNGA Integral Field Unit Fiber Feed System for the Sloan 2.5

m Telescope. AJ, v. 149, p. 77, February 2015.

[21] ELVIS, M. A Structure for Quasars. ApJ, v. 545, p. 63–76, December 2000.

[22] ESQUEJ, P., ALONSO-HERRERO, A., GONZALEZ-MARTıN, O., HONIG,

S. F., HERNAN-CABALLERO, A., ROCHE, P., RAMOS ALMEIDA, C.,

MASON, R. E., DıAZ-SANTOS, T., LEVENSON, N. A., ARETXAGA, I.,

RODRıGUEZ ESPINOSA, J. M., PACKHAM, C. Nuclear Star Formation Ac-

tivity and Black Hole Accretion in Nearby Seyfert Galaxies. ApJ, v. 780, p.

86, January 2014.

[23] FERRARESE, L., MERRITT, D. A Fundamental Relation between Supermassive

Black Holes and Their Host Galaxies. ApJ, v. 539, p. L9–L12, August 2000.

[24] GAIBLER, V., KHOCHFAR, S., KRAUSE, M., SILK, J. Jet-induced star forma-

tion in gas-rich galaxies. MNRAS, v. 425, p. 438–449, September 2012.

[25] GEBHARDT, K., BENDER, R., BOWER, G., DRESSLER, A., FABER, S. M.,

FILIPPENKO, A. V., GREEN, R., GRILLMAIR, C., HO, L. C., KORMENDY,

J., LAUER, T. R., MAGORRIAN, J., PINKNEY, J., RICHSTONE, D., TRE-

MAINE, S. A Relationship between Nuclear Black Hole Mass and Galaxy

Velocity Dispersion. ApJ, v. 539, p. L13–L16, August 2000.

[26] GODDARD, D., THOMAS, D., MARASTON, C., WESTFALL, K., ETHE-

RINGTON, J., RIFFEL, R., MALLMANN, N. D., ZHENG, Z., ARGUDO-

FERNANDEZ, M., BERSHADY, M., BUNDY, K., DRORY, N., LAW, D.,

YAN, R., WAKE, D., WEIJMANS, A., BIZYAEV, D., BROWNSTEIN, J.,

LANE, R. R., MAIOLINO, R., MASTERS, K., MERRIFIELD, M., NITS-

CHELM, C., PAN, K., ROMAN-LOPES, A., STORCHI-BERGMANN, T.

SDSS-IV MaNGA: stellar population gradients as a function of galaxy envi-

ronment. MNRAS, v. 465, p. 688–700, February 2017a.

[27] GODDARD, D., THOMAS, D., MARASTON, C., WESTFALL, K., ETHE-

RINGTON, J., RIFFEL, R., MALLMANN, N. D., ZHENG, Z., ARGUDO-

FERNANDEZ, M., LIAN, J., BERSHADY, M., BUNDY, K., DRORY, N.,

LAW, D., YAN, R., WAKE, D., WEIJMANS, A., BIZYAEV, D., BROWNS-

TEIN, J., LANE, R. R., MAIOLINO, R., MASTERS, K., MERRIFIELD, M.,

NITSCHELM, C., PAN, K., ROMAN-LOPES, A., STORCHI-BERGMANN,

T., SCHNEIDER, D. P. SDSS-IV MaNGA: Spatially resolved star formation

histories in galaxies as a function of galaxy mass and type. MNRAS, v. 466,

p. 4731–4758, April 2017b.

[28] HECKMAN, T. M., BEST, P. N. The Coevolution of Galaxies and Supermassive

Black Holes: Insights from Surveys of the Contemporary Universe. ARA&A,

v. 52, p. 589–660, August 2014.

[29] HICKS, E. K. S., DAVIES, R. I., MACIEJEWSKI, W., EMSELLEM, E., MAL-

KAN, M. A., DUMAS, G., MULLER-SANCHEZ, F., RIVERS, A. Fueling

Active Galactic Nuclei. I. How the Global Characteristics of the Central Kilo-

parsec of Seyferts Differ from Quiescent Galaxies. ApJ, v. 768, p. 107, May

2013.

[30] HO, L. C. Nuclear Activity in Nearby Galaxies. ARA&A, v. 46, p. 475–539,

September 2008.

[31] HOPKINS, P. F. Dynamical delays between starburst and AGN activity in galaxy

nuclei. MNRAS, v. 420, p. L8–L12, February 2012.

[32] ISHIBASHI, W., FABIAN, A. C. Active galactic nucleus feedback and triggering

of star formation in galaxies. MNRAS, v. 427, p. 2998–3005, December 2012.

[33] KAUFFMANN, G., HECKMAN, T. M., TREMONTI, C., BRINCHMANN, J.,

CHARLOT, S., WHITE, S. D. M., RIDGWAY, S. E., BRINKMANN, J., FU-

KUGITA, M., HALL, P. B., IVEZIC, Z., RICHARDS, G. T., SCHNEIDER,

D. P. The host galaxies of active galactic nuclei. MNRAS, v. 346, p. 1055–

1077, December 2003.

[34] KAWAKATU, N., WADA, K. Coevolution of Supermassive Black Holes and Cir-

cumnuclear Disks. ApJ, v. 681, p. 73–83, July 2008.

[35] KORMENDY, J., HO, L. C. Coevolution (Or Not) of Supermassive Black Holes

and Host Galaxies. ARA&A, v. 51, p. 511–653, August 2013.

[36] KROLIK, J. H. Active galactic nuclei : from the central black hole to the

galactic environment: 1999.

[37] LAW, D. R., YAN, R., BERSHADY, M. A., BUNDY, K., CHERINKA, B.,

DRORY, N., MACDONALD, N., SANCHEZ-GALLEGO, J. R., WAKE, D. A.,

WEIJMANS, A.-M., BLANTON, M. R., KLAENE, M. A., MORAN, S. M.,

SANCHEZ, S. F., ZHANG, K. Observing Strategy for the SDSS-IV/MaNGA

IFU Galaxy Survey. AJ, v. 150, p. 19, July 2015.

[38] MADAU, P., DICKINSON, M. Cosmic Star-Formation History. ARA&A, v. 52,

p. 415–486, August 2014.

[39] MAIOLINO, R., RUSSELL, H. R., FABIAN, A. C., CARNIANI, S., GAL-

LAGHER, R., CAZZOLI, S., ARRIBAS, S., BELFIORE, F., BELLOCCHI,

E., COLINA, L., CRESCI, G., ISHIBASHI, W., MARCONI, A., MANNUCCI,

F., OLIVA, E., STURM, E. Star formation inside a galactic outflow. Nature,

v. 544, p. 202–206, March 2017.

[40] MALLMANN, NICOLAS DULLIUS, RIFFEL, ROGERIO, STORCHI-

BERGMANN, THAISA, BARBOZA REMBOLD, SANDRO, RIFFEL,

ROGEMAR A, SCHIMOIA, JADERSON, COSTA, LUIZ NICOLACIDA ,

REESE, VLADIMIRAVILA , SANCHEZ, SEBASTIAN F, MACHADO,

ALICE D, CIROLINI, RAFAEL, ILHA, GABRIELE S, NASCIMENTO,

JANAINA CDO . The first 62 agn observed with sdss-iv manga - ii: resolved

stellar populations. Monthly Notices of the Royal Astronomical

Society, v. , p. sty1364, 2018.

[41] MARASTON, C. Evolutionary population synthesis: models, analysis of the in-

gredients and application to high-z galaxies. MNRAS, v. 362, p. 799–825,

September 2005.

[42] REMBOLD, S. B., SHIMOIA, J. S., STORCHI-BERGMANN, T., RIFFEL, R.,

RIFFEL, R. A., MALLMANN, N. D., DO NASCIMENTO, J. C., MOREIRA,

T. N., ILHA, G. S., MACHADO, A. D., CIROLINI, R., DA COSTA, L. N.,

MAIA, M. A. G., SANTIAGO, B. X., SCHNEIDER, D. P., WYLEZALEK, D.,

BIZYAEV, D., PAN, K., MULLER-SANCHEZ, F. The first 62 AGNs observed

with SDSS-IV MaNGA - I. Their characterization and definition of a control

sample. MNRAS, v. 472, p. 4382–4403, December 2017.

[43] RIFFEL, R., PASTORIZA, M. G., RODRıGUEZ-ARDILA, A., BONATTO, C.

Probing the near-infrared stellar population of Seyfert galaxies. MNRAS, v.

400, p. 273–290, November 2009.

[44] RIFFEL, R., RIFFEL, R. A., FERRARI, F., STORCHI-BERGMANN, T.

Intermediate-age stars as the origin of low stellar velocity dispersion nuclear

rings: the case of Mrk 1157. MNRAS, v. 416, p. 493–500, September 2011.

[45] RIFFEL, R. A., STORCHI-BERGMANN, T., RIFFEL, R., PASTORIZA, M. G.

Intermediate-age Stars as Origin of the Low-velocity Dispersion Nuclear Ring

in Mrk 1066. ApJ, v. 713, p. 469–474, April 2010.

[46] RUSCHEL-DUTRA, D., RODRıGUEZ ESPINOSA, J. M., GONZALEZ MARTıN,

O., PASTORIZA, M., RIFFEL, R. Star formation in AGNs at the hundred

parsec scale using MIR high-resolution images. MNRAS, v. 466, p. 3353–3363,

April 2017.

[47] SANCHEZ, S. F., AVILA-REESE, V., HERNANDEZ-TOLEDO, H., CORTES-

SUAREZ, E., RODRIGUEZ-PUEBLA, A., IBARRA-MEDEL, H., CANO-

DIAZ, M., NEGRETE, C. A., CALETTE, A. R., DE LORENZO-CACERES,

A., ORTEGA-MINAKATA, R. A., AQUINO, E., VALENZUELA, O., CLE-

MENTE, J. C., STORCHI-BERGMANN, T., RIFFEL, R., SCHIMOIA, J.,

RIFFEL, R., REMBOLD, S. B., BROWNSTEIN, J. R., PAN, K., ROBES,

Y., MALLMANN, N. SSDSS IV MaNGA - Properties of AGN host galaxies.

ArXiv e-prints, September 2017.

[48] SARZI, M., ALLARD, E. L., KNAPEN, J. H., MAZZUCA, L. M. Star formation

and stellar populations across nuclear rings in galaxies. MNRAS, v. 380, p.

949–962, September 2007.

[49] SCHLEGEL, D. J., FINKBEINER, D. P., DAVIS, M. Maps of Dust Infrared Emis-

sion for Use in Estimation of Reddening and Cosmic Microwave Background

Radiation Foregrounds. ApJ, v. 500, p. 525–553, June 1998.

[50] SCHONELL, A. J., JR., STORCHI-BERGMANN, T., RIFFEL, R. A., RIFFEL,

R. Feeding versus feedback in active galactic nuclei from near-infrared integral

field spectroscopy - XII. NGC 5548. MNRAS, v. 464, p. 1771–1782, January

2017.

[51] SHANKAR, F., WEINBERG, D. H., MIRALDA-ESCUDE, J. Self-Consistent

Models of the AGN and Black Hole Populations: Duty Cycles, Accretion Rates,

and the Mean Radiative Efficiency. ApJ, v. 690, p. 20–41, January 2009.

[52] SMEE, STEPHEN A., GUNN, JAMES E., UOMOTO, ALAN, ROE, NATALIE,

SCHLEGEL, DAVID, ROCKOSI, CONSTANCE M., CARR, MICHAEL A.,

LEGER, FRENCH, DAWSON, KYLE S., OLMSTEAD, MATTHEW D.,

BRINKMANN, JON, OWEN, RUSSELL, BARKHOUSER, ROBERT H.,

HONSCHEID, KLAUS, HARDING, PAUL, LONG, DAN, LUPTON, RO-

BERT H., LOOMIS, CRAIG, ANDERSON, LAUREN, ANNIS, JAMES, BER-

NARDI, MARIANGELA, BHARDWAJ, VAISHALI, BIZYAEV, DMITRY,

BOLTON, ADAM S., BREWINGTON, HOWARD, BRIGGS, JOHN W., BUR-

LES, SCOTT, BURNS, JAMES G., CASTANDER, FRANCISCO JAVIER,

CONNOLLY, ANDREW, DAVENPORT, JAMES R.A., EBELKE, GAR-

RETT, EPPS, HARLAND, FELDMAN, PAUL D., FRIEDMAN, SCOTT D.,

FRIEMAN, JOSHUA, HECKMAN, TIMOTHY, HULL, CHARLES L.,

KNAPP, GILLIAN R., LAWRENCE, DAVID M., LOVEDAY, JON, MAN-

NERY, EDWARD J., MALANUSHENKO, ELENA, MALANUSHENKO, VIK-

TOR, MERRELLI, ARONNE JAMES, MUNA, DEMITRI, NEWMAN, PE-

TER R., NICHOL, ROBERT C., ORAVETZ, DANIEL, PAN, KAIKE,

POPE, ADRIAN C., RICKETTS, PAUL G., SHELDEN, ALAINA, SAND-

FORD, DALE, SIEGMUND, WALTER, AUDREY SIMMONS, , SHANE

SMITH, D., SNEDDEN, STEPHANIE, SCHNEIDER, DONALD P., RAO,

MARK SUBBA, TREMONTI, CHRISTY, WADDELL, PATRICK, YORK,

DONALD G. The multi-object, fiber-fed spectrographs for the Sloan Digital

Sky Survey and the Baryon Oscillation Spectroscopic Survey. Astron. J., 2013.

[53] SOMERVILLE, R. S., HOPKINS, P. F., COX, T. J., ROBERTSON, B. E., HERN-

QUIST, L. A semi-analytic model for the co-evolution of galaxies, black holes

and active galactic nuclei. MNRAS, v. 391, p. 481–506, December 2008.

[54] STORCHI-BERGMANN, T., GONZALEZ DELGADO, R. M., SCHMITT, H. R.,

CID FERNANDES, R., HECKMAN, T. Circumnuclear Stellar Population,

Morphology, and Environment of Seyfert 2 Galaxies: An Evolutionary Scenario.

ApJ, v. 559, p. 147–156, September 2001.

[55] STORCHI-BERGMANN, T., RIFFEL, R. A., RIFFEL, R., DINIZ, M. R., BOR-

GES VALE, T., MCGREGOR, P. J. Two-dimensional Mapping of Young Stars

in the Inner 180 pc of NGC 1068: Correlation with Molecular Gas Ring and

Stellar Kinematics. ApJ, v. 755, p. 87, August 2012.

[56] TERLEVICH, E., DIAZ, A. I., TERLEVICH, R. On the behaviour of the IR CA

II triplet in normal and active galaxies. MNRAS, v. 242, p. 271–284, January

1990.

[57] VAZDEKIS, A., SANCHEZ-BLAZQUEZ, P., FALCON-BARROSO, J., CE-

NARRO, A. J., BEASLEY, M. A., CARDIEL, N., GORGAS, J., PELETIER,

R. F. Evolutionary stellar population synthesis with MILES - I. The base

models and a new line index system. MNRAS, v. 404, p. 1639–1671, June

2010.

[58] WAGNER, A. Y., BICKNELL, G. V., UMEMURA, M. Driving Outflows with

Relativistic Jets and the Dependence of Active Galactic Nucleus Feedback Ef-

ficiency on Interstellar Medium Inhomogeneity. ApJ, v. 757, p. 136, October

2012.

[59] ZHENG, Z., WANG, H., GE, J., MAO, S., LI, C., LI, R., MO, H., GODDARD, D.,

BUNDY, K., LI, H., NAIR, P., LIN, L., LONG, R. J., RIFFEL, R., THOMAS,

D., MASTERS, K., BIZYAEV, D., BROWNSTEIN, J. R., ZHANG, K., LAW,

D. R., DRORY, N., ROMAN LOPES, A., MALANUSHENKO, O. SDSS-IV

MaNGA: environmental dependence of stellar age and metallicity gradients in

nearby galaxies. MNRAS, v. 465, p. 4572–4588, March 2017.

[60] ZUBOVAS, K., BOURNE, M. A. Do AGN outflows quench or enhance star for-

mation? MNRAS, v. 468, p. 4956–4967, July 2017.

[61] ZUBOVAS, K., NAYAKSHIN, S., SAZONOV, S., SUNYAEV, R. Outflows of stars

due to quasar feedback. MNRAS, v. 431, p. 793–798, May 2013.

Apendice A: Comparacoes

AGN-Controles

Aqui, colocamos as imagens do apendice do artigo apresentado no capıtulo 4.

48

2SD

SS Im

age

1-109056 1-73005 1-43009

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.04 -0.03 0.11

0.08 -0.02 0.09

0.04 0.01 0.15

1.97 6.50 13.77

5.36 9.26 6.91

4.73 9.38 10.99

30.94 16.17 25.67

30.81 13.52 30.04

37.42 10.51 37.03

-35.41 -24.28 -38.53

-35.92 -35.52 -43.89

-42.54 -25.70 -50.52

-0.46 -0.48 -0.83

-0.66 -2.00 -1.08

-0.68 -0.97 -1.03

Re = 3.5 kpc Re = 6.4 kpc Re = 6.8 kpc

A V (d

ex)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.3

0.4

0.5

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A1. Comparison of the AGN with MaNGA ID 1-109056 and its control galaxies.

3SD

SS Im

age

1-121532 1-218427 1-177493

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.65 0.00 -0.02

-0.52 0.07 -0.12

-0.45 0.03 -0.08

-7.54 0.00 0.00

-1.52 0.00 0.11

-5.92 0.00 0.04

11.34 3.26 4.76

-33.61 10.15 23.34

-12.79 7.07 15.49

-16.48 -0.98 -5.69

21.60 -9.28 -29.39

12.01 -5.26 -17.78

0.06 -0.06 -0.03

-1.77 -0.09 -0.99

-0.29 -0.09 -0.35

Re = 15 kpc Re = 6.2 kpc Re = 7.7 kpc

A V (d

ex)

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A2. Comparison of the AGN with MaNGA ID 1-121532 and its control galaxies.

4SD

SS Im

age

1-135044 1-218280 1-211063

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.53 0.31 -0.18

0.06 --- -0.01

-0.13 0.31 -0.11

1.64 35.65 6.99

12.10 --- 9.86

6.95 35.65 9.01

43.13 177.92 72.50

-2.18 --- -22.10

28.66 177.92 75.45

-47.65 -270.30 -91.47

-27.18 --- -27.92

-43.94 -270.30 -101.90

-0.64 -6.71 -1.25

-0.89 --- -1.46

-0.81 -6.71 -1.70

Re = 5.6 kpc Re = 26 kpc* Re = 11 kpc

A V (d

ex)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.1

0.2

0.3

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A3. Comparison of the AGN with MaNGA ID 1-135044 and its control galaxies. ∗The effective radius of this galaxy is too large

to fit in the panel (Re = 51′′).

5SD

SS Im

age

1-135285 1-633990 1-25688

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.36 -0.90 -0.27

-0.09 -0.16 -0.12

-0.09 -0.43 -0.19

0.32 -25.31 3.42

3.72 0.60 -1.29

2.06 -9.71 3.11

39.91 19.11 -5.63

20.44 15.70 28.41

41.96 37.39 14.95

-40.68 22.28 -2.16

-48.41 -33.20 -36.48

-55.27 -27.80 -25.98

-0.42 0.92 -0.16

-1.27 -0.98 -0.50

-0.82 -0.25 -0.46

Re = 7.8 kpc Re = 5.9 kpc Re = 4.3 kpc

A V (d

ex)

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A4. Comparison of the AGN with MaNGA ID 1-135285 and its control galaxies.

6SD

SS Im

age

1-135641 1-635503 1-235398

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-1.39 -0.50 -1.33

-0.14 -0.61 0.40

-0.52 -0.67 -0.56

4.01 7.69 -8.95

8.39 -0.02 13.71

8.65 0.71 0.82

30.97 -3.61 -36.25

18.39 4.42 77.69

34.84 1.75 27.64

-37.91 -16.90 43.74

-42.75 -13.41 -92.12

-49.79 -18.18 -30.19

-0.53 -0.39 0.78

-0.69 -0.23 -1.22

-0.80 -0.33 -0.23

Re = 7.7 kpc Re = 6.2 kpc Re = 5.9 kpc

A V (d

ex)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.2

0.4

0.6

0.8

1.0

1.2

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A5. Comparison of the AGN with MaNGA ID 1-135641 and its control galaxies. It is important to note that the artifact

present on the galaxy 1-635503 (the ring on the maps) is just the result of the spaxels’ exclusion mask we used (MaNGA bit signalinga foreground star and S/N cutoff) and have no effect on our results. A similar situation occurs in other results, such as in Figs. A7 and

A12.

7SD

SS Im

age

1-137883 1-178838 1-36878

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-1.10 0.25 -0.79

-1.33 0.29 -0.90

-1.33 0.29 -0.77

-3.35 4.04 15.20

-12.72 2.78 -13.14

-9.54 4.66 0.90

43.63 1.86 11.73

20.04 24.26 -6.70

49.02 8.93 2.38

-40.70 -6.72 -34.33

-17.42 -30.80 24.47

-44.58 -16.16 -5.09

-0.29 -0.20 -0.82

0.37 -0.41 1.64

-0.09 -0.34 0.14

Re = 3.0 kpc Re = 1.7 kpc Re = 5.0 kpc

A V (d

ex)

0.00.20.40.60.81.01.21.41.6

0.25

0.50

0.75

1.00

1.25

1.50

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A6. Comparison of the AGN with MaNGA ID 1-137883 and its control galaxies.

8SD

SS Im

age

1-148068 1-166947 1-55572

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.26 0.37 0.20

0.09 -1.04 0.17

0.08 0.39 0.36

6.72 6.71 2.76

2.90 6.15 14.67

9.57 8.06 9.14

48.86 43.99 44.77

51.67 -43.29 -5.17

59.34 37.24 54.71

-47.74 -56.70 -45.91

-60.99 -53.74 -60.90

-69.26 -61.72 -76.95

-0.84 -1.18 -0.68

-0.92 -8.50 -5.14

-1.21 -2.01 -2.00

Re = 14 kpc Re = 19 kpc Re = 11 kpc

A V (d

ex)

0.00.51.01.52.02.53.03.54.0

0.0

0.1

0.2

0.3

0.4

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A7. Comparison of the AGN with MaNGA ID 1-148068 and its control galaxies.

9SD

SS Im

age

1-149211 1-377321 1-491233

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.08 0.15 -0.24

-0.15 -0.00 0.13

-0.12 0.07 -0.09

0.00 -4.25 -1.92

0.00 -7.44 -1.27

0.00 -6.34 -1.63

1.65 12.97 27.19

5.44 8.47 7.75

3.22 11.90 27.75

-2.52 -0.17 -31.01

-2.56 7.74 -9.53

-2.52 2.77 -29.22

-0.01 0.13 -0.26

-0.04 0.42 -0.18

-0.01 0.28 -0.33

Re = 2.7 kpc Re = 2.6 kpc Re = 3.0 kpc

A V (d

ex)

0.00.20.40.60.81.01.21.41.6

0.0

0.2

0.4

0.6

0.8

1.0

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A8. Comparison of the AGN with MaNGA ID 1-149211 and its control galaxies.

10SD

SS Im

age

1-163831 1-247456 1-210593

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.21 0.01 -0.21

0.06 -1.90 0.30

0.09 0.05 0.04

6.62 1.44 0.21

2.06 59.70 5.00

8.07 5.60 2.09

42.82 57.76 -1.35

37.65 -127.70 45.16

56.66 42.88 21.73

-55.22 -98.88 0.87

-50.22 175.75 -54.13

-71.78 -82.66 -25.92

-0.89 -3.37 -0.01

-0.78 5.04 -0.79

-1.17 -2.83 -0.37

Re = 8.9 kpc Re = 15 kpc Re = 6.8 kpc

A V (d

ex)

0.000.250.500.751.001.251.501.752.00

0.1

0.2

0.3

0.4

0.5

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A9. Comparison of the AGN with MaNGA ID 1-163831 and its control galaxies.

11SD

SS Im

age

1-166919 12-129446 1-90849

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

0.25 0.30 0.35

0.26 -0.18 0.03

0.28 0.10 0.17

5.60 8.08 7.14

7.87 -0.49 5.54

7.48 5.51 7.93

13.14 39.77 53.34

26.39 38.04 21.17

20.90 38.78 46.87

-15.66 -49.35 -56.54

-33.21 -49.50 -35.17

-26.09 -50.90 -55.16

-0.41 -0.87 -0.91

-0.65 -0.67 -0.80

-0.58 -0.85 -0.96

Re = 6.4 kpc Re = 7.1 kpc Re = 7.6 kpc

A V (d

ex)

0.0

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A10. Comparison of the AGN with MaNGA ID 1-166919 and its control galaxies.

12SD

SS Im

age

1-167688 1-235587 1-37062

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

0.15 0.01 -0.55

0.03 0.01 -1.53

0.05 0.01 -0.68

-6.42 0.16 -7.02

-2.13 0.34 -23.68

-4.56 0.10 -12.76

-27.04 6.10 -14.32

-41.40 3.01 -79.10

-23.53 5.76 -10.75

29.36 -8.63 26.44

7.92 -8.63 -40.37

17.61 -9.88 15.99

0.51 -0.08 0.42

-4.23 -0.11 -14.42

-0.82 -0.09 -0.81

Re = 2.8 kpc Re = 2.8 kpc Re = 4.0 kpc

A V (d

ex)

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A11. Comparison of the AGN with MaNGA ID 1-167688 and its control galaxies.

13SD

SS Im

age

1-173958 1-247456 1-24246

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-1.34 0.01 0.02

0.76 -1.90 1.04

-0.92 0.05 0.77

-20.00 1.44 0.00

16.15 59.70 -0.12

-11.23 5.60 0.08

55.87 57.76 47.88

93.49 -127.70 72.39

58.18 42.88 76.21

-24.84 -98.88 -69.01

-187.98 175.75 -38.87

-49.93 -82.66 -73.92

-0.23 -3.37 -1.35

-14.89 5.04 0.37

-1.75 -2.83 -1.04

Re = 15 kpc Re = 15 kpc Re = 8.9 kpc

A V (d

ex)

0.000.250.500.751.001.251.501.752.00

0.0

0.2

0.4

0.6

0.8

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A12. Comparison of the AGN with MaNGA ID 1-173958 and its control galaxies.

14SD

SS Im

age

1-198153 1-211063 1-135810

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.55 -0.18 -0.26

0.61 -0.01 0.33

0.09 -0.11 0.21

-0.15 6.99 5.15

9.21 9.86 9.56

4.71 9.01 9.39

52.47 72.50 0.24

46.68 -22.10 53.83

60.63 75.45 30.09

-52.36 -91.47 -12.22

-73.53 -27.92 -62.22

-71.42 -101.90 -41.46

-0.55 -1.25 -0.31

-2.59 -1.46 -0.96

-1.36 -1.70 -0.75

Re = 9.2 kpc Re = 11 kpc Re = 6.8 kpc

A V (d

ex)

0.00.10.20.30.40.50.60.7

0.0

0.1

0.2

0.3

0.4

0.5

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A13. Comparison of the AGN with MaNGA ID 1-198153 and its control galaxies.

15SD

SS Im

age

1-198182 1-256185 1-48053

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

0.00 -0.03 0.00

0.36 0.24 0.01

0.10 0.10 0.00

-0.37 0.00 -0.12

3.52 -0.02 0.00

0.86 0.01 -0.05

27.28 35.96 0.95

-1.65 -0.42 7.60

11.34 29.80 3.12

-27.13 -36.55 -1.13

-23.11 -11.01 -14.73

-18.96 -33.63 -4.52

-0.27 -0.37 -0.04

-2.18 -1.28 -0.82

-0.76 -0.67 -0.22

Re = 6.9 kpc Re = 5.9 kpc Re = 9.5 kpc

A V (d

ex)

0.00.20.40.60.81.01.21.41.6

0.0

0.1

0.2

0.3

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A14. Comparison of the AGN with MaNGA ID 1-198182 and its control galaxies.

16SD

SS Im

age

1-201561 1-24246 1-285052

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

0.06 0.02 -0.31

--- 1.04 0.06

0.06 0.77 -0.09

10.30 0.00 0.73

--- -0.12 -0.18

10.30 0.08 0.22

28.67 47.88 32.29

--- 72.39 37.86

28.67 76.21 31.76

-66.43 -69.01 -32.92

--- -38.87 -60.54

-66.43 -73.92 -41.39

-3.43 -1.35 -0.38

--- 0.37 -0.89

-3.43 -1.04 -0.61

Re = 16 kpc Re = 8.9 kpc Re = 8.5 kpc

A V (d

ex)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.2

0.4

0.6

0.8

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A15. Comparison of the AGN with MaNGA ID 1-201561 and its control galaxies.

17SD

SS Im

age

1-209980 1-295095 1-92626

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

0.01 0.04 -0.13

-0.00 0.03 ---

-0.06 0.05 -0.13

5.01 0.00 10.52

-4.57 2.43 ---

0.12 0.86 10.52

15.01 -5.22 38.76

56.89 33.62 ---

27.14 16.40 38.76

-3.05 -5.38 -63.62

-53.38 -46.80 ---

-18.65 -29.29 -63.62

-0.36 -0.03 -2.22

-0.45 -0.63 ---

-0.30 -0.36 -2.22

Re = 4.7 kpc Re = 2.7 kpc Re = 13 kpc

A V (d

ex)

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.05

0.10

0.15

0.20

0.25

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A16. Comparison of the AGN with MaNGA ID 1-209980 and its control galaxies.

18SD

SS Im

age

1-210646 1-114306 1-487130

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

0.03 -0.79 -0.35

-0.17 -0.00 -0.18

-0.04 -0.10 -0.27

6.28 -9.70 12.25

5.54 23.40 -4.18

4.92 9.99 7.04

38.02 43.55 11.46

30.68 -29.96 -45.14

37.67 9.84 11.14

-41.48 -44.17 -14.22

-41.13 -1.38 -17.21

-49.12 -23.34 -33.58

-0.75 -0.12 -0.61

-1.04 -1.44 -6.16

-0.88 -0.83 -2.31

Re = 10.0 kpc Re = 11 kpc Re = 8.2 kpc

A V (d

ex)

0.00.20.40.60.81.01.21.4

0.2

0.4

0.6

0.8

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A17. Comparison of the AGN with MaNGA ID 1-210646 and its control galaxies.

19SD

SS Im

age

1-211311 1-25688 1-94422

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.09 -0.27 0.05

-0.01 -0.12 -0.48

-0.02 -0.19 0.08

0.55 3.42 2.30

0.66 -1.29 2.91

0.40 3.11 1.97

52.34 -5.63 50.14

61.72 28.41 46.27

60.60 14.95 52.89

-47.60 -2.16 -61.80

-86.83 -36.48 -181.64

-70.14 -25.98 -73.82

-0.56 -0.16 -1.05

-1.72 -0.50 -10.95

-0.98 -0.46 -1.82

Re = 4.2 kpc Re = 4.3 kpc Re = 7.8 kpc

A V (d

ex)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.00

0.05

0.10

0.15

0.20

0.25

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A18. Comparison of the AGN with MaNGA ID 1-211311 and its control galaxies.

20SD

SS Im

age

1-217050 1-135372 1-274663

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

0.02 -0.00 -0.41

0.05 0.00 0.11

0.02 0.00 -0.05

0.10 -0.01 0.22

-0.01 0.00 0.07

-0.02 -0.00 0.91

6.25 26.86 10.70

12.70 26.23 4.95

8.06 25.02 6.77

-7.40 -23.73 -11.09

-11.83 -34.77 -7.14

-8.05 -26.51 -8.38

-0.05 -0.26 -0.12

-0.16 -1.07 -0.25

-0.09 -0.48 -0.15

Re = 4.8 kpc Re = 6.5 kpc Re = 6.4 kpc

A V (d

ex)

0.00.10.20.30.40.50.60.7

0.0

0.1

0.2

0.3

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A19. Comparison of the AGN with MaNGA ID 1-217050 and its control galaxies.

21SD

SS Im

age

1-22301 1-251871 1-72914

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.48 0.10 0.13

0.25 -0.34 ---

-0.05 0.13 0.13

0.55 2.54 7.18

26.63 1.33 ---

10.86 1.07 7.18

31.33 36.12 53.49

20.95 15.96 ---

33.54 55.75 53.49

-43.02 -46.76 -99.37

-48.17 -146.68 ---

-58.18 -85.53 -99.37

-0.57 -0.81 -5.64

-1.99 -12.52 ---

-1.38 -2.82 -5.64

Re = 11 kpc Re = 18 kpc Re = 21 kpc

A V (d

ex)

0.000.050.100.150.200.250.300.350.40

0.10

0.15

0.20

0.25

0.30

0.35

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A20. Comparison of the AGN with MaNGA ID 1-22301 and its control galaxies.

22SD

SS Im

age

1-229010 1-210962 1-613211

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

0.20 0.06 0.07

--- 0.23 0.25

0.20 0.13 0.29

3.21 0.02 0.12

--- 0.34 -0.26

3.21 0.07 -0.13

133.88 61.83 -2.41

--- 22.34 4.11

133.88 46.69 3.45

-200.54 -63.42 1.73

--- -28.06 -3.69

-200.54 -48.96 -3.16

-3.30 -0.59 0.04

--- -0.90 -0.03

-3.30 -0.64 -0.03

Re = 27 kpc Re = 8.7 kpc Re = 4.5 kpc

A V (d

ex)

0.00.10.20.30.40.50.60.7

0.0

0.1

0.2

0.3

0.4

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A21. Comparison of the AGN with MaNGA ID 1-229010 and its control galaxies.

23SD

SS Im

age

1-234618 1-282144 1-339125

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

0.48 -0.03 0.60

0.25 -1.01 -0.24

0.31 -0.52 0.10

8.10 3.11 1.83

4.53 5.05 -0.21

6.41 0.82 1.77

35.88 56.09 26.61

-18.95 -25.88 -0.36

25.65 19.53 14.42

-39.78 -48.60 -28.48

-4.09 -5.73 0.64

-35.31 -32.67 -16.32

-0.69 -0.70 -0.41

-1.95 -2.12 0.02

-1.31 -1.60 -0.23

Re = 19 kpc Re = 12 kpc Re = 5.9 kpc

A V (d

ex)

0.0

0.5

1.0

1.5

2.0

2.5

0.2

0.4

0.6

0.8

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A22. Comparison of the AGN with MaNGA ID 1-234618 and its control galaxies.

24SD

SS Im

age

1-23979 1-320681 1-519738

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

0.02 0.00 0.00

-0.24 0.00 0.00

-0.17 0.00 0.00

2.05 0.00 0.00

-4.68 0.00 0.00

-2.29 -0.00 0.00

0.38 0.25 19.29

7.56 6.48 29.56

8.77 3.46 38.86

0.31 -0.25 -18.18

-4.92 -7.49 -29.56

-6.07 -3.78 -38.33

-0.06 0.01 -0.19

0.06 -0.10 -0.23

-0.02 -0.04 -0.36

Re = 3.1 kpc Re = 2.5 kpc Re = 3.1 kpc

A V (d

ex)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A23. Comparison of the AGN with MaNGA ID 1-23979 and its control galaxies.

25SD

SS Im

age

1-24148 1-285031 1-236099

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.16 -0.27 -0.35

-0.22 0.23 -0.15

-0.27 0.01 -0.39

0.10 3.43 -3.26

-0.22 6.01 1.04

0.01 5.86 -1.94

8.03 26.35 -14.33

18.87 29.15 -3.20

10.34 32.47 -2.12

-6.79 -31.48 12.52

-18.84 -36.46 0.34

-9.13 -39.55 1.54

-0.10 -0.43 0.32

-0.20 -0.63 -0.64

-0.12 -0.62 -0.07

Re = 3.6 kpc Re = 3.3 kpc Re = 2.7 kpc

A V (d

ex)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.2

0.4

0.6

0.8

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A24. Comparison of the AGN with MaNGA ID 1-24148 and its control galaxies.

26SD

SS Im

age

1-248389 1-94554 1-245774

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.65 0.01 0.70

0.00 0.60 0.01

-0.42 0.10 0.38

-1.56 0.44 15.42

-0.00 5.71 7.31

-1.00 1.58 11.32

74.05 9.00 68.32

-110.71 23.57 35.39

37.41 9.13 58.50

-70.90 -8.55 -83.55

5.12 -160.21 -49.66

-48.67 -23.66 -74.89

-0.35 -0.13 -1.47

-9.91 -14.24 -1.31

-1.59 -1.46 -1.37

Re = 7.6 kpc Re = 5.2 kpc Re = 7.2 kpc

A V (d

ex)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A25. Comparison of the AGN with MaNGA ID 1-248389 and its control galaxies.

27SD

SS Im

age

1-248420 1-211063 1-211074

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.12 -0.18 -0.13

0.01 -0.01 ---

0.01 -0.11 -0.13

8.69 6.99 2.46

7.46 9.86 ---

11.19 9.01 2.46

27.05 72.50 166.90

44.81 -22.10 ---

57.19 75.45 166.90

-51.38 -91.47 -191.75

-66.84 -27.92 ---

-81.44 -101.90 -191.75

-0.84 -1.25 -3.87

-1.98 -1.46 ---

-1.63 -1.70 -3.87

Re = 6.7 kpc Re = 11 kpc Re = 33 kpc

A V (d

ex)

0.00.10.20.30.40.50.60.70.8

0.0

0.1

0.2

0.3

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A26. Comparison of the AGN with MaNGA ID 1-248420 and its control galaxies.

28SD

SS Im

age

1-25554 1-135625 1-216958

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.09 -0.40 -0.12

-0.26 -0.47 -0.29

-0.09 -0.47 -0.14

0.07 -15.67 -4.46

7.43 -1.46 -4.53

5.52 -9.69 -1.07

47.46 -2.66 14.03

2.82 21.72 5.09

37.19 2.04 25.16

-42.11 34.33 -15.57

-42.67 -38.92 -49.48

-56.65 6.39 -45.32

-0.52 0.81 -0.04

-2.09 -0.49 -3.61

-1.26 0.26 -1.16

Re = 8.5 kpc Re = 3.4 kpc Re = 5.5 kpc

A V (d

ex)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A27. Comparison of the AGN with MaNGA ID 1-25554 and its control galaxies.

29SD

SS Im

age

1-256446 1-322671 1-256465

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.67 0.03 0.20

-0.04 0.00 -0.03

-0.34 0.01 0.09

0.00 0.12 4.03

0.00 -0.02 -2.63

0.00 0.04 1.81

26.42 15.96 22.67

20.16 -20.50 39.24

35.91 3.02 24.49

-30.60 -15.99 -23.20

-43.63 12.00 -93.94

-45.07 -5.38 -37.79

-0.25 -0.15 -0.26

-2.85 -0.63 -5.88

-1.13 -0.27 -1.49

Re = 6.5 kpc Re = 5.3 kpc Re = 6.6 kpc

A V (d

ex)

0.000.050.100.150.200.250.300.35

0.0

0.1

0.2

0.3

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A28. Comparison of the AGN with MaNGA ID 1-256446 and its control galaxies.

30SD

SS Im

age

1-25725 1-211079 1-322074

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.51 0.00 0.05

-0.20 0.00 0.04

-0.28 0.00 0.02

0.00 0.00 0.00

0.19 0.00 0.00

0.05 0.00 0.00

33.29 4.43 9.95

-7.79 14.71 11.32

34.52 10.47 12.13

-38.87 -4.82 -10.76

-23.90 -14.19 -12.06

-42.07 -10.59 -12.46

-0.40 -0.06 -0.09

-4.23 -0.23 -0.23

-1.22 -0.13 -0.15

Re = 4.4 kpc Re = 2.2 kpc Re = 2.2 kpc

A V (d

ex)

0.00.20.40.60.81.01.2

0.0

0.1

0.2

0.3

0.4

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A29. Comparison of the AGN with MaNGA ID 1-25725 and its control galaxies.

31SD

SS Im

age

1-258599 1-93876 1-166691

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.15 0.07 -0.01

-0.93 -0.13 -0.03

-0.54 0.09 -0.03

-6.39 0.00 1.16

-29.52 0.00 -1.84

-15.73 0.00 -0.80

46.64 -0.07 -2.06

38.71 -47.44 18.13

68.52 3.36 6.18

-18.88 -2.34 -1.67

-63.15 -80.64 -19.72

-47.26 -21.76 -8.76

-0.14 -0.14 -0.01

-3.83 -12.97 -0.16

-0.89 -1.85 -0.05

Re = 14 kpc Re = 12 kpc Re = 4.9 kpc

A V (d

ex)

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A30. Comparison of the AGN with MaNGA ID 1-258599 and its control galaxies.

32SD

SS Im

age

1-258774 1-379660 1-48208

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

0.08 -0.05 0.00

-0.02 -0.22 -0.02

-0.02 -0.17 -0.00

0.51 0.94 0.03

0.99 0.67 -0.00

-0.46 0.91 -0.01

0.93 26.73 36.18

-10.84 -6.42 -76.41

-9.12 16.26 22.05

1.26 -28.61 -37.26

7.25 1.99 -9.05

9.39 -19.99 -34.52

-0.02 -0.19 -0.38

-0.26 -0.05 -8.22

0.03 -0.15 -1.49

Re = 4.3 kpc Re = 2.9 kpc Re = 7.6 kpc

A V (d

ex)

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A31. Comparison of the AGN with MaNGA ID 1-258774 and its control galaxies.

33SD

SS Im

age

1-259142 1-55572 1-489649

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

0.21 0.20 -0.29

1.31 0.17 0.21

0.33 0.36 -0.06

2.05 2.76 -0.65

5.17 14.67 0.64

1.73 9.14 -0.22

68.65 44.77 15.56

40.72 -5.17 19.47

70.56 54.71 18.18

-82.29 -45.91 -13.88

-329.86 -60.90 -19.87

-91.34 -76.95 -17.06

-1.62 -0.68 -0.14

-27.91 -5.14 -0.26

-2.10 -2.00 -0.22

Re = 19 kpc Re = 11 kpc Re = 6.7 kpc

A V (d

ex)

0.00.10.20.30.40.50.60.7

0.0

0.1

0.2

0.3

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A32. Comparison of the AGN with MaNGA ID 1-259142 and its control galaxies.

34SD

SS Im

age

1-269632 1-210700 1-378795

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

0.08 -0.01 0.20

-0.50 --- 0.35

-0.30 -0.01 0.32

-18.37 0.01 -1.34

-4.98 --- 2.97

-15.17 0.01 1.57

50.81 14.19 50.97

19.31 --- 38.81

43.17 14.19 45.41

-12.62 -51.47 -56.13

-22.80 --- -56.99

-20.69 -51.47 -56.83

0.29 -5.03 -0.59

-0.91 --- -1.50

-0.08 -5.03 -0.92

Re = 13 kpc Re = 25 kpc Re = 12 kpc

A V (d

ex)

0.00.10.20.30.40.50.60.70.8

0.0

0.2

0.4

0.6

0.8

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A33. Comparison of the AGN with MaNGA ID 1-269632 and its control galaxies.

35SD

SS Im

age

1-277552 1-264513 1-136125

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.09 -0.21 -0.35

-0.49 -0.05 -0.20

-0.29 -0.10 -0.05

16.67 11.62 11.61

6.93 18.36 4.10

11.10 15.91 9.12

51.64 -18.35 -11.04

14.51 -28.33 45.32

33.62 -6.19 28.08

-80.37 -15.97 -2.28

-33.83 -6.11 -54.31

-54.39 -25.13 -41.19

-1.50 -0.79 -0.38

-0.61 -1.12 -1.20

-1.04 -1.15 -0.92

Re = 13 kpc Re = 10 kpc Re = 9.0 kpc

A V (d

ex)

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A34. Comparison of the AGN with MaNGA ID 1-277552 and its control galaxies.

36SD

SS Im

age

1-279073 1-211100 1-210784

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

0.00 0.00 -0.26

0.02 0.03 0.01

0.03 0.01 -0.09

0.60 0.00 0.04

-0.33 0.22 -0.06

0.16 0.06 0.00

36.56 5.25 -8.79

68.34 31.01 0.33

39.65 18.68 -2.52

-38.44 -5.37 9.67

-89.11 -42.29 -0.08

-46.86 -22.53 3.10

-0.49 -0.08 0.15

-3.29 -1.40 -0.01

-1.14 -0.57 0.05

Re = 5.6 kpc Re = 3.8 kpc Re = 4.3 kpc

A V (d

ex)

0.000.050.100.150.200.250.30

0.00

0.02

0.04

0.06

0.08

0.10

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A35. Comparison of the AGN with MaNGA ID 1-279073 and its control galaxies.

37SD

SS Im

age

1-279147 1-283246 1-351538

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.75 0.13 -1.19

-0.44 0.05 ---

-0.63 0.09 -1.19

3.39 0.67 -0.07

-3.27 -0.98 ---

0.88 -0.47 -0.07

24.07 9.85 46.74

-22.98 28.78 ---

3.89 18.92 46.74

-16.62 -10.42 -73.41

-19.12 -28.87 ---

-9.41 -18.94 -73.41

-0.18 -0.20 -3.30

-3.84 -0.21 ---

-0.97 -0.20 -3.30

Re = 5.8 kpc Re = 4.7 kpc Re = 18 kpc

A V (d

ex)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A36. Comparison of the AGN with MaNGA ID 1-279147 and its control galaxies.

38SD

SS Im

age

1-279666 1-392976 1-47499

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.01 0.04 0.02

0.01 0.09 -0.46

-0.01 0.07 -0.21

-0.33 0.00 1.19

0.44 0.00 -0.73

0.24 0.00 0.38

6.00 -5.06 -7.92

7.63 -7.83 -2.70

7.01 -7.69 -5.13

-5.67 5.27 6.73

-8.07 6.84 2.16

-7.25 7.18 4.36

-0.04 0.03 0.06

-0.12 0.06 0.05

-0.09 0.06 0.08

Re = 2.1 kpc Re = 1.6 kpc Re = 3.1 kpc

A V (d

ex)

0.0

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A37. Comparison of the AGN with MaNGA ID 1-279666 and its control galaxies.

39SD

SS Im

age

1-279676 1-44789 1-378401

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

0.35 -0.08 -0.00

-0.05 0.19 0.00

0.21 -0.07 -0.00

2.89 0.00 0.07

1.70 0.00 -0.28

5.05 0.00 0.05

27.66 3.52 1.09

15.16 40.06 3.30

39.27 18.07 4.26

-32.71 -4.47 0.79

-35.03 -65.06 -1.31

-52.63 -27.53 -1.94

-0.46 -0.01 -0.01

-1.34 -3.13 -0.05

-1.10 -1.00 -0.06

Re = 7.5 kpc Re = 7.8 kpc Re = 5.1 kpc

A V (d

ex)

0.0

0.5

1.0

1.5

2.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A38. Comparison of the AGN with MaNGA ID 1-279676 and its control galaxies.

40SD

SS Im

age

1-321739 1-247417 1-633994

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.22 0.26 -0.78

-0.20 0.38 -0.01

-0.23 0.32 -0.30

2.81 15.73 2.32

9.64 7.65 -0.11

4.06 9.74 5.11

86.58 13.03 58.90

-9.29 14.82 37.87

39.82 21.69 40.25

-91.57 -22.56 -61.53

-24.20 -25.30 -59.91

-55.85 -30.98 -52.50

-1.13 -0.78 -0.74

-0.56 -0.54 -2.58

-0.76 -0.69 -1.28

Re = 7.1 kpc Re = 5.9 kpc Re = 7.2 kpc

A V (d

ex)

0.00.20.40.60.81.01.21.41.6

0.6

0.8

1.0

1.2

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A39. Comparison of the AGN with MaNGA ID 1-321739 and its control galaxies.

41SD

SS Im

age

1-338922 1-286804 1-109493

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

0.54 0.26 -0.01

-1.04 -0.14 ---

-0.10 -0.06 -0.01

-3.04 1.67 -3.80

-0.00 18.73 ---

-1.85 -2.15 -3.80

-24.39 -96.44 58.95

5.13 78.41 ---

0.29 -6.85 58.95

42.70 68.94 -119.90

4.65 -104.08 ---

16.56 -17.07 -119.90

0.43 0.63 -8.32

0.27 -1.89 ---

0.35 -0.33 -8.32

Re = 24 kpc Re = 43 kpc Re = 40 kpc

A V (d

ex)

0.00.10.20.30.40.50.60.70.8

0.0

0.2

0.4

0.6

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A40. Comparison of the AGN with MaNGA ID 1-338922 and its control galaxies.

42SD

SS Im

age

1-339094 1-274646 1-24099

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.54 -0.38 0.02

-0.32 -0.15 0.08

-0.52 -0.38 0.07

1.34 -0.42 0.17

-1.29 0.03 0.51

0.31 -0.08 0.79

13.33 13.47 11.55

-10.86 -5.76 30.67

2.23 5.93 18.49

-16.23 -11.92 -14.08

12.43 6.99 -30.96

-3.64 -4.17 -19.30

-0.20 -0.08 -0.14

0.11 -0.02 -0.33

-0.06 -0.03 -0.25

Re = 2.6 kpc Re = 2.7 kpc Re = 2.1 kpc

A V (d

ex)

0.00.20.40.60.81.01.21.4

0.0

0.1

0.2

0.3

0.4

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A41. Comparison of the AGN with MaNGA ID 1-339094 and its control galaxies.

43SD

SS Im

age

1-339163 1-136125 1-626830

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

0.11 -0.35 -0.85

0.49 -0.20 0.07

0.41 -0.05 -0.19

1.20 11.61 -0.37

7.24 4.10 4.81

5.53 9.12 2.39

60.28 -11.04 -9.09

35.98 45.32 40.95

64.15 28.08 20.65

-64.57 -2.28 7.15

-76.69 -54.31 -47.90

-84.95 -41.19 -26.39

-0.78 -0.38 0.24

-3.11 -1.20 -0.61

-1.76 -0.92 -0.33

Re = 9.9 kpc Re = 9.0 kpc Re = 5.7 kpc

A V (d

ex)

0.00.10.20.30.40.50.60.70.8

0.0

0.1

0.2

0.3

0.4

0.5

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A42. Comparison of the AGN with MaNGA ID 1-339163 and its control galaxies.

44SD

SS Im

age

1-351790 1-23731 1-167334

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.05 -0.22 -0.27

-0.28 0.10 -0.50

-0.28 -0.04 -0.45

6.75 -1.89 4.22

-3.95 -0.00 -4.05

2.26 -0.99 -0.22

-25.51 -1.86 -17.72

-24.63 13.24 -20.13

-35.60 7.45 -18.44

19.43 0.23 13.50

26.68 -13.61 20.16

31.52 -8.33 17.15

-0.01 -0.08 0.02

0.34 -0.17 0.46

0.20 -0.17 0.25

Re = 2.2 kpc Re = 1.9 kpc Re = 1.9 kpc

A V (d

ex)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A43. Comparison of the AGN with MaNGA ID 1-351790 and its control galaxies.

45SD

SS Im

age

1-37036 1-210785 1-25680

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.40 -0.37 -0.02

-0.55 -0.02 -0.00

-0.27 -0.11 -0.01

-0.01 -0.49 0.00

-0.12 0.07 0.00

-0.00 -0.19 0.00

40.51 51.17 6.95

-79.23 -18.08 -9.06

24.39 18.87 5.13

-37.18 -50.83 -4.64

-135.19 8.09 -53.76

-35.44 -21.77 -13.22

-0.58 -0.45 -0.11

-21.00 -0.81 -6.37

-1.71 -0.46 -1.04

Re = 9.6 kpc Re = 7.0 kpc Re = 6.8 kpc

A V (d

ex)

0.0

0.2

0.4

0.6

0.8

0.0

0.1

0.2

0.3

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A44. Comparison of the AGN with MaNGA ID 1-37036 and its control galaxies.

46SD

SS Im

age

1-373161 1-259650 1-289865

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.23 0.06 -0.00

--- 9.68 -0.00

-0.23 0.38 -0.00

0.17 0.23 0.16

--- 95.34 0.40

0.17 1.83 0.14

10.64 9.12 21.76

--- 62.76 45.04

10.64 8.67 22.18

-5.81 -20.76 -28.63

--- -109.16 -130.55

-5.81 -24.66 -33.22

-0.13 -1.50 -0.24

--- 6.45 -9.56

-0.13 -1.55 -0.99

Re = 27 kpc Re = 25 kpc Re = 17 kpc

A V (d

ex)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.1

0.2

0.3

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A45. Comparison of the AGN with MaNGA ID 1-373161 and its control galaxies.

47SD

SS Im

age

1-44303 1-339028 1-379087

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.17 0.05 -1.29

0.09 --- -0.05

-0.14 0.05 -0.66

9.56 3.25 -5.86

9.95 --- 10.95

9.54 3.25 5.89

31.22 44.37 -15.80

38.93 --- 47.52

30.85 44.37 16.63

-27.11 -67.95 21.74

-77.05 --- -78.80

-44.57 -67.95 -29.94

-0.81 -2.67 0.42

-3.43 --- -3.13

-1.71 -2.67 -1.10

Re = 7.8 kpc Re = 19 kpc Re = 8.4 kpc

A V (d

ex)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A46. Comparison of the AGN with MaNGA ID 1-44303 and its control galaxies.

48SD

SS Im

age

1-44379 1-211082 1-135371

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

0.55 0.23 -0.30

0.18 -0.06 0.50

0.47 0.20 0.15

17.43 5.85 2.61

7.57 4.14 11.17

15.91 5.65 8.83

49.45 21.40 35.64

18.47 10.02 28.29

33.71 23.83 28.80

-58.84 -30.36 -38.25

-27.27 -14.84 -39.61

-46.93 -30.19 -37.76

-1.24 -0.53 -0.52

-0.58 -0.27 -0.83

-1.08 -0.52 -0.71

Re = 5.8 kpc Re = 7.1 kpc Re = 5.9 kpc

A V (d

ex)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.2

0.4

0.6

0.8

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A47. Comparison of the AGN with MaNGA ID 1-44379 and its control galaxies.

49SD

SS Im

age

1-460812 1-270160 1-258455

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.47 -0.62 -0.85

-0.33 -0.06 0.16

-0.51 -0.42 -0.36

-0.13 -0.18 -3.68

-0.40 -0.02 0.25

-0.50 -0.13 -1.65

27.22 4.88 13.51

35.45 2.92 -44.45

31.21 1.32 3.58

-26.70 -5.36 -11.71

-32.43 -1.53 25.30

-30.39 -2.39 -8.06

-0.26 -0.05 0.03

-0.27 -0.07 -1.94

-0.24 -0.02 -0.53

Re = 7.0 kpc Re = 8.5 kpc Re = 10 kpc

A V (d

ex)

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A48. Comparison of the AGN with MaNGA ID 1-460812 and its control galaxies.

50SD

SS Im

age

1-48116 1-386452 1-24416

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.47 -0.15 -0.51

0.02 -0.31 0.13

-0.18 -0.27 -0.12

0.41 -6.35 0.01

7.71 -2.94 0.42

5.32 -7.85 0.25

-12.34 40.30 13.93

34.87 -3.08 41.98

18.31 18.84 25.76

13.83 -34.57 -14.22

-48.25 -6.43 -44.45

-24.96 -15.69 -26.73

0.10 -0.21 -0.12

-0.77 -1.32 -0.50

-0.44 -0.31 -0.31

Re = 4.3 kpc Re = 4.5 kpc Re = 4.3 kpc

A V (d

ex)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A49. Comparison of the AGN with MaNGA ID 1-48116 and its control galaxies.

51SD

SS Im

age

1-491229 1-94554 1-604048

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.16 0.01 0.28

0.27 0.60 -0.26

0.00 0.10 0.12

1.84 0.44 11.71

0.75 5.71 -12.42

1.49 1.58 11.68

13.41 9.00 27.62

9.03 23.57 -47.66

12.50 9.13 15.61

-13.10 -8.55 -41.34

-66.73 -160.21 -25.96

-24.21 -23.66 -43.12

-0.20 -0.13 -0.89

-5.80 -14.24 -7.76

-1.31 -1.46 -2.32

Re = 7.8 kpc Re = 5.2 kpc Re = 12 kpc

A V (d

ex)

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A50. Comparison of the AGN with MaNGA ID 1-491229 and its control galaxies.

52SD

SS Im

age

1-519742 1-37079 1-276679

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.08 0.05 -0.04

-0.07 -0.22 -0.31

-0.09 -0.02 -0.11

0.01 3.96 7.36

-0.07 -16.78 -8.02

0.16 2.06 1.86

-7.37 -33.49 -27.78

25.78 -16.31 25.44

12.23 -33.15 9.77

0.53 28.23 18.39

-53.69 -0.71 -34.18

-24.21 20.60 -16.10

-0.10 -0.11 -0.01

-3.20 -1.70 -1.33

-1.06 -0.92 -0.56

Re = 2.6 kpc Re = 2.3 kpc Re = 3.6 kpc

A V (d

ex)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A51. Comparison of the AGN with MaNGA ID 1-519742 and its control galaxies.

53SD

SS Im

age

1-542318 1-285052 1-377125

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.23 -0.31 -0.33

0.00 0.06 -1.00

-0.11 -0.09 -0.31

0.00 0.73 7.17

5.29 -0.18 -23.46

1.62 0.22 5.59

13.96 32.29 72.35

-11.85 37.86 30.08

8.45 31.76 75.26

-5.45 -32.92 -95.35

1.08 -60.54 -88.42

-10.63 -41.39 -106.28

-0.17 -0.38 -1.18

-0.84 -0.89 -7.40

-0.62 -0.61 -1.86

Re = 9.4 kpc Re = 8.5 kpc Re = 13 kpc

A V (d

ex)

0.00.20.40.60.81.01.21.41.6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A52. Comparison of the AGN with MaNGA ID 1-542318 and its control galaxies.

54SD

SS Im

age

1-558912 1-71481 1-72928

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.22 0.17 0.00

--- --- 0.00

-0.22 0.17 0.00

0.83 0.37 0.00

--- --- 0.00

0.83 0.37 0.00

36.10 31.08 17.36

--- --- 348.08

36.10 31.08 33.16

-21.42 -64.82 -27.74

--- --- -257.25

-21.42 -64.82 -39.79

-6.85 -4.71 -0.84

--- --- 4.05

-6.85 -4.71 -0.74

Re = 68 kpc Re = 46 kpc Re = 16 kpc

A V (d

ex)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.000

0.025

0.050

0.075

0.100

0.125

0.150

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A53. Comparison of the AGN with MaNGA ID 1-558912 and its control galaxies.

55SD

SS Im

age

1-604761 1-210173 1-71525

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.19 0.41 -0.97

--- 0.78 0.25

-0.19 0.37 -0.02

2.51 18.35 1.75

--- 19.67 22.88

2.51 17.83 14.85

125.86 58.39 74.96

--- 0.56 -1.15

125.86 64.18 37.53

-151.19 -78.86 -77.12

--- -92.99 -30.63

-151.19 -93.81 -55.48

-3.86 -1.74 -0.79

--- -9.93 -1.64

-3.86 -2.71 -1.26

Re = 35 kpc Re = 17 kpc Re = 7.9 kpc

A V (d

ex)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A54. Comparison of the AGN with MaNGA ID 1-604761 and its control galaxies.

56SD

SS Im

age

1-72322 1-121717 1-43721

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

0.15 -0.78 -0.27

-0.76 --- ---

-0.10 -0.78 -0.27

3.31 8.53 -1.80

-4.91 --- ---

0.45 8.53 -1.80

38.19 60.73 0.93

59.98 --- ---

47.24 60.73 0.93

-32.46 -83.57 -18.64

-47.85 --- ---

-43.43 -83.57 -18.64

-0.70 -3.77 -2.44

0.67 --- ---

-0.75 -3.77 -2.44

Re = 22 kpc Re = 32 kpc Re = 26 kpc

A V (d

ex)

0.00.10.20.30.40.50.60.70.8

0.0

0.1

0.2

0.3

0.4

0.5

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A55. Comparison of the AGN with MaNGA ID 1-72322 and its control galaxies.

57SD

SS Im

age

1-91016 1-338828 1-386695

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.39 -0.07 0.22

-0.26 -0.08 -0.27

-0.45 -0.10 -0.05

-0.79 -2.45 -11.62

2.04 1.59 -18.34

-0.46 -0.99 -16.92

10.86 -13.16 54.60

33.55 7.61 47.21

22.38 -2.26 60.22

-12.92 9.82 -22.38

-40.22 -4.00 -19.05

-27.79 1.11 -25.79

-0.15 0.12 0.16

-0.58 -0.18 0.28

-0.34 -0.02 0.20

Re = 4.2 kpc Re = 3.5 kpc Re = 4.6 kpc

A V (d

ex)

0.000.250.500.751.001.251.501.75

0.4

0.6

0.8

1.0

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A56. Comparison of the AGN with MaNGA ID 1-91016 and its control galaxies.

58SD

SS Im

age

1-92866 1-94514 1-210614

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.09 0.00 0.02

--- -0.01 ---

-0.09 0.00 0.02

0.00 1.26 0.12

--- 5.50 ---

0.00 2.75 0.12

111.45 1.56 29.09

--- 29.70 ---

111.45 1.25 29.09

-110.31 -2.22 -55.14

--- 76.61 ---

-110.31 2.37 -55.14

-2.23 -0.15 -2.91

--- 10.48 ---

-2.23 0.32 -2.91

Re = 21 kpc Re = 14 kpc Re = 26 kpc

A V (d

ex)

0.0000.0250.0500.0750.1000.1250.1500.175

0.00

0.02

0.04

0.06

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A57. Comparison of the AGN with MaNGA ID 1-92866 and its control galaxies.

59SD

SS Im

age

1-94604 1-295095 1-134239

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

0.06 0.04 0.30

-0.16 0.03 -0.34

-0.05 0.05 0.13

4.68 0.00 12.30

-5.19 2.43 15.96

1.97 0.86 12.07

-19.84 -5.22 52.68

28.00 33.62 -106.17

24.09 16.40 38.96

22.02 -5.38 -74.56

-120.16 -46.80 -108.85

-50.56 -29.29 -89.82

-0.36 -0.03 -1.32

-8.34 -0.63 -22.88

-2.73 -0.36 -4.23

Re = 5.0 kpc Re = 2.7 kpc Re = 11 kpc

A V (d

ex)

0.0

0.1

0.2

0.3

0.4

0.5

0.00

0.05

0.10

0.15

0.20

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A58. Comparison of the AGN with MaNGA ID 1-94604 and its control galaxies.

60SD

SS Im

age

1-94784 1-211063 1-135502

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

-0.67 -0.18 0.58

0.59 -0.01 -0.49

0.06 -0.11 0.23

-3.77 6.99 8.47

24.20 9.86 -12.92

11.03 9.01 6.31

22.68 72.50 74.30

-6.39 -22.10 39.78

15.12 75.45 61.28

-17.45 -91.47 -85.05

-22.02 -27.92 -104.51

-26.96 -101.90 -79.37

-0.06 -1.25 -1.28

-0.91 -1.46 -5.63

-0.62 -1.70 -1.72

Re = 6.5 kpc Re = 11 kpc Re = 12 kpc

A V (d

ex)

0.00.20.40.60.81.01.21.4

0.0

0.1

0.2

0.3

0.4

0.5

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A59. Comparison of the AGN with MaNGA ID 1-94784 and its control galaxies.

61SD

SS Im

age

1-95092 1-210962 1-251279

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

0.25 0.06 -0.04

-0.11 0.23 0.20

0.13 0.13 0.20

9.34 0.02 2.26

-2.53 0.34 4.71

4.42 0.07 5.16

41.95 61.83 26.68

-2.00 22.34 22.69

17.22 46.69 34.60

-54.64 -63.42 -32.24

-0.26 -28.06 -35.09

-24.99 -48.96 -44.75

-0.87 -0.59 -0.37

-0.09 -0.90 -0.53

-0.47 -0.64 -0.65

Re = 4.2 kpc Re = 8.7 kpc Re = 4.4 kpc

A V (d

ex)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.1

0.2

0.3

0.4

0.5

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A60. Comparison of the AGN with MaNGA ID 1-95092 and its control galaxies.

62SD

SS Im

age

1-95585 1-166947 1-210593

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

0.15 0.37 -0.21

--- -1.04 0.30

0.15 0.39 0.04

17.35 6.71 0.21

--- 6.15 5.00

17.35 8.06 2.09

130.66 43.99 -1.35

--- -43.29 45.16

130.66 37.24 21.73

-175.82 -56.70 0.87

--- -53.74 -54.13

-175.82 -61.72 -25.92

-3.43 -1.18 -0.01

--- -8.50 -0.79

-3.43 -2.01 -0.37

Re = 32 kpc Re = 19 kpc Re = 6.8 kpc

A V (d

ex)

0.00.51.01.52.02.53.03.54.0

0.0

0.1

0.2

0.3

0.4

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A61. Comparison of the AGN with MaNGA ID 1-95585 and its control galaxies.

63SD

SS Im

age

1-96075 1-166947 1-52259

RGB

Map

s

AGN CTR1 CTR2AVxyxixo

< t>AVxyxixo

< t>AVxyxixo

< t>

0.0−

0.5 R e

0.5−

1.0 R e

0.0−

1.0 R e

0.03 0.37 -0.41

0.18 -1.04 0.20

0.31 0.39 -0.12

9.42 6.71 -2.73

16.19 6.15 19.30

16.68 8.06 7.12

58.88 43.99 10.61

20.26 -43.29 24.46

42.69 37.24 23.38

-73.45 -56.70 -10.03

-39.66 -53.74 -44.22

-61.79 -61.72 -31.05

-1.12 -1.18 -0.22

-1.28 -8.50 -1.80

-1.32 -2.01 -1.13

Re = 14 kpc Re = 19 kpc Re = 9.5 kpc

A V (d

ex)

0.00.51.01.52.02.53.03.54.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

x yy +

xyo

(%)

0

10

20

30

40

50

x iy +

xii +

xio

(%)

0

20

40

60

80

100

x o (%

)

0

20

40

60

80

100

0

20

40

60

80

100

<t [l

og(y

r)]>

8.0

8.5

9.0

9.5

10.0

10.5

0.0 0.2 0.4 0.6 0.8 1.0RRe

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Figure A62. Comparison of the AGN with MaNGA ID 1-96075 and its control galaxies.


Recommended