+ All Categories
Home > Documents > Primate Mhc-E and -G alleles

Primate Mhc-E and -G alleles

Date post: 25-Jan-2023
Category:
Upload: independent
View: 0 times
Download: 0 times
Share this document with a friend
16
REVIEW Antonio Arnaiz-Villena Jorge Martinez-Laso Miguel Alvarez Maria J. Castro Pilar Varela Eduardo Gomez-Casado Belen Suarez Marı ´a Jose ´ Recio Gilberto Vargas-Alarco ´n Pablo Morales Received: 28 January 1997 / Revised: 17 March 1997 Sequences used in this compilation (Figs. 1, 2) are from: Alvarez et al. 1997; Boyson et al. 1995; Castro et al. 1996, and unpublished; Corell et al. 1994; Geraghty et al. 1987, 1992; Gomez-Casado et al. 1997; Koller et al. 1988; Morales et al. 1993; Ohya et al. 1990; Pook et al. 1991; Suarez et al. 1997, and unpublished; Summers et al. 1993; Watkins et al. 1993; Yamashita et al. 1996. The ape nomenclature equivalents are: Chimpanzee (Pan troglody- tes=Patr, Pan paniscus=Papa), Gorilla (Gorilla gorilla=- Gogo), Orangutan (Pongo pygmaeus=Popy), Rhesus mon- key (Macaca mulatta=Mamu), Cynomolgous monkey (Ma- caca fascicularis=Mafa), and Green monkey (Cercopitecus aethiops=Ceae). HLA-G*01011 and G*0102 present varia- tions only in the untranslated regions. Chimpanzee, Oran- gutan, Gorilla, Rhesus monkey, Cynomolgous monkey, and Green monkey Mhc-G alleles have been renamed as fol- lows: Patr-G*01 (Patr-G*I), Patr-G*02 (Patr-G*II), Papa- G*01 (Papa-G*I), Gogo-G*01 (Gogo-G*01), Popy-G*01 (Popy-G*I), Popy-G*02 (Popy-G*II), Popy-G*03 (Popy- G*III), Popy-G*04 (Popy-G*IV), Popy-G*05 (Popy-G*V), Mamu-G*01 (Mamu-G*I), Mamu-G*02 (Mamu-G*II), Mamu-G*03 (Mamu-G*III), Mamu-G*04 (Mamu-G*IV), Mamu-G*05 (Mamu-G*V), Mamu-G*06 (Mamu-G*VI), Mamu-G*07 (Mamu-G*VII), Mafa-G*01 (Mafa-G*I), Mafa-G*02 (Mafa-G*II), Mafa-G*03 (Mafa-G*III), Mafa- G*04 (Mafa-G*IV), Mafa-G*05 (Mafa-G*V), Mafa-G*06 (Mafa-G*VI), Mafa-G*07 (Mafa-G*VII), Ceae-G*01 (Ceae-G*I), Ceae-G*02 (Ceae-G*II), and Ceae-G*03 (Ceae-G*III). Accession codes for these sequences are shown in Table 1. Mamu-E*0101 and Mafa-E*04 exon 2 and exon 3 sequences are identical to each other. This is the first example of identity at the peptide binding site (PBS) in major histocompatibility complex (MHC) class I molecules belonging to two different species; Patr-E*02 and Papa- E*01, were also found to be identical (Figs. 1, 2). HLA-G molecules show very little productive polymor- phism and do not affect either the T-cell receptor or the peptide binding site (see Fig. 3). It is possible that these molecules do not present antigens, because all individuals from the Cercopithecinae family (Rhesus, Green, and Cynomolgous monkies) lack the α2 domain of the protein (Castro et al. 1996). All HLA-G isoforms described so far contain the α1 domain, which may suffice for accomplish- ing the function of the molecule (Ishitani and Geraghty 1992; Carosella et al. 1996). Cytotrophoblast expresses all the isoforms of MHC-G, including the soluble ones; no other MHC class I or class II antigen is expressed (except for transient low density HLA-C molecules) in this tissue (Wei and Orr 1990; Chumbley et al. 1993; King et al. 1996). It is possible that soluble or membrane-bound MHC- G molecules send negative signals to maternal NK cells through α1 domain determinants. HLA-E transcripts are found in many tissues; however, it is doubtful whether HLA-E molecules reach the surface of normal tissues (Ulbrecht et al. 1992a,b). The very few productive allelic changes found (see Fig. 3) only affect the T-cell receptor binding site (Bjorkman et al. 1987), suggesting that HLA-E function may be related to the T-cell repertoire shaping in the thymus or to presenting a rela- tively limited peptide repertoire. Both HLA-G and -E molecules do not show the three typical hypervariable regions at the peptide binding site, like classical class I HLA molecules, suggesting an alto- A. Arnaiz-Villena* ( ) J. Martinez-Laso* M. Alvarez M.J. Castro P. Varela E. Gomez-Casado B. Suarez M.J. Recio G. Vargas-Alarco ´n P. Morales Department of Immunology, Hospital 12 de Octubre, Universidad Complutense, Carretera Andalucia, E-28041 Madrid, Spain * The contribution by Antonio Arnaiz-Villena and Jorge Martinez-Laso is equal and the order of authorship is arbitrary. Immunogenetics (1997) 46: 251 – 266 Springer-Verlag 1997
Transcript

REVIEW

Antonio Arnaiz-Villena ? Jorge Martinez-LasoMiguel Alvarez ? Maria J. Castro ? Pilar VarelaEduardo Gomez-Casado? Belen SuarezMarı a JoseRecio ? Gilberto Vargas-AlarconPablo Morales

Primate Mhc-E and -G alleles

Received: 28 January 1997 / Revised: 17 March 1997

Structure

Sequences used in this compilation (Figs. 1, 2) are from:Alvarez et al. 1997; Boyson et al. 1995; Castro et al. 1996,and unpublished; Corell et al. 1994; Geraghty et al. 1987,1992; Gomez-Casado et al. 1997; Koller et al. 1988;Morales et al. 1993; Ohya et al. 1990; Pook et al. 1991;Suarez et al. 1997, and unpublished; Summers et al. 1993;Watkins et al. 1993; Yamashita et al. 1996. The apenomenclature equivalents are: Chimpanzee (Pan troglody-tes=Patr, Pan paniscus=Papa), Gorilla (Gorilla gorilla=-Gogo), Orangutan (Pongo pygmaeus=Popy), Rhesus mon-key (Macaca mulatta=Mamu), Cynomolgous monkey (Ma-caca fascicularis=Mafa), and Green monkey (Cercopitecusaethiops=Ceae). HLA-G*01011andG*0102present varia-tions only in the untranslated regions. Chimpanzee, Oran-gutan, Gorilla, Rhesus monkey, Cynomolgous monkey, andGreen monkeyMhc-G alleles have been renamed as fol-lows: Patr-G*01 (Patr-G*I), Patr-G*02 (Patr-G*II ), Papa-G*01 (Papa-G*I), Gogo-G*01 (Gogo-G*01), Popy-G*01(Popy-G*I), Popy-G*02 (Popy-G*II), Popy-G*03 (Popy-G*III ), Popy-G*04(Popy-G*IV), Popy-G*05(Popy-G*V),Mamu-G*01 (Mamu-G*I), Mamu-G*02 (Mamu-G*II),Mamu-G*03 (Mamu-G*III), Mamu-G*04 (Mamu-G*IV),Mamu-G*05 (Mamu-G*V), Mamu-G*06 (Mamu-G*VI),Mamu-G*07 (Mamu-G*VII), Mafa-G*01 (Mafa-G*I),Mafa-G*02 (Mafa-G*II), Mafa-G*03 (Mafa-G*III ), Mafa-G*04 (Mafa-G*IV), Mafa-G*05 (Mafa-G*V), Mafa-G*06(Mafa-G*VI), Mafa-G*07 (Mafa-G*VII), Ceae-G*01

(Ceae-G*I), Ceae-G*02 (Ceae-G*II), and Ceae-G*03(Ceae-G*III). Accession codes for these sequences areshown in Table 1.Mamu-E*0101and Mafa-E*04 exon 2and exon 3 sequences are identical to each other. This is thefirst example of identity at the peptide binding site (PBS) inmajor histocompatibility complex (MHC) class I moleculesbelonging to two different species;Patr-E*02 and Papa-E*01, were also found to be identical (Figs. 1, 2).

Function

HLA-G molecules show very little productive polymor-phism and do not affect either the T-cell receptor or thepeptide binding site (see Fig. 3). It is possible that thesemolecules do not present antigens, because all individualsfrom the Cercopithecinaefamily (Rhesus, Green, andCynomolgous monkies) lack theα2 domain of the protein(Castro et al. 1996). All HLA-G isoforms described so farcontain theα1 domain, which may suffice for accomplish-ing the function of the molecule (Ishitani and Geraghty1992; Carosella et al. 1996). Cytotrophoblast expresses allthe isoforms of MHC-G, including the soluble ones; noother MHC class I or class II antigen is expressed (exceptfor transient low density HLA-C molecules) in this tissue(Wei and Orr 1990; Chumbley et al. 1993; King et al.1996). It is possible that soluble or membrane-bound MHC-G molecules send negative signals to maternal NK cellsthroughα1 domain determinants.

HLA-E transcripts are found in many tissues; however, itis doubtful whether HLA-E molecules reach the surface ofnormal tissues (Ulbrecht et al. 1992a,b). The very fewproductive allelic changes found (see Fig. 3) only affectthe T-cell receptor binding site (Bjorkman et al. 1987),suggesting that HLA-E function may be related to the T-cellrepertoire shaping in the thymus or to presenting a rela-tively limited peptide repertoire.

Both HLA-G and -E molecules do not show the threetypical hypervariable regions at the peptide binding site,like classical class I HLA molecules, suggesting an alto-

A. Arnaiz-Villena* ( ) ? J. Martinez-Laso*? M. AlvarezM.J. Castro? P. Varela? E. Gomez-Casado? B. Suarez? M.J. RecioG. Vargas-Alarco´n ? P. MoralesDepartment of Immunology, Hospital 12 de Octubre, UniversidadComplutense, Carretera Andalucia, E-28041 Madrid, Spain

* The contribution by Antonio Arnaiz-Villena and Jorge Martinez-Lasois equal and the order of authorship is arbitrary.

Immunogenetics (1997) 46: 251–266 Springer-Verlag 1997

gether different functionality and different evolutive con-straints; -E and -G molecules may use peptides only toreach the cell surface and may send negative signals to NKand T lymphocytes (tolerance).

The cell BeWo was thought to be homozygous for HLA-G*01012; however, it was later found to be heterozygous(G*01012, G*01013) and the G*01012 DNA sequence wasalso found to be wrong: codon 105 should be TCC and notTCG (Castro et al. 1996).

Intron 2 sequences of the allelesHLA-G*01011,G*01012, G*01013, G*0104,and G*0105N were se-quenced by us in the present work.

A. Arnaiz-Villena et al.:Mhc-E and -G DNA sequences252

Table 1mAccession codes for theMhc-E and -G sequences

HLA-E*0101 M20022, L78934, U68024, U68025 HLA-G*01011 L27836HLA-E*0102 M21533 HLA-G*01012* L41362HLA-E*01031 L78455, U68028, U68029 HLA-G*01013 L41363HLA-E*01032 L79943, U68026, U68027 HLA-G*0102 S69897HLA-E*0104 M32508 HLA-G*0103 M99048Patr-E*01 L77735 HLA-G*0104 D67006, D67007, D67008Patr-E*02 L77074 HLA-G*0105N L78073Papa-E*01 L77734 Patr-G*01 L48999, L49003Gogo-E*01 L77737 Patr-G*02 U33291Gogo-E*02 L77736 Papa-G*01 U33289Popy-E*01 L78071 Gogo-G*01 L48998, L49002Mamu-E*0101 L41817 Popy-G*01 L49000, L49004Mamu-E*0201 L41818 Popy-G*02 L49001, L49005Mamu-E*0301 L41819 Popy-G*03 U33292Mamu-E*0401 L41820 Popy-G*04 U33294Mamu-E*05 L41821 Popy-G*05* U33293Mamu-E*06 L41822 Mamu-G*01 U33304, U33298Mamu-E*07 L41823 Mamu-G*02 U33305, U33299Mamu-E*08 L41824 Mamu-G*03 U33306, U33298Mafa-E*01 U02976 Mamu-G*04 U33295, U33300Mafa-E*02 U02977 Mamu-G*05 L41263Mafa-E*03 L41830 Mamu-G*06 L41261Mafa-E*04 L41831 Mamu-G*07 L41264Mafa-E*05 L41832 Mafa-G*01 U33312, U33296Ceae-E*01 L42491 Mafa-G*02 U33301, U33296Ceae-E*02 L42492 Mafa-G*03 U33302, U33296

Mafa-G*04 U33303, U33297Mafa-G*05 L41257Mafa-G*06 L41259Mafa-G*07 L41260Ceae-G*01 U33310, U33308Ceae-G*02 U33311, U33309Ceae-G*03 L41266Saoe-G*01 M63946, M38405Saoe-G*02 M63953, M38412Saoe-G*03 M63950, M38409Saoe-G*04 M63947, M38406Saoe-G*05 U49331Saoe-G*06 M63948, M38407Saoe-G*07 M63944, M38403Saoe-G*08 M63949, M38408Saoe-G*09 M63951, M38410Saoe-G*10 M63952, M38411Saoe-G*11 M63954, M38413

* Popy-G*05was also sequenced by us in the present work

A. Arnaiz-Villena et al.:Mhc-E and -G DNA sequences 253

Fig. 1 (For legend see page 261)

A. Arnaiz-Villena et al.:Mhc-E and -G DNA sequences254

Fig. 1 (Continued; for legend see page 261)

A. Arnaiz-Villena et al.:Mhc-E and -G DNA sequences 255

Fig. 1 (Continued; for legend see page 261)

A. Arnaiz-Villena et al.:Mhc-E and -G DNA sequences256

Fig. 1 (Continued; for legend see page 261)

A. Arnaiz-Villena et al.:Mhc-E and -G DNA sequences 257

Fig. 1 (Continued; for legend see page 261)

A. Arnaiz-Villena et al.:Mhc-E and -G DNA sequences258

Fig. 1 (Continued; for legend see page 261)

A. Arnaiz-Villena et al.:Mhc-E and -G DNA sequences 259

Fig. 1 (Continued; for legend see page 261)

A. Arnaiz-Villena et al.:Mhc-E and -G DNA sequences260

Fig. 1 (Continued; for legend see page 261)

A. Arnaiz-Villena et al.:Mhc-E and -G DNA sequences 261

Fig. 1mExon 1, 2, 3, 4, 5, 6, 7, and 8 sequences of theMhc-Eand-G in primates. Identity between residues is indicated by adash(-) and deletionsare denoted by anasterisk(*). Exon 7 of HLA-G*01012 is not shown because it is not comprised in the cDNA sequence available. Exonicconsensus class I sequence is from Watkins and co-workers (1993)

A. Arnaiz-Villena et al.:Mhc-E and -G DNA sequences262

Fig. 2 (For legend see page 265)

A. Arnaiz-Villena et al.:Mhc-E and -G DNA sequences 263

Fig. 2 (Continued; for legend see page 265)

A. Arnaiz-Villena et al.:Mhc-E and -G DNA sequences264

Fig. 2 (Continued; for legend see page 265)

A. Arnaiz-Villena et al.:Mhc-E and -G DNA sequences 265

Fig. 2mIntron 1, 2, 3, 4, 5, 6, and 7 sequences of theMhc-E and-G alleles in primates. Identity between residues is indicated by adash(-) anddeletions are denoted by anasterisk(*). Intronic consensus class I sequence is from Summers and co-workers (1993), slightly modified, accordingto our findings inHLA-E and -G DNA sequences

AcknowledgmentsmThis work was supported by Fondo de In-vestigaciones Sanitarias, Ministerio de Sanidad, PM-95/97 (Ministeriode Educacio´n), and Fundacio´n Ramon Areces, Spain. We are gratefulto J.M. Martin-Villa for his collaboration.

References

Alvarez, M., Martinez-Laso, J., Varela, P., Diaz-Campos, N., Gomez-Casado, E., Vargas-Alarcon, G., Garcia-Torre, C., and Arnaiz-Villena, A. High polymorphism of Mhc-E locus in non-humanprimates: alleles with identical exon 2 and 3 are found in twodifferent species.Tissue Antigens 49:160–167, 1997

Bjorkman, P.J., Saper, M.A., Samraoui, B., Bennet, W.S., Strominger,J.L., and Wilery, D.C. Structure of the human class I histocompat-ibility antigen, HLA-A2. Nature 329:506–512, 1987

Boyson, J.E., McAdam, S.N., Gallimore, A., Golos, T.G., Liu, X.,Gotch, F.M., Hughes, A.L., and Watkins, D.I. TheMhc-E locus inmacaques is polymorphic and is conserved between macaques andhumans.Immunogenetics 41:59–68, 1995

Boyson, J.E., Iwanaga, K.K., Golos, T.G., and Watkins, D.I. Identifi-cation of the Rhesus Monkey HLA-G ortholog. Mamu-G is apseudogene.J Immunol 157:5428–5437, 1996

Carosella, E.D., Dausset, J., and Kirszenbaum, M. HLA-G revisited.Immunol Today 17:407–409, 1996

Castro, M.J., Morales, P., Fernandez-Soria, V., Suarez, B., Recio, M.J.,Alvarez, M., Martin- Villa, M., and Arnaiz-Villena A. Allelicdiversity at the primateMhc-G locus: exon 3 bears stop codonsin all Cercophitecinaesequences.Immunogenetics 43:327–336,1996

Chumbley, G., King, A., Holmes, N., and Loke, Y.M.In situ hybrid-ization and northern blot demonstration of HLA-G mRNA inhuman trophoblast populations by locus-specific oligonucleotide.Hum Immunol 37:17–22, 1993

Corell, A., Morales, P., Martinez-Laso, J., Martin-Villa, J.M., Varela,P., Paz-Artal, E., Allende, L.M., Rodriguez, C., and Arnaiz-Villena,A. New species-specific alleles at the primate Mhc-G locus.HumImmunol 41:52–55, 1994

Geraghty, D.E., Koller, B.H., and Orr, H.T. A human major histocom-patibility complex class I gene that encodes a protein with ashortened cytoplasmatic segment.Proc Natl Acad Sci 84:9145–9148, 1987

Geraghty, D.E., Stockschleader, M., Ishitani, A., and Hansen, J.A.Polymorphism at the HLA-E locus predates most HLA-A and -Bpolymorphism.Hum Immunol 33:174–184, 1992

Gomez-Casado, E., Martinez-Laso, J., Vargas-Alarcon, G., Varela, P.,Diaz-Campos, N., Alvarez, M., Alegre, R., and Arnaiz-Villena, A.Description of a new HLA-E (E*01031) allele an its distribution inthe Spanish population.Hum Immunol 54:69–73, 1997

Ishitani, A. and Geraghty, D.E. Alternative splicing of HLA-G tran-scripts yields proteins with primary structures resembling bothclass I and class II antigens.Proc Natl Acad Sci USA 89:3945–3947, 1992

King, A., Boocock, C., Sharkey, A.M., Gardner, L., Beretta, A.,Siccardi, A.G., and Loke, Y.W. Evidence for the expression ofHLA-C class I mRNA and protein by human first trimestertrophoblast.J Immunol 156:2068–2076, 1996

Koller, B.H., Geraghty, D.E, Shimuzu, Y., DeMars, R., and Orr, H.T.HLA-E: a novel HLA class I gene expressed in resting Tlymphocytes.J Immunol 141:897–904, 1988

Morales, P., Corell, A., Martinez-Laso, J., Martin-Villa, J.M., Varela,P., Paz-Artal, E., Allende, L.M., and Arnaiz-Villena, A. Three newHLA-G alleles and their linkage disequilibria withHLA-A. Immu-nogenetics 38:323–331, 1993

Ohya, K., Kondo, K., and Mizuno, S. Polymorphism in the human classI MHC locus HLA-E in Japanese.Immunogenetics 32:205–209,1990

Pook, M., Woodcock, V., Tassabehji, M., Campbell, R.D., Summers,C., Taylor, M., and Strachan, T. Characterization of an expressiblenonclassical class I HLA gene.Hum Immunol 32:102–109, 1991

Suarez, M.B., Morales, P., Castro,M.J., Fernandez, V., Varela, P.,Alvarez, M., Martinez-Laso, J., and Arnaiz-Villena, A. A newHLA-G allele (HLA-G*0105N) and its distribution in the Spanishpopulation.Immunogenetics 45:464–465, 1997

Summers, C.W., Hampson, V.J., and Taylor, G.M. HLA class I non-coding nucleotide sequences, 1992.Eur J Immunogenet 20:201–240, 1993

Ulbrecht, M., Honka, T., Person, S.E., Johnson, J.P., and Weiss, E.H.The HLA-E gene encodes two differentially regulated transcripts acell surface protein.J Immunol 149:2945–2953, 1992a

Ulbrecht, M., Kellerman, J., Johnson, J.P., and Weiss, E.H. Impairedintracellular transport and cell surface expression of non-poly-morphic HLA-E: evidence of insufficient peptide binding.J ExpMed 176:1083–1090, 1992b

Watkins, D.I., Zemmour, J., and Parham, P. Non-human primate MHCclass I sequences 1992.Immunogenetics 37:317–330, 1993

Wei, X. and Orr, H.T. Differential expression of HLA-E, HLA-F andHLA-G transcripts in human tissue.Hum Immunol 29:131–142,1990

Yamashita, T., Fujii, T., Watanabe, Y., Tokunaga, K., Tadokoro, K.,Juji, T., and Taketani, Y.HLA-G gene polymorphism in a Japanesepopulation.Immunogenetics 44:186–191, 1996

Note added in proof: Two new partial cDNA sequences fromMamu-G have been published (Boysen et al. 1996) since this review went topress

A. Arnaiz-Villena et al.:Mhc-E and -G DNA sequences266

Fig. 3 Exon 1 and 2.mSeveral synonymous changes there exist inHLA-G and-E allelic DNA sequences; however, nonsynonymous changes inhumans are very restricted and they are indicated in the Figure. (*,changes forHLA-G alleles;*, changes forHLA-E alleles)


Recommended