+ All Categories
Home > Documents > SmartProcess Global Performance Advisor (GPA) User Guide

SmartProcess Global Performance Advisor (GPA) User Guide

Date post: 04-Feb-2023
Category:
Upload: khangminh22
View: 0 times
Download: 0 times
Share this document with a friend
259
SmartProcess Global Performance Advisor (GPA) User Guide Document SP-0030 Revision 2 For Software Release 1.0 (PCALCS 3.2) June, 2002
Transcript

SmartProcessGlobal Performance Advisor (GPA)User GuideDocument SP-0030Revision 2

For Software Release 1.0 (PCALCS 3.2)June, 2002

Susan Bires
An Emerson Company

Global Performance Advisor

05/02 (Rev 2) i SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

SmartProcess - Global Performance Advisor User GuideSection Title Page

1 Overview ...............................................................................................1

1.1 Software Installation and Backup .................................................................................... 2

1.1.1 Installation ................................................................................................................ 2

1.1.2 Backing Up the Data Files ........................................................................................ 2

GPA Software Installation Checklist ................................................................................ 3

1.2 Porting a Project to Another Machine .............................................................................. 3

1.3 Program Introduction....................................................................................................... 4

1.4 Setting Properties and Application Preferences............................................................... 4

2 Startup ..................................................................................................5

2.1 Creating a New Workspace............................................................................................. 6

2.2 Creating New Project(s) .................................................................................................. 7

2.3 Separating Projects ......................................................................................................... 9

2.3.1 Single Workspace Containing Multiple Projects........................................................ 9

2.3.2 Multiple Workspaces Containing a Single Project..................................................... 9

Procedure for Executing Multiple Workspaces .............................................................. 10

2.4 Creating a Function Block Diagram (FBD)......................................................................11

3 Designing a Functional Block Diagram Document...............................13

3.1 Adding Algorithms ..........................................................................................................13

3.1.1 Empty Project Algorithm..........................................................................................13

Configuration:................................................................................................................ 14

The Procedure for Creating a "dummy" Project ............................................................. 14

3.1.2 Input Algorithm(s) ....................................................................................................14

3.1.3 Ordering Algorithm ..................................................................................................15

3.1.4 Main Algorithms.......................................................................................................16

3.1.5 "Equipment" Algorithms...........................................................................................16

Global Performance Advisor

05/02 (Rev 2) ii SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

3.1.6 Output Algorithm(s) .................................................................................................17

3.1.7 Copy/Cut/Pasting Algorithms...................................................................................17

Copy/Paste Within the Same Project............................................................................. 18

Copy/Paste to a Different Project .................................................................................. 18

Cut/Paste Within the Same Project................................................................................ 18

Cut/Paste to a Different Project ..................................................................................... 19

3.1.8 Inserting FBDs into Projects ....................................................................................19

Recommended Steps to Insert an FBD Into a Project: .................................................. 19

3.1.9 Adding Tag Sets to a Project from External Cross-Reference (.xref) Files...............20

3.1.10 Setting Algorithm Order, Document Order, and FBD Properties ..........................20

Setting the FBD Properties............................................................................................ 21

Functional Block Diagram Checklist .............................................................................. 21

Algorithm Checklist........................................................................................................ 21

4 Run/Debug Mode ................................................................................22

4.1 Fdborder ........................................................................................................................22

4.2 Pntvalidate .....................................................................................................................23

5 Setting Algorithm Properties................................................................24Appendix A - Tag Names, Units and Values .............................................43Appendix B - Algorithms (Calculation Blocks) ...........................................45Appendix C - Algorithm Properties (Also see Steamtable Algorithms) .....53

Absval ........................................................................................................................... 53

Add10............................................................................................................................ 54

Add4.............................................................................................................................. 55

Addsub.......................................................................................................................... 56

Airhtrs............................................................................................................................ 57

Analoginavg .................................................................................................................. 63

Analogout ...................................................................................................................... 64

And6.............................................................................................................................. 65

Global Performance Advisor

05/02 (Rev 2) iii SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Anlgcmp2poly................................................................................................................ 66

Anlgcmppoly.................................................................................................................. 67

Arctan............................................................................................................................ 68

Avalgen ......................................................................................................................... 69

Avg10............................................................................................................................ 70

Avg4.............................................................................................................................. 71

Bfpturb .......................................................................................................................... 72

Bldwn ............................................................................................................................ 74

Blrio............................................................................................................................... 75

Boiler............................................................................................................................. 76

Capab ........................................................................................................................... 79

Chkload......................................................................................................................... 80

Cndavgtemp.................................................................................................................. 81

Cnddesign..................................................................................................................... 82

Combturb ...................................................................................................................... 85

Condsr .......................................................................................................................... 88

Cooltwr .......................................................................................................................... 91

Cooltwrdes .................................................................................................................... 93

Cooltwrpwr .................................................................................................................... 94

Corblrloss ...................................................................................................................... 95

Cosin............................................................................................................................. 97

Deaerator ...................................................................................................................... 98

Densityair .................................................................................................................... 100

Densitycor ................................................................................................................... 101

Densitygas .................................................................................................................. 102

Diganlgcmp2poly......................................................................................................... 103

Diganlgcmppoly........................................................................................................... 104

Digcmp2poly ............................................................................................................... 105

Digcmppoly ................................................................................................................. 106

Digitalin ....................................................................................................................... 107

Global Performance Advisor

05/02 (Rev 2) iv SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Digitalout ..................................................................................................................... 108

Divide4 ........................................................................................................................ 109

Drnclr .......................................................................................................................... 110

Drnpmp ....................................................................................................................... 111

Dvalgen....................................................................................................................... 113

Emptyproject ............................................................................................................... 114

Expon.......................................................................................................................... 115

Fan.............................................................................................................................. 116

Fandesign ................................................................................................................... 117

Fbdorder ..................................................................................................................... 118

Flowcalccomp ............................................................................................................. 119

Fuels ........................................................................................................................... 120

Funcgen ...................................................................................................................... 124

Gencorr ....................................................................................................................... 125

Gennet ........................................................................................................................ 126

Gpalog ........................................................................................................................ 127

Hetrte .......................................................................................................................... 128

Hiselect6 ..................................................................................................................... 130

Hpfedhtr ...................................................................................................................... 131

Hpipsec ....................................................................................................................... 133

Hrmspasme................................................................................................................. 134

Hrmstasme.................................................................................................................. 135

Hrrpdasme .................................................................................................................. 136

Hrrstasme.................................................................................................................... 137

Hrsg ............................................................................................................................ 138

Hwblrstm ..................................................................................................................... 142

Hwmnstm .................................................................................................................... 143

Invdig .......................................................................................................................... 144

Ipturbdeseff ................................................................................................................. 145

Loselect6..................................................................................................................... 146

Global Performance Advisor

05/02 (Rev 2) v SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Lpfedhtr ....................................................................................................................... 147

Lpsec .......................................................................................................................... 149

Lptrb............................................................................................................................ 150

Massflowliquid............................................................................................................. 151

Mixer ........................................................................................................................... 152

Moistair ....................................................................................................................... 153

Mult_add ..................................................................................................................... 154

Multdiv......................................................................................................................... 155

Multiply4 ...................................................................................................................... 156

Nlog............................................................................................................................. 157

O2calc......................................................................................................................... 158

Or6.............................................................................................................................. 159

Overall_trb................................................................................................................... 160

P1stg........................................................................................................................... 161

Patmos........................................................................................................................ 162

Pntvalidate .................................................................................................................. 163

Poly ............................................................................................................................. 164

Pump........................................................................................................................... 165

Qavg10 ....................................................................................................................... 167

Qavg4 ......................................................................................................................... 168

Reheat_trb .................................................................................................................. 169

Reheat ........................................................................................................................ 171

Setdig.......................................................................................................................... 172

Sin............................................................................................................................... 173

Specheatair ................................................................................................................. 174

Specheatgas ............................................................................................................... 175

Squareroot .................................................................................................................. 176

Sub10.......................................................................................................................... 177

Sub4............................................................................................................................ 178

Ttd............................................................................................................................... 179

Global Performance Advisor

05/02 (Rev 2) vi SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Turbgen....................................................................................................................... 180

Turbin.......................................................................................................................... 181

Unhraitdev................................................................................................................... 182

Unhrasmecsc .............................................................................................................. 183

Unhrasmeffw ............................................................................................................... 184

Unhrasmeipdev1 ......................................................................................................... 185

Unhrasmeipdev2 ......................................................................................................... 186

Unhrasmemkp............................................................................................................. 187

Unhrasmersf................................................................................................................ 188

Unhrasmessf ............................................................................................................... 189

Unhrauxdev................................................................................................................. 190

Unhrauxstm................................................................................................................. 191

Unhrbfpt ...................................................................................................................... 192

Unhrcbp ...................................................................................................................... 194

Unhrcontot................................................................................................................... 195

Unhrcsc....................................................................................................................... 196

Unhregt ....................................................................................................................... 197

Unhrffw........................................................................................................................ 199

Unhrhpdev................................................................................................................... 200

Unhripdev.................................................................................................................... 201

Unhrmaintot................................................................................................................. 202

Unhrmisctot ................................................................................................................. 203

Unhrmkp ..................................................................................................................... 204

Unhrmsp ..................................................................................................................... 205

Unhrmst ...................................................................................................................... 206

Unhro2calc .................................................................................................................. 207

Unhrpcthr .................................................................................................................... 208

Unhrrpd ....................................................................................................................... 209

Unhrrsf ........................................................................................................................ 210

Unhrrst ........................................................................................................................ 211

Global Performance Advisor

05/02 (Rev 2) vii SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrscah..................................................................................................................... 212

Unhrssf........................................................................................................................ 213

Unhrtot ........................................................................................................................ 214

Unhtrt .......................................................................................................................... 216

Volflowgas................................................................................................................... 217

Volflowliquid ................................................................................................................ 218

Wmncor....................................................................................................................... 219

Appendix D - Steamtable Algorithms ......................................................220Appendix E - Scan Period Time Settings ................................................231Appendix F - Common Functional Block Diagrams.................................233

Input Functional Block Diagram...........................................................................................233

INPUT DOCUMENT CHECKLIST ............................................................................... 234

Main Functional Block Diagram ...........................................................................................234

MAIN INPUT ALGORITHM CHECKLIST..................................................................... 234

"Equipment" Functional Block Diagrams..............................................................................235

FEEDHEATER FUNCTIONAL BLOCK DIAGRAM ...................................................... 235

CONDENSER FUNCTIONAL BLOCK DIAGRAM ....................................................... 236

STEAM TURBINE FUNCTIONAL BLOCK DIAGRAM ................................................. 236

BOILER FUNCTIONAL BLOCK DIAGRAM................................................................. 237

FAN FUNCTIONAL BLOCK DIAGRAM....................................................................... 237

PUMP FUNCTIONAL BLOCK DIAGRAM.................................................................... 238

COMBUSTION TURBINE FUNCTIONAL BLOCK DIAGRAM...................................... 238

HEAT RECOVERY STEAM GENERATOR BLOCK DIAGRAM................................... 239

HEAT RATE FUNCTIONAL BLOCK DIAGRAM .......................................................... 239

UNIT HEAT RATE FUNCTIONAL BLOCK DIAGRAM................................................. 239

COOLING TOWER FUNCTIONAL BLOCK DIAGRAM................................................ 242

MATH ALGORITHMS.................................................................................................. 242

MISCELLANEOUS ALGORITHMS.............................................................................. 243

CURVE FIT ALGORITHMS......................................................................................... 243

STEAM TABLE ALGORITHMS ................................................................................... 244

Global Performance Advisor

05/02 (Rev 2) viii SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Output Functional Block Diagram ........................................................................................246

Output Functional Block Diagram Checklist................................................................. 246

Appendix G - Display Graphics Development .........................................247

Global Performance Advisor

05/02 (Rev 2) 1 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

1 Overview

The GPA package collects data using an OPC (OLE for Process Control) server anduses this data throughout its calculations, and upon completion of the calculations,broadcasts the calculated values as well as the qualities through the OPC server. Theuse of the OPC server allows the GPA package to connect to OPC compatible datahighways. The GPA package allows the user to choose algorithms organized by groupsto calculate the power plant’s performance.

The Global Performance Advisor (GPA) Package consists of two software packages:1. The GPADCS software is the main software that includes a standard group of

calculations. 2. The PCalcs software is an overlay that adds dozens of Algorithm Modules that

contain custom calculations allowing a thorough evaluation of each system.

The GPA uses Westinghouse Process Control Inc. software (PCalcs) to calculate powerplant performance. GPA integrates advanced digital and analog control functionality,data management, and networking into a complete process automation solution. TheGPA will allow you to accomplish your most challenging control applications whileenjoying the benefits of highly integrated control and monitoring, faster applicationdevelopment, and the enterprise-wide connectivity of Windows NT.

In order to implement this package, you will need an understanding of Westinghousemodules. This document will describe the Westinghouse algorithm modules and how todevelop a project.

Global Performance Advisor

05/02 (Rev 2) 2 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

1.1 Software Installation and Backup

1.1.1 Installation

The computer should be at least a 900 MHz and have at least 256 MB of RAM to ensurethe program runs smoothly. Complete the following steps to install all software:

1. Place the SmartProcess GPA CD in the CD-ROM drive and install the GPA softwareaccording to the manufacturer's instructions.

2. Run the install software (executable file) provided by Westinghouse, again using the "C"Drive. The following information will be installed. There are seven DLLs that may beshipped with every system, depending on the applications that are copied to the\winnt\system32 directory:

� BLR.DLL� CALCCOMMON.DLL� COMBTURB.DLL� PCALCS.DLL� STMINTERFACE.DLL� STMTABLE.DLL� USERALGSSHAREDRES.DLL

Upon entering the GPA software package, the EVENT.LOG can be checked to verify theversion levels of software. All of the above DLLs should be at the same major versionlevel with the exception of STMINTERFACE.DLL. This DLL is not dependent upon anyof the other DLLs.

A second version of the USERAGLSSHAREDRES.DLL exists for testing and is namedUSERALGSSHAREDRES_FAKE.DLL. If the FAKE DLL is used, all OPC-input valueswill be read in from the initial value field and not the highway. This fake DLL should onlybe used for off-line testing and will be replaced when testing with the highway. TheEVENT LOG will also display the mode for testing which is the FAKE mode.

The PCalcs software CD must be inserted and the PCalcs software loaded.

3. Open the Event Log inside WizDCS and verify that the Major Version Information for allof the DLLs is 3.0 or later except for STMINTERFACE, which will be Version 1.2.

1.1.2 Backing Up the Data Files

During development of the project, the following files need to be backed up on a periodicbasis to prevent data loss:

� Project_name.xref (under %WIZFACTORYSOFTHOME%)� Workspace_name.feqp� Workspace_name.fwsp

Global Performance Advisor

05/02 (Rev 2) 3 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

� Project_name.cprj� All .ffbd documents� All .fdsp files (display sheets)

The .feqp and .fwsp files can be found under the directory where the Workspace wascreated. The .cprj and .ffbd files can be found under the directory where the project wascreated.

GPA Software Installation Checklist� Are all applicable DLLs and cross-reference files copied onto the system?� Is the appropriate USERALGSSHAREDRES.DLL on the system – FAKE or

OPC?� Check the EVENT LOG to ensure that version numbers of DLLs are correct.

Verify that the correct USERALGSSHAREDRES.DLL is on the system.� Are all the appropriate files backed up on a periodic basis?

1.2 Porting a Project to Another Machine

Porting a GPA project requires copying only the eMation WizDCS (Factorysoft) specificfiles, not the supporting DLLs (such as pcalcs.dll, stmtable.dll, useralgssharedres.dll,stminterface.dll and calccommon.dll).

These files consist of:3. The WizDCS Workspace files which house all project(s) (.feqp .fwsp) and the

project-specific files in the Project(s) Directory:

� .cprj (project file)� ffbd (function block diagrams)� .fdsp (display documents)� .csv (registry support files)

Note

Each project within a Workspace has its own directory, soWorkspaces with multiple projects have multiple directories.

4. The .const and .fx files are saved from within algorithms. Recommendation: storefiles in sub-directories within a project directory or, at least on the same disk partition.

5. The .xref files are in %FACTORYSOFTHOME% (typically c:\WizFactory\WizDCS).These files contain all the Tag Group definitions that define the tag configurations forALL algorithms in the project.

Note

Each project within a Workspace has its own .xref file,therefore Workspaces with multiple projects will have multiple.xref files.

Global Performance Advisor

05/02 (Rev 2) 4 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

6. To simplify the zip file to be built:

� Add the .fwsp and .feqp files. � Cursively zip ALL FILES in the project(s) directories. � Add all the project .xref files from %FACTORYSOFTHOME%.

1.3 Program Introduction

Please read Chapter 5 in the WizDCS for Windows "User's Guide". The subjects ofWorkspaces, Projects, Documents, plus Application Preferences and Properties are animportant background for learning how to use this product.

The following definitions may help in understanding the layering WizDCS uses in thebuilding of Projects.

Workspace - Pulls together one or more results provided by a project or set of projectsto form a more complicated result for use in a process.

Project - A set (or sets) of algorithms put together to input information, process it, andoutput useful information.

Functional Block Diagram (FBD) - Comprised of an algorithm or multiple algorithms tocomplete one function.

Algorithm - An Individual building block used to input perform calculations, and outputassigned tags that can be used in other.

Caution

In the unlikely event that two individual Workspaces have to becreated, only one Workspace can be used on a session ofWizDCS. Once a workspace is running in WizDCS, and asecond one is to be called up, the program must be shut downand restarted in order to ensure error free operation.

1.4 Setting Properties and Application Preferences

Follow the instructions in Chapter 5 of the WizDCS "User's Guide" to perform thefollowing:

� Setting the Preferences and/or Properties for various aspects of the program andprojects can be accomplished by following the instructions in Chapter 5 of theWizdcs "User's Guide".

� Setting the different levels of security.

Global Performance Advisor

05/02 (Rev 2) 5 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

2 Startup

This section will briefly describe creating a new project. The following items arediscussed:

� Create a new Workspace � Create one or more New Project (s)� Separating Projects� Create one or more Functional Block Diagram (s)

Note

It would be helpful to work through WizDCS's tutorial tounderstand how to build a project. The Westinghouse overlayworks somewhat differently, but most of the concepts are thesame. Select the Help menu, choose Help Topics, double-clickon the Tutorial booklet, then double-click on WizDCS Tutorialoverview to access the tutorial.

Double-click on the icon to start the GPA program.

Note

Sometimes, when invoking the program, it will seem todisappear. Take the cursor to the bottom of the screen wherethe GPA program bar can be seen. Right-click the bar, andselect "maximize" to pull up the program.

Global Performance Advisor

05/02 (Rev 2) 6 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

2.1 Creating a New Workspace

First, you need to create the new Workspace. This should be a one-time process thatsets up all the projects for the complete facility. 1. On the File menu, select New.2. In the New dialog box, click the Workspace tab. "Control Workspace" is selected

automatically.3. Type the name of the project in the Name text box.

4. Select Navigate and find the Location (or make a new location) where theproject will be kept, then select OK. This places the Workspace with all itscomponents and files in the selected folder.

Notice that other directories were developed when the Workspace was created:

Equipment List - Shows a list of the projects and their running order.

Event Log - A chronological list of events, which can be used for troubleshooting.

Gallery - Not used.

Global Performance Advisor

05/02 (Rev 2) 7 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

2.2 Creating New Project(s)

Next, you need to create a New Project for the current Workspace.

Note

It is important not to name any project the same name as theWorkspace, as the PGA program may confuse the two.

1. Right-click the Workspace name ("Workspace Paul's Power Plant" in this example)in the Workspace Window and select New Project. The New dialog box appearswith "Control Project" selected automatically.

2. Type the desired project name in the Name text box (usually the unit or facilityname). Leave the selection of Add to Current Workspace as is. The Locationoption will, by default, be the same as the Workspace and can be changed if desired.

3. Select OK, this places the new project and its components in the folder.

Global Performance Advisor

05/02 (Rev 2) 8 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Note

For ease of viewing, set the Zoom factor under the Viewmenu to 75%. For multiple projects, other New Projects andNew Documents can be created. Don't forget to saveperiodically!

We suggest that all of the information for one physical facility (building or unit) be placedin the same "Project". If the plant has more than one unit, each one operatingindependently, a project file should be set up for each. Use Steps 1-3 above to developeach Project.

When working with more than one Project, a separate "dummy" New Project must becreated. This Project does not need any New Documents but will always have to beStarted First, so make sure to give it a name that will allow it to be started first. This"dummy" project is needed to start all the OPC data points. If one project is stopped, theother project’s points will still be collected and broadcast since the "dummy" projectwhich started all the OPC points will still be running.

Simply work through Steps 1-3, and making sure to name the "Dummy" project a namethat will ensure that it is started first (such as "Aaadummy"). Once the "Dummy" projectis created, right-click on the "Project name", then select Set Active Project to ensurethat the program always comes back to this Dummy Project while running. The name willbecome bold, identifying it as the Active Project.

There are also other projects that can be added other than "Control Projects" which willbe discussed later.

Notice that other files were developed when each "Project" was made:

Security - Shows the levels of security set up.

Tags - A listing of all the Tags used in the Project, useful in troubleshooting.

Global Performance Advisor

05/02 (Rev 2) 9 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

2.3 Separating Projects

The decision of when and how to separate GPA projects is driven by factors such asneeding the ability to start/stop projects independently or having multiple highwaysrequiring separate OPC servers.

The are two ways to configure multiple GPA projects to run on the same machine:1. Build a SINGLE workspace (.fwsp file) which contains MULTIPLE projects (.cprj file)

(See "Single Workspace Containing Multiple Projects" below).2. Build MULTIPLE workspaces, each containing a SINGLE project (See below).

Use the following guidelines to choosing which method to use.

2.3.1 Single Workspace Containing Multiple Projects

This configuration is recommended only for cases where the total number of highwaytags for ALL projects number in the low 100's. (This information was obtained from testsperformed on a PC with 333 MHz, 128 MB RAM. These results may vary for PC's withdifferent configurations, you may want to make your own tests).

There are GPA performance issues when the total number of highway tags exceeds the300-350 tag range for workspaces containing multiple projects. The 300-350 range wasobtained from tests performed on a PC with 333 MHz, 128 MB RAM.

To calculate the number of Highway Tags:

# of Highway Tags = # Analog Input + # Digital Input + # Digital Out + (2 X # Analog Out)

(Each analog output tag has an associated quality tag that contains an OPC Item)

2.3.2 Multiple Workspaces Containing a Single Project

This is the most commonly used configuration. With single workspace/projectcombinations, there are currently no known limits (as of PCalcs 3.1) for the total numberof highway tags that will affect performance.

The one requirement when automatically starting multiple workspaces upon reboot isthat the subsequent workspaces must wait (Sleep) until the previous workspaces havestarted and are gathering samples. This is true even if each project has a different OPCServer on different machines. This requirement is VERY important when differentprojects are accessing the SAME OPC server. This interval between startups ofworkspaces must be determined empirically (by observation).

A batch (.com or .bat) file can be built to control this operation. A NEW executable,GPASleep.exe is included in the 3.1 PCalcs release to help facilitate the startup control.

Global Performance Advisor

05/02 (Rev 2) 10 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Procedure for Executing Multiple Workspaces1. Start up each project, by itself, in debug mode and determine how long it takes to

begin gathering samples. Add some extra time (30 seconds or so) to be sure thenext project won't start too soon.

2. Build a batch file that launches each workspace, and waits for the previousworkspace to start.

3. Add the batch file to the startup folder for reboot.

Here is a sample batch File which starts up 2 workspaces on the same machine:

REMREM Batch File for Starting GPA for Units 1 & 2, with a 60 second Delay in-betweenREMREM **************************************************************************REM Launch Unit #1REM **************************************************************************start c:\gpadcs\bin\gpadcs -r d:\pcalcs\UNIT1.fwspREMREM **************************************************************************REM Sleep 60 seconds, wait for Unit #1 to start gathering samplesREM **************************************************************************GPASleep 60REMREM **************************************************************************REM Launch Unit # 2REM **************************************************************************start d:\gpadcs\bin\gpadcs -r d:\pcalcs\UNIT2.fwsp

Please note that GPASleep has one parameter, which is the # of SECONDS to sleep.Not milliseconds!

Global Performance Advisor

05/02 (Rev 2) 11 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

2.4 Creating a Function Block Diagram (FBD)

Now you need to create one or more FBD documents that contain the control strategyfor each Project. Each Functional Block Diagram will represent a function consisting ofinputs, main projects, or output algorithms. Any number of optional equipment functionalblock diagrams can also be added. See Appendix F - Common Functional BlockDiagrams for examples of some of the different types. 1. Right-click the "Project name" in the Workspace window.2. Select New Document, the New dialog box appears.3. In the Document page (shown by default), under Type, select "Function Block

Diagram".4. In the Name text box, type the "FBD Name" to be used.

5. Leave other parameters at their default values and click OK.

GPA creates a Function Block Diagram folder, adds the new control document to it,and opens it in the document window. When the FBD document is open, thealgorithm window appears and GPA automatically shows the menu commands andtool bars needed for the FBD document.

Note

At the bottom of the algorithm window are tabs that call upsets of algorithms. Included is a special set of algorithmscalled "Calculation Blocks" developed by Westinghouse anddesignated by the prefix "W". The algorithms in these tabscontain specific functions for use with the SmartProcesssystem. There are many Calculation Blocks, and they areorganized into several types. Scroll through the list and look atthe different types. There is a complete list and descriptions ofthese Calculation Blocks (which will be referred to as"Algorithms") in Appendix B - Algorithms (Calculation Blocks).

Global Performance Advisor

05/02 (Rev 2) 12 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Global Performance Advisor

05/02 (Rev 2) 13 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

3 Designing a Functional Block Diagram Document

3.1 Adding Algorithms

Algorithms can be added to format a FBD document (sometimes referred to as a sheet)once an FBD is set up. Typically, each set of FBD documents contain:

� An Input document with :

� At least one Input Algorithm (Analog and/or Digital) from the W Input tab(Section 3.1.2).

� An Ordering Algorithm from the W Input tab (Section 3.1.3).

� A Main document with at least the Chkload Algorithm from the W Main tab(Section 3.1.4), along with any calculation algorithms needed for the project.

� Any amount of documents with "equipment" Algorithms from the available "W"tab groups (Section 3.1.4).

� An Output document with at least one Algorithm from the W Output tab (Section3.1.6).

Note

Several pieces of equipment can be placed on one FBDdocument. But it is suggested, for simplicity and for easytroubleshooting, that an FBD document be made for eachpiece of equipment.

3.1.1 Empty Project Algorithm

The "Emptyproject" algorithm is to be used ONLY in workspaces that contain MULTIPLEprojects. The purpose of this algorithm is to synchronize the startup of all projects,waiting for the "dummy" project (which initializes OPC Highway Item Handles) to startbefore allowing all other projects to start. Workspaces with SINGLE projects do notneed this algorithm, since they self-contain their own startup.

When a workspace with multiple projects is created, a "dummy" project needs to beadded which is made the "Active Project" and is configured to be the first project to start(see Section 2.2 Creating New Project(s)). This "dummy" project's only function is toinitialize OPC handles for ALL tags in ALL projects, thus allowing users to start/stop allthe other projects independently without losing their OPC handles. The "dummy" projectshould always be running.

Note

Even though the "dummy" project starts first, the other projectswant to start immediately afterwards in asynchronized fashion.This can cause problems on the first calculation (average)

Global Performance Advisor

05/02 (Rev 2) 14 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

pass. Since a "zero" value is read for all samples in the realprojects until all the OPC handles have been initialized. Thatresults in false average values in the first pass andsubsequently to false "bad first qualities encountered" in theproject, since the samples have the bogus "zero" values areaveraged in. This Emptyproject algorithm is designed toprevent this from happening.

Configuration:

The "Emptyproject" algorithm has no inputs or outputs to configure, but you must stillpress the "Create/Update Tags in Entire .. Project" to create some behind-the-scenesrequired system control tags.

The Procedure for Creating a "dummy" Project1. Add a "dummy" (empty) project. Make sure it is alpha-numerically named so that it

appears at the top of the project list within the workspace.2. Make sure the "dummy" project is the PRIMARY PROJECT. Do this by expanding

the "Equipment List" workspace tree item, left-clicking on the "Local Machine" treeitem to see the pop-up menu, and then selecting "Properties...".

3. Add an FBD to the "dummy" project.4. Drop two algorithms on the FBD: "Emptyproject" and an "Fbdorder". The "dummy"

project will require ordering.5. Double-Click on the "Emptyproject" Algorythm, press the "Create/Update Tags in

Entire ... Project" button, and create the four required base system operation tags.The configuration of the OPC Server for this project does not matter. You can usethe default name or just delete it.

Note

If you forget to create these system operation tags, a run-timeerror will be in the Event Log asking you to create them.

3.1.2 Input Algorithm(s)

See Input Functional Block Diagram in Appendix F- Common Functional Block Diagramsfor more information.

4. In the algorithms window, scroll over (using the scroll arrows next to the tabs at thebottom of the algorithm window) and choose an "Input" algorithm (Analog or Digital) fromthe W Input tab.

5. Move the mouse pointer into the "Input" document window area. Notice that the mousepointer appears with a rectangular outline.

6. Click once, near the left side of the window, to place the algorithm block.

Global Performance Advisor

05/02 (Rev 2) 15 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Note

Double-clicking an algorithm function in the algorithm windowallows the addition of that type of multiple algorithm blocks tothe Document. After placing algorithms this way (see Step 1 -3 above), click the "Selector" (Arrow) button in the drawbar toreturn to selection mode for normal operations.

After each algorithm is opened, add the appropriate tags and set any other specialproperties. Completing the algorithm configuration will help save problems during theinitial Run.

7. Double-click on the algorithm block to bring up the Algorithm Properties dialog.

Note

Bookmark this step and go to Section 5 Setting AlgorithmProperties to set all properties for this algorithm beforereturning to continuing with the next step. Don't forget toperform a "Save All".

8. Choose and place any other "Input" algorithm (Analog or Digital) from the W Inputalgorithm tab (using Steps 1-4) as needed. Continue this process until all desired "input"algorithms are placed.

3.1.3 Ordering Algorithm

See Input Functional Block Diagram Appendix F - Common Functional Block Diagramsfor more information.

1. In the algorithm window, scroll over (using the scroll arrows next to the tabs at thebottom of the algorithm window) and select the W Input algorithm tab, then choose theFbdorder algorithm.

2. Move the mouse pointer into the "Input" FBD document window area and click once toplace the algorithm in a convenient place on the document window.

Global Performance Advisor

05/02 (Rev 2) 16 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

3. Double-click on the block to bring up the Algorithm Properties dialog.

Note

Bookmark this step and go to Section 5 Setting AlgorithmProperties to set all properties for this algorithm beforereturning to continuing with the next step. Don't forget toperform a "Save All".

3.1.4 Main Algorithms

See Main Functional Block Diagram in Appendix F - Common Functional BlockDiagrams for more information.

1. In the algorithm window, scroll over (using the scroll arrows next to the tabs at thebottom of the algorithm window) and select the W Main algorithm tab, then choose theChkload algorithm.

2. Move the mouse pointer into the "Main" document window area and click once to placethe algorithm in a convenient place on the document window.

3. Double-click on the block to bring up the Algorithm Properties dialog.

Note

Bookmark this step and go to Section 5 Setting AlgorithmProperties to set all properties for this algorithm beforereturning to continuing with the next step. Don't forget toperform a "Save All".

4. Choose and place any of the "Calculation" algorithms from the various algorithm tabs(using Steps 1-3) as needed. Continue this process until all desired "Calculation"algorithms are placed.

3.1.5 "Equipment" Algorithms

See Output Functional Block Diagram in Appendix F - Common Functional BlockDiagrams for more information.

1. In the algorithms window, Scroll over (using the scroll arrows next to the tabs at thebottom of the algorithm window) and choose any of the "W" algorithm lists (except in theW Input and W Output tabs) and select the algorithm for the appropriate document.

2. Move the mouse pointer into the document window area and click once to place thealgorithm in a convenient place on the document window.

3. Double-click on the block to bring up the Algorithm Properties dialog.

Global Performance Advisor

05/02 (Rev 2) 17 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Note

Bookmark this step and go to Section 5 Setting AlgorithmProperties to set all properties for this algorithm beforereturning to continuing with the next step. Don't forget toperform a "Save All".

4. Choose and place any "Equipment" algorithm(s) from the various "W" algorithm Lists(using Steps 1-3) as needed and place them in the proper documents. Continue thisprocess until all desired "Equipment" algorithms are chosen and placed in theirappropriate document.

3.1.6 Output Algorithm(s)

See Output Functional Block Diagram in Appendix F - Common Functional BlockDiagrams for more information.

1. In the algorithm window, scroll over (using the scroll arrows next to the tabs at thebottom of the algorithm window) and choose any of the "Output" algorithms (Analog orDigital) in the W Output algorithm tab.

2. Move the mouse pointer into the document window area and click once to place thealgorithm in a convenient place on the document window.

3. Double-click on the block to bring up the Algorithm Properties dialog.

Note

Bookmark this step and go Section 5 Setting AlgorithmProperties to set all properties for this algorithm beforereturning to continuing with the next step. Don't forget toperform a "Save All".

4. Choose and place any other W Output algorithm (Analog or Digital, using Steps 1-3) asneeded. Continue this process until all desired "Output" algorithms are placed.

3.1.7 Copy/Cut/Pasting Algorithms

If a tag set is assigned to an algorithm that has not been configured, or only inputs areconfigured, the tag set is considered unassigned and free to be used anywhere else inthe project. Once an algorithm using this tag set creates an output, the tag set officiallygets assigned to that algorithm.

Note

A Configured Tag Set is a tag set that is in use (assigned to analgorithm) AND creates at least one output.

Global Performance Advisor

05/02 (Rev 2) 18 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Copy/Paste Within the Same Project

When copying an algorithm within the same project, some of the algorithm properties areretained and some are changed. The Tag Set Name and Project Name are retained.The FBD Name automatically gets changed to the name of the FBD where the algorithmis pasted (dropped).

When a copied algorithm is pasted, all configured outputs are unconfigured. This is dueto the GPADCS rule that outputs can only be created in one algorithm. All inputconfigurations remain as they were before the copy.

When Analoginavg and Digitalin algorithms are copied, their inputs are unconfigured,too. The GPADCS also has a rule that OPC items can only be assigned to a single,unique tag in the project.

Copy/Paste to a Different Project

When copying an algorithm to a different project, only the Tag Set Name gets retained.The Project Name and FBD name automatically are changed to the names in the newproject. All configured output tags are checked to see if some other algorithm in theproject creates them. If so, then the outputs are unconfigured, otherwise the outputconfiguration remains unchanged. Input configurations remain as they were before thecopy.

When copying an algorithm to a different project, the "configured tag set" may not bedefined within that new project. Use the "Get Tag Sets" option on the "Tags" tab folder tocopy the tag set definition from the previous projects cross-reference (.xref) file to thenew projects .xref file. This provides a quick and convenient method of re-usingpreviously defined tag sets and saves a lot of editing.

Cut/Paste Within the Same Project

The "cut" operation is the same as the "delete" operation on algorithms. This means thatall outputs that were created by that algorithm are DELETED from the project. When thepaste is performed, the output tags must be re-created.

When cutting/pasting an algorithm within the same project, some of the algorithmproperties are retained and some are changed. The Tag Set Name and Project Nameare retained. The FBD Name automatically is changed to the name of the FBD wherethe algorithm is pasted (dropped).

Note

Unlike copying an algorithm, a "cut" will not change theconfiguration of the algorithm since any outputs it created willbe deleted.

Global Performance Advisor

05/02 (Rev 2) 19 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Cut/Paste to a Different Project

When cutting/pasting an algorithm to a different project, only the Tag Set Name isretained. The Project Name and FBD name automatically are changed to the names inthe new project. All configured output tags are checked to see if some other algorithm inthe project creates them, if so, then the outputs get unconfigured, otherwise the outputconfiguration remains unchanged. Input configurations remain as they were before thecut.

When cutting/pasting an algorithm to a different project, the "configured tag set" may notbe defined within that new project. Use the "Get Tag Sets" option on the "Tags" tabfolder to copy the tag set definition from the previous projects cross-reference (.xref) fileto the new projects .xref file. This provides a quick and convenient method of re-usingpreviously defined tag sets and saves a lot of editing.

3.1.8 Inserting FBDs into Projects

Algorithms on FBDs being inserted into a project act the same as if they were"cut/pasted" into the project. The Tag Set Name is retained. The Project Name and FBDname are automatically changed to the names in the new project. All configured outputstags are checked to see if some other algorithm in the project creates them. If so, thenthe outputs become unconfigured, otherwise the output configuration remainsunchanged. Input configurations remain as they were before the insert.

When inserting FBDs into a project, the "configured tag set" for algorithms on the FBDmay not be defined within that new project. Use the "Get Tag Sets" option on the "Tags"tab folder to copy the tag set definition from the previous projects cross-reference (.xref)file to the new projects .xref file. This provides a quick and convenient method of re-using previously defined tag sets and saves a lot of editing.

Recommended Steps to Insert an FBD Into a Project:1. Create a new project with its new directory structure.2. Copy any FBDs (.ffbd files) you wish to insert into the new project's directory

structure.

Note

If you insert the FBDs from another project's directory insteadof copying them, the FBDs get updated for BOTH projectswhen changes are made. This also corrupts the FBD/ProjectNames of algorithms on the FBD for both projects.

The next step only applies for Workspaces with Multiple Projects. SingleWorkspace/Project configurations can ignore this step.3. Make sure the Project the FBDs are going to be inserted into is the "Active Project"

BEFORE inserting them. Failure to do this may lead to the project names assignedto algorithms on the FBD being set to the name of the project which IS currently theactive project.

Global Performance Advisor

05/02 (Rev 2) 20 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

3.1.9 Adding Tag Sets to a Project from External Cross-Reference(.xref) Files.

When algorithms are inserted from one project to another, frequently, the tag setsassigned to those algorithms are not defined in the new project's cross-reference (.xref)file.

The "Get Tag Sets..." (see "Tags Tab" in Chapter 4) feature (invoked by pressing abutton) on the "Tags" tab page on ANY algorithm, provides a quick method for copyingalready defined (template) tag sets from the cross-reference (.xref) file of an existingproject into a new project.

This feature will review the current project for "configured" tag sets and see if they existin the current project's cross-reference file. If they do not, they get added to the "MissingConfigured Tag Sets" list on the main dialog box. A list of all .xref files found in%FACTORYSOFTHOME% is also provided. Simply select a .xref file from that list andpress the "Load Matches" button. All tag set "matches" found in that .xref file are loadedinto a third list. A tag set "match" is found when a tag set's name is found in the external.xref file that exactly matches that of a missing tag set AND the base algorithm type isthe same. Press the "OK" or "Add Selected Sets" buttons to copy selected tag sets fromthe external .xref file into the current project's .xref file

3.1.10 Setting Algorithm Order, Document Order, and FBDProperties

1. After adding the required algorithms in a document, the algorithms must be ordered byselecting Objects, then Set Execution Order, then clicking on the algorithms to set thecorrect order. It is very important that the blocks on a document are ordered, since theblocks will execute in this order.

2. After creating all of the documents in a project, the order of the documents must be set.Go to the Input documents and double-click on the fbdorder algorithm block. Choosethe Design Info tab, and then set the order in which the documents should be run.

Global Performance Advisor

05/02 (Rev 2) 21 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Setting the FBD Properties

3. Each document (functional block diagram) also needs to have the document propertiesmodified. All FBDs except for the one containing analoginavg and digitalin need to havethe advanced properties change detection rate set to 10000. The FDB containing theanaloginavg and digitalin needs to have the advanced properties change detection rateset to 1000. Right-click on the FDB name and select Properties, then Advanced.Modify the change detection rate field to the correct value. This is EXTREMELYIMPORTANT since the execution time for the project may grow or exceed the scan time.

Functional Block Diagram Checklist� Modify change detection rate for every functional block diagram.� Order algorithms on every functional block diagram.� Make sure the functional block diagrams are ordered using the FBD Order

Algorithm Design tab.

Algorithm Checklist� Check the Tag Mapping list to make sure no tags are left uncreated.� Check the Tag group list to make sure no empty tag groups exist.

Global Performance Advisor

05/02 (Rev 2) 22 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

4 Run/Debug Mode

In order to start the run/debug mode, go to the project pull-down and select Start fromthe menu. After a short time the bar in the bottom right section will turn green and state"Debug".

The typical "debug" or "(Rum Mode)" dialog box (shown below) is available during GPA"debug" or "run" mode and appears when a user "double-clicks" on an algorithm andselects the "Debug" tag page.

Debug is not available until the project is initialized. A project is initialized when thefollowing text appears in the GPA Event Log: "System READY. Active (Primary) ProjectStarting"

During the Run/Debug mode, most algorithms typically show the information similar tothe screens below (the two exceptions are the Fdborder and Pntvalidate, which will bediscussed later in this section):

4.1 Fdborder

The Fbdorder Algorithm Design Screen now provides useful project-runtime information.This information is available in configuration mode for the LAST execution, AND isavailable in run/debug mode for the current execution. You must execute a project atleast one time after upgrading to 3.1 to see this information.

Note

To get the run-time information during the actual run-time, it isnecessary to press the "Select" button located on the buttonbar on the right side of the frame on the GPA Main Window(the very top button) and get into "config" mode. This button

Global Performance Advisor

05/02 (Rev 2) 23 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

toggles display information from run/debug mode to "config"mode for each and every project within a workspace.

This updated design screen provides:1. The last execution order of ALL algorithms in the project. The columns break down

into Algorithm Name, Overall Project Execution Order, Order within the FBD and thename of the FBD the algorithm resides on. This can be a useful tool for locating aparticular algorithm within all FBDs in an entire project.

2. The place where the first bad quality (from an output) was encountered during thelast/current project execution. The information includes the Tag Name, AlgorithmName, FBD Name and the Calculation Cycle. This is a useful tool for debugging,especially when the first bad quality is found on calculation cycle #1.

3. The last algorithm to execute. This information is helpful when a project hangs oraborts. This will point out the last algorithm to successfully execute, which indicatesthat the next algorithm in the order had the problem. You can then use theinformation included in Item #1 to see what was the problem algorithm.

This screen provides a search box to help you quickly locate an algorithm in theexecution order list.

4.2 Pntvalidate

The following two screen shots show the "debug" and "(Rum Mode)" dialog boxes for thePntvalidate algorithm.

Global Performance Advisor

05/02 (Rev 2) 24 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

5 Setting Algorithm Properties

The Algorithm Properties dialog box contains multiple tabs used to define eachalgorithm. The dialog box for Algorithm Properties will look similar to the one below,although only the Analoginavg algorithm contains the extra Analog Input Averagingsection. Some algorithm blocks contain an extra Design Info tab (described later).

Note

Make sure to save any changes made to the algorithmproperties (using the Save All function in the Files directory).

Tab/Function/Dialog Description

Configuration Tab The Configuration tab contains thealgorithm Name and Descriptionfill-ins. The Scan Period is listedas well as the Project name, FBDname, and Tag Set information.These fields are not configurable.Note that the Analoginavgalgorithm also contains an AnalogInput Averaging section.

Configuration Tab Name

Name the Algorithm. It is importantto give each algorithm a uniquename.

Configuration TabBase Algorithm Version

A Preset Value.

Configuration Tab Description

Default generic descriptions arenormally provided and thedescription can be adjusted to givethe algorithm a more individualmeaning.

Configuration Tab Scan Period

The time period that is used togather information. A default scanperiod of 10 seconds is used, onceevery 10 seconds the values areread and recorded. To change theScan Period see Appendix E -Scan Period Time Settings.

Global Performance Advisor

05/02 (Rev 2) 25 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Tab/Function/Dialog Description

Configuration Tab

Change Button (Analoginavg Algorithm only)The scan "time" or "period"(Typically 10 Sec.) in a project maynow be modified via theAnaloginavg Algorithm'sConfiguration Tab. The new scanperiod is applied to all algorithmsin the entire project.

Configuration Tab

Analog Input Averaging Section (Analoginavg Algorithm only)Configuration TabAverage Type

There are two choices:

Fixed: which updates once every"Average Period" (for example,once every 120 seconds).

Running: which updates everyscan period (for example, onceafter the first 120 seconds, thenagain after 130 seconds usingdata from period 20 to 130,etc.).

Configuration TabAverage Period

Time frame for averaging to takeplace.

Configuration Tab% of Samples with Good Quality...

If 80% (for example) or higher ofthe samples result in an averageQuality of "Good", the samples willbe marked as "Good".

Configuration Tab% of Samples with Bad Quality...

If 20% (for example) or more of thesamples result in an averageQuality of "Bad", the samples willbe marked as "Bad".

Note

If the % of samples falls inbetween those two ranges, theresult will be marked as uncertain.

Global Performance Advisor

05/02 (Rev 2) 26 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Tab/Function/Dialog Description

Configuration TabConfiguration Section

The program automatically fills inthis information.

Inputs Tab The Input tab shows how theinputs are configured (by using theTags tab), but cannot be changedfrom this screen.

Outputs Tab The Output tab shows how theoutputs are configured (by usingthe Tags tab), but cannot bechanged from this screen.

Global Performance Advisor

05/02 (Rev 2) 27 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Tab/Function/Dialog Description

Constants Tab The Constants tab allows theconstants to be modified. Theconstants and their values canalso be saved or loaded from a file.The Constants tab fields aredescribed below.

Constants TabStore to File

Used to store the configuration asa backup.

Constants TabLoad from File

Used to Load a backupconfiguration.

Constants TabSet Value

Allows changing of the defaultvalues.

Constants TabFile Name

Used to save a file in a specificlocation.

Tags Tab The Tags tab allows the points tobe created/configured/listed.

Global Performance Advisor

05/02 (Rev 2) 28 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Tab/Function/Dialog Description

Tags TabCreate/Configure Tags for "(Project Name)'...

In the Tag Creation/Configuration section, selectingCreate/Configure Tags for...brings up that dialog.

Note

Show/Delete Tag Set shows thecomplete list of tag sets and allowsdeletion if necessary.

Settings for OPC Server Alias"opcserver" section allows thesetting of the Server Name, andNode.

Tags TabCreate/Configure Tags for "(Project Name)'...Define/Modify Set...

For the Analoginavg, Analogout, Digitalin, and Digitalout algorithmsthe Output (or Input) section will be set up automatically by theprogram once the opposite section is set up. For all otheralgorithms see Auto-Configure.

OPC Item (up to16 chars.) and Initial Value (must contain a validstart value, up to 30 characters) are project specific information.Tags Tab

In the Create/Configure Tagsdialog, selecting Define/ModifySet... allows the setting of tags forthe algorithm block.

On the Define Tag Set ...screen, not all points have tobe configured. The pointsmarked with an "*" must beconfigured, the rest can beconfigured if needed. All un-configured points will beinitialized to zero.

Select a tag to be configured,then click on the Configure theInput box.

Engineering Units - Choosefrom a drop-down menu, seeAppendix A. Tag Names, Unitsand Values for a list.

Create Tag - A generic name willbe assigned once the units arechosen, modify the assignedname to give the tag a "unique"name.

Update List - Must be clickedonce all tag information is filledin.

Global Performance Advisor

05/02 (Rev 2) 29 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Tab/Function/Dialog Description

Create/Configure Tags for "(Project Name)'...Define/Modify Set... (Cont.)Once the algorithm has been set up, make sure to click all the OKbuttons on the way out of the setup. The first one saves the tag setto disk. The second one creates the tag in the project. And the thirdsaves the configuration (with-in the project) to disk.

Note:

An "*" in the "In Use" columnindicates that a particular inputor output MUST BE configured.

Auto - Configure -Not applicablefor the Analoginavg, Analogout,Digitalin, and Digitaloutalgorithms. All other algorithmswill try and fill in information fortags whose names matchexactly for inputs, or will createexact tag names for outputs.

Save - Saves tag set to disk.

Save as - Reduces work byallowing the tag setconfiguration to be saved underdifferent names for use withother algorithms that are thesame or similar.

OK - It is important to use thisbutton after the setup iscomplete on each algorithm.This OK button saves the tagset to disk.

Tags TabCreate/Update Tags in Entire "(Project Name)' Project...

Create/Update Tags in Entire... -Allows points to be updated for theentire project.

Make ALL tags Local (Testing)- Can be checked if needed.

Type - Can not be modified,displays unit type.

Update All Tag Set.... - Saveshaving to edit all tagdescriptions when an output tagdescription has been modified.

Server Name - Can not bemodified, displays name.

Node - Can not be modified,displays mode.

Global Performance Advisor

05/02 (Rev 2) 30 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Tab/Function/Dialog Description

Tags TabMappings - By OPC Items...

Mappings - By Tag

The selections in the Mappingsgroup allow the tags to bedisplayed along with where theyare used. This is a very useful toolin debugging the project as tagsthat are used but have not beencreated are identified at the top ofthe list by asterisks.

Tags Tab"Project wide" files Generated using Tag InfoCREATE "(Project Name)' Tag X-Ref File...

The "Project wide" filesGenerated using Tag Info sectionallows a project wide cross-reference file to be created andupdated. The last choice allows animport file to be created from thecross-reference files. Edit theimport file to place the correctNetwork ID, Unit ID, Drop ID,Collect Enabled, etc.

Tag Tab"Project wide" files Generatedusing Tag Info Create Point DB Import Files for"(Project Name)'...

Global Performance Advisor

05/02 (Rev 2) 31 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Tab/Function/Dialog Description

Tags Tab"Project wide" files Generated using Tag Info UPDATE"(Project Name)' Tag X-Ref File.

Tag TabGet Tag Sets...

Allows the building of a newproject cross-reference file using aprevious Projects' cross-referencefile.

Source Tab This screen used for referenceonly.

Global Performance Advisor

05/02 (Rev 2) 32 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Tab/Function/Dialog Description

Destination Tab This screen used for referenceonly.

Connect Map Tab This screen used for referenceonly.

Shape Tab This screen is used changing theshape and color of the algorithmboxes.

Global Performance Advisor

05/02 (Rev 2) 33 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Tab/Function/Dialog DescriptionDesign Info Tab Several algorithms need extra

individual setup information tohelp set up the proper format, sothey have a separate tab in thealgorithms Properties box. TheDesign Info tab allows the userto fill in data needed for a specificalgorithm. Most algorithms do notcontain design information.

Design Info Tab Air Heater Performance (Airhtr)

W Airhtr type

Design Info Tab Boiler Feed Pump Turbine (Bfpturb)

W Pump type

Global Performance Advisor

05/02 (Rev 2) 34 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Tab/Function/Dialog Description

Design Info Tab Boiler Efficiency (Boiler)

W Boiler type

Design Info Tab Boiler Steam Flow (Hwblrsm)

W Main type

Design Info Tab Combustion Turbine (Combturb)

W Cturb type

Global Performance Advisor

05/02 (Rev 2) 35 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Tab/Function/Dialog Description

Design Info Tab Condenser (Cnddesign)

W Condsr type

Design Info Tab Controllable Heat Rate Dev. (Unhrcontot)

W Unithr type

Design Info Tab Cooling Tower (Cooltwrdes)

W Cooltwr type

Global Performance Advisor

05/02 (Rev 2) 36 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Tab/Function/Dialog Description

Design Info Tab Deaerator (Deaerator)

W Fedhtr type

Design Info Tab Drain Cooler (Drnpump)

W Fedhtr type

Design Info Tab Fan Design (Fandesign)

W Fan type

Global Performance Advisor

05/02 (Rev 2) 37 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Tab/Function/Dialog Description

Design Info Tab Functional Black Diagram Ordering (Fbdorder)

W Input type

Note

The Design Info for the Fbdorderalgorithm on the Input documentneeds to be set after alldocuments have been built.

This screen also provides usefulproject-runtime information in theconfiguration mode for the LASTexecution and in run-time modefor the current execution.

Design Info Tab Feed Heater, Low Pressure (Lpfedhtr)

W Fedhtr type

Design Info Tab Feed Heater, High Pressure (Hpfedhtr)

W Fedhtr type

Global Performance Advisor

05/02 (Rev 2) 38 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Tab/Function/Dialog Description

Design Info Tab Fuel Analysis (Fuels)

W Fuels type

Design Info Tab Function Generator (Funcgen)

W Curves type

Design Info Tab Generator Efficiency (Gennet)

W Sturb type

Global Performance Advisor

05/02 (Rev 2) 39 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Tab/Function/Dialog Description

Design Info Tab Heat Rate (Hetrte)

W Heat Rate type

Design Info Tab HRSG (hsrg)

W Hsrg type

Design Info Tab Main Stream Flow (Hwmnstm)

W Main type

Global Performance Advisor

05/02 (Rev 2) 40 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Tab/Function/Dialog Description

Design Info Tab Maint. Heat Rate Dev. (Unhrmaintot)

W Unithr type

Design Info Tab Misc. Heat Rate Dev. (Unhrmisctot)

W Unithr type

Design Info Tab Moist Air (Moistair)

W Misc type

Global Performance Advisor

05/02 (Rev 2) 41 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Tab/Function/Dialog Description

Design Info Tab Plant Load (Chkload)

W Main type

Design Info Tab Point Validation (Pntualidate)

W Input type

Design Info Tab Pump (Pump)

W Pump type

Global Performance Advisor

05/02 (Rev 2) 42 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Tab/Function/Dialog Description

Design Info Tab Unit Heat Rate (Unhtrt)

W Unithr type

Note

The Design Info for the Fbdorder algorithm on the Inputdocument needs to be set after all documents have been built.

The Fbdorder algorithm screen also provides useful project-runtime information in theconfiguration mode for the LAST execution, and in run-time mode for the currentexecution. A project must be executed at least once after upgrading to Revision 3.1 (orlater) in order to see this information.

After setting the properties of each algorithm, go back to Section 3.1 Adding Algorithms,and add the next algorithm.

Global Performance Advisor

05/02 (Rev 2) 43 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

A Tag Names, Units and ValuesThe GPA tag name beginning letter corresponds to the tag’s units. The following tablesummarizes the beginning letters along with the units given to each of these categories.The first unit listed indicates the default units associated with a point. If the units for apoint are different than the default, these units can be selected from the pull down unitlist.

The program will not allow the same tag to be used as an input and output in the samealgorithm.

Starting Unit Type English Units SI UnitsLetter (Default listed first)

a Area FT2 M2IN2 CM2

c Specific Heat BTU/LB DEG F KCAL/KG DEG KKJ/KG DEG K

C Clean Factor NONE NONED Density LB/FT3 KG/M3

KG/LDc Cost_Fuel $/MBTU MONEY/MJ

MONEY/MCALD Cost Heat Rate $/HR MONEY/HRe Efficiency PERCENT PERCENTF Fraction NONE NONEh Enthalpy BTU/LB KCAL/KG

KJ/KGH Pump Head FT M

IN CMi Current AMPS AMPSI Volts VOLTS VOLTSK Real Value Any Units Any UnitsL Log Mean Temp Diff DEG F DEG CM Molar Mass LB/MOL KG/MOLn Speed RPM RPMp Pressure PSIG KPAG

INHGV MMHGVINWG MMWG

KG/CM2pa Pressure Absolute PSIA KPAA

INHGA MMHGAINWC MMWC

BARSATM

Global Performance Advisor

05/02 (Rev 2) 44 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Starting Unit Type English Units SI UnitsLetter (Default listed first)

Pv Power – Mvars Mvars MvarsPV Power – MVA MVA MVAP Power MW MW

KW KWW WHP HP

q Rate_Heat_Transf MBTU/HR KCAL/SECKJ/SEC

r Heat Rate BTU/KWHR KCAL/KWHRKJ/KWHR

R Percent PERCENT PERCENTs Entropy BTU/LB DEG R KCAL/DEG K

KJ/DEG KS Specific Gravity NONE NONEt Temperature DEG F DEG Cta Absolute Temperature DEG R DEG KU Heat Transfer Coefficient BTU/HR FT2 DEG F KG/M2 SEC DEG Cv Volume FT3/LB M3/KG

L/KGV Velocity FT/SEC M/SECw Mass flow KLB/HR KG/SEC

KG/HRLB/HR TON/HR

wg Gas flow SCFM SM3/SECwv Water flow GPM M3/SECW Weight LB/LB KG/KGz Digital NONE NONE

Every tag’s value is converted upon input to a module. A tag’s value is converted withina unit type to the default units. For example, all points starting with a "w" will beconverted to KLB/HR before the code is executed. All output values are also convertedfrom the default units to the specified units. For example, if power is to be output in HP,the power value inside the code will be in MW and converted to be output in HP.

No explicit conversions need to be performed within a tag group. For example, if a p typepoint or pressure point is input in INHGV, no conversion needs to be done to this point.The value in INHGV will automatically be converted to PSIG. Conversions between unittypes still need to be performed. For example, to go from a "wv" flow to a "w" flow, aconversion needs to take place to go from GPM to KLB/HR. This particular conversion isperformed in the algorithm MASSFLOWLIQUID.

Global Performance Advisor

05/02 (Rev 2) 45 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

B Algorithms (Calculation Blocks)The following table lists the algorithms in order of their type. The pages following thistable contain complete information on each algorithm in alphabetical order. Please notethat the Steamtable Algorithms can be found in Appendix D.

Type Name DescriptionAirhtrs(Air Heater)

Airhtrs This module calculates air heater performance for up to 6 air htrsas well as calculating the modified outlet temperature. If the airheaters are tri-sector, the total air inlet and outlet flows arecalculated. The air heater leakage(s) are calculated if measure-ments are available. Otherwise, the leakage(s) are entered from apoint as an approximation or estimate from the design screen.

Algs Emptyproject This module does nothing but it is required for synchronization ofmultiple projects per workspace

Blrio This module calculates the boiler input/output efficiency andefficiency deviation from design.

Boiler The boiler calculates the efficiency by the heat loss method.

Blr (Boiler)

Corblrloss This module calculates the corrected boiler efficiency and thedesign efficiency and deviation.

Cndavgtemp This module calculates the condenser average inlet and outlet tempas well as the average circulating water temperature.

Cnddesign This module reads in the condenser design data and assigns thevalues to outputs as well as calculating the inner diameter for thedifferent bundle types.

Condsr(Condenser)

Condsr Module determines the method for out-of-service compartments.After checking for out-of-service compartments, the specific heat,specific volume and specific gravity of circulating water are calcula-ted. Next, the condenser duty, the condenser circulating water flow,the actual and design heat transfer, the cleanliness factor, expectedback pressure with clean tubes and the back-pressure deviation arecalculated. The calculations are done in accordance with ASMEPower Test Code PTC 12.2 (1983) and Heat Exchange InstituteStandards for Steam Surface Condensers, Ninth edition.

Capab Module calculates capability of mechanical draft cooling towers.

Cooltwr This module computes estimated cooling tower outlet temperature.

Cooltwrdes This module reads the design screen information.

Cooltwrpwr Module calculates individual cell power, design water flow, the ratioof design water flow to actual flow, total fan power, and ratio ofdesign power to actual power.

Cooltwr(CoolingTowers)

Combturb The combustion turbine module calculates corrected power andheat rate as well as thermal efficiency, corrected thermal efficiencyand heat consumption.

Global Performance Advisor

05/02 (Rev 2) 46 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Type Name DescriptionCooltwr(Cont)

Combturb The combustion turbine module calculates corrected power andheat rate as well as thermal efficiency, corrected thermal efficiencyand heat consumption.

Anlgcmp2poly This module calculates the y-value of a polynomial based on an xinput and can be split into two polynomials by an analog value.

Anlgcmppoly This module calculates the y-value of a polynomial based on the xinput between two values.

Diganlgcmp2poly This module calculates one of two y-value polynomials based on ax input value, digital input and is split by a specified analog value.

Diganlgcmppoly This module calculates the y-value of a polynomial based on the xinput in a specified range and a digital flag.

Digcmp2poly This module calculates one of two y-value polynomials based on anx input and a digital flag.

Digcmppoly This module calculates the y-value of a polynomial based on an xinput and digital flag.

Funcgen Module calculates independent value based on one variable or theindependent value based on two dependent variables. Independentvalue is calculated using linear interpolation. Multiplying by a gainand/or adding a bias can modify the result. Note, gain and bias canbe points, constants or both points and constants.

Curves

Poly This module calculates a fifth order polynomial.

Densityair This routine calculates the density of air at the fan dischargeconditions as well as the density correction factor.

Densitycor This module computes a density corrected to current temperatureand pressure conditions as well as a density correction factor.

Densitygas This module calculates the density of gas at the fan discharge aswell as a density correction factor.

Fan This module computes the efficiencies of the fan, its designefficiency and the deviation from actual.

Fandesign This module reads the fan design information and outputs thedesign information.

Fan

O2calc This module estimates the o2 in the flue gas from the estimated airheater leakage.

Deaerator This is a direct contact type heat exchanger. The steps calculatethe condensate inlet flow, outlet flow, inlet enthalpy and outletenthalpy. Extraction steam flow and enthalpy are also calculated.

Drnclr Module calculates drain cooler approach and deviation.

Fedhtr

Drnpmp Module calculates heat and materials balance around a shell andtube type heat exchanger with drain pumped forward. Extraction,drain, inlet and outlet flows are calculated for the feedheater. Theturbine extraction flow and enthalpy are also calculated.

Global Performance Advisor

05/02 (Rev 2) 47 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Type Name DescriptionHpfedhtr This module calculates a heat and materials balance around a shell

and tube type heat exchanger. The extraction and drain flows arecalculated. The turbine extraction flow and enthalpy are alsocalculated.

Lpfedhtr This module calculates a heat and materials balance around a low-pressure shell and tube type heat exchanger. The extraction anddrain flows are calculated for the feedheater. The turbine extractionflow and enthalpy are also calculated.

Fedhtr(Cont.)

Ttd This module calculates the terminal temperature difference anddeviation.

Fuels Fuels Module combines all the fuels used into one fuel analysis.

Hetrte This module calculates gross, net and corrected turbine cycle heatrates.

Hrmspasme This module calculates the fractional heat rate correction factor forthrottle steam pressure being off design as specified by the ASMEPTC 6.1, 1984 curve Throttle Pressure Correction Factors forSingle Reheat Units.

Hrmstasme This module calculates the fractional heat rate correction factor forthrottle steam temperature being off design as specified by theASME PTC 6.1, 1984 curve Throttle Temperature CorrectionFactors for Single Reheat - Sub-critical Pressure Parts.

Hrrpdasme Module calculates fractional heat rate correction factor for reheatpressure drop being off design as specified by the ASME PTC 6.1,1984 curve Reheater Pressure Drop Correction Factors for SingleReheat Units.

Heatrate

Hrrstasme This module calculates the fractional heat rate correction factor forreheat steam temperature being off design as specified by theASME PTC 6.1, 1984 curve Reheat Temperature CorrectionFactors for Single Reheat Units.

Bldwn This module calculates the blowdown flow and the blowdownenthalpy.

Hpipsec This module calculates the outlet flow for the HP or IP sections ofthe HRSG as well as the steam, economizer inlet and drumenthalpies.

Hrsg The HRSG module calculates input-output and thermal efficienciesalong with their deviations from design.

Lpsec This section calculates the LP section of the HRSG outlet flow,steam enthalpy, preheater enthalpy, saturated liquid drum enthalpyand saturated steam drum enthalpy.

Hrsg

Reheat This module calculates the cold reheat flow and enthalpy beforeand after the cold reheat flow is mixed with the ip outlet flow. Thehot reheat flow and enthalpy are also calculated.

Global Performance Advisor

05/02 (Rev 2) 48 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Type Name DescriptionAnaloginavg This module inputs analog OPC point values and outputs averaged

local values.

Digitalin Module reads digital OPC inputs and outputs local digital values.

Fbdorder This module orders the functional block diagrams as well asdisplaying all the algorithms and execution time.

Input

Pntvalidate This algorithm validates a point by checking a primary point forselected quality and limits. If this point is not valid, possiblesubstitutions are alternate point 1, alternate point 2 or a constantvalue if neither the alternate points are configured or valid.

Chkload This module checks the load and if the load is above the criticalload level, the run flag for the GPA modules is set.

Hwblrstm This module calculates boiler steam enthalpy and flow.

Hwmnstm This module calculates main steam enthalpy and flow.

P1stg Module calculates a correction factor, absolute first stage pressure,rated absolute pressure and corrected first stage pressure.

Patmos This module calculates atmospheric pressure.

Main

Wmncor This module calculates the main steam flow deviation betweenreference main steam flow and corrected main steam flow.

Absval This module outputs the absolute value of a given input.

Add10 This module adds 10 numbers together.

Add4 This module adds 4 numbers together.

Addsub This module adds 4 numbers together and subtracts 4 numbers.

And6 This module ands together 6 inputs.

Arctan Arc tangent algorithm.

Avg10 This module averages 10 numbers.

Avg4 This module averages 4 numbers.

Cosin Cosine algorithm.

Divide4 Module divides a variable by the product of 4 numbers.

Expon This module calculates the exponential value of the input. Theresult can be gained and biased by both constants and points.

Gpalog This module calculates the log of a number.

Hiselect6 This module selects the highest value of 6 inputs. Multiplying by again and adding a bias can modify the result. Note that the gain andbias values can be points, constants or both points and constants.

Invdig This module inverts a digital flag.

Math

Loselect6 This module selects the lowest value of 6 inputs. Multiplying by again and adding a bias can modify the result. Note that the gain andbias values can be points, constants or both points and constants.

Global Performance Advisor

05/02 (Rev 2) 49 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Type Name DescriptionMult_add This module will add eight pairs of numbers multiplied together. The

eight pairs of numbers result is then divided by the sum of the oddinput values. The eight pairs added together result can then bebiased or gained by constants, points or both.

Multdiv This module multiplies four numbers and divides by four numbers.

Multiply4 This module multiplies 4 numbers together.

Nlog This module calculates the natural log of input.

Or6 This module ors together 6 digital inputs.

Qavg10 This module calculates the average of 10 values. Only the pointswith good quality will count in the average.

Qavg4 This module calculates the average of 4 values. Only the goodquality points will be counted in the averaged value.

Sin Sine algorithm.

Squareroot This module calculates the square root of a given input.

Sub10 This module subtracts the sum of 10 values from the input value.

Math (cont.)

Sub4 This module subtracts the sum of 4 numbers from a variable.

Avalgen This module takes the value of a number, multiplies by the gain andadds the bias.

Dvalgen This module calculates a digital output based on a digital flaganded with a digital constant.

Flowcalccomp This module calculates on-line compensated flow.

Massflowliquid This module calculates mass flow from volumetric flow.

Mixer Module calculates enthalpy, flow and heat for 10 combined flows.

Moistair The moist air function calculates the ambient humidity given two ofthe following (tambnt, twetblb, wv, relhum). Moist air calculates theother two input values not input to the routine.

Setdig This algorithm sets a digital to 1 if an analog value is greater than alimit. Otherwise, the digital is set to zero.

Specheatair This module calculates the specific heat of air at a given airtemperature. The coefficients used are obtained from regressingthe curve in Figure 3 of ASME PTC-4.1.

Specheatgas This module calculates the specific heat of flue gas at a giventemperature. The coefficients are obtained from regressing thecurve in Figure 7 of AMSE PTC-4.1.

Volflowgas This module converts a mass gas flow to a volumetric flow.

Misc

Volflowliquid Module converts a liquid mass flow to a volumetric flow.

Analogout Module outputs analog OPC points from local input values.Output

Digitalout Module outputs digital OPC pts. from local digital values.

Global Performance Advisor

05/02 (Rev 2) 50 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Type Name DescriptionBfpturb Calculates boiler feedpump turbine performance.Pump

Pump This module computes the actual efficiency, design efficiency andefficiency deviation for a pump.

Steamtable See the D Steamtable Appendix Section

Gencorr Function computes corrected steam turbine generator output baseson correction curves provided by turbine manufacturer.

Gennet This module calculates the generator mva, the generator powerfactor, the auxiliary power, the ratio of auxiliary power to grosspower, the total shaft power and generator efficiency.

Ipturbdeseff This function calculates design (or expected) intermediate pressureturbine efficiency using the method outlined in chapter 4, sectioniii.a.1, in K.C. Cotton's Evaluating and Improving Steam TurbinePerformance. The function calculates the expected efficiency fromthe inlet bowl conditions to the turbine exhaust. The calculatedexpected efficiency is then corrected to compute the expectedefficiency from the turbine inlet conditions to the measuredcrossover conditions.

Lptrb This module calculates the lp turbine outlet flow, the lp turbineoutlet enthalpy by conducting a thermal and energy balance aroundthe whole turbine, the lp isentropic enthalpy and the lp turbineefficiency.

Overall_trb This module calculates overall turbine efficiency from the hp stageto the lp stage using the enthalpy drop method.

Reheat_trb This routine calculates the reheat turbine efficiency, designefficiency and deviation. The design efficiency is obtained bycalculating the expected used energy end point.

Turbgen Function computes heat generated and percent load produced byeach turbine section.

Sturb

Turbin This module calculates the turbine inlet enthalpy, the turbine outletflow, the turbine outlet enthalpy, the isentropic enthalpy and theturbine efficiency.

Unhraitdev This module calculates the unit heat rate deviation for air heater airinlet temperature deviation & cost of deviation.

Unhrasmecsc This module calculates the ASME heat rate correction for fivedegrees Fahrenheit of subcooling at the percent of valves wideopen throttle flow.

Unhrasmeffw This module calculates the ASME heat rate correction for fivedegrees Fahrenheit final feedwater temperature deviation at thepercent of valves wide-open throttle flow.

Unithr

Unhrasmeipdev1 This module calculates the ASME IP turbine loss factor number 1as a function of ip exhaust pressure.

Global Performance Advisor

05/02 (Rev 2) 51 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Type Name DescriptionUnithr(cont.)

Unhrasmeipdev2 This module calculates the ASME IP turbine loss factor number 2as a function of ip exhaust pressure.

Unhrasmeipdev2 This module calculates the ASME IP turbine loss factor number 2as a function of ip exhaust pressure.

Unhrasmemkp This module calculates the ASME heat rate correction for one-percent makeup flow at the percent of valves wide open throttleflow.

Unhrasmersf This module calculates the ASME heat rate correction for one-percent reheat spray flow at the percent of valves wide-openthrottle flow.

Unhrasmessf This module calculates the ASME heat rate correction for one-percent superheat spray flow at the percent of valves wide openthrottle flow.

Unhrauxdev This module calculates the unit heat rate deviation for auxiliarypower deviation and the cost of the deviation.

Unhrauxstm This module calculates the unit heat rate deviation for auxiliarysteam and the cost of the deviation.

Unhrbfpt This module calculates the unit heat rate deviation for the totalboiler feed pump turbine auxiliary steam heat rate and the cost ofthe deviations.

Unhrcbp This module calculates unit heat rate deviation for main steamtemperature and the cost of the deviation in $/hr.

Unhrcontot Compute the total unit heat rate deviations and cost of the deviationin $/hr for the controllable parameters.

Unhrcsc This module calculates unit heat rate deviation for condensersubcooling and cost of the deviation in $/hr.

Unhregt This module calculates the heat rate deviation and the cost ofdeviation for exit gas temperature.

Unhrffw This module calculates the heat rate deviation and the cost ofdeviation in $/hr for final feed-water temperature.

Unhrhpdev This module calculates the unit heat rate deviation for hp turbineefficiency deviation and the cost of the deviation.

Unhripdev This module calculates the unit heat rate deviation for ip turbineefficiency deviation and the cost of the deviation.

Unhrmaintot This module totals the unit heat rate deviations for maintenanceparameters and cost of the deviations in $/hr.

Unhrmisctot This module totals the unit heat rate deviations for themiscellaneous parameters and the cost of the deviations.

Unhrmkp This module calculates the heat rate deviation and the cost ofdeviation in $/hr for makeup water flow.

Unhrmst Compute the unit heat rate deviation and cost of the deviation in$/hr for main steam temperature.

Global Performance Advisor

05/02 (Rev 2) 52 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Type Name DescriptionUnithr(cont.)

Unhrmsp Compute the unit heat rate deviation and cost of the deviation in$/hr for main steam pressure.

Unhro2calc This module calculates the heat rate deviation and the cost ofdeviation for exit oxygen deviation.

Unhrpcthr This module calculates the percentage of actual main steam flow tovalves wide open throttle flow.

Unhrrpd This module calculates the unit heat rate deviation for reheatpressure drop and the cost of the deviation.

Unhrrsf This module calculates the heat rate deviation and the cost ofdeviation in $/hr for reheat spray flow.

Unhrrst This module calculates the unit heat rate deviation for reheat steamtemperature and cost of deviation in $/hr.

Unhrssf This module calculates the heat rate deviation and the cost ofdeviation in $/hr for superheat spray flow.

Unhrscah This module calculates the unit heat rate deviation for the stm coilair htr and the cost of the deviation.

Unhrtot Compute the total unit heat rate deviation in Btu/kWh and cost ofthe deviation in $/hr for all parameters.

Unhtrt This module calculates the net unit heat rate of the plant as well asthe gross net unit heat rate. The design gross and net unit heatrates are also calculated. Finally, the deviations for the gross andnet unit heat rates are calculated.

Global Performance Advisor

05/02 (Rev 2) 53 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

C Algorithm Properties(Also see Steamtable Algorithms)

Absval

This moduleoutputs theabsolutevalue of agiven input.

UnitsConverted.

NO

Analog Inputs Description Usagekvalue input to abs val module REQUIRED Input value for

absolute value function Kptgain abs val gain value [Optional]kptbias abs val bias value [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputskabsval_res abs val result value REQUIRED Absolute value result.

Digital Outputs< NONE >

Constantskcgain = 1 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 54 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Add10

This moduleadds 10numberstogether.

UnitsConverted.

NO

Analog Inputs Description Usagekvalue1 add10 value 1 REQUIRED First of 10 values to

be added. kvalue2 add10 value 2 REQUIRED Second value of 10 to

be added. Defaults to 0 if notconfigured.

kvalue3 add10 value 3 [Optional] Third value of 10 to beadded. Defaults to 0 if notconfigured.

kvalue4 add10 value 4 [Optional] Fourth value of 10 to beadded. Defaults to 0 if notconfigured.

kvalue5 add10 value 5 [Optional] Fifth value of 10 to beadded. Defaults to 0 if notconfigured.

kvalue6 add10 value 6 [Optional] Sixth value of 10 to beadded. Defaults to 0 if notconfigured.

kvalue7 add10 value 7 [Optional] Seventh value of 10 tobe added. Defaults to 0 if notconfigured.

kvalue8 add10 value 8 [Optional]Eighth value of 10 to beadded. Defaults to 0 if notconfigured.

kvalue9 add10 value 9 [Optional] Ninth value of 10 to beadded. Defaults to 0 if notconfigured.

kvalue10 add10 value 10 [Optional] Tenth value of 10 to beadded. Defaults to 0 if notconfigured.

kptgain add10 gain value [Optional]kptbias add10 bias value [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputskadd10_res add10 result value REQUIRED Result of the addition

of 10 numbers.

Digital Outputs< NONE >

Constantskcgain = 1 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 55 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Add4

Thismoduleadds 4numberstogether.

UnitsConverted.

NO

Analog Inputs Description Usagekvalue1 add4 value 1 REQUIRED Value one of four to

be added.kvalue2 add4 value 2 REQUIRED Second value of 4 to

be added. Defaults to 0 if notconfigured.

kvalue3 add4 value 3 [Optional] Third value of 4 to beadded. Defaults to 0 if notconfigured.

kvalue4 add4 value 4 [Optional] Fourth value of 4 to beadded. Defaults to 0 if notconfigured.

kptgain add4 gain value [Optional]kptbias add4 bias value [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputskadd4_res add4 result value REQUIRED Result of the four

inputs added together.

Digital Outputs< NONE >

Constantskcgain = 1 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 56 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Addsub

This moduleadds 4numberstogether andsubtracts 4numbers.

UnitsConverted.

NO

Analog Inputs Description Usagekaddval1 addsub add value 1 REQUIREDkaddval2 addsub add value 2 REQUIRED Second value to be

added.kaddval3 addsub add value 3 [Optional]kaddval4 addsub add value 4 [Optional] ksubval1 addsub sub value 1 [Optional]ksubval2 addsub sub value 2 [Optional]ksubval3 addsub sub value 3 [Optional]ksubval4 addsub sub value 4 [Optional]kptgain addsub gain value [Optional]kptbias addsub bias value [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputskaddsub_res addsub result value REQUIRED

Digital Outputs< NONE >

Constantskcgain = 1 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 57 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Airhtrs

This module calculates air heater performance for up to 6air htrs as well as calculating the modified outlettemperature. If the air heaters are tri-sector, the total airinlet and outlet flows are calculated. The air heaterleakage(s) are calculated if measurements are available.Otherwise, the leakage(s) are entered from a point as anapproximation or as anEstimate from the design screen.

UnitsConverted.

YES

Analog Inputs Description Usagewahair1 ahtr 1 air flow **REQUIREDwahair2 ahtr 2 air flow [Optional]wahair3 ahtr 3 air flow [Optional]wahair4 ahtr 4 air flow [Optional]wahair5 ahtr 5 air flow [Optional]wahair6 ahtr 6 air flow [Optional]thtrgasin1 ahtr 1 gas in temp **REQUIREDthtrgasin2 ahtr 2 gas in temp [Optional]thtrgasin3 ahtr 3 gas in temp [Optional]thtrgasin4 ahtr 4 gas in temp [Optional]Thtrgasin5 ahtr 5 gas in temp [Optional]thtrgasin6 ahtr 6 gas in temp [Optional]thtrgasout1 ahtr 1 gas out temp **REQUIREDthtrgasout2 ahtr 2 gas out temp [Optional]thtrgasout3 ahtr 3 gas out temp [Optional]thtrgasout4 ahtr 4 gas out temp [Optional]thtrgasout5 ahtr 5 gas out temp [Optional]thtrgasout6 ahtr 6 gas out temp [Optional]thtrairin1 ahtr 1 air in temp **REQUIREDthtrairin2 ahtr 2 air in temp [Optional]thtrairin3 ahtr 3 air in temp [Optional]thtrairin4 ahtr 4 air in temp [Optional]thtrairin5 ahtr 5 air in temp [Optional]thtrairin6 ahtr 6 air in temp [Optional]thtrairout1 ahtr 1 air out temp **REQUIREDthtrairout2 ahtr 2 air out temp [Optional]thtrairout3 ahtr 3 air out temp [Optional]thtrairout4 ahtr 4 air out temp [Optional]thtrairout5 ahtr 5 air out temp [Optional]thtrairout6 ahtr 6 air out temp [Optional]wprimair1 prim ahtr 1 air flow [Optional] Used only for trisector air heaters.tprimairin1 prim ahtr 1 air in temp [Optional] Used only for trisector air heaters.tprimairout1 prim ahtr 1 air out temp [Optional] Used only for trisector air heaters.wsecair1 sec ahtr 1 air flow [Optional] Used only for trisector air heaters.tsecairin1 sec ahtr 1 air in temp [Optional] Used only for trisector air heaters.tsecairout1 sec ahtr 1 air out temp [Optional] Used only for trisector air heaters.wprimair2 prim ahtr 2 air flow [Optional] Used only for trisector air heaters.tprimairin2 prim ahtr 2 air in temp [Optional] Used only for trisector air heaters.tprimairout2 prim ahtr 2 air out temp [Optional] Used only for trisector air heaters.wsecair2 sec ahtr 2 air flow [Optional] Used only for trisector air heaters.tsecairin2 sec ahtr 2 air in temp [Optional] Used only for trisector air heaters.tsecairout2 sec ahtr 2 air out temp [Optional] Used only for trisector air heaters.wprimair3 prim ahtr 3 air flow [Optional] Used only for trisector air heaters.tprimairin3 prim ahtr 3 air in temp [Optional] Used only for trisector air heaters.tprimairout3 prim ahtr 3 air out temp [Optional] Used only for trisector air heaters.

Global Performance Advisor

05/02 (Rev 2) 58 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Airhtrs (Cont.)Analog Inputs (Cont.) Description Usagewsecair3 sec ahtr 3 air flow [Optional] Used only for trisector air heaters.tsecairin3 sec ahtr 3 air in temp [Optional] Used only for trisector air heaters.tsecairout3 sec ahtr 3 air out temp [Optional] Used only for trisector air heaters.wprimair4 prim ahtr 4 air flow [Optional] Used only for trisector air heaters.tprimairin4 prim ahtr 4 air in temp [Optional] Used only for trisector air heaters.tprimairout4 prim ahtr 4 air out temp [Optional] Used only for trisector air heaters.wsecair4 sec ahtr 4 air flow [Optional] Used only for trisector air heaters.tsecairin4 sec ahtr 4 air in temp [Optional] Used only for trisector air heaters.tsecairout4 sec ahtr 4 air out temp [Optional] Used only for trisector air heaters.wprimair5 prim ahtr 5 air flow [Optional] Used only for trisector air heaters.tprimairin5 prim ahtr 5 air in temp [Optional] Used only for trisector air heaters.tprimairout5 prim ahtr 5 air out temp [Optional] Used only for trisector air heaters.wsecair5 sec ahtr 5 air flow [Optional] Used only for trisector air heaters.tsecairin5 ahtr 5 air in temp [Optional] Used only for trisector air heaters.tsecairout5 sec ahtr 5 air out temp [Optional] Used only for trisector air heaters.wprimair6 prim ahtr 6 air flow [Optional] Used only for trisector air heaters.tprimairin6 prim ahtr 6 air in temp [Optional] Used only for trisector air heaters.tprimairout6 prim ahtr 6 air out temp [Optional] Used only for trisector air heaters.wsecair6 sec ahtr 6 air flow [Optional] Used only for trisector air heaters.tsecairin6 sec ahtr 6 air in temp [Optional] Used only for trisector air heaters.tsecairout6 sec ahtr 6 air out temp [Optional] Used only for trisector air heaters.Rash total ash in fuel **REQUIRED Output from fuels.Rcarash tot carbon in ash leaving blr **REQUIREDRelhmd relative humidity [Optional] Two of the four inputs: relhmd tdrybulb twetbulb

tdewpnt must be configured.tdrybulb ambient air temp [Optional] Two of the four inputs: relhmd tdrybulb twetbulb

tdewpnt must be configured.twetbulb wet bulb temp [Optional] Two of the four inputs: relhmd tdrybulb twetbulb

tdewpnt must be configured.tdewpnt dew point temp [Optional] Two of the four inputs: relhmd tdrybulb twetbulb

tdewpnt must be configured.patmos atmospheric pres **REQUIRED Output from patmos algorithmRcoalcarb total carbon in coal **REQUIRED Output from fuelsRcarb total carbon in fuel **REQUIRED Output from fuelsRhydr total hydrogen in fuel **REQUIRED Output from fuelsRsulf total sulfur in fuel **REQUIRED Output from fuelsRcoalsulf total sulfur in the coal **REQUIRED Output from fuelsRoxy total oxygen in fuel **REQUIRED Output from fuelsRmoist total moisture in fuel(s) **REQUIRED Output from fuelsRnitr total nitrogen in fuel **REQUIRED Output from fuelswcoaltotfuel total coal (inc coke) flow **REQUIRED Output from fuelsFlime frac val lime in lime/coal [Optional] Output from fuels and needed if limestone is usedFmagox frac val mag oxide

lime/coal[Optional] Output from fuels and needed if limestone is used

Ro2ahin1 ahtr 1 fl gas in pcnt o2 [Optional] Required if flue gas measurements are on a drybasis

Ro2ahin2 ahtr 2 fl gas in pcnt o2 [Optional] Required if there are 2 air htrs and flue gasmeasurements are on a dry basis

Ro2ahin3 ahtr 3 fl gas in pcnt o2 [Optional] Required if there are 3 air htrs and flue gasmeasurements are on a dry basis

Ro2ahin4 ahtr 4 fl gas in pcnt o2 [Optional] Required if there are 4 air htrs and flue gasmeasurements are on a dry basis

Ro2ahin5 ahtr 5 fl gas in pcnt o2 [Optional] Required if there are 5 air htrs and flue gasmeasurements are on a dry basis

Ro2ahin6 ahtr 6 fl gas in pcnt o2 [Optional] Required if there are 6 air htrs and flue gasmeasurements are on a dry basis

Global Performance Advisor

05/02 (Rev 2) 59 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Airhtrs (Cont.)Analog Inputs (Cont.) Description UsageRo2ahaft1 ahtr 1 fl gas out pcnt o2 [Optional] Required if o2 readings are avail before and after

air htrsRo2ahaft2 ahtr 2 fl gas out pcnt o2 [Optional] Required if 2 air htrs and o2 readings before and

after air htrs are availRo2ahaft3 ahtr 3 fl gas out pcnt o2 [Optional] Required if 3 air htrs and o2 readings before and

after air htrs are availRo2ahaft4 ahtr 4 fl gas out pcnt o2 [Optional] Required if 4 air htrs and o2 readings before and

after air htrs are availRo2ahaft5 ahtr 5 fl gas out pcnt o2 [Optional] Required if 5 air htrs and o2 readings before and

after air htrs are availRo2ahaft6 ahtr 6 fl gas out pcnt o2 [Optional] Required if 6 air htrs and o2 readings before and

after air htrs are availRahlkgest1 ahtr 1 leakageEstimate [Optional] Required if the air heater leakage is an oper

entered constantRahlkgest2 ahtr 2 leakageEstimate [Optional] Required if there are 2 air htrs and lkg is an oper

entered constantRahlkgest3 ahtr 3 leakageEstimate [Optional] Required if there are 3 air htrs and lkg is an oper

entered constantRahlkgest4 ahtr 4 leakageEstimate [Optional] Required if there are 4 air htrs and lkg is an oper

entered constantRahlkgest5 ahtr 5 leakageEstimate [Optional] Required if there are 5 air htrs and lkg is an oper

entered constantRahlkgest6 ahtr 6 leakageEstimate [Optional] Required if there are 6 air htrs and lkg is an oper

entered constanteahgasdes1 air htr 1 des gas side effic [Optional]eahgasdes2 air htr 2 des gas side effic [Optional]Eahgasdes3 air htr 3 des gas side effic [Optional]Eahgasdes4 air htr 4 des gas side effic [Optional]Eahgasdes5 air htr 5 des gas side effic [Optional]Eahgasdes6 air htr 6 des gas side effic [Optional]eahairdes1 air htr 1 des air side effic [Optional]Eahairdes2 air htr 2 des air side effic [Optional]Eahairdes3 air htr 3 des air side effic [Optional]Eahairdes4 air htr 4 des air side effic [Optional]Eahairdes5 air htr 5 des air side effic [Optional]Eahairdes6 air htr 6 des air side effic [Optional]eahxratiodes1 air htr 1 x-ratio design [Optional]Eahxratiodes2 air htr 2 x-ratio design [Optional]Eahxratiodes3 air htr 3 x-ratio design [Optional]Eahxratiodes4 air htr 4 x-ratio design [Optional]Eahxratiodes5 air htr 5 x-ratio design [Optional]Eahxratiodes6 air htr 6 x-ratio design [Optional]Digital Inputszdocalc **REQUIREDzairhtr1_on ahtr 1 in svc dig flag [Optional] Use if a digital flag determines the in svc status of

ahtr 1Zairhtr2_on ahtr 2 in svc dig flag [Optional] Use if a digital flag determines the in svc status of

ahtr 2Zairhtr3_on ahtr 3 in svc dig flag [Optional] Use if a digital flag determines the in svc status of

ahtr 3Zairhtr4_on ahtr 4 in svc dig flag [Optional] Use if a digital flag determines the in svc status of

ahtr 4Zairhtr5_on ahtr 5 in svc dig flag [Optional] Use if a digital flag determines the in svc status of

ahtr 5Zairhtr6_on ahtr 6 in svc dig flag [Optional] Use if a digital flag determines the in svc status of

ahtr 6

Global Performance Advisor

05/02 (Rev 2) 60 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Airhtrs (Cont.)Analog Outputs Description Usageknum_insvc_htrs number of in svc htrs [Optional]temp_drop_act_gas1 ahtr 1 gas temp drop [Optional] calculated when in svc check for gas temp droptemp_drop_act_gas2 ahtr 2 gas temp drop [Optional] calculated when in svc check for gas temp droptemp_drop_act_gas3 ahtr 3 gas temp drop [Optional] calculated when in svc check for gas temp droptemp_drop_act_gas4 ahtr 4 gas temp drop [Optional] calculated when in svc check for gas temp droptemp_drop_act_gas5 ahtr 5 gas temp drop [Optional] calculated when in svc check for gas temp droptemp_drop_act_gas6 ahtr 6 gas temp drop [Optional] calculated when in svc check for gas temp droptemp_drop_min_gas ahtr min gas temp drop [Optional]wahairtot total ahtr air flow [Optional] Used in boiler as an input.thtrgasinavg avg ahtr air gas in temp [Optional] Used in boiler as an inputthtrgasoutavg avg ahtr air gas out temp [Optional] Used in boiler as an input.wairtot1 ahtr 1 tot air flow [Optional]Wairtot2 ahtr 2 tot air flow [Optional]Wairtot3 ahtr 3 tot air flow [Optional]Wairtot4 ahtr 4 tot air flow [Optional]Wairtot5 ahtr 5 tot air flow [Optional]Wairtot6 ahtr 6 tot air flow [Optional]thtr_calc_airin1 ahtr 1 air in temp [Optional]thtr_calc_airin2 ahtr 2 air in temp [Optional]thtr_calc_airin3 ahtr 3 air in temp [Optional]thtr_calc_airin4 ahtr 4 air in temp [Optional]thtr_calc_airin5 ahtr 5 air in temp [Optional]thtr_calc_airin6 ahtr 6 air in temp [Optional]thtr_calc_airout1 ahtr 1 air out temp [Optional]thtr_calc_airout2 ahtr 2 air out temp [Optional]thtr_calc_airout3 ahtr 3 air out temp [Optional]thtr_calc_airout4 ahtr 4 air out temp [Optional]thtr_calc_airout5 ahtr 5 air out temp [Optional]thtr_calc_airout6 ahtr 6 air out temp [Optional]thtrairinavg avg ahtr air in temp [Optional]thtrairoutavg avg ahtr air out temp [Optional]Ro2ahinavg avg air htr air fl gas o2 [Optional]Rcoalcb tru carb cont coal aft ash rem [Optional]Wvap water content of vapor [Optional] Used in boiler and corblrloss as an input.vapvol vol of water vap in fl gases [Optional]Ftratio temp corr ratio [Optional]Wairth stoich wt air compl comb [Optional] Used in boiler and corblrloss as an input.Wfgmst total moisture in fl gases [Optional]vfgstp vol of stoich fl gases at stp [Optional]vfgtot total vol of stoich fl gases [Optional]kconst temp used in calc free O2 vol [Optional]vfreeo2fgas vol free o2 in fl gas/lb fuel [Optional]Wairex wt ofExcess air/lb STP fuel [Optional] Used in boiler and corblrloss as an input.Wfuel fl gas mass fuel for comb

prod[Optional]

Wdgful tot fl gas in fuel inc xair [Optional] Used in boiler and corblrloss as an input.Wwgmss moisture in fl gas [Optional]vfreeo2ah1 vol of ahtr 1 free O2 [Optional]Warex1 ahtr 1Excess air [Optional]vfreeo2ah2 vol of ahtr 2 free O2 [Optional]Warex2 ahtr 2Excess air [Optional]vfreeo2ah3 vol of ahtr 3 free O2 [Optional]Warex3 ahtr 3Excess air [Optional]vfreeo2ah4 vol of ahtr 4 free O2 [Optional]Warex4 ahtr 4Excess air [Optional]

Global Performance Advisor

05/02 (Rev 2) 61 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Airhtrs (Cont.)Analog Outputs(Cont.)

Description Usage

vfreeo2ah5 vol of ahtr 5 free O2 [Optional]Warex5 ahtr 5Excess air [Optional]vfreeo2ah6 vol of ahtr 6 free O2 [Optional]Warex6 ahtr 6Excess air [Optional]Rahlkg1 ahtr 1 leakage [Optional] Used in boiler as an input.Rahlkg2 ahtr 2 leakage **REQUIRED Used in boiler as an input.Rahlkg3 ahtr 3 leakage **REQUIRED Used in boiler as an input.Rahlkg4 ahtr 4 leakage **REQUIRED Used in boiler as an input.Rahlkg5 ahtr 5 leakage **REQUIRED Used in boiler as an input.Rahlkg6 ahtr 6 leakage **REQUIRED Used in boiler as an input.cahtairin1 spec ht ahtr 1 air in temp [Optional] Used in boiler as an input.cahtgasout1 spec ht ahtr 1 gas out temp [Optional]cahair1 spec ahtr 1 air Usage [Optional] Used in boiler as an input.cahgas1 spec ahtr 1 gas [Optional] Used in boiler as an input.thtrmout1 ahtr 1 modified out temp [Optional]cahtairin2 spec heat ahtr 2 air in temp [Optional] Required if there are two air heaters and is used

in boiler as an input.cahtgasout2 spec heat ahtr 2 gas out

temp[Optional]

cahair2 spec ahtr 2 air [Optional] Required if there are two air heaters and is usedin boiler as an input.

cahgas2 spec ahtr 2 gas Required if there are two air heaters and is used in boiler asan input.

thtrmout2 ahtr 2 modified out temp [Optional]cahtairin3 spec heat ahtr 3 air in temp [Optional] Required if there are 3 air and is used in boiler as

an input.cahtgasout3 spec heat ahtr 3 gas out

temp[Optional]

cahair3 spec ahtr 3 air [Optional] Required if there are 3 air heaters and is used inboiler as an input.

cahgas3 spec ahtr 3 gas [Optional] Required if there are 3 air heaters and is used inboiler as an input.

thtrmout3 ahtr 3 modified out temp [Optional]cahtairin4 spec heat ahtr 4 air in temp [Optional] Required if there are 4 air heaters and is used in

boiler as an input.cahtgasout4 spec heat ahtr 4 gas out

temp[Optional]

cahair4 spec ahtr 4 air [Optional] Required if there are 4 air heaters and is used inboiler as an input

cahgas4 spec ahtr 4 gas [Optional] Required if there are 4 air heaters and is used inboiler as an input.

thtrmout4 ahtr 4 modified out temp [Optional]cahtairin5 spec heat ahtr 5 air in temp [Optional] Required if there are 5 air heaters and is used in

boiler as an input.cahtgasout5 spec heat ahtr 5 gas out

temp[Optional]

cahair5 spec ahtr 5 air [Optional] Required if there are 5 air heaters and is used inboiler as an input

cahgas5 spec ahtr 5 gas [Optional] Required if there are air heaters and is used inboiler as an input.

thtrmout5 ahtr 5 modified out temp [Optional]cahtairin6 spec heat ahtr 6 air in temp [Optional] Required if there are 6 air heaters and is used in

boiler as an input.cahtgasout6 spec heat ahtr 6 gas out

temp[Optional]

Global Performance Advisor

05/02 (Rev 2) 62 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Airhtrs (Cont.)Analog Outputs (Cont.) Description Usagecahair6 Spec ahtr 6 air [Optional] Required if there are 6 air heaters and is used

in boiler as an input.cahgas6 Spec ahtr 6 gas [Optional] Required if there are 6 air heaters and is used

in boiler as an input.thtrmout6 Ahtr 6 modified out temp [Optional]thtrmodout Wted avg modified out temp [Optional] Used in boiler as an input.eahgaseff1 air htr 1 gas side effic [Optional]eahgasdev1 air htr 1 gas side effic dev [Optional]eahaireff1 air htr 1 air side effic [Optional]eahairdev1 air htr 1 air side effic dev [Optional]eahxratio1 air htr 1 xratio [Optional]eahxratiodev1 air htr 1 xratio dev [Optional]eahgaseff2 air htr 2 gas side effic [Optional]eahgasdev2 air htr 2 gas side effic dev [Optional]eahaireff2 air htr 2 air side effic [Optional]eahairdev2 air htr 2 air side effic dev [Optional]eahxratio2 air htr 2 xratio [Optional]eahxratiodev2 air htr 2 xratio dev [Optional]eahgaseff3 air htr 3 gas side effic [Optional]eahgasdev3 air htr 3 gas side effic de [Optional]eahaireff3 air htr 3 air side effic [Optional]eahairdev3 air htr 3 air side effic dev [Optional]eahxratio3 air htr 3 xratio [Optional]eahxratiodev3 air htr 3 xratio dev [Optional]eahgaseff4 air htr 4 gas side effic [Optional]eahgasdev4 air htr 4 gas side effic dev [Optional]eahaireff4 air htr 4 air side effic [Optional]eahairdev4 air htr 4 air side effic dev [Optional]eahxratio4 air htr 4 xratio [Optional]eahxratiodev4 air htr 4 xratio dev [Optional]eahgaseff5 air htr 5 gas side effic [Optional]eahgasdev5 air htr 5 gas side effic dev [Optional]eahaireff5 air htr 5 air side effic [Optional]eahairdev5 air htr 5 air side effic dev [Optional]eahxratio5 air htr 5 xratio [Optional]eahxratiodev5 air htr 5 xratio dev [Optional]eahgaseff6 air htr 6 gas side effic [Optional]eahgasdev6 air htr 6 gas side effic dev [Optional]eahaireff6 air htr 6 air side effic [Optional]eahairdev6 air htr 6 air side effic dev [Optional]eahxratio6 air htr 6 xratio [Optional]eahxratiodev6 air htr 6 xratio dev [Optional]

Digital Outputszinsvcah1 Ahtr 1 In svc digital flag [Optional]zinsvcah2 Ahtr 2 In svc digital flag [Optional]zinsvcah3 Ahtr 3 In svc digital flag [Optional]zinsvcah4 Ahtr 4 In svc digital flag [Optional]zinsvcah5 Ahtr 5 In svc digital flag [Optional]zinsvcah6 Ahtr 6 In svc digital flag [Optional]zwetflag o2 before air htr msmt type [Optional]

ConstantsCAIR[0] = 0.23897 CGAS[0] = 0.237058 CGAS[3] = -2.20475e-11CAIR[1] = 6.7857e-06 CGAS[1] = 1.065875e-05CAIR[2] = 1.9643e-08 CGAS[2] = 4.18508e-08

Global Performance Advisor

05/02 (Rev 2) 63 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Analoginavg

This moduleinputs AnalogOPC pointvalues andoutputsaveraged localvalues.

UnitsConverted.

NO

Analog Inputs Description Usageainput1 Analog input 1 REQUIREDainput2 - throughainput200

Analog input 2 - throughAnalog input 200

[Optional]

Digital Inputs < NONE >

Analog Outputsainput1_avg Analog input avg 1 REQUIREDainput2_avg - ainput200_avg Analog input avg 2 - Analog input avg

200[Optional]

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 64 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Analogout

This moduleoutputsAnalog OPCpoints fromlocal inputvalues.

UnitsConverted.

NO

Analog Inputs Description Usageainput1 local Analog input 1 REQUIREDainput2 - throughainput200

local Analog input 2 - throughlocal Analog input 200

[Optional]

Digital Inputs < NONE >

Analog Outputsaoutput1 Analog output 1 REQUIREDaoutput2 - throughaoutput200

Analog output 2 - throughAnalog output 2

[Optional]

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 65 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

And6

This moduleandstogether 6inputs.

UnitsConverted.

NO

Analog Inputs Description Usagekdummy dummy Analog value [Optional] Does not need to be

configured.

Digital Inputszdocalc Digital perf calc run flag REQUIREDzdvalue1 and6 Digital value 1 REQUIREDzdvalue2 and6 Digital value 2 REQUIRED Defaults to a 1 if not

configured.zdvalue3 and6 Digital value 3 [Optional] Defaults to 1 if not

configured.zdvalue4 and6 Digital value 4 Optional] Defaults to 1 if not

configured.zdvalue5 and6 Digital value 5 [Optional] Defaults to 1 if not

configured.zdvalue6 and6 Digital value 6 Optional] Defaults to 1 if not

configured.

Analog Outputs < NONE >

Digital Outputszand6_result and6 result REQUIRED

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 66 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Anlgcmp2poly

This modulecalculates the y-valueof a polynomial basedon an x input and canbe split into twopolynomials by anAnalog value.

UnitsConverted.

NO

Analog Inputs Description Usagekptload val check which poly calc [Optional]kptlimit limit check which poly calc [Optional]kxval x value for poly 1 [Optional]kptgain gain value for poly 1 [Optional]kptbias bias value for poly 1 [Optional]kxval2 x value for poly 2 [Optional]kptgain2 gain value for poly 2 [Optional]kptbias2 bias value for poly 2 [Optional] Digital Inputszdocalc Digital perf calc run flag REQUIRED Analog Outputskyvalue y value REQUIRED Digital Outputs< NONE >Constantskapoly[0] = 0 kapoly2[0] = 0 kcload = 0.0kapoly[1] = 1 kapoly2[1] = 1 kclimit = 0.0kapoly[2] = 0 kapoly2[2] = 0 kcgain = 1 kapoly[3] = 0 kapoly2[3] = 0 kcbias = 0 kapoly[4] = 0 kapoly2[4] = 0 kcgain2 = 1 kapoly[5] = 0 kapoly2[5] = 0 kcbias2 = 0

Global Performance Advisor

05/02 (Rev 2) 67 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Anlgcmppoly

This modulecalculates they-value of apolynomialbased on the xinput betweentwo values.

UnitsConverted.

NO

Analog Inputs Description Usagekptload val to determine poly calc [Optional]kptlolimit lower limit poly to calc [Optional]kptuplimit upper limit poly to calc [Optional]kxval x value [Optional]kptgain gain value [Optional]kptbias bias value [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputskyvalue y value REQUIRED

Digital Outputs< NONE >

Constantskapoly[0] = 0 kapoly[4] = 0 kclolimit = 0.0 kapoly[1] = 1 kapoly[5] = 0 kcuplimit = 0.0 kapoly[2] = 0 kcgain = 1 kcload = 0.0 kapoly[3] = 0 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 68 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Arctan

Arc tangentalgorithm.

UnitsConverted.

NO

Analog Inputs Description Usagekvalue input to arctan module **REQUIREDkptgain abs val gain value [Optional]kptbias abs val bias value [Optional]

Digital Inputszdocalc digital perf calc run flag **REQUIRED

Analog Outputskarctan_res arctan result value **REQUIRED

Digital Outputs< NONE >

Constantskcgain = 1kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 69 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Avalgen

This moduletakes the valueof a number,multiplies bythe gain andadds the bias.

UnitsConverted.

NO

Analog Inputs Description Usagekvalue input to avalgen value module [Optional]kptgain abs val gain value [Optional]kptbias abs val bias value [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputskavalgen_res Analog value result REQUIRED

Digital Outputs< NONE >

Constantskcgain = 1 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 70 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Avg10

This moduleaverages 10numbers.

UnitsConverted.

NO

Analog Inputs Description Usagekvalue1 avg10 value 1 REQUIREDkvalue2 avg10 value 2 REQUIREDkvalue3 avg10 value 3 [Optional]kvalue4 avg10 value 4 [Optional]kvalue5 avg10 value 5 [Optional]kvalue6 avg10 value 6 [Optional]kvalue7 avg10 value 7 [Optional]kvalue8 avg10 value 8 [Optional]kvalue9 avg10 value 9 [Optional]kvalue10 avg10 value 10 [Optional]kptgain avg10 gain value [Optional]kptbias avg10 bias value [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputskavg10_result avg10 result REQUIRED

Digital Outputs< NONE >

Constantskcgain = 1 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 71 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Avg4

This moduleaverages 4numbers.

UnitsConverted.

NO

Analog Inputs Description Usagekvalue1 avg4 value 1 REQUIREDkvalue2 avg4 value 2 REQUIREDkvalue3 avg4 value 3 [Optional]kvalue4 avg4 value 4 [Optional]kptgain avg4 gain value [Optional]kptbias avg4 bias value [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputskavg4_result avg4 result REQUIRED

Digital Outputs< NONE >

Constantskcgain = 1 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 72 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Bfpturb

Boiler feed pump turbine algorithm to calculate performance offeed pump turbine that can be supplied by - high pressure steamonly - low pressure (or extraction) steam only - mixed highpressure and low pressure steam Mixed supply steam andisentropic enthalpies are computed. Boiler feed pump turbine-Exhaust steam enthalpy is computed by a heat balancecomparing the heat in the steam to the work done on the waterby the boiler feed pump, i.e. the water horsepower. Turbine-Efficiency is computed and compared to design efficiency.

UnitsConverted

YES

Analog Inputs Description Usagepatmos atmospheric pressure **REQUIREDwhpbfpt high pres steam flow [Optional]phpbfpt high pres steam pres [Optional]thpbfpt high pres steam temp [Optional]wexbfpt extraction steam flow [Optional]pexbfpt extraction steam pres [Optional]texbfpt extraction steam pres [Optional]wsealsply steam seal sply flow [Optional]hsealsply steam seal sply enth [Optional]wseallkge steam seal lkge flow [Optional]hseallkge steam seal lkge enth [Optional]pabsbfptexh exhaust pressure (inhga) **REQUIREDebfpteffdes design bfp turb efficiency [Optional]Phpbfpmp total pump output power **REQUIREDhbfptotsuc total pump suction enth **REQUIREDhbfptotdis total pump discharge enth **REQUIREDtbfptotsuc total pump suction temp **REQUIREDpabsbfptotsuc total pump suction pres **REQUIREDpabsbfptotdis total pump discharge pres **REQUIREDPbfptotdlt total pump input power diff **REQUIRED

Digital Inputs Description Usagezdocalc digital perf calc run flag **REQUIRED

Analog Outputs Description Usagewbfptstm total mixed steam supply [Optional]Fhpbfpt fraction high pres steam sply [Optional]Fexbfpt fraction extraction steam sply [Optional]pabshpbfpt high pres steam sply pres [Optional]hhpbfpt high pres steam sply enth [Optional]pabsexbfpt extraction steam sply pres [Optional]hexbfpt extraction steam sply enth [Optional]hbfptstm mixed steam supply enthalpy [Optional]wbfptexh exhaust steam flow [Optional]qbfptstm bfp turb steam heat input [Optional]qsealsply bfp turb steam seal sply heat [Optional]qseallkge bfp turb steam seal lkge enth [Optional]qbfptexh bfp turbExhaust heat [Optional]hbfptexh bfp turbExhaust enthalpy [Optional]hhpbfptisen high pres steam sply isen enth [Optional]hexbfptisen extrac steam sply isen enth [Optional]hbfptisen mixed steam isentropic enth [Optional]ebfpteff bfp turbine efficiency [Optional]

Global Performance Advisor

05/02 (Rev 2) 73 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Bfpturb (Cont.)Analog Outputs (Cont.) Description Usageebfpteffdev bfp turb efficiency dev [Optional]qbfptgen bfp turbine heat generated [Optional]Pbfptgen bfp turb power generated [Optional]sbfptotsuc bfp turb suction entropy [Optional]hbfptotrise bfp total pump enth rise [Optional]hbfptotisen bfp total pump isen enth rise [Optional]hbfptotisrise bfp total isen enth rise [Optional]ebfptoteff bfp total pump effciency [Optional]Pbfptotin bfp total input power [Optional]

Digital Outputs Description Usage< NONE >

Constants< NONE >

Global Performance Advisor

05/02 (Rev 2) 74 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Bldwn

This modulecalculatestheblowdownflow and theblowdownenthalpy.

UnitsConverted.

YES

Analog Inputs Description Usagewblwdwnin blowdown inlet flow REQUIREDwaddmisc misc added flow [Optional] wsubmisc misc subtracted flow [Optional] patmos atmospheric pressure REQUIREDpdrum stage drum pressure REQUIRED

Digital Inputszdocalc digital perf calc run flag REQUIRED

Analog Outputswblwdwnout blowdown outlet flow [Optional]pabsdrum blowdown abs drum pres [Optional] hdrum blowdown drum enthalpy [Optional]

Digital Outputs < NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 75 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Blrio

This modulecalculates the boilerinput/outputefficiency andefficiency deviationfrom design.

UnitsConverted.

YES

Analog Inputs Description Usagewfuel total fuel flow **REQUIREDhfuel total fuel heating value **REQUIREDpeconin economizer inlet pressure **REQUIREDpatmos atmospheric pressure **REQUIREDteconin economizer inlet temp **REQUIREDpdssht superheat spray flow pressure [Optional] required if spray flow presenttdssht superheat spray flow temp Optional] required if spray flow presentprhout reheater outlet pressure **REQUIREDtrhout reheater outlet temp **REQUIREDprhin reheater inlet pressure **REQUIREDtrhin reheater inlet temp **REQUIREDpdsrht reheat spray flow pressure [Optional] required if reheat spray presenttdsrht reheat spray flow temp Optional] required if reheat spray presentwblrfw boiler feedwater flow **REQUIREDwbldwn boiler blowdown flow [Optional]hblrstm boiler steam enthalpy **REQUIREDwdssht superheat spray flow [Optional]wcrhte cold reheat flow **REQUIREDwdsrht reheat spray flow [Optional] required if reheat spray presenthbldwn blowdown enthalpy [Optional] required if blowdown floweblreffiodes blr input/output des effic **REQUIRED

Digital Inputszdocalc digital perf calc run flag **REQUIRED

Analog Outputsqblrin total heat input [Optional]pabseconin absEcon inlet pressure [Optional] heconin econ inlet enthalpy [Optional]pabsdssht abs superheat spray flow press [Optional]hdssht superheat spray flow enth [Optional]pabsrhout abs reheater outlet press [Optional]hrhout reheater outlet enth [Optional]pabsrhin abs reheater inlet press [Optional]hrhin Description: reheater inlet enth [Optional]pabsdsrht abs reheat spray flow press [Optional]hdsrht reheat spray flow enth [Optional]qblrout total boiler heat output [Optional]eblreffio blr input/output effic [Optional]eblreffiodev blr input/output effic dev [Optional]

Digital Outputs Description Usage< NONE >

Constants< NONE >

Global Performance Advisor

05/02 (Rev 2) 76 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Boiler

The boilercalculates theefficiency by theheat loss method.

UnitsConverted.

YES

Analog Inputs Description Usagethtrmodout ahtr modified out temp REQUIRED thtrairinavg ahtr air in avg temp REQUIRED thtrgasinavg ahtr gas in avg temp REQUIRED thtrgasoutavg avg ahtr gas out temp REQUIRED Wairtot11 ahtr 1 air flow REQUIRED wairtot2-6 ahtr 2-6 air flow [Optional] Use if there are 2-6 air heaters.cahair1 avg spec ahtr 1 air REQUIRED Output from airhtrs.cahair2-6 avg spec ahtr 2-6 air [Optional] Use if there are 2-6 air heaters.cahgas1 spec heat ahtr 1 out gas REQUIRED Output from airhtrs.cahgas2-6 spec heat ahtr 2-6 out gas [Optional] Use if there are 2-6 air heaters. Output

from airhtrs.Rahlkg1 ahtr 1 leakage REQUIRED Output from airhtrs.Rahlkg2-6 ahtr 2-6 leakage [Optional] Use if there are 2-6 air heaters. Output

from airhtrs.Wahairtot total ahtr air flow REQUIRED Output from airhtrs.Thtr_calc_airin1 Ahtr 1 air in temp [Optional} Use if limestone is present.Thtr_calc_airin2-6 Ahtr 2-6 air in temp [Optional} Use if limestone is present, and ther are

2-6 airhtrs.thtrfairin1 air fan 1 air in temp REQUIRED thtrfairin2-6 air fan 2-6 air in temp [Optional] Use if there are 2-6 air heaters.thtrairout1 ahtr 1 air out temp REQUIRED thtrairout2 ahtr 2 air out temp [Optional] Use if there are two air heaters.Rash total ash in fuel REQUIRED Output from fuels.tempambnt ambient air temp [Optional} Use if limestone is present.patmos atmospheric pressure REQUIRED Output from patmos.Rhydr tot hydrogen in fuel REQUIRED Output from fuels.Rcoalsulf tot sulfur in the coal [Optional} Use if limestone and output from fuels.Rmoist tot moisture in fuel REQUIRED Output from fuels.wcoaltotfuel total coal (inc coke) flow REQUIRED Output from fuels.Flime fr val lime in lime/coal [Optional Use if limestone is presentFmagox fr val mag oxide in lime/coal [Optional Use if limestone is presentpdrum drum pressure [Optional] Use if there is blowdown flow.wbldwn blowdown flow [Optional] Use if there is blowdown flow.heatvalue tot heating val of fuel REQUIRED Output from fuels.htcoalvalue tot heating val of coal REQUIRED Output from fuels.eblreffdes blr des effic [Optional] Must be calculated from a curve fit.Rexairdes excess des air pcnt [Optional]thtradesin ahtr air in des temp [Optional] tempash temp of the ash [Optional] Use if limestone is present.Rlsoperunm op enter pcnt unmeas ht loss REQUIRED wblrstm blr superht out stm flow REQUIRED qtrbin heat acquired by the turbine REQUIRED Rcarash carb cont in ash leaving blr [Optional] Required if limestone is not being used.

This is an OPC input point.Wairex wtExcess air/lb of STP fuel REQUIRED Output from modahtemp algorithm.Wairth stoich wt air for compl comb REQUIRED Output from modahtemp algorithm.

Global Performance Advisor

05/02 (Rev 2) 77 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Boiler (Cont.)Analog Inputs (Cont.) Description Usagecahtairin1 spec heat ahtr 1 air in temp [Optional] Required if limestone is being used.

Output from airhtrs.cahtairin2-6 spec heat ahtr 2-6 air in temp [Optional] Required if limestone is being used and

2-6 air heaters. Output from airhtrs.Wdgful total fl gas fuel inc wt xair REQUIRED Output from modahtemp algorithm.Wvap water content of vapor REQUIRED Output from modahtemp algorithm.

Digital Inputszdocalc digital perf calc run flag REQUIRED

Analog Outputswblrmax maximum boiler flow [Optional] kaircl no air cooled walls [Optional] kwtrcl no water cooled furn walls [Optional] pabsdrum abs boiler drum pres [Optional] hbldwn blowdown enth [Optional] qbldwn blowdown flow ht [Optional] qboilr boiler ht [Optional] cahgastahmo spec htmod air htr gas temp [Optional] hlsdrygas ht loss due to dry gas [Optional] Rlsdrygas pcnt ht loss due to dry gas [Optional] pabshtrain air htr air in pres [Optional] hfgexh vap enth mod gas out temp [Optional] hfgho liquid enth ahtr air in temp [Optional] hlsflmoist ht loss due to moist [Optional] Rlsflmoist pcnt ht loss due to moist [Optional] hlsmoisth2 ht loss moist from h2 [Optional] Rlsmoisth2 pcnt ht loss moist from h2 [Optional] hrvap enth sat vap part pres vapor [Optional] hlsmoistair ht loss in moist air suppl [Optional] Rlsmoistair pcnt ht loss moist air suppl [Optional] hlsash ht loss due to ash [Optional] Rlsash pcnt ht loss due to ash [Optional] hlslime ht loss due to lime calc [Optional] Rlslime pcnt ht loss due to lime calc [Optional] hlsmagox ht loss mag oxide sulf [Optional] Rlsmagox pcnt ht loss mag oxide sulf [Optional] hgnsulf ht gain due to sulf lime [Optional] Rgnsulf pcnt ht gain due sulf lime [Optional] caftairin1 spec ht fan 1 air in temp [Optional] caftairin2-6 spec ht fan 2-6 air in temp [Optional] hgnahtr1 air htr 1 ht gain [Optional] hgnahtr2-6 air htr 2-6 ht gain [Optional] hgncomprair ht gain ahtrs compr air [Optional] Rgncomprair pcnt ht gain ahtrs compr air [Optional] hlsunburn ht loss unburned combust [Optional] Used as an input for corblrloss

algorithm.Rlsunburn pcnt ht loss unburned combust [Optional] Used as input for corblrloss algorithm.hlsunmeas unmeasured ht losses [Optional] Rlsunmeas pcnt unmeasur ht losses [Optional] Used as an input for corblrloss

algorithm.qstcon ht in the boiler [Optional] qlogqstcon log of ht in the blr [Optional] qlogwratio log max blr rate to blr stm fl [Optional] ktemp temp const calc rad losses [Optional] kradtemp temp const calc rad losses [Optional]

Global Performance Advisor

05/02 (Rev 2) 78 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Boiler (Cont.)Analog Outputs (Cont.) Description Usagehlsrad ht loss due to radiation [Optional] Rlsrad pcnt ht loss due to radiation [Optional] Used as an input for corblrloss algorithm.hlstot total fuel related losses [Optional] Rlstot pcnt total fuel related losses [Optional] eblreffact ht loss boiler efficiency [Optional] eblreffdev boiler efficiency dev [Optional] Rexair excess air pcnt [Optional] Rexairdev excess air pcnt dev [Optional] thtraindev air htr air in dev [Optional] thtrgoc corrExit gas temp with lkg [Optional] cahairavg weighted avg spec ht of air [Optional] cahgasavg weighted avg spec ht of gas [Optional] Rahlkgavg weighted avg air htr lkg [Optional] thtrmoc corr non lkgExit gas temp [Optional] Used as an input for corblrloss

algorithm.

Digital Outputs < NONE >

ConstantsCAIR[0] = 0.23897CAIR[1] = 6.7857e-06CAIR[2] = 1.9643e-08CGAS[0] = 0.237058CGAS[1] = 1.65875e-05CGAS[2] = 4.18508e-08CGAS[3] = -2.20475e-11

Global Performance Advisor

05/02 (Rev 2) 79 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Capab

This modulecalculatescapability ofmechanicaldraft coolingtowers.

UnitsConverted.

YES

Analog Inputs Description Usagekcharexp cooling twr charExponent REQUIRED Output from

cooltwrdes algorithm.kdeslg des l/g value REQUIRED Output from

cooltwrdes algorithm.Fcoolflow ratio des water flow/act flow REQUIRED Output from

cooltwrpwr algorithm.kcharconst cooling twr char constant REQUIRED Output from

cooltwrdes algorithm.tcthotin cooling twr hot wtr in temp REQUIREDtctcoldout cooling twr cold wtr out temp REQUIREDtctindes cooling twr inlet des temp REQUIRED Output from

cooltwrdes algorithm.tctoutdes cooling twr outlet des temp REQUIRED Output from

cooltwrdes algorithm.kslope slope of air enth line REQUIRED Output from cooltwr

algorithm.hsatairin enth of saturated inlet air REQUIRED Output from cooltwr

algorithm.hairdes des air enth REQUIRED Output from cooltwr

algorithm.Hcoolelv cooling twrElevation REQUIRED Output from

cooltwrdes algorithm.

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputskexpnin Cooling twr charExp inverted [Optional]kactdeslg actual design l/g [Optional]kdeskavl design kav\l [Optional]koveralldeskavl overall design kav/l [Optional]kcalckavl calculated kav/l [Optional]kconst1 constant used in calc slope [Optional]kslop1 capab slop1 [Optional]kslopec capab calculated slope [Optional]knewkavl new kav\l [Optional]knumiters capab number of iterations [Optional]Rcapab cooling twr capability [Optional]kconverr capab convergError flag [Optional]

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 80 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Chkload

This modulechecks the loadand if the load isabove the criticalload level, the runflag for the gpamodules is set.

UnitsConverted.

YES

Analog Inputs Description UsagePmwatt gross megawatts [Optional]Rcrpld critical load level [Optional]

Digital Inputs < NONE >

Analog OutputsPmwrated rated megawatts [Optional]wwideopen valves wide open throttle flow [Optional] Used for unit heat rate

control algorithm unhrpcthr.Rcload percent load [Optional] Used in ASME heat rate

corr for main steam temp

Digital Outputszdocalc dig pcalc local run flag REQUIRED Used in all

calculations.zrunperfcalc dig pcalc highway run flag [Optional] ztrue dig flag always true [Optional]

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 81 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Cndavgtemp

This module calculates thecondenser average inletand outlet temp as well asthe average circulatingwater temperature.

UnitsConverted.

YES

Analog Inputs Description Usagetcwin1 circ water comp 1 in temp REQUIREDtcwout1 circ water comp 1 out temp REQUIREDtcwin2 circ water comp 2 in temp [Optional] Use if there are 2

compartments.tcwout2 circ water comp 2 out temp [Optional] Use if there are 2

compartments.tcmpthresh comp temp threshold Output from

cnddesign.[Optional] Use if in svc status forcmpts determined by threshold.

Digital Inputszdocalc Digital perf calc run flag REQUIREDzin_service_flag condenser in service flag [Optional] Use if Digital flags

determine in svc status. Outputfrom cnddesign algorithm.

zcmpt1_flag cnd cmpt 1 flag [Optional] Use if Digitals determinein svc status for compartments.

zcmpt2_flag cnd cmpt 2 flag [Optional] Use if Digitals determinein svc status and there are 2compartments.

Analog Outputstcmpt1_rise cond comp 1 temp rise [Optional]tcmpt2_rise cond comp 2 temp rise [Optional]kcmpt1_cnt cnd cmpt 1 count [Optional] Used in condsr

algorithm.kcmpt2_cnt cnd cmpt 2 count [Optional] Used in condsr

algorithm.tcwin cnd avg circ wtr in temp [Optional] Used in condsr

algorithm.tcwout cnd avg circ wtr out temp [Optional] Used in condsr

algorithm.tcwavg cnd avg circ wtr temp [Optional] Used in cndspecheat

algorithm.tcwrise cond avg circ wtr temp rise [Optional] Used in condsr

algorithm.

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 82 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Cnddesign

This module reads in thecondenser design dataand assigns the values tooutputs as well ascalculating the innerdiameter for the differentbundle types.

UnitsConverted.

YES

Analog Inputs Description Usagekdummy Analog dummy point [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputsknum_cmpts condenser # of compartments [Optional]knum_pass condenser number of passes [Optional]kcmpt1_tubes condsr water tubes [Optional]kcmpt2_tubes condsr air tubes [Optional] Use if there are air

tubes.kcmpt1_length condsr water tubes length [Optional]kcmpt1_outdiam condsr water tubes outer diam [Optional]kcmpt1_bwg condsr water tubes outer bwg [Optional]kcmpt1_thickness condsr cmpt water thickness [Optional]kcmpt1_indiam condsr water tubes inner diam [Optional]kcmpt1_cndmatcf cndsr water tube mat corr fact [Optional]kcmpt2_length air tubes length [Optional] Use if there are air

tubes.kcmpt2_outdiam condsr air tubes out diam [Optional] Use if there are air

tubes.kcmpt2_bwg condsr air tubes bwg [Optional] Use if there are air

tubes.kcmpt2_thickness condsr air tubes thickness [Optional] Use if there are air

tubes.kcmpt2_indiam condsr air tubes inner diam [Optional] Use if there are air

tubes.kcmpt2_cndmatcf condsr air tubes mat corr fact [Optional] Use if there are air

tubes.tcmpthresh condsr compartment temp thresh [Optional] Required if in service

criteria is temperature related.Ccndes condsr des cleanliness factor [Optional]

Digital Outputszin_service_flag condenser in service flag [Optional]zmkup_klbhr condsr makeup watr klb/hr flag [Optional]zmkup_gpm condenser makeup gpm flag [Optional]zcircwater_flag condenser circ water flag [Optional]zlp_exhaust condenser lpExhaust flag [Optional]zmakeup_water condenser makeup water flag [Optional]zgland_drain condenser gland drain flag [Optional]zlp_heaters condenser lp heaters flag [Optional]zbfpt_exhaust condenser bfptExhaust flag [Optional]zssr_spillover stm seal regulator spillovr flg [Optional]zsjae condenser sjae flag [Optional]zout_of_svclp condsr out of service lp htrs [Optional]

Global Performance Advisor

05/02 (Rev 2) 83 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Cnddesign (Cont.)Digital Outputs (Cont.) Description Usagezcond_misc1 condenser misc 1 flag [Optional]zcond_misc2 condenser misc 2 flag [Optional]zhga mercury absolute pressure flag [Optional]zhgv mercury vapor pressure flag [Optional]zgauge gauge pressure flag [Optional]zabs absolute pressure flag [Optional]

ConstantsCMATCF_ADMIRAL_METAL[0] =0.93

CMATCF_ALUM_BRASS[2] = 0.95 CMATCF_CU_NI_70[4] = 0.83

CMATCF_ADMIRAL_METAL[1] =0.945

CMATCF_ALUM_BRASS[3] = 0.96 CMATCF_CU_NI_70[5] = 0.855

CMATCF_ADMIRAL_METAL[2] =0.96

CMATCF_ALUM_BRASS[4] = 0.97 CMATCF_CU_NI_70[6] = 0.88

CMATCF_ADMIRAL_METAL[3] =0.97

CMATCF_ALUM_BRASS[5] = 0.98 CMATCF_CU_NI_70[7] = 0.9

CMATCF_ADMIRAL_METAL[4] =0.98

CMATCF_ALUM_BRASS[6] = 0.99 CMATCF_CU_NI_70[8] = 0.92

CMATCF_ADMIRAL_METAL[5] =0.99

CMATCF_ALUM_BRASS[7] = 1.0 CMATCF_CU_NI_70[9] = 0.935

CMATCF_ADMIRAL_METAL[6] = 1.0 CMATCF_ALUM_BRASS[8] = 1.01 CMATCF_CU_NI_70[10] = 0.95CMATCF_ADMIRAL_METAL[7] =1.005

CMATCF_ALUM_BRASS[9] = 1.015 CMATCF_CU_NI_70[11] = 0.96

CMATCF_ADMIRAL_METAL[8] =1.01

CMATCF_ALUM_BRASS[10] = 1. CMATCF_CU_NI_70[12] = 0.97

CMATCF_ADMIRAL_METAL[9] =1.015

02CMATCF_ALUM_BRASS[11] =1.02

CMATCF_CU_NI_70[13] = 0.97

CMATCF_ADMIRAL_METAL[10] =1.02

CMATCF_ALUM_BRASS[12] = 1.02 CMATCF_CR_STEEL[0] = 0.80

CMATCF_ADMIRAL_METAL[11] =1.02

CMATCF_ALUM_BRASS[13] = 1.03 CMATCF_CR_STEEL[1] = 0.825

CMATCF_ADMIRAL_METAL[12] =1.03

CMATCF_ALUM_BRONZE[0] = 0.89 CMATCF_CR_STEEL[2] = 0.85

CMATCF_ADMIRAL_METAL[13] =1.03

CMATCF_ALUM_BRONZE[1] = 0.915 CMATCF_CR_STEEL[3] = 0.87

CMATCF_ARSEN_CU[0] = 0.98 CMATCF_ALUM_BRONZE[2] = 0.93 CMATCF_CR_STEEL[4] = 0.89CMATCF_ARSEN_CU[1] = 0.99 CMATCF_ALUM_BRONZE[3] = 0.945 CMATCF_CR_STEEL[5] = 0.91CMATCF_ARSEN_CU[2] = 1.0 CMATCF_ALUM_BRONZE[4] = 0.96 CMATCF_CR_STEEL[6] = 0.93CMATCF_ARSEN_CU[3] = 1.005 CMATCF_ALUM_BRONZE[5] = 0.97 CMATCF_CR_STEEL[7] = 0.95CMATCF_ARSEN_CU[4] = 1.01 CMATCF_ALUM_BRONZE[6] = 0.98 CMATCF_CR_STEEL[8] = 0.97CMATCF_ARSEN_CU[5] = 1.015 CMATCF_ALUM_BRONZE[7] = 0.99 CMATCF_CR_STEEL[9] = 0.975CMATCF_ARSEN_CU[6] = 1.02 CMATCF_ALUM_BRONZE[8] = 1.0 CMATCF_CR_STEEL[10] = 0.98CMATCF_ARSEN_CU[7] = 1.025 CMATCF_ALUM_BRONZE[9] = 1.005 CMATCF_CR_STEEL[11] = 0.99CMATCF_ARSEN_CU[8] = 1.03 CMATCF_ALUM_BRONZE[10] = 1.01 CMATCF_CR_STEEL[12] = 1.0CMATCF_ARSEN_CU[9] = 1.03 CMATCF_ALUM_BRONZE[11] = 1.01 CMATCF_CR_STEEL[13] = 1.0 CMATCF_ARSEN_CU[10] = 1.03 CMATCF_ALUM_BRONZE[12] = 1.02 CMATCF_SS_304[0] = 0.54CMATCF_ARSEN_CU[11] = 1.04 CMATCF_ALUM_BRONZE[13] = 1.02 CMATCF_SS_304[1] = 0.58

CMATCF_ARSEN_CU[12] = 1.04 CMATCF_CU_NI_90[0] = 999.80 CMATCF_SS_304[2] = 0.62CMATCF_ARSEN_CU[13] = 1.04 CMATCF_CU_NI_90[1] = 0.825 CMATCF_SS_304[3] = 0.655CMATCF_CU_IRON[0] = 1.00 CMATCF_CU_NI_90[2] = 0.85 CMATCF_SS_304[4] = 0.69CMATCF_CU_IRON[1] = 1.005 CMATCF_CU_NI_90[3] = 0.87 CMATCF_SS_304[5] = 0.72CMATCF_CU_IRON[2] = 1.01 CMATCF_CU_NI_90[4] = 0.89 CMATCF_SS_304[6] = 0.75CMATCF_CU_IRON[3] = 1.015 CMATCF_CU_NI_90[5] = 0.91 CMATCF_SS_304[7] = 0.785CMATCF_CU_IRON[4] = 1.02 CMATCF_CU_NI_90[6] = 0.93 CMATCF_SS_304[8] = 0.82

Global Performance Advisor

05/02 (Rev 2) 84 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Cnddesign (Cont.)Constants (Cont.) Description UsageCMATCF_CU_IRON[5] = 1.025 CMATCF_CU_NI_90[7] = 0.945 CMATCF_SS_304[9] = 0.84CMATCF_CU_IRON[6] = 1.03 CMATCF_CU_NI_90[8] = 0.96 CMATCF_SS_304[10] = 0.86CMATCF_CU_IRON[7] = 1.03 CMATCF_CU_NI_90[9] = 0.97 CMATCF_SS_304[11] = 0.88CMATCF_CU_IRON[8] = 1.03 CMATCF_CU_NI_90[10] = 0.98 CMATCF_SS_304[12] = 0.90CMATCF_CU_IRON[9] = 1.035 CMATCF_CU_NI_90[11] = 0.99 CMATCF_SS_304[13] = 0.91 CMATCF_CU_IRON[10] = 1.04 CMATCF_CU_NI_90[12] = 0.99 CMATCF_TITAN[0] = 0.63CMATCF_CU_IRON[11] = 1.04 CMATCF_CU_NI_90[13] = 1.0 CMATCF_TITAN[1] = 0.67CMATCF_CU_IRON[12] = 1.04 CMATCF_CU_NI_70[0] = 0.71 CMATCF_TITAN[2] = 0.71CMATCF_CU_IRON[13] = 1.04 CMATCF_CU_NI_70[1] = 0.745 CMATCF_TITAN[3] = 0.74CMATCF_ALUM_BRASS[0] = 0.92 CMATCF_CU_NI_70[2] = 0.78 CMATCF_TITAN[4] = 0.77CMATCF_ALUM_BRASS[1] = 0.935 CMATCF_CU_NI_70[3] = 0.805 CMATCF_TITAN[5] = 0.795CMATCF_TITAN[6] = 0.82 CMATCF_UNS_S43035[0] = 0.63 CMATCF_UNS_S44735[8] = 0.85CMATCF_TITAN[7] = 0.85 CMATCF_UNS_S43035[1] = 0.67 CMATCF_UNS_S44735[9] = 0.865CMATCF_TITAN[8] = 0.88 CMATCF_UNS_S43035[2] = 0.71 CMATCF_UNS_S44735[10] = 0.88CMATCF_TITAN[9] = 0.895 CMATCF_UNS_S43035[3] = 0.74 CMATCF_UNS_S44735[11] = 0.90CMATCF_TITAN[10] = 0.91 CMATCF_UNS_S43035[4] = 0.77 CMATCF_UNS_S44735[12] = 0.91CMATCF_TITAN[11] = 0.92 CMATCF_UNS_S43035[5] = 0.795 CMATCF_UNS_S44735[13] = 0.93

CMATCF_TITAN[12] = 0.94 CMATCF_UNS_S43035[6] = 0.82 CMATCF_UNS_S44660[0] = 0.57CMATCF_TITAN[13] = 0.95 CMATCF_UNS_S43035[7] = 0.85 CMATCF_UNS_S44660[1] = 0.61CMATCF_UNS_N08367[0] = 0.52 CMATCF_UNS_S43035[8] = 0.88 CMATCF_UNS_S44660[2] = 0.65CMATCF_UNS_N08367[1] = 0.56 CMATCF_UNS_S43035[9] = 0.895 CMATCF_UNS_S44660[3] = 0.685CMATCF_UNS_N08367[2] = 0.60 CMATCF_UNS_S43035[10] = 0.91 CMATCF_UNS_S44660[4] = 0.72CMATCF_UNS_N08367[3] = 0.635 CMATCF_UNS_S43035[11] = 0.92 CMATCF_UNS_S44660[5] = 0.75CMATCF_UNS_N08367[4] = 0.67 CMATCF_UNS_S43035[12] = 0.94 CMATCF_UNS_S44660[6] = 0.78CMATCF_UNS_N08367[5] = 0.705 CMATCF_UNS_S43035[13] = 0.95 CMATCF_UNS_S44660[7] = 0.815CMATCF_UNS_N08367[6] = 0.74 CMATCF_UNS_S44735[0] = 0.57 CMATCF_UNS_S44660[8] = 0.85CMATCF_UNS_N08367[7] = 0.775 CMATCF_UNS_S44735[1] = 0.61 CMATCF_UNS_S44660[9] = 0.865CMATCF_UNS_N08367[8] = 0.81 CMATCF_UNS_S44735[2] = 0.65 CMATCF_UNS_S44660[10] = 0.88CMATCF_UNS_N08367[9] = 0.83 CMATCF_UNS_S44735[3] = 0.685 CMATCF_UNS_S44660[11] = 0.90CMATCF_UNS_N08367[10] = 0.85 CMATCF_UNS_S44735[4] = 0.72 CMATCF_UNS_S44660[12] = 0.91CMATCF_UNS_N08367[11] = 0.87 CMATCF_UNS_S44735[5] = 0.75 CMATCF_UNS_S44660[13] = 0.93

CMATCF_UNS_N08367[12] = 0.89 CMATCF_UNS_S44735[6] = 0.78CMATCF_UNS_N08367[13] = 0.90 CMATCF_UNS_S44735[7] = 0.815

Global Performance Advisor

05/02 (Rev 2) 85 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Combturb

The combustion turbine modulecalculates corrected power and heatrates as well as thermal efficiency,corrected thermal efficiency, andheat consumption.

Units Converted.

YES

Analog Inputs Description Usagetchillerinlt chiller inlet temperature [Optional] Required if a chiller/evaporator is present.tchilleroutlt chiller outlet temperature [Optional] Required if a chiller/evaporator is present.tempambnt ambient air temperature [Optional] Required if a chiller/evaporator is present.tcompin compressor inlet temperature REQUIRED twetbulb wet bulb temperature [Optional] Required if a chiller/evaporator is present.eevapdes evaporator design efficiency [Optional] Required if a chiller/evaporator is present.patmos atmospheric pressure REQUIRED Soil_specgrav specific gravity of oil [Optional] Required if oil is used.toil oil temperature [Optional] Required if oil is used.wmass_oilflow mass oil flow [Optional] Required if oil is used.Mlrmass molar mass of natural gas [Optional] Required if natural gas is used and is output from

fuels.FPcorcmpinlt comp inlet temp pwr corr fact [Optional] Required if compressor inlet temperature power

corr factor is used.FPcorcmpinlp comp inlet press pwr corr fact [Optional] Required if combustion turbine inlet pressure loss

power corr factor is used.FPcorexhpr exhaust press power corr fact [Optional] Required if combustion turbineExhaust pressure

loss power corr factor is used.FPcorinjused injection power corr factor [Optional] Required if combustion turbine injection loss power

correction factor is used.FPcoratmospr atmospher press pwr corr fact [Optional] Required if atmospheric pressure power correction

factor is used.FPcorrelhum rel humidity pwr corr fact [Optional] Required if relative humidity power correction factor

is used.FPcormisc misc power correction factor [Optional] Required if miscellaneous power correction factor is

used.Pcombturb combustion turbine pwr output REQUIRED Pcombtdes design combustion turbine pwr [Optional]Fngch4 Fraction of methane [Optional] Required if natural gas is used and output from

fuels algorithm.Fngc2h6 Fraction ofEthane [Optional] Required if natural gas is used and output from

fuels algorithm.Fngc3h8 Fraction of propane [Optional] Required if natural gas is used and output from

fuels algorithm.Fngnbt Fraction of n butane [Optional] Required if natural gas is used and output from

fuels algorithm.Fngisbt Fraction of isobutane [Optional] Required if natural gas is used and output from

fuels algorithm.Fngnpt Fraction of n pentane [Optional] Required if natural gas is used and output from

fuels algorithm.Fngispt Fraction of isopentane [Optional] Required if natural gas is used and output from

fuels algorithm.Fnghex Fraction of n hexane [Optional] Required if natural gas is used and output from

fuels algorithm.Fngco2 Fraction of carbon dioxide [Optional] Required if natural gas is used and output from

fuels algorithm.

Global Performance Advisor

05/02 (Rev 2) 86 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Combturb (Cont.)Analog Inputs(Cont.)

Description Usage

Fngh2 Fraction of hydrogen [Optional] Required if natural gas is used and output fromfuels algorithm.

Fngn2 Fraction of nitrogen [Optional] Required if natural gas is used and output fromfuels algorithm.

Fngh2o Fraction of water [Optional] Required if natural gas is used and output fromfuels algorithm.

Fngco CO nat gas constituent [Optional] Required if natural gas is used and output fromfuels algorithm.

Fngo2 oxygen nat gas constituent [Optional] Required if natural gas is used and output fromfuels algorithm.

Fngh2s hydrogn sulfur nat gas constit [Optional] Required if natural gas is used and output fromfuels algorithm.

Fnghep heptane nat gas constituent [Optional] Required if natural gas is used and output fromfuels algorithm.

pngas pressure natural gas [Optional] Required if natural gas is used and output fromfuels algorithm.

tngas temperature natural gas [Optional] Required if natural gas is used and output fromfuels algorithm.

Wmas_ngas natural gas fuel flow [Optional] Required if natural gas is used and output fromfuels algorithm.

wtotfuel total fuel flow REQUIRED Output from fuels algorithm.hlhvfuel lower heating value of fuel [Optional] The lower or higher heating value is required.hhhvfuel higher heating value of fuel [Optional] The lower or higher heating value is required.winj injection flow [Optional] Use if injection flow is present.pinj injection pressure [Optional] Use if there is fuel injection.tinj injection temperature [Optional] Use if there is fuel injection.tinjref reference injection temp [Optional] Use if there is fuel injection. Frcorcmpinlt comp inlet temp htrt corr fact [Optional] Required if compressor inlet temp heat rate corr

factor is used.Frcorcmpinlp comp inlet pres htrt corr fact [Optional] Required if combustion turbine inlet pressure loss

heat rate corr factor is usedFrcorexhpr exhaust press htrte corr fact [Optional] Required if comb turbineExhaust pressure loss heat

rate corr factor is used.Frcorinjused inj heat rate correction fact [Optional] Required if injection loss heat rate correction factor

is used.Frcoratmospr atmos press ht rate corr fact [Optional] Required if atmospheric pressure rate correction

factor is used.Frcorrelhum rel humid heat rate corr fact [Optional] Required if relative humidity rate correction factor is

used.Frcormisc misc heat rate corr factor [Optional] Required if miscellaneous heat rate correction

factor is used.rhrctdes heat rate combust turb design [Optional]wctestair combust turbineEst air flow [Optional]tctout combust turbine outlet temp REQUIRED Rcarb pct carbon in fuel REQUIRED Output from fuels algorithm.Rco2 pcnt co2 in fuel REQUIRED Output from fuels algorithm.Rhydr pcnt hydrogen in fuel REQUIRED Output from fuels algorithm.Rco pcnt CO in fuel REQUIRED Output from fuels algorithm.Rnitr pcnt nitrogen in fuel REQUIRED Roxy pcnt oxygen in fuel REQUIRED Output from fuels algorithm.Rsulf pcnt sulfur in fuel REQUIRED Output from fuels algorithm.Rso2 pct SO2 in fuel REQUIRED Output from fuels algorithm.Rncmbt pct non combustibles in fuel [Optional] Output from fuels algorithm.Wvap ambient specific humidity REQUIRED Wvapcmpin ambient spec hum at comp inlet REQUIRED

Global Performance Advisor

05/02 (Rev 2) 87 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Combturb (Cont.)Digital Inputs Description Usagezdocalc digital perf calc run flag REQUIRED zchiller_on chiller in service digital flg [Optional] Needed if using digital logic to check

chiller in-service.

Analog Outputstchiller_drop chiller temp drop [Optional] tchiller_thresh chiller threshold value [Optional] eevapact evaporator eff [Optional] eevapdev evaporator eff dev from design [Optional] Pcombtcorr corrected combust turb pwr [Optional] Rctbaseload percent base load [Optional] pabsngas natural gas absolute pressure [Optional] hgasmix gas mixture enth [Optional] hstpngas gas enth at STP [Optional] qngas_sensheat nat gas sensible heat [Optional] tapi api index of oil [Optional] hspecgrav spec enth of oil [Optional] qoil_sensheat oil sensible heat [Optional] qsensheat total sensible heat [Optional] qfuelin total heat input in fuel [Optional] pabsinj injection absolute pressure [Optional] hinj injection enth [Optional] pabsinjref injection reference pressure [Optional] hinjref injection reference enth [Optional] qinj heat added by injection [Optional] qctintot tot heat input to combust turb [Optional] qctpwrout combturb ht out due to pwr gen [Optional] ecttherm combust turb thermal eff [Optional] rhrcombturb combust turb heat rate [Optional] rhrctcorr combust turb corr heat rate [Optional] rhrctdev combust turb htrt dev from des [Optional] ectcorr corrected combust turb eff [Optional] qcthtcorr corr combust turb heat rate [Optional] kmischeatloss misc heat loss percentage [Optional] qctexh comturb heat out inExha gases [Optional] Ffueltoairest combustturbEst fuel air ratio [Optional] hestgasref estExhaust gas reference enth [Optional] hestgasout estExhaust gas outlet enth [Optional] hestgasin estExha gas enth @ comp inlet [Optional] wctexh combust turbExhaust gas flow [Optional] Used in hrsg algorithm.wair compressor air flow [Optional] Ffueltoairact actual fuel to air ratio [Optional] Used in hrsg algorithm.hctdes comb turb desExhaust gas enth [Optional] Used in hrsg algorithm.hctexhout exhst gas enth @exhst gas temp [Optional]hctcompin xhst gas enth @comp inlet temp [Optional]

Digital Outputs < NONE >

ConstantsTAPICONST1 = 141.5 CHSPEC2 = -0.11426 CHSPEC5 = 2.18E-04 TAPICONST2 = 131.5 CHSPEC3 = 0.373 CHSPEC6 = 7.0E-07 CHSPEC1 = -30.016 CHSPEC4 = 1.43E-03 HOIL_REF = 7.8

Global Performance Advisor

05/02 (Rev 2) 88 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Condsr

This module determines the method for out-of-servicecompartments. After checking for out-of-service compartments,the specific heat, specific volume and specific gravity ofcirculating water are calculated. Next, the condenser duty, thecondenser circulating water flow, the actual and design heattransfer, the cleanliness factor,Expected back pressure withclean tubes and the back pressure deviation are calculated. Thecalculations are done in accordance with ASME Power TestCode PTC 12.2 (1983) and HeatExchange Institute Standardsfor Steam Surface Condensers, Ninth edition.

UnitsConverted.

YES

Analog Inputs Description Usagetcwin cond inlet temp [Optional]tcwout cond outlet temp [Optional]tcwavg cnd avg circ water temp [Optional]pcndprs cnd back gauge pres [Optional] Use if condenser pressure is measured

in gauge pressure.pabscndprs cnd back abs pres [Optional] Use if condenser back pressure is

measured in absolute.patmos atmospheric pres [Optional]thotwell cond hotwell temp [Optional]wmkupw mkup water flow [Optional] Use if makeup water flow is measured as

a mass flow and is present.wvolmkupw mkup vol water flow [Optional] Use if makeup water flow is measured as

a vol flow and makeup water is present.tmkupw mkup water temp [Optional] Use if makeup water is present.wcwflwin circulating water inlet flow [Optional] Use if circ water flow IS measured.wltrex lpExhaust flow [Optional] Use if circ water flow IS NOT measured.hltrex lpExhaust enth [Optional] Use if circ water flow IS NOT measured.wbfpt blr feedpump turbine flow [Optional] Use if circ wtr flow IS NOT measured &

bfpt flow used in heat bal around condsr.hbfpt blr feedpump turbine enth [Optional] Use if circ wtr flow IS NOT measured &

bfpt flow used in heat bal around condsr.wssrsp stm seal reg supply flow [Optional] Use if circ wtr flow IS NOT measured

&ssr flow used in heat bal around condsr.hssrsp stm seal reg supply enth [Optional] Use if circ wtr flow IS NOT measured

&ssr flow used in heat bal around condsr.wsjaed stm jet airEject flow [Optional] Use if circ wtr flow IS NOT measured &

sjae flow used in heat bal around condsr.hsjaed stm jet airEject enth [Optional] Use if circ wtr flow IS NOT measured &

sjae flow used in heat bal around condsr.wcdrn gland cond drain flow [Optional] Use if circ wtr flow IS NOT measured &

gsc flow used in heat bal around condsr.hgcdrn gland cond drain enth [Optional] Use if circ wtr flow IS NOT measured &

gsc flow used in heat bal around condsr.wfhdlp low pres fhtr drain flow [Optional] Use if circ wtr flow IS NOT measured &

lp htr drns used in heat bal around consrhfhdlp low pres fhtr drain enth [Optional] Use if circ wtr flow IS NOT measured &

lp htr drns used in heat bal around consr wmisc1 misc 1 drain flow [Optional] Use if circ wtr flow IS NOT measured &

misc flow1 used in heat bal around condsr hmisc1 misc 1 drain enth [Optional] Use if circ wtr flow IS NOT measured &

misc flow1 used in heat bal around condsr wmisc2 misc 2 drain flow [Optional] Use if circ wtr flow IS NOT measured &

misc flow2 used in heat bal around condsr

Global Performance Advisor

05/02 (Rev 2) 89 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Condsr (Cont.)Analog Inputs (Cont.) Description Usagehmisc2 misc 2 drain enth [Optional] Use if circ wtr flow IS NOT measured &

misc flow2 used in heat bal around condsr tcwrise avg cnd cw temp rise [Optional]kcmpt1_cnt comp 1 in serv count [Optional] Output from cndavgtemp algorithm.kcmpt2_cnt comp 2 in service count [Optional] Output from cndavgtemp algorithm.kcmpt1_indiam water tubes inner diam [Optional] Output from cnddesign algorithm.kcmpt2_indiam air tubes inner diam [Optional] Use if there are air tubes. Output from

cnddesign algorithm.kcmpt1_tubes number of water tubes [Optional] Output from cnddesign algorithm.kcmpt2_tubes number of air tubes [Optional] Use if there are air tubes. Output from

cnddesign algorithm.kcmpt1_plug number of water plugged tubes [Optional]kcmpt2_plug number of air plugged tubes [Optional] Use if there are air tubes.knum_pass number of cond passes [Optional] Output from cnddesign algorithm.kcmpt1_length water tubes length [Optional] Output from cnddesign algorithm.kcmpt2_length air tubes length [Optional] Use if there are air tubes. Output from

cnddesign algorithm.kcmpt1_outdiam water tubes outer diam [Optional] Output from cnddesign algorithm.kcmpt2_outdiam cmpt 2 tube outer diam [Optional] Use if there are air tubes. Output from

cnddesign algorithm.kcmpt1_cndmatcf water tubes material corr fact [Optional] Output from cnddesign algorithm.kcmpt2_cndmatcf air tubes material corr fact [Optional] Use if there are air tubes. Output from

cnddesign algorithm.Ccndes cond cleanliness factor [Optional] Output from cnddesign algorithm.knum_cmpts number of compartments [Optional] Output from cnddesign algorithm.

Digital Inputszdocalc Digital perf calc run flag REQUIREDzmkup_gpm condenser makeup gpm flag REQUIRED Output from cnddesign algorithm.zcircwater_flag condenser circ water flag REQUIRED Output from cnddesign algorithm.zlp_exhaust condenser lpExhaust flag REQUIRED Output from cnddesign algorithm.zmakeup_water condenser makeup water flag REQUIRED Output from cnddesign algorithm.zgland_drain condenser gland drain flag REQUIRED Output from cnddesign algorithm.zlp_heaters condenser lp heaters flag REQUIRED Output from cnddesign algorithm.zbfpt_exhaust condenser bfptExhaust flag REQUIRED Output from cnddesign algorithm.zssr_spillover condenser ssr flag REQUIRED Output from cnddesign algorithm.zsjae condenser sjae flag REQUIRED Output from cnddesign algorithm.zout_of_svclp cond out of serv lp htrs REQUIRED Output from cnddesign algorithm.zcond_misc1 condenser misc 1 flag REQUIRED Output from cnddesign algorithm.zcond_misc2 condenser misc 2 flag REQUIRED Output from cnddesign algorithm.zgauge gauge pressure flag REQUIRED Output from cnddesign algorithm.zabs abs pressure flag REQUIRED Output from cnddesign algorithm.zhga hga pressure flag REQUIRED Output from cnddesign algorithm.zhgv hgv pressure flag REQUIRED Output from cnddesign algorithm.

Analog Outputsvcwin circ water spec volume [Optional]Scwspecgrav circ water spec grav [Optional]pabscnd cond back pres abs [Optional]tcndvac cnd sat temp [Optional]tcndttd cnd term temp diff [Optional]Tcndinitdif cnd initial temp diff [Optional]Tcndsub cnd temp subcooling [Optional]Wmkupklbh cnd makeup water flow [Optional]Wfhdvrt cnd fhtr div flow [Optional]

Global Performance Advisor

05/02 (Rev 2) 90 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Condsr (Cont.)Analog Outputs (Cont.) Description UsageHfhdvrt fhtr div enth total [Optional]Hmkupw cnd makeup water enth [Optional]Hcnsat condensate enthalpy [Optional]Ccwspecheat circulating water spec heat [Optional]Qcndty cnd duty [Optional]wcwflwout circ water outlet flow [Optional]wvolcwtr circ water flow in gpm [Optional]kcmpt1_insvc_tubes no cmpt h2o in svc [Optional]kcmpt2_insvc_tubes no cmpt air in svc [Optional]acndtubes cnd tube int cross sec area [Optional]kcmpt1_clean no cmpt h2o clean tubes [Optional]kcmpt2_clean no cmpt air clean tubes [Optional]Vcwvel average circ water velocity [Optional]lcndlmtdr cnd log mean tmp diff ratio [Optional]lcndlmd log mean temp diff [Optional]acndouta cnd surface area of tubes [Optional]Ucndactht actual ht transf coeff [Optional]Ucnduncorrht1 unc ht xfer coef cmp 1 [Optional]Ucnduncorrht2 unc ht xfer coef cmp 2 [Optional]Ucnduncht cnd uncorr ht transf coeff [Optional]kcndmatcorrfact cnd mat corr factor [Optional]kcndtempcorrfact cnd temp corr factor [Optional]Ucndclnht cnd clean therm trans [Optional]Ccndcln cleanliness factor [Optional]llmdcln cnd log mean temp diff [Optional]texsat exp sat temp [Optional]tcndcln cndExp sat temp [Optional]pabscndcln exp cond back pres abs [Optional]pabscnddev cnd pres dev abs [Optional]

Digital Outputs< NONE >

ConstantsCNDSPECLIMIT = 80.0 CFACT1[0] = 0.23114 CFACT2[3] = 5.5561E-06CNDSPECHEAT[0] =1.0207963

CFACT1[1] = 0.014904 CFACT3[0] = 0.17049

CNDSPECHEAT[1] = -5.2135485E-04

CFACT1[2] = -5.4678E-05 CFACT3[1] = 0.021562

CNDSPECHEAT[2] =2.9620436E-06

CFACT1[3] = 0.0 CFACT3[2] = -1.7424E-04

CNDSPECCONST = 0.998 CFACT2[0] = -1.9541 CFACT3[3] = 5.1556E-07CTEMPCORRFACT1 = 60.0 CFACT2[1] = 0.106304CTEMPCORRFACT2 = 80.0 CFACT2[2] = -1.3046E-03

Global Performance Advisor

05/02 (Rev 2) 91 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Cooltwr

This modulecomputesEstimatedcooling tower outlettemperature.

UnitsConverted.

YES

Analog Inputs Description UsagePmwatt gross megawatts REQUIREDtcthotin cooling twr hot wtr in temp REQUIREDtctcoldout cooling twr cold wtr out temp REQUIREDtwetbulb cooling water wet bulb temp REQUIREDFcoolflow circ water act/des ratio REQUIRED Output from cooltwrpwr algorithm.patmos atmospheric pressure REQUIREDtwetbulbindes wet bulb des in temp REQUIRED Output from cooltwrdes algorithm.kdeslg des l/g value REQUIRED Output from cooltwrdes algorithm.tctindes cooling twr in des temp REQUIRED Output from cooltwrdes algorithm.tctoutdes cooling twr out des temp REQUIRED Output from cooltwrdes algorithm.kcharconst cooling twr char constant REQUIRED kcharexp cooling twr charExponent REQUIRED Pctdes cooling twr des power REQUIRED Output from cooltwrpwr algorithm.Pcttotal cooling twr total actual power REQUIRED Output from cooltwrpwr algorithm.Hcoolelv cooling twrElevation REQUIRED Output from cooltwrdes algorithm.

Digital Inputszdocalc Digital perf calc run flag REQUIREDzcooltwron [Optional]

Analog Outputstcoolrange cooling twr temp range [Optional]tcoolappr cooling twr temp appr [Optional]hairdes air enth design [Optional] Used as an input in capab algorithm.qtotair design outlet air heat [Optional]twetbulboutdes cooling twrEst wet bulb temp [Optional]kiters cooling twr iteration count [Optional]kiterflag cooling twr iteration flag [Optional]dairdes design air density [Optional]vairdes volume air density [Optional]klgconst l/g constant [Optional]hsatairin enth of actual air inlet [Optional] Used as an input for capab algorithm.klg l/g value [Optional]kloverg slope of air enth line to lg [Optional]kslope slope of air enth line [Optional] Used as an input for capab algorithm.tcwhot circ water cold temp [Optional]tcwcold circ water cold temp [Optional]twetbulbest wet bulbEst temp [Optional]hsatest enth at test conditions [Optional]dairact density of actual air [Optional]vairact volume of actual air [Optional]tgkavl target value of kavl [Optional]tcwest est cooling twr out temp [Optional]

Global Performance Advisor

05/02 (Rev 2) 92 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Cooltwr (Cont.)Digital Outputs Description Usage< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 93 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Cooltwrdes

This modulereads thedesignscreeninformation.

UnitsConverted.

YES

Analog Inputs Description Usagekdummy dummy Analog input [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputsknumfantot no of total cooling twr fans [Optional]tctindes cooling twr in des temp [Optional]tctoutdes cooling twr out des temp [Optional]wvdesflow cooling twr des flow [Optional]Pfandes des power per fan [Optional]twetbulbindes cool twr wet bulb des temp [Optional]Hcoolelv cooling twrElevation [Optional]kdeslg cooling twr des l/g [Optional]Pfanmin fan minimum power [Optional]

Digital Outputszdocool cooling tower Digital flag [Optional]

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 94 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Cooltwrpwr

This module calculatesindividual cell power,design water flow, theratio of design water flowto actual flow, total fanpower and ratio of designpower to actual power.

UnitsConverted.

YES

Analog Inputs Description UsageIctvolt1 - throughIctvolt20

cell 1 voltage - throughcell 20 voltage

[Optional] Use if powermeasurement is not available.

Ictamp1 - throughictamp20

cell 1 current - throughcell 20 current

[Optional] Use if powermeasurement is not available.

Fctpf1 - throughFctpf20

cell 1 power factor - throughcell 20 power factor

[Optional] Use if powermeasurement is not available.

Fmtreff cooling tower motor efficiency [Optional] Use if powermeasurement is not available.

Pctfan1 - throughPctfan20

fan 1 power - throughfan 20 power

[Optional] Use if powermeasurement is available.

Pfanmin minimum power per cell [Optional] Use if powermeasurement is available. Outputfrom cooltwrdes algorithm.

wvdesflow des cooling twr volum flow REQUIRED Output fromcooltwrdes algorithm.

wvolctwtr cool twr volum water flow REQUIREDknumfantot total number of fans REQUIRED Output from

cooltwrdes algorithm.Pfandes cooling tower design power REQUIRED Output from

cooltwrdes algorithm.

Digital Inputszdocalc Digital perf calc run flag REQUIREDzdocool Digital in-service flag [Optional]zctinserv1 - throughzctinserv20

cell 1 in-service flag - throughcell 20 in-service flag

[Optional]

Analog Outputswvcooldeswtr des vol wtr fl fr in-svc fans [Optional]Fcoolflow ratio des water flow/act flow [Optional] Used in cooltwr

algorithm as inputPctcell1 - throughPctcell20

pwr cooling twr fan 1 - throughpwr cooling twr fan 20

[Optional]

Pcttotal total fan pwr [Optional]Pctdes total des pwr [Optional]Frctpower ratio of actual pwr to des pwr [Optional]

Digital Outputszinsvccell1 - throughzinsvccell20

[Optional]

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 95 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Corblrloss

This modulecalculates thecorrected boilerefficiency and thedesign efficiencyand deviation.

UnitsConverted.

YES

Analog Inputs Description Usagethtrmoc corr non lkgExit gas temp REQUIRED Output from boiler

algorithm.thtradesin ahtr air des in temp [Optional]Wdgful tot fl gas in fuel inc wt xair REQUIRED Output from airhtrs

algorithm.heatvalue tot heating val of fuel(s) REQUIRED Output from fuels

algorithm.Rmoist tot moisture in fuel(s) REQUIRED Output from fuels

algorithm.Rhydr tot hydrogen in fuel REQUIRED Output from fuels

algorithm.Wairth stoich wt air complete comb REQUIRED Output from airhtrs

algorithm.Wairex wtExcess air per STP fuel REQUIRED Output from airhtrs

algorithm.Wvap water content of vapor REQUIRED Output from airhtrs

algorithm.hlsunmeas unmeasured heat losses REQUIRED Output from boiler

algorithm.hlsunburn ht loss unburned combust REQUIRED Output from boiler

algorithm.hlsrad ht loss due to radiation REQUIRED Output from boiler

algorithm.Rlsunmeas pcnt unmeas ht losses REQUIRED Output from boiler

algorithm.Rlsunburn pcnt ht loss unburned combust REQUIRED Output from boiler

algorithm.Rlsrad pcnt heat loss radiation REQUIRED Output from boiler

algorithm.eblreffdes boiler design efficiency [Optional]

Digital Inputszdocalc digital perf calc run flag REQUIRED

Analog Outputscfluegasc spec ht fl gas corrExit temp [Optional] hdglsc corr ht loss due to dry gas [Optional] Rdglsc pcnt corr ht loss dry gas [Optional] Used for o2 controllable

losses algorithm.hfgexc vap enth cor non-lkgExit temp [Optional] Used forExit gas temp

and o2 controllable loss algorithm.hfghoc enth des ahtr air inlet temp [Optional] Used forExit gas temp

controllable losses algorithm.hflmsc corr ht loss moist in fuel [Optional] Rflmsc pcnt cor ht loss moist in fuel [Optional] Used forExit gas temp

controllable losses algorithm.

Global Performance Advisor

05/02 (Rev 2) 96 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Corblrloss (Cont.)Analog Outputs (Cont.) Description Usagehcmbhc corr ht loss moist from h2 [Optional] Rcmbhc pcnt corr ht loss moist fr h2 [Optional] Used forExit gas temp

controllable losses algorithm.pabshaic sat vap pres des ahtr air temp [Optional] hrvapc sat vap enth sat vapor pres [Optional] Used in O2 controllable

losses module.hwvaic corr ht loss moist air suppl [Optional] Rwvaic pcnt cor ht loss moist air sup [Optional] Used inExit gas temp

and O2 controllable lossesmodules.

hlstotcor total corr fuel related loss [Optional] Rlstotcor pcnt tot cor fuel related loss [Optional] eblreffc corr ht loss boiler effic [Optional] Required for O2 control

lable losses moduleeblreffcdev corr boiler effic dev [Optional]

Digital Outputs < NONE >

ConstantsCGAS[0] = 0.237058CGAS[1] = 1.65875e-05CGAS[2] = 4.18508e-08CGAS[3] = -2.20475e-11

Global Performance Advisor

05/02 (Rev 2) 97 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Cosin

Cosinealgorithm.

UnitsConverted.

YES

Analog Inputs Description Usagekvalue input to cosine module **REQUIREDkptgain abs val gain value [Optional]kptbias abs val bias value [Optional]

Digital Inputszdocalc digital perf calc run flag **REQUIRED

Analog Outputskcosin_res cosine result value **REQUIRED

Digital Outputs< NONE >

Constantskcgain = 1 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 98 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Deaerator

This is a direct contact typeheatExchanger. The following stepscalculate the condensate inlet flow,outlet flow, inlet enthalpy and outletenthalpy. The extraction steam flowand enthalpy are also calculated.

UnitsConverted.

YES

Analog Inputs Description Usagewdrninlt drain inlet flow REQUIREDhdrninlt drain inlet enthalpy REQUIREDtdeaoutlt deaerator outlet temp REQUIREDtdeainlt deaerator inlet temp REQUIREDpdeaoutlt deaerator outlet pres REQUIREDpdeainlt deaerator inlet pres REQUIREDtdearisedes deaerator temp rise des [Optional]wblrfw boiler feedwater flow REQUIREDwdsrht reheat spray flow [Optional]wdssht superheat spray flow [Optional]pdeaext deaerator extraction pres [Optional] Must enter this pressure or turbineExt pressure.patmos atmospheric pressure REQUIREDtdeaext deaerator extraction temp [Optional] Must enter this temp or turbineExt temp.pturb turbine extraction pres [Optional] Must enter this pressure or deaeratorExt pressure.tturb turbine extraction temp [Optional] Must enter this temp or deaerator extraction temp.pdrop pres drop fr turb to

deaerator[Optional] Must enter pressure drop if turbExt pressure measuredand dea extraction pressure not measured.

pincr pres incr fr deaerator toturb

[Optional] Must enter if dearatorExt pressure is measured andturbineExt pressure is not measured.

wdeavap deaerator vapor flow [Optional]hdeavap deaerator vapor enthalpy [Optional]wdealkg deaerator leakage flow [Optional]hdealkg deaerator leakage enthalpy [Optional]wdeaaux deaerator auxiliary flow [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputshdrnin_tot enthalpy drain inlet total [Optional]wdrnin_tot drain inlet flow total [Optional]tdearise deaerator temp rise [Optional]tdearisedev deaerator temp rise dev [Optional]psatoutlt deaerator sat outlet pres [Optional]psatinlt deaerator sat inlet pres [Optional]pabsdeaoutlt abs deaerator outlet pres [Optional]pabsdeainlt abs deaerator inlet pres [Optional]hdeaoutlt deaerator outlet enth [Optional]wdeain deaerator inlet flow [Optional]hdeain deaerator inlet enth [Optional]wdeaoutlt deaerator outlet flow [Optional]pabsdeaext deaerator absExtr pres [Optional]pabsturb turbineExtr abs pres [Optional]hdeaext deaeratorExtr enth [Optional]wdeaext deaeratorExtr flow [Optional]

Global Performance Advisor

05/02 (Rev 2) 99 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Deaerator (Cont.)Analog Outputs(Cont.)

Description Usage

wturb turbineExtr flow [Optional]hturb turbineExtr enth [Optional]tdeasat deaerator sat temp [Optional]

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 100 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Densityair

This routines calculates thedensity of air at the fan dischargeconditions as well as the densitycorrection factor.

UnitsConverted.

YES

Analog Inputs Description UsageWvap specific humidity **REQUIREDtwetbulb wet bulb temperature **REQUIREDtdrybulb dry bulb temperature **REQUIREDpabsbaro barometric pressure **REQUIREDtempdis discharge temperature **REQUIREDpdisch discharge pressure **REQUIREDpatmos atmospheric pressure **REQUIREDdensityref reference density **REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog OutputsMmoistair mol wt of moist air [Optional]kspecgas specific gas const [Optional]psatvap saturated vapor pressure [Optional]ppartial partial pres of water [Optional]dairvap dens of air/vap mixture [Optional]tabsdis absolute discharge temperature [Optional]pabsdis absolute discharge pressure [Optional]dairdisch dens of air at fan disch **REQUIREDdensitycf density correction factor **REQUIRED

Digital Outputs< NONE >

Constants KCONSTC1 = 459.7 KCONSTC9 = 2700.0 MDRYAIR = 28.965KCONSTC6 = 2.96E-04 KCONSTC10 = 70.77 KMOIST = 18.02KCONSTC7 = -1.59E-02 KCONSTC13 = 13.62 KDAIRVAP = 0.378KCONSTC8 = 0.41 KCONSTR0 = 1545.0

Global Performance Advisor

05/02 (Rev 2) 101 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

DensitycorThis module computes a densitycorrected to current temperatureand pressure conditions as well asa density correction factor.

UnitsConverted.

YES

Analog Inputs Description Usagetempdis discharge temperature **REQUIREDpdisch discharge pressure **REQUIREDpatmos atmospheric pressure **REQUIREDdensityref reference density **REQUIREDtdisref reference temperature **REQUIREDpdisref reference discharge pressure **REQUIRED

Digital Inputszdocalc digital perf calc run flag **REQUIRED

Analog Outputstabsdis absolute discharge temperature [Optional]tabsdisref absolute dis ref temp [Optional]pabsdis absolute discharge pressure [Optional]pabsdisref absolure dis ref pressure [Optional]densitycor dens cor to cur temp and pres **REQUIREDdensitycf density correction factor **REQUIRED

Digital Outputs< NONE >

Constants< NONE >

Global Performance Advisor

05/02 (Rev 2) 102 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Densitygas

This module calculates thedensity of gas at the fandischarge as well as adensity correction factor.

UnitsConverted.

YES

Analog Inputs Description UsageRco2 pcnt of CO2 **REQUIREDRoxy pcnt of O2 [Optional]Rco pcnt of CO **REQUIREDRnitr pcnt of N2 **REQUIREDRso2 pcnt of SO2 **REQUIREDRspechum specific humidity **REQUIREDtempdis discharge temperature **REQUIREDpdisch discharge pressure **REQUIREDpatmos atmospheric pressure **REQUIREDdensityref reference density **REQUIRED

Digital Inputszdocalc digital perf calc run flag **REQUIRED

Analog OutputsMwtco2 mol wt of co2 [Optional]Mwto2 mol wt of o2 [Optional]Mwtco mol wt of co [Optional]Mwtn2 mol wt of n2 [Optional]Mwtso2 mol wt of so2 [Optional]Mwtdrygas mol wt of dry gas [Optional]Mmoistgas mol wt of moist gas [Optional]kspecgas specific gas const [Optional]tabsdis absolute discharge temperature [Optional]pabsdis absolute discharge pressure [Optional]dgasdisch dens of gas at fan disch **REQUIREDdensitycf density correction factor **REQUIRED

Digital Outputs< NONE >

ConstantsKWTCO2 = 44.01 KWTN2 = 28.02 KCONSTR0 = 1545.0KWTO2 = 32.0 KWTSO2 = 64.07 KMOIST = 18.02KWTCO = 28.01 KCONSTC11 = 5.193

Global Performance Advisor

05/02 (Rev 2) 103 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Diganlgcmp2poly

This module calculatesone of two y-valuepolynomials based onan x input value, Digitalinput and is split by aspecified Analog value.

UnitsConverted.

YES

Analog Inputs Description UsageKptload val check region calc poly [Optional]Kptlimit limit for lower region [Optional]Kxval x value for lower region [Optional]Kptgain point gain for lower region [Optional]Kptbias point bias for lower region [Optional]Kxval2 x value for upper region [Optional]Kptgain2 point gain for region 2 [Optional]Kptbias2 point bias for region 2 [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIREDzflag dig flag to determine region REQUIRED

Analog Outputskyvalue y calculated value REQUIRED

Digital Outputs< NONE >

ConstantsKapoly[0] = 0 Kapoly2[0] = 0 Kcgain = 1 Kapoly[1] = 1 Kapoly2[1] = 1 Kcbias = 0 Kapoly[2] = 0 Kapoly2[2] = 0 Kcgain2 = 1 Kapoly[3] = 0 Kapoly2[3] = 0 Kcbias2 = 0 Kapoly[4] = 0 Kapoly2[4] = 0 Kclimit = 0.0Kapoly[5] = 0 Kapoly2[5] = 0 Kcload = 0.0

Global Performance Advisor

05/02 (Rev 2) 104 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Diganlgcmppoly

This modulecalculates the y-value of apolynomial based onthe x input in aspecified range anda digital flag.

UnitsConverted.

YES

Analog Inputs Description Usagekptload val check betw low/up limit [Optional]kptlolimit lower limit for region [Optional]kptuplimit upper limit for region [Optional]kxval x value to calculate poly [Optional]kptgain point gain value [Optional]kptbias point bias value [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIREDzflag dig flag to determine region REQUIRED

Analog Outputskyvalue y calculated value [Optional]

Digital Outputs< NONE >

ConstantsKapoly[0] = 0 Kapoly[4] = 0 Kcload = 0 0 Kapoly[1] = 1 Kapoly[5] = 0 Kclolimit = 0 0 Kapoly[2] = 0 kcgain = 1 Kcuplimit = 0 0 Kapoly[3] = 0 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 105 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Digcmp2poly

This modulecalculates one of twoy-value polynomialsbased on an x inputand a digital flag.

UnitsConverted.

NO

Analog Inputs Description Usagekxval x val region 1 poly [Optional]kptgain pnt gain region 1 poly [Optional]kptbias pnt bias region 1 poly [Optional]kxval2 x value region 2 poly [Optional]kptgain2 gain pnt region 2 poly [Optional]kptbias2 bias pnt region 2 poly [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIREDzflag dig flag to determine region REQUIRED

Analog Outputskyvalue y calculated value [Optional]

Digital Outputs< NONE >

Constantskdpoly[0] = 0 kdpoly2[0] = 0 kcgain = 1 kdpoly[1] = 1 kdpoly2[1] = 1 kcbias = 0 kdpoly[2] = 0 kdpoly2[2] = 0 kcgain2 = 1 kdpoly[3] = 0 kdpoly2[3] = 0 kcbias2 = 0 kdpoly[4] = 0 kdpoly2[4] = 0kdpoly[5] = 0 kdpoly2[5] = 0

Global Performance Advisor

05/02 (Rev 2) 106 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Digcmppoly

This modulecalculates the y-value of apolynomial basedon an x input anddigital flag.

UnitsConverted.

NO

Analog Inputs Description Usagekxvalue x value to calc poly [Optional]kptgain gain point for poly [Optional]kptbias bias point for poly [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIREDzflag dig val determine calc poly REQUIRED

Analog Outputskyvalue y calculated value [Optional]

Digital Outputs< NONE >

Constantskdigpoly[0] = 0kdigpoly[1] = 1kdigpoly[2] = 0kdigpoly[3] = 0kdigpoly[4] = 0kdigpoly[5] = 0 kcgain = 1 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 107 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Digitalin

This modulereads digitalOPC inputsand outputslocal digitalvalues.

UnitsConverted.

NO

Analog Inputs Description Usagekdummy dummy value [Optional]

Digital Inputsdinput1 Digital input 1 REQUIREDdinput2 - throughdinput50

Digital input 2 - throughDigital input 50

[Optional]

Analog Outputs < NONE >

Digital Outputsdinput1_loc local Digital value 1 REQUIREDdinput2_loc - throughdinput50_loc

local Digital value 2 - throughDigital value 50

[Optional]

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 108 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Digitalout

This moduleoutputsDigital OPCpoints fromlocal digitalvalues.

UnitsConverted.

NO

Analog Inputs Description Usagekdummy dummy point [Optional]

Digital Inputsdinput1 local Digital input 1 REQUIREDdinput2 - throughdinput50

local Digital input 2 - throughlocal Digital input 50

[Optional]

Analog Outputs < NONE >

Digital Outputsdoutput1 Digital output 1 REQUIREDdoutput2 - throughdoutput50

Digital output 2 - throughDigital output 50

[Optional]

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 109 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Divide4

This moduledivides avariable bythe productof 4numbers.

UnitsConverted.

NO

Analog Inputs Description Usagekinval input value REQUIREDkdval1 divide value 1 REQUIREDkdval2 divide value 2 [Optional]kdval3 divide value 3 [Optional]kdval4 divide value 4 [Optional]kptgain point gain value [Optional]kptbias point bias value [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputskresult result REQUIRED

Digital Outputs< NONE >

Constantskcgain = 1 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 110 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Drnclr

This modulecalculatesdrain coolerapproachanddeviation.

UnitsConverted.

YES

Analog Inputs Description Usagetfhdrn feedheater drain cooler temp REQUIREDtfhin feedheater inlet temperature REQUIREDtfhdsdca feedhtr des drn cooler appr [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputstfhdca fhtr drn cooler appr [Optional]tdcadev fhtr drn cooler appr dev [Optional]

Digital Outputs< NONE >

Constants< NONE >

Global Performance Advisor

05/02 (Rev 2) 111 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Drnpmp

This module calcules a heat and materials balancearound a shell and tube type heatExchanger withthe drain pumped forward. The extraction, drain,inlet and outlet flows are calculated for thefeedheater. The turbine extraction flow andenthalpy are also calculated.

UnitsConverted.

YES

Analog Inputs Description Usagetfhinlt feedhtr inlet temp **REQUIREDtfhoutlt feedhtr outlet temp **REQUIREDtfhrisedes design feedhtr temp rise [Optional]wdrninlt drain inlet flow **REQUIREDhdrninlt drain inlet enthalpy **REQUIREDpfhoutlt feedhtr outlet press **REQUIREDpatmos atmospheric press **REQUIREDpfhinlt feedhtr inlet press **REQUIREDtdrnoutlt drain outlet tempeature **REQUIREDpextr extracion press [Optional]textr extraction temp [Optional]pturb turbine extraction press [Optional]tturb turbine extraction temp [Optional]pdrop : press drop from turb to fedhtr [[Optional] Use if only turbine

extractionpincr press incr from fedhtr to turb [Optional] Use if only feedheaterwcndup fwater flow thru upstream htr **REQUIREDwaux auxiliary flow [Optional]wlkg leakage flow [Optional]hlkg leakage enthalpy [Optional]wssr stm seal regulator flow [Optional]hssr stm seal regulator enthalpy [Optional]hpolyextr feedhtrExtr enthal approx [Optional] Use if in the wet steam

regionhpolyturb turbineExtr enthal approx [Optional] Use if in the wet steam

region

Digital Inputszdocalc digital perf calc run flag **REQUIREDzfedhtr_on fedhtr in-service flag [Optional]zfedhtr_off feedheater out-of-service flag [Optional]

Analog Outputstfhrise fedhtr temp rise [Optional] tfhrisedev fedhtr temp rise deviation [Optional]hdrnin_tot fedhtr drain inlet enthalpy [Optional]wdrnin_tot fedhtr drain inlet flow [Optional]pabsfhoutlt fedhtr abs outlet press [Optional]psatoutlt fedhtr abs sat outlet press [Optional]hfhoutlt fedhtr outlet enthalpy [Optional]pabsfhinlt fedhtr abs inlet press [Optional]psatinlt fedhtr abs sat inlet press [Optional]hfhinlt fedhtr inlet enthalpy [Optional]hdrnoutlt fedhtr drain enthalpy [Optional]wfhoutlt fedhtr outlet flow [Optional]wfhinlt fedhtr inlet flow [Optional]pabsextr fedhtrExtr press abs [Optional]

Global Performance Advisor

05/02 (Rev 2) 112 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Drnpmp (Cont.)Analog Outputs (Cont.) Description Usagepabsturb turbineExtr press abs [Optional]hextr fedhtrExtr enthalpy [Optional]wextr fedhtrExtr flow [Optional]wturb turbineExtr flow to fedhtr [Optional]hturb turbineExtr enthal to fedhtr [Optional]wdrnoutlt fedhtr drain outlet flow [Optional]tsat fedhtr sat temp [Optional]wcnddvrt fedhtr flow diverted to condsr [Optional]hcnddvrt fedhtr enthal divrtd to condsr [Optional]whtrdvrt fedhtr drn flow dvrt [Optional]hhtrdvrt fedhtr drn enth dvrt [Optional]Digital Outputszinsvcfh feedheater in-service flag [Optional]Constants< NONE >

Global Performance Advisor

05/02 (Rev 2) 113 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Dvalgen

UnitsConverted.

NO

Analog Inputs Description Usage< NONE >

Digital Inputszdocalc digital perf calc run flag **REQUIREDzvalue digital flag value [Optional]

Analog Outputs< NONE >

Digital Outputszdvalgen_res digital value result **REQUIRED

Constants< NONE >

Global Performance Advisor

05/02 (Rev 2) 114 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Emptyproject

This module doesnothing but it isrequired forsynchronization ofmultiple projects perworkspace.

Units Converted.

NO

Analog Inputs Description Usage< NONE >

Digital Inputs< NONE >

Analog Outputs< NONE >

Digital Outputs< NONE >

Constants< NONE >

Global Performance Advisor

05/02 (Rev 2) 115 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Expon

This modulecalculates theexponential value ofthe input. The resultcan be gained andbiased by bothconstants and points.

UnitsConverted.

NO

Analog Inputs Description Usagekvalue exponential input value **REQUIREDkptgain exponential gain value [Optional]kptbias exponential bias value [Optional]

Digital Inputszdocalc digital perf calc run flag **REQUIRED

Analog Outputskexpon_res digital value result **REQUIRED

Digital Outputs< NONE >

Constantskcgain = 1 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 116 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Fan

This modulecomputes theefficiencies of thefan, its designefficiency and thedeviation fromactual.

UnitsConverted.

YES

Analog Inputs Description Usagepfandis fan discharge pressure REQUIREDwgfanvair volumetric air flow REQUIREDpfanexp expected fan pressure REQUIREDdfandens fan air/gas density REQUIREDafandisarea fan discharge area REQUIREDefanmdes design fan motor efficiency [Optional] Must be configured or

PfanmtrPfanmtr nameplate mtr pwr [Optional]Ifanvltmtr nameplate mtr vlts [Optional]ifanampmtr nameplate mtr [Optional]kfanpfmtr nameplate mtr pwr fact [Optional]Ivltfan fan volts [Optional] Must configure thisiampfan fan amps [Optional] Must configure thiskpffan fan power factor [Optional] Must configure thisPfanact actual fan power [Optional] Must configure thisPfanexp expected fan power REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIREDzfanon fan on flag [Optional]zfanoff fan off flag [Optional]zmtreffavail motor effic avail flag REQUIRED

Analog Outputspfandev static disch pres dev [Optional]pfanvel velocity head at the fan disch [Optional]pfantot total fan disch pres [Optional]efandesmtr fan des motor effic [Optional]Pfandrvrin fan driver input power [Optional] Pfanin fan input power [Optional]Pfanout actual fan power consumed [Optional]efanaeff actual fan effic [Optional]efandes des fan efficiency [Optional]efandev fan efficiency dev [Optional]efanovereff fan overall effic [Optional]

Digital Outputszinsvcfan fan in-service flag [Optional]

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 117 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Fandesign

This modulereads thefan designinformationand outputsthe designinformation.

UnitsConverted.

YES

Analog Inputs Description Usagekdummy dummy input [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputsdfanref reference fan density [Optional]tfanref reference fan temperature [Optional]pfanref reference fan pressure [Optional]afandisarea fan discharge area REQUIREDPfanmtr fan motor power [Optional] Used if fan motor design

efficiency not availableIfanvltmtr fan motor volts [Optional] Used if fan motor design

efficiency not availableifanampmtr fan motor amps [Optional] Used if fan motor design

efficiency not availablekfanpfmtr fan motor power factor [Optional] Used if fan motor design

efficiency not available

Digital Outputszmtreffavail motor effic avail flag REQUIRED

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 118 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Fbdorder

This module ordersthe functional blockdiagrams as well asdisplaying all thealgorithms andexecution time.

UnitsConverted.

NO

Analog Inputs< NONE >

Digital Inputs < NONE >

Analog Outputs < NONE >

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 119 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Flowcalccomp

This module calculates on-line compensated flow.

UnitsConverted.

YES

Analog Inputs Description Usagetemp inlet temperature **REQUIREDpatmos barometric pressure [Optional] needed if using comp or

sheated regions.presg inlet gauge pressure [Optional] needed if using comp or

sheated regionspdeltap measured delta p [Optional] must configure this or

wmass.wmass measured mass flow [Optional] must configure this or

pdeltap.kptgain gain value [Optional]kptbias bias value [Optional]

Digital Inputszdocalc digital perf calc run flag **REQUIREDzsatliq saturated liquid region flag [Optional] must config zsatliq

zsuperheated or zcompliq.zsuperheated superheated region flag [Optional] must config zsatliq

zsuperheated or zcompliq.zcompliq compressed liquid region flag [Optional] must config zsatliq

zsuperheated or zcompliq.

Analog Outputspabs absolute pressure [Optional]vspec_act actual superheat stm entropy [Optional]wflowcalc_comp calculated compensated fl [Optional]kgain Description: total gain [Optional]kbias total bias [Optional]

Digital Outputs< NONE >

ConstantsKFLOW_COEF = 16.46788 kcgain = 1VSPEC_REF = 3.4020 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 120 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Fuels

This modulecombines allthe fuelsused intoone fuelanalysis.

UnitsConverted.

YES

Analog Inputs Description UsageRcoal1carb pct of carbon in coal 1 [Optional]Rcoal1hydr pct of hydrogen in coal 1 [Optional]Rcoal1o2 pct of oxygen in coal 1 [Optional]Rcoal1sulf pct of sulfur in coal 1 [Optional]Rcoal1nitr pct of nitrogen in coal 1 [Optional]Rcoal1ash pct of ash in coal 1 [Optional]Rcoal1moist pct of moisture in coal 1 [Optional]Rcoal1unmeas pct unmeasured heat loss coal 1 [Optional]hcoal1htval heating value of coal 1 [Optional]wcoal1flow coal 1 flow [Optional]Rcoal2carb pct of carbon in coal 2 [Optional]Rcoal2hydr pct of hydrogen in coal 2 [Optional]Rcoal2o2 pct of oxygen in coal 2 [Optional]Rcoal2sulf pct of sulfur in coal 2 [Optional]Rcoal2nitr pct of nitrogen in coal 2 [Optional]Rcoal2ash pct of ash in coal 2 [Optional]Rcoal2moist pct of moisture in coal 2 [Optional]Rcoal2unmeas pct unmeasured heat loss coal 2 [Optional]hcoal2htval heating value of coal 2 [Optional]wcoal2flow coal 2 flow [Optional]Rcoal3carb pct of carbon in coal 3 [Optional]Rcoal3hydr pct of hydrogen in coal 3 [Optional]Rcoal3o2 pct of oxygen in coal 3 [Optional]Rcoal3sulf pct of sulfur in coal 3 [Optional]Rcoal3nitr pct of nitrogen in coal 3 [Optional]Rcoal3ash pct of ash in coal 3 [Optional]Rcoal3moist pct of moisture in coal 3 [Optional]Rcoal3unmeas pct unmeasured heat loss coal 3 [Optional]hcoal3htval heating value of coal 3 [Optional]wcoal3flow coal flow 3 [Optional]Rcoal4carb pct of carbon in coal 4 [Optional]Rcoal4hydr pct of hydrogen in coal 4 [Optional]Rcoal4o2 pct of oxygen in coal 4 [Optional]Rcoal4sulf pct of sulfur in coal 4 [Optional]Rcoal4nitr pct of nitrogen in coal 4 [Optional]Rcoal4ash pct of ash in coal 4 [Optional]Rcoal4moist pct of moisture in coal 4 [Optional]Rcoal4unmeas pct unmeasured heat loss coal 4 [Optional]hcoal4htval heating value of coal 4 [Optional]wcoal4flow coal 4 flow [Optional]Rcokecarb pct of carbon in coke [Optional]Rcokehydr pct of hydrogen in coke [Optional]Rcokeo2 pct of oxygen in coke [Optional]Rcokesulf pct of sulfur in coke [Optional]Rcokenitr pct of nitrogen in coke [Optional]Rcokeash pct of ash in coke [Optional]

Global Performance Advisor

05/02 (Rev 2) 121 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Fuels (Cont.)Analog Inputs (Cont.) Description UsageRcokemoist pct of moisture in coke [Optional]Rcokeunmeas pct unmesurd heat loss in coke [Optional]hcokehtval heating value of coke [Optional]wcokeflow coke flow [Optional]toil oil temp [Optional]Soil_specgrav specific gravity of oil [Optional]Roilcarb pct of carbon in oil [Optional]Roilhydr pct of hydrogen in oil [Optional]Roilo2 pct of oxygen in oil [Optional]Roilsulf pct of sulfur in oil [Optional]Roilnitr pct of nitrogen in oil [Optional]Roilmoist pct of moisture in oil [Optional]Roilunmeas pct unmeasurd heat loss in oil [Optional]hoilhtval_high higher heating value of oil [Optional]hoilhtval_low lower heating value of oil [Optional]wvol_oilflow volumetric oil flow [Optional]woilflow mass oil flow [Optional]tng natural gas temp [Optional]png natural gas press [Optional]patmos atmospheric pressure [Optional]tfgdew flue gas dew point temperature [Optional]Rngco2i CO2 content of natural gas [Optional]Rngh2i Hydrogen content natural gas [Optional]Rngn2i Nitrogen content natural gas [Optional]Rngch4i Methane content of natural gas [Optional]Rngc2h6i Ethane content of natural gas [Optional]Rngc3h8i Propane content of natural gas [Optional]Rngisbti Iso-butane content natural gas [Optional]Rngnbti Norm Butane content of nat gas [Optional]Rngispti Iso-pentane content naturl gas [Optional]Rngnpti Normal Pentane content nat gas [Optional]Rnghexi Hexane content of natural gas [Optional]Rnghepi Heptane content natural gas [Optional]Rngo2i Oxygen content of nat gas [Optional]Rngso2i Sulfur dioxide cont nat gas [Optional]Rngcoi Carbon monoxide cont nat gas [Optional]Rngh2si Hydr sulfide cont of nat gas [Optional]hngas_oper_hv_high natural gas high heat value [Optional]hngas_oper_hv_low natural gas low heat value [Optional]Rngasunmeas pcnt unmeas heat loss nat gas [Optional]wgas volumetric flow of natural gas [Optional]wnatgas mass flow of natural gas [Optional]Rlimem pct of moisture in lime [Optional]Rcaco3 pct of calcium oxide limestone [Optional]Rmgco3 pct magnesium oxide limestone [Optional]wlimestone limestone flow [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputswtotfuel total fuel flow [Optional]wcoaltotfuel total coal (incl coke) flow [Optional]Flime fract/lime in limestne to coal [Optional]Fmagox fract/MGO in limestone to coal [Optional]

Global Performance Advisor

05/02 (Rev 2) 122 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Fuels (Cont.)Analog Outputs (Cont.) Description UsageRcarb total carbon in fuel [Optional]Rcoalcarb total carbon in coal [Optional]Rhydr total hydrogen in fuel [Optional]Roxy total oxygen in fuel [Optional]Rsulf total sulfur in fuel [Optional]Rcoalsulf total sulfur in the coal [Optional]Rnitr total nitrogen in fuel [Optional]Rash total ash in fuel [Optional]Rmoist total moisture in fuel [Optional]heatloss total heat loss in fuel [Optional]heatvalue_low tot lower heat val of fuel [Optional]heatvalue_high tot higher heat val of fuel [Optional]htcoalvalue total heat value of coal [Optional]Rso2 Total SO2 in fuel [Optional]Rco Total CO in fuel [Optional]Rco2 Total CO2 in fuel [Optional]Rncmbt Total non comb in fuel [Optional]wmass_oilflow mass oil flow [Optional]hoilhtvalue_low lower heating value of oil [Optional]hoilhtvalue_high higher heating value of oil [Optional]hngashtvalue_low lower heating val natural gas [Optional]hngashtvalue_high higher heating val of nat gas [Optional]relwtcoal rel wt -coal tot fuel mixture [Optional]tabs_fgdew Rankine flue gas dewpoint temp [Optional]pwsexp Dew point press [Optional]pfgdew flue gas dew point pressure [Optional]Fngh2o corr fract of water in nat gas [Optional]Fngco2 corr fract of CO2 in nat gas [Optional]Fngh2 corr fract hydrogen in nat gas [Optional]Fngn2 corr fract nitrogen in nat gas [Optional]Fngch4 corr fract methane in nat gas [Optional]Fngc2h6 corr fract methane in nat gas [Optional]Fngc3h8 corr fract propane in nat gas [Optional]Fngisbt cor frct iso butane in nat gas [Optional]Fngnbt cor frct norm butane in natgas [Optional]Fngispt cor frct iso pentane in natgas [Optional]Fngnpt cor frct norm pentan in natgas [Optional]Fnghex corr fract hexane in natgas [Optional]Mlrmass molar mass of mixture [Optional]hnglhv calc nat gas lower heat value [Optional]hnghhv calc nat gas higher heat value [Optional]Ftotsum constituent product summation [Optional]Fcompfac compressibility factor [Optional]dngiden ideal nat gas density [Optional]dngrden real nat gas density [Optional]Fngco CO nat gas constituent [Optional]Fngo2 oxygen nat gas constituent [Optional]Fngh2s hydrogn sulfur nat gas constit [Optional]Fngso2 sulfur dioxide nat gas constit [Optional]Fnghep heptane nat gas constituent [Optional]Fwtco2 elem wt frac of carb dioxide [Optional]Fwtco elem wt frac of carb monoxide [Optional]Fwth2 elem wt frac of hydrogen [Optional]Fwtn2 elem wt frac of nitrogen [Optional]

Global Performance Advisor

05/02 (Rev 2) 123 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Fuels (Cont.)Analog Outputs (Cont.) Description UsageFwto2 elem wt frac of oxygen [Optional]Fwth2s elem wt frac of sulfur [Optional]Fwtso2 elem wt frac of sulfur dioxide [Optional]Fwtch4 elem wt frac of methane [Optional]Fwtc2h6 elem wt frac ofEthane [Optional]Fwtc3h8 elem wt frac of propane [Optional]Fwtisbt elem wt frac of iso butane [Optional]Fwtnbt elem wt frac of normal butane [Optional]Fwtispt elem wt frac of iso pentane [Optional]Fwtnpt elem wt frac of normal pentane [Optional]Fwthex elem wt frac of hexane [Optional]Fwthep elem wt frac of heptane [Optional]Fwth2o elem wt frac of water [Optional]dngasce lbs of carbon per FT3 of gas [Optional]dngash2e lbs of hydrogen per FT3 of gas [Optional]dngaso2e lbs of oxygen per FT3 of gas [Optional]dngasse lbs of sulfur per FT3 of gas [Optional]dngasn2e lbs of nitrogen per FT3 of gas [Optional]dngasco2e lbs of CO2 per FT3 of gas [Optional]dngascoe lbs of CO per FT3 of gas [Optional]dngasso2e lbs of SO2 per FT3 of gas [Optional]pabsngv nat gas vapor partial press [Optional]vngwv nat gas water vapor volume [Optional]pabsng nat gas abs press [Optional]Fngmst moisture content of nat gas [Optional]Fngvol volume ratio for press corr [Optional]Fconvm conversion factor [Optional]Rngasmoist nat gas moist content pcnt [Optional]Rngasc nat gas carbon content pcnt [Optional]Rngash2 nat gas hydrogen content pcnt [Optional]Rngaso2 nat gas oxygen content pcnt [Optional]Rngassulf nat gas sulfur content pcnt [Optional]Rngasn2 nat gas nitrogen content pcnt [Optional]Rngasco2 nat gas CO2 content pcnt [Optional]Rngasco nat gas CO content pcnt [Optional]Rngasso2 nat gas SO2 content pcnt [Optional]Rngasncmbt nat gas total con-combustibles [Optional]Wmass_ngas mass flow nat gas [Optional]

Digital Outputszcoalfuel coal used flag [Optional]zcokefuel coke used flag [Optional]zoilfuel oil used flag [Optional]znatgasfuel natural gas used flag [Optional]zlimefuel lime used flag [Optional]zbfgasfuel blast furnace flag [Optional]zcogasfuel coke oven gas used flag [Optional]

ConstantsC1 = -1.0214165e+04 C6 = -9.0344688e-14 C11 = 1.2890360e-05 C2 = -4.8932428e+00 C7 = 4.1635019e+00 C12 = -2.4780681e-09 C3 = -5.3765794e-03 C8 = -1.0440397e+04 C13 = 6.5459673 C4 = 1.9202377e-07 C9 = -1.1294650e+01 CHEATVALUE = 94.73 C5 = 3.5575832e-10 C10 = -2.7022355e-02

Global Performance Advisor

05/02 (Rev 2) 124 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Funcgen

This module calculates the independent value based onone variable or the independent value based on twodependent variables. The independent value iscalculated using linear interpolation. The result can bemodified by multiplying by a gain and/or adding a bias.Note that the gain and bias can be points, constants orboth points and constants.

Units Converted.

NO

Analog Inputs Description Usagekxvalue x value [Optional]kzvalue z value [Optional]kptgain point gain [Optional]kptbias point bias [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputskyvalue y value REQUIRED

Digital Outputs< NONE >

Constantskcgain = 1 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 125 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Gencorr

Function computescorrected steam turbinegenerator output bases oncorrection curves providedby turbine manufacturer.

UnitsConverted.

YES

Analog Inputs Description UsageFlddmt thr stm temp out corr fact **REQUIREDFlddrt reht stm temp out corr fact **REQUIREDFlddmp thr stm pres out corr fact **REQUIREDFlddpd reht pres drop out corr fact **REQUIREDFldexhstp1 lp exh hd 1 pres out corr fact **REQUIREDFldexhstp2 lp exh hd 2 pres out corr fact [Optional]Fldexhstpx1 lp exh hd 1 exp pres corr fact **REQUIREDFldexhstpx2 lp exh hd 2 exp pres corr fact [Optional]Pmwatt generator output **REQUIRED

Digital Inputszdocalc digital perf calc run flag **REQUIRED

Analog OutputsPgencorr corr generator out **REQUIREDPlddev gen out deviation [Optional]Pldcormt throttle stm temp out corr [Optional]Pldcormp throttle stm pres out corr [Optional]Pldcorrt reheat stm temp out corr [Optional]Pldcorpd reheat pres drop out corr [Optional]Pldcorexhp1 lp trb exh hd 1 pres out corr [Optional]Pldcorexhp2 lp trb exh hd 2 pres out corr [Optional]Pldtotcor total out corr [Optional]

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 126 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Gennet

This module calculates thegenerator mva, the generatorpower factor, the auxiliarypower, the ratio of auxiliarypower to gross power, the totalshaft power and generatorefficiency.

UnitsConverted.

YES

Analog Inputs Description UsagePmwatt generator power [Optional]PVmvar generator megavars [Optional]Pgenaux auxiliary power [Optional] Use if auxiliary power is

measuredPgennet net power [Optional] Used if net generation is

measured Pgenlos generator losses [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog OutputsPva generator mva [Optional]kgenpowfac generator power factor [Optional]Pennet net generator power [Optional]Pauxpwr auxiliary power [Optional] Used in aux pwr

deviation controllable lossesmodule

Rauxpwr ratio of aux pwr to gross pwr [Optional]Rdesauxpwr design auxiliary power pcnt [Optional]Pshaft total shaft power [Optional]Pgenfix generator fixed losses [Optional]Pgenlostot Total generator losses [Optional]egeneff generator efficiency [Optional]

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 127 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Gpalog

This modulecalculatesthe log of anumber.

UnitsConverted.

YES

Analog Inputs Description Usagekvalue input to natural log module REQUIREDkptgain abs val gain value [Optional]kptbias abs val bias value [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputsklog_res base 10 log result value REQUIRED

Digital Outputs< NONE >

Constantskcgain = 1 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 128 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Hetrte

This modulecalculatesgross, net andcorrectedturbine cycleheat rates.

UnitsConverted.

YES

Analog Inputs Description Usagewmnstm main steam flow REQUIRED wdssht superheat spray flow [Optional] Use if superheat spray flow is present.hcycle cycle feedwater enthalpy REQUIRED hmnstm main steam enthalpy REQUIRED hdssht superheat enthalpy [Optional] Use if superheat spray flow is present.wcrhte cold reheat flow REQUIRED hhrhte hot reheat enthalpy REQUIRED hcrhte cold reheat enthalpy REQUIRED wdsrht reheat spray flow [Optional] Use if superheat spray flow is present.hdsrht reheat enthalpy [Optional] Use if superheat spray flow is present.waddmisc misc addition flow [Optional]haddmisc misc addition enthalpy [Optional]haddmisc2 misc addition enthalpy 2 [Optional]wsubmisc misc sub flow [Optional]hsubmisc misc sub enthalpy [Optional]hsubmisc2 misc sub enthalpy 2 [Optional]Pmwatt generator power REQUIRED wprocess process steam flow [Optional] Use if process steam is present.hprocess process steam enthalpy [Optional] Use if process steam is present.wcondrtn condensate return flow [Optional] Use if process steam is present.hcondrtn condensate return enthalpy [Optional] Use if process steam is present.Pennet net generator power REQUIRED Fhrdmt main stm temp ht rt corr fact [Optional] Use if main steam ht rate correction factor is

available.Fhrdmp main stm pres ht rt corr fact [Optional] Use if main steam press ht rate correction factor

is available.Fhrdrt reht temp ht rt corr fact [Optional] Use if reheat temp ht rate correction factor is

available.Fhrdpd reht pres drop ht rt corr fact [Optional] Use reheat press drop ht rate correction factor is

available.Fhrdcp cond back pres ht rt corr fact [Optional] Use if cond back press ht rate correction factor is

available.Fhrmisc misc ht rate corr fact [Optional] Use if misc ht rate correction factor is available.rhrref reference heat rate [Optional]Digital Inputs Description Usagezdocalc Digital perf calc run flag REQUIRED

Analog Outputs Description Usageqtrbin heat acquired by the turbine [Optional] Used in boiler module.rhrtcg gross turbine cycle heat rate [Optional] Used in hp efficiency deviation controllable losses

module.qprocnet heat in process steam [Optional]rhrtcgwpr gr turb cyc ht rt w/prc stm [Optional]rhrtcn net turbine cycle heat rate [Optional]rhrtcnwpr net turb cyc ht rt w/prc stm [Optional]rhrgaj corr turb cycle heat rate [Optional]

Global Performance Advisor

05/02 (Rev 2) 129 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Hetrte (Cont.)Analog Outputs(Cont.)

Description Usage

rhrgajwpr corr turb cyc ht rt w/prc stm [Optional]rhrrefwpr ref ht rt adj for prc stm [Optional]rhrgdv turb cycle heat rate dev [Optional]rhrgdvwpr turb cyc ht rt dev w/prc stm [Optional]rhrdmtbtu turb ht loss mn stm tmp [Optional] rhrdmpbtu turb ht loss mn stm pres [Optional]rhrdrtbtu turb ht loss rht stm tmp [Optional]rhrdpdbtu turb ht loss rht pres dr [Optional]rhrdcpbtu turb ht loss cnd bck pres [Optional]rhrmiscbtu turb ht loss misc [Optional]

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 130 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Hiselect6

This module selects the highestvalue of 6 inputs The result can bemodified by multiplying by a gain andadding a bias Note that the gain andbias values can be points, constantsor both points and constants.

UnitsConverted.

NO

Analog Inputs Description Usagekvalue1 hi select value 1 REQUIREDkvalue2 hi select value 2 REQUIREDkvalue3 hi select value 3 [Optional]kvalue4 hi select value 4 [Optional]kvalue5 hi select value 5 [Optional]kvalue6 hi select value 6 [Optional]kptgain hi select point gain [Optional]kptbias hi select point bias [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputskhi6_result hi select output value REQUIRED

Digital Outputs< NONE >

Constantskcgain = 1 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 131 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Hpfedhtr

This module calculates a heatand materials balance around ashell and tube typeheatExchanger. The extractionand drain flows are calculated.The turbine extraction flow andenthalpy are also calculated.

UnitsConverted.

YES

Analog Inputs Description Usagetfhinlt feedheater inlet temp REQUIREDtfhoutlt feedheater outlet temp REQUIREDtfhrisedes fhtr des temp rise [Optional]wdrninlt drain inlet flow [Optional]hdrninlt drain inlet enthalpy [Optional]pfwtr feedwater pressure REQUIREDpatmos atmospheric pressure REQUIREDtdrnoutlt drain outlet temp REQUIREDwblrfw boiler feedwater flow REQUIREDpextr extraction pressure [Optional]textr extraction temperature [Optional]tturb turbine extraction temp [Optional]pturb turbine extraction pressure [Optional]pdrop pres drop fr turb to fhtr [Optional] Required if only turbineExtr

pressure is measured.pincr pres incr fr fhtr to turb [Optional] Required if only feedheaterExtr

pressure is measured.wlkg leakage flow [Optional]hlkg leakage enthalpy [Optional]waux auxiliary flow [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIREDzfedhtr_on fedhtr in-service flag [Optional] Use if digitals determine in

service status.zfedhtr_off feedheater out-of service flag [Optional] Use if digitals determine in

service status.

Analog Outputstfhrise fhtr temp rise [Optional]tfhrisedev fhtr temp rise dev [Optional]hdrnin_tot total drn enth [Optional]wdrnin_tot total drn flow [Optional]pabsfwtr feedwater abs pres [Optional]hfhoutlt outlet enthalpy [Optional]hfhinlt inlet enth [Optional]hdrnoutlt drn outlet enth [Optional]wfhoutlt outlet flow [Optional]wfhinlt inlet flow [Optional]pabsextr extr abs pres [Optional]hextr fhtrExtr enth [Optional]hturb turbineExtr enth [Optional]pabsturb turbineExtr abs pres [Optional]wextr fhtrExtr flow [Optional]wturb turbineExtr flow [Optional]

Global Performance Advisor

05/02 (Rev 2) 132 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Hpfedhtr (Cont.)Analog Outputs (Cont.) Description Usagewdrnoutlt fhtr drn outlet flow [Optional]tsat fhtr saturated temp [Optional]hcnddvrt fhtr drn enth div to cond [Optional]wcnddvrt fhtr drn flow div to cond [Optional]hhtrdvrt fhtr drn div enth [Optional]whtrdvrt fhtr drn div flow [Optional]

Digital Outputszinsvcfh feedheater in-service flag [Optional]

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 133 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Hpipsec

This module calculatesthe outlet flow for the HPor IP section of theHRSG as well as thesteam,Economizer inletand drum enthalpies.

UnitsConverted.

YES

Analog Inputs Description Usagewsecin section inlet flow REQUIRED wdesuper desuperheater flow [Optional] waddmisc misc added flow [Optional] wbldwn blowdown flow [Optional] wsubmisc misc subtracted flow [Optional] pstm stage steam pressure REQUIRED patmos atmospheric pressure REQUIRED tstm steam temp REQUIRED peconin economizer inlet pres REQUIRED teconin economizer inlet temp REQUIRED pdrum stage drum pressure REQUIRED

Digital Inputszdocalc digital perf calc run flag REQUIRED

Analog Outputswsecout section outlet flow [Optional]pabsstm section stm abs pressure [Optional] hstm section stm enthalpy [Optional]pabseconin econ inlet abs pres [Optional] heconin econ inlet enthalpy [Optional]pabsdrum section abs drum pres [Optional] hdrum section drum enthalpy [Optional]

Digital Outputs < NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 134 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Hrmspasme

This module calculates thefractional heat rate correctionfactor for throttle steam pressurebeing off design as specified bythe ASME PTC 6 1, 1984 curveThrottle Pressure CorrectionFactors for Single Reheat Units.

UnitsConverted.

YES

Analog Inputs Description Usagepmnstm main steam pressure REQUIRED pmsexp ref main steam pressure REQUIRED Rcload percent load REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputspdffmsp pcnt throttle pres dev [Optional]Fhrdmp thr pres ht rt corr factor REQUIRED

Digital Outputs< NONE >

ConstantsCONMSP[0] = -2 7981481E-01CONMSP[1] = 3 0271930E-18CONMSP[2] = 2 1322751E-01

Global Performance Advisor

05/02 (Rev 2) 135 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Hrmstasme

This module calculates the fractionalheat rate correction factor for throttlesteam temperature being off designas specified by the ASME PTC 6 1,1984 curve reheat TemperatureCorrection Factors for SingleReheat - Subcritical Pressure Parts.

UnitsConverted.

YES

Analog Inputs Description Usagetmnstm main steam temp REQUIRED tmnref ref main steam temp REQUIRED Rcload percent load REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputstdffmst main stm temp dev [Optional]Fhrdmt mn stm temp ht rt corr factor REQUIRED

Digital Outputs< NONE >

ConstantsCONMST[0] = -1 1308642E-02CONMST[1] = 1 45305262E-21CONMST[2] = -5 0617284E-03

Global Performance Advisor

05/02 (Rev 2) 136 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Hrrpdasme

This module calculates the fractionalheat rate correction factor for reheatpressure drop being off design asspecified by the ASME PTC 6 1, 1984curve Reheater Pressure DropCorrection Factors for Single ReheatUnits.

UnitsConverted.

YES

Analog Inputs Description Usagepcrhte cold reheat pressure REQUIRED phrhte hot reheat pressure REQUIRED pabscr absolute cold reheat pressure REQUIRED Rdrprf reference reheat pressure drop REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog OutputsRpdpct pcnt reheat pres dr [Optional]Rdiffrpd pcnt rht pres dr dev [Optional]Fhrdpd rht pres dr ht rt corr factor REQUIRED

Digital Outputs< NONE >

ConstantsCONRPD[0] = 0 0CONRPD[1] = 1 6318182E-01

Global Performance Advisor

05/02 (Rev 2) 137 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Hrrstasme

This module calculates the fractionalheat rate correction factor for reheatsteam temperature being off designas specified by the ASME PTC 6 1,1984 curve Reheat TemperatureCorrection Factors for SingleReheat Units.

UnitsConverted.

YES

Analog Inputs Description Usagethrhte hot reheat temp REQUIRED trhref ref hot reheat temp REQUIRED Rcload percent load REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputstdffrst reht stm temp dev [Optional]Fhrdrt reht stm temp ht rt corr fact REQUIRED

Digital Outputs< NONE >

ConstantsCONRST[0] = -2 4518519E-02CONRST[1] = 4 06854742E-20CONRST[2] = 1 2190476-02

Global Performance Advisor

05/02 (Rev 2) 138 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Hrsg

This module calculatesthe outlet flow for theHP or IP sections of theHRSG as well as thesteam,Economizer inletand drum enthalpies.

UnitsConverted.

YES

Analog Inputs Description Usagewhpstm hp steam flow [Optional] hhpstm hp steam enth [Optional] hhpeci hpEconomizer inlet enth [Optional] wipstm ip steam flow [Optional] hipstmout ip steam extr enth [Optional] hipstmin ip steam extr enth [Optional] hipeci ipEconomizer inlet enth [Optional] wrhstm hot reheat steam flow [Optional] hrhstm hot reheat enth [Optional] wlpstm lp steam flow [Optional] hlpstm lp steam enth [Optional]hlpeci lpEconomizer inlet enth [Optional] whpbdn hp blowdown flow [Optional] hhpdrm hp blowdown enth [Optional] wipbdn ip blowdown flow [Optional] hipdrm ip blowdown enth [Optional] wlpbdn lp blowdown flow [Optional] hlpdrm lp blowdown enth [Optional] wbfp boiler feedpump flow [Optional] hbfpdis boiler feedpump disch enth [Optional]hbfpsuc boiler feedpump suc enth [Optional] wmisc1 misc 1 flow [Optional] hmisclin misc 1 inlet enth [Optional] hmisc1out misc 1Extr enth [Optional] wmisc2 misc 2 flow [Optional] hmisc2in misc 2 inlet enth [Optional] hmisc2out misc 2Extr enth [Optional] wctexh comb turbExh flow REQUIRED hhrsgin hrsg inlet enth REQUIRED hctref comb turb ref enth [Optional]tsf_ngas supp fuel gas temp [Optional] Use if Supplemental natural gas is present

and is output from fuels.Psf_ngas supp fuel gas pres [Optional] Use if Supplemental natural gas is present

and is output from fuels.Fsf_ngch4 Fraction of methane [Optional] Use if Supplemental natural gas is present

and is output from fuels.Fsf_ngc2h6 Fraction ofEthane [Optional] Use if Supplemental natural gas is present

and is output from fuels.Fsf_ngc3h8 Fraction of propane [Optional] Use if Supplemental natural gas is present

and is output from fuels.Fsf_ngnbt Fraction of n butane [Optional] Use if Supplemental natural gas is present

and is output from fuels.Fsf_ngisbt Fraction of isobutane [Optional] Use if Supplemental natural gas is present

and is output from fuels.Fsf_ngnpt Fraction of n pentane [Optional] Use if Supplemental natural gas is present

and is output from fuels.

Global Performance Advisor

05/02 (Rev 2) 139 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Hrsg (Cont.)Analog Inputs (Cont.) Description UsageFsf_ngispt Fraction of isopentane [Optional] Use if Supplemental natural gas is present

and is output from fuels.Fsf_nghex Fraction of n hexane [Optional] Use if Supplemental natural gas is present

and is output from fuels.Fsf_ngco2 Fraction of carbon dioxide [Optional] Use if Supplemental natural gas is present

and is output from fuels.Fsf_ngh2 Fraction of hydrogen [Optional] Use if Supplemental natural gas is present

and is output from fuels.Fsf_ngn2 Fraction of nitrogen [Optional] Use if Supplemental natural gas is present

and is output from fuels.Fsf_ngh2o Fraction of water [Optional] Use if Supplemental natural gas is present

and is output from fuels.Fsf_ngco CO nat gas constituent [Optional] Use if Supplemental natural gas is present

and is output from fuels.Fsf_ngo2 Oxygen nat gas constituent [Optional] Use if Supplemental natural gas is present

and is output from fuels.Fsf_ngh2s Hydrogen sulfate nat gas

constituent[Optional] Use if Supplemental natural gas is presentand is output from fuels.

Fsf_nghep Heptane nat gas constituent [Optional] Use if Supplemental natural gas is presentand is output from fuels.

Msf_mlrmass Molar mass of natural gas [Optional] Use if Supplemental natural gas is presentand is output from fuels.

wsf_ngas Sup natural gas flow [Optional] Use if Supplemental natural gas is presentand is output from fuels.

Ssf_oil_sgrav Spec grav sup oil [Optional] Use if Supplemental oil is present.tsf_oil Temp of sup oil [Optional] Use if Supplemental oil is present.wsf_oilflow Sup oil flow [Optional] Use if Supplemental oil is present.hsf_lhv Sup fuel lower heating value [Optional] Use if Supplemental fuel is present. This is

total supp fuel lower heating value.ehrsgdesio hrsg design i/o effic [Optional]wtotfuel Total fuel flow REQUIREDpatmos atmospheric pres REQUIRED Rcarb Fuel carbon pcnt REQUIRED Rhydr Fuel hydrogen pcnt REQUIRED Roxy Fuel oxygen pcnt REQUIRED Rsulf Fuel sulf pcnt REQUIRED Rnitr Fuel nitr pcnt REQUIRED Rmoist Fuel miost REQUIRED Rco2 Fuel carb dioxide pcnt REQUIRED Rco Fuel carb monoxide pcnt REQUIRED Rso2 Fuel sulfer dioxide pcnt REQUIRED Rncmbt Fuel non comb pcnt REQUIRED Rsf_carb sup fuel carbon pcnt [Optional] Use if supp fuel is fired.Rsf_hydr sup fuel hydrogen pcnt [Optional] Use if supp fuel is fired.Rsf_oxy sup fuel oxygen pcnt [Optional] Use if supp fuel is fired.Rsf_sulf sup fuel sulf pcnt [Optional] Use if supp fuel is fired.Rsf_nitr sup fuel nitr pcnt [Optional] Use if supp fuel is fired.Rsf_moist sup fuel moist [Optional] Use if supp fuel is fired.Rsf_co2 sup fuel carbon dioxide pcnt [Optional] Use if supp fuel is fired.Rsf_co sup fuel carbon monxide pcnt [Optional] Use if supp fuel is fired.Rsf_so2 sup fuel carbon dioxide pcnt [Optional] Use if supp fuel is fired.Rsf_ncmbt sup fuel non comb pcnt [Optional] Use if supp fuel is fired.thrsgout hrsg outlet temp REQUIRED Ffueltoairact act fuel to air ratio REQUIRED Wvapin ambient spec humid REQUIRED Wvap amb spec humid @ cmp inlet REQUIRED

Global Performance Advisor

05/02 (Rev 2) 140 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Hrsg (Cont.)Analog Inputs (Cont) Description Usagehctdes comb turb desExhaust gas enth [Optional]Rlcsng pcnt casing heat loss REQUIRED hctcompin Comb turb inlet enth REQUIREDqctexh comb turbExhaust heat REQUIRED ehrsgdestl hrsg des therm loss effic [Optional]

Digital Inputszdocalc digital perf calc run flag REQUIRED

Analog Outputsqhpstm hp section heat [Optional] qipstm ip section heat [Optional] qrhstm reheat section heat [Optional] qlpstm lp section heat [Optional] qhpbdn hp blowdown heat [Optional] qipbdn ip blowdown heat [Optional] qlpbdn lp blowdown heat [Optional] qbfp boiler feedpump heat [Optional] qmisc1 misc 1 heat [Optional] qmisc2 misc 2 heat [Optional] qhrsgout hrsg total heat out [Optional] wtot_sfuel Total sup fuel flow [Optional] Qsh_texh Gas turbExh sens heat [Optional]Pabs_sfngas Sup fuel nat gas abs press [Optional]Hsf_gasmix enth of nat gas sup fuel [Optional]Hsf_stpngas enth at stand temp and pres [Optional]Qsf_ngas_sht Nat gas sup fuel sens heat [Optional]Tsf_api Oil sup fuel API [Optional]Hsf_sgrav Oil sup fuel spec grav [Optional]Qsf_oil_sht Oil sup fuel sens heat [Optional]Qsf_sensheat Tot sup fuel sens heat [Optional]Qsf_fuel Heat in sup fuel [Optional]qhrsgin Hrsg total heat in [Optional] Qsf_heatin Total heat supp fuel [Optional]ehrsgeffio hrsg input/output eff [Optional]ehrsgdevio hrsg input/output eff dev [Optional]wfuelmix total fuel flow [Optional] rfuel Fuel to total fuel ratio [Optional] rsfuel Sup fuel to total fuel ratio [Optional] Rmixc mixed carb pcnt [Optional] Rmixh2 mixed hydr pcnt [Optional] Rmixo2 mixed oxygen pcnt [Optional] Rmixsulf mixed sulf pcnt [Optional] Rmixn2 mixed nitr pcnt [Optional] Rmixmoist mixed moist pcnt [Optional] Rmixco2 mixed co2 pcnt [Optional] Rmixco mixed co pcnt [Optional] Rmixso2 mixed so2 pcnt [Optional] Rmixcmbt mixed non comb pcnt [Optional] whrsgexhst hrsgExhaust flow [Optional] Fsfexh supp fuel ratio [Optional] hhrsgout hrsgExhaust gas enthalpy [Optional] qhrsgsgl stack gas heat loss [Optional] qhrsgcls casing heat loss [Optional] qhltot hrsg total heat losses [Optional]

Global Performance Advisor

05/02 (Rev 2) 141 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Hrsg (Cont.)Analog Outputs(Cont)

Description Usage

ehrsgefftl hrsg therm loss effic [Optional]ehrsgdevtl hrsg therm loss effic dev [Optional]

Digital Outputs < NONE >

ConstantsTAPICONST1 = 141.5 CHSPEC2 = –0.11426 CHSPEC5 = 2.18e–04TAPICONST1 = 131.5 CHSPEC3 = 0.373 CHSPEC6 = 7.0E–07CHSPEC1 = –30.016 CHSPEC4 = 1.43e–03 Hoil_ref = 7.8

Global Performance Advisor

05/02 (Rev 2) 142 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Hwblrstm

This modulecalculatesthe boilersteamenthalpyand flow.

UnitsConverted.

YES

Analog Inputs Description Usagepblrstm boiler superht out press REQUIREDpatmos atmospheric pressure REQUIREDtblrstm boiler superht out temp REQUIREDwblrfw boiler feedwater flow REQUIREDwdssht superheat spray flow [Optional] Use if superheat spray

flow presentwsoot operator entered soot flow [Optional] Use if soot blower steam

flow presentwaddmisc misc flow add to blr stm flow [Optional] Use if misc flow added

to main flow wbldwn blowdown flow [Optional] Use if blowdown flow

present wsjae steam jet airEjector flow [Optional] Use if steam jet

airEjector flow presentwaxstm auxiliary steam flow [Optional] Use if auxiliary steam

flow presentwcyclss cycle loss flow [Optional] Use if cycle loss flow

present wmakeup makeup water flow [Optional] Use if makeup water

flow presentwsubmisc misc flow sub fr blr stm flow [Optional] Use if misc flow

subtracted from boiler steam flow

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputspabsblr abs blr supht out pres [Optional]hblrstm blr supht out enth [Optional]wblrstm blr supht out stm flow [Optional] Used in boiler

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 143 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Hwmnstm

This modulecalculatesthe mainsteamenthalpyand flow.

UnitsConverted.

YES

Analog Inputs Description Usagepmnstm main steam pressure REQUIREDpatmos atmospheric pressure REQUIREDtmnstm main steam temperature REQUIREDwblrstm boiler feedwater flow REQUIREDwaddmisc misc flow add to mn stm flow [Optional] Use if there is a misc

flow added to main steam flowwssr steam seal regulator flow [Optional] Use if there is steam

seal regulator flowwbfpt boiler feedpump turbine flow [Optional] Use if there is boiler

feedpump turbine flowwsubmisc misc flow sub fr mn stm flow [Optional] Use if there is a misc

flow subtracted from main steamflow

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputspabsmain abs main stm pressure [Optional]hmnstm main steam enthalpy [Optional]wmnstm main steam flow [Optional]

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 144 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Invdig

This moduleinverts aDigital flag.

UnitsConverted.

NO

Analog Inputs Description Usagekdummy dummy input [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIREDzflag input flag REQUIRED

Analog Outputs < NONE >

Digital Outputszinvflag inverted flag output REQUIRED

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 145 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Ipturbdeseff

This function calculates design (or expected) intermediatepressure turbine efficiency using the method outlined inchapter 4, section iii.a.1, in K.C. Cotton's Evaluating andImproving Steam Turbine Performance. the function calculatesthe expected efficiency from the inlet bowl conditions to theturbine exhaust. the calculated expected efficiency is thencorrected to compute the expected efficiency from the turbineinlet conditions to the measured crossover conditions.

UnitsConverted.

YES

Analog Inputs Description Usagepabsphrhip ip turbine inlet pressure **REQUIREDhhrhip ip turbine inlet enthalpy **REQUIREDhitrxi ip turbine isen enthalpy **REQUIREDpabsxover crossover pressure **REQUIREDhipbwl bowl enthalpy **REQUIREDwipbwl bowl steam flow **REQUIREDRpxsdrop trb exh to xover pct pres drop **REQUIRED

Digital Inputszdocalc digital perf calc run flag **REQUIRED

Analog Outputspabspipbwl bowl pressure [Optional]pabspipex ip turb exhaust pressure [Optional]Fripprs pressure ratio across ip turb [Optional]tipbwl bowl temperature [Optional]vipbwl specific vol at bowl conds [Optional]wvolipbwl vol bowl steam flow [Optional]kacoeff exp ip turb eff equ a coeff [Optional]kbcoeff exp ip turb eff equ b coeff [Optional]eipbwlexh exp ip turb effic [Optional]sipbwl bowl entropy [Optional]hipexi bowl to exh isen enth [Optional]hipex exp ip turb exh enth [Optional]eipturbdeseff inlet to xover exp ip trb eff **REQUIRED

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 146 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Loselect6

This module selects the lowestvalue of 6 inputs The result can bemodified by multiplying by a gainand adding a bias Note that the gainand bias values can be points,constants or both points andconstants.

UnitsConverted.

NO

Analog Inputs Description Usagekvalue1 lo select value 1 REQUIREDkvalue2 lo select value 2 REQUIREDkvalue3 lo select value 3 [Optional]kvalue4 lo select value 4 [Optional]kvalue5 lo select value 5 [Optional]kvalue6 lo select value 6 [Optional]kptgain point gain [Optional]kptbias point bias [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputsklo6_result lo select result REQUIRED

Digital Outputs< NONE >

Constantskcgain = 1 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 147 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Lpfedhtr

This module calculates a heat andmaterials balance around a lowpressure shell and tube typeheatExchanger The extraction and drainflows are calculated for the feedheaterThe turbine extraction flow and enthalpyare also calculated.

UnitsConverted.

YES

Analog Inputs Description Usagepfhoutlt feedhtr outlet press [Optional]tfhoutlt feedhtr outlet temp REQUIRED pfhinlt feedhtr inlet press REQUIRED tfhinlt feedhtr inlet temp REQUIRED tfhrisedes design feedhtr temp rise [Optional]wdrninlt drain inlet flow [Optional]hdrninlt drain inlet enthalpy [Optional]tdrnoutlt drain outlet temperature REQUIRED wblrfw boiler feedwater flow REQUIRED waux auxiliary flow [Optional]wlkg leakage flow [Optional]hlkg leakage enthalpy [Optional]pextr extraction press [Optional]pabsextract absolute extraction press [Optional] Can only be used for lp

feedheaterspatmos atmospheric press REQUIRED textr extraction temp [Optional]pturb turbine extraction press [Optional]pabsturbine absolute turb extr press [Optional] Can only be used for lp

feedheaterstturb turbine extraction temp [Optional]pdrop press drop from turb to fedhtr [Optional] Use if only turbine

extraction pressure is available.pincr press incr from fedhtr to turb [Optional] Use if only turbine

extraction pressure is available.wssr stm seal regulator flow [Optional]hssr stm seal regulator enthalpy [Optional]hpolyextr feedhtrExtr enthal approx [Optional] Use if only in the wet

steam region.hpolyturb turbineExtr enthal approx [Optional] Use if only in the wet

steam region.

Digital Inputszdocalc Digital perf calc run flag REQUIREDzfedhtr_on fedhtr in-service flag [Optional]zfedhtr_off feedheater out-of-service flag [Optional]

Analog Outputstfhrise fedhtr temp rise [Optional]tfhrisedev fedhtr temp rise deviation [Optional] hdrnin_tot fedhtr drain inlet enthalpy [Optional]wdrnin_tot fedhtr drain inlet flow [Optional]pabsfhoutlt fedhtr abs outlet press [Optional]psatoutlt fedhtr abs sat outlet press [Optional]hfhoutlt fedhtr outlet enthalpy [Optional]

Global Performance Advisor

05/02 (Rev 2) 148 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Lpfedhtr (Cont.)Analog Outputs (Cont.) Description Usagepabsfhinlt fedhtr abs inlet press [Optional]psatinlt fedhtr abs sat inlet press [Optional]hfhinlt fedhtr inlet enthalpy [Optional]hdrnoutlt Fedhtr drain enthalpy [Optional]wfhoutlt fedhtr outlet flow [Optional]wfhinlt fedhtr inlet flow [Optional]pabsextr fedhtrExtr press abs [Optional]pabsturb turbineExtr press abs [Optional]hextr fedhtrExtr enthalpy [Optional]wextr fedhtrExtr flow [Optional]wturb turbineExtr flow to fedhtr [Optional]hturb turbineExtr enthal to fedhtr [Optional]wdrnoutlt fedhtr drain outlet flow [Optional]tsat fedhtr sat temp [Optional]wcnddvrt fedhtr flow diverted to condsr [Optional]hcnddvrt fedhtr enthal divrtd to condsr [Optional]whtrdvrt fedhtr drn flow dvrt [Optional]hhtrdvrt fedhtr drn enth dvrt [Optional]

Digital Outputszinsvcfh feedheater in-service flag [Optional]

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 149 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Lpsec

This section calculates the LPsection of the HRSG outlet flow,steam enthalpy, preheater enthalpy,saturated liquid drum enthalpy andsaturated steam drum enthalpy.

Analog Inputs Description Usagewsecin section inlet flow REQUIRED wdesuper desuperheater flow [Optional] waddmisc misc added flow [Optional] wbldwn blowdown flow [Optional] wsubmisc misc subtracted flow [Optional] pstm stage steam pressure REQUIRED patmos atmospheric pressure REQUIRED tstm steam temp REQUIRED tcondpre cond prehtr inlet temp REQUIRED pdrum stage drum pressure REQUIRED

Digital Inputszdocalc digital perf calc run flag REQUIRED

Analog Outputswsecout lp outlet flow [Optional]pabsstm lp stm abs pressure [Optional] hstm lp stm enthalpy [Optional]hcondpre cond prehtr inlet enth [Optional]pabsdrum lp abs drum pres [Optional] hliqdrum lp liq drum enth [Optional]hsatdrum lp sat drum enth [Optional]

Digital Outputs < NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 150 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Lptrb

This module calculates the lp turbineoutlet flow, the lp turbine outletenthalpy by conducting a thermaland energy balance around thewhole turbine, the lp isentropicenthalpy and the lp turbine efficiency.

Analog Inputs Description Usagewmnstm main steam flow **REQUIREDhmnstm main steam enthalpy **REQUIREDwhrhte hot reheat flow **REQUIREDhhrhte hot reheat enthalpy **REQUIREDwcrhte cold reheat flow **REQUIREDhcrhte cold reheat enthalpy **REQUIREDPmwtot total energy absorbed **REQUIREDqext heat flow in extraction steam **REQUIREDqleaks heat flow to the glands **REQUIREDqmisc misc heat flow **REQUIREDwlpturbin lp turbine inlet flow **REQUIREDwlpturbext lp turbine extraction flow **REQUIREDplpturbin lp turbine inlet pressure **REQUIREDtlpturbin lp turbine inlet temp **REQUIREDplpturbout lp turbine outlet pressure **REQUIREDpatmos atmospheric pressure **REQUIREDelpturbdes lp turbine design efficiency **REQUIRED

Digital Inputs Description Usagezdocalc digital perf calc run flag **REQUIRED

Analog Outputs Description Usageqsttot heat acquired by stm [Optional]qgen generation energy [Optional]qlpnet net heat flow in LPExhaust [Optional]wlpturbout lp turbineExhaust flow [Optional]hlpturbout lp turbineExhaust enth [Optional]pabslpturbin turbine inlet absolute pres [Optional]hlpturbin turbine inlet enthalpy [Optional]pabslpturbout turbine outlet absolute pres [Optional]hilpturb lp turbine isentropic enth [Optional]elpturbeff lp turb efficiency **REQUIREDelpturbdev lp turb effic deviation **REQUIRED

Digital Outputs Description Usage< NONE >

Constants< NONE >

Global Performance Advisor

05/02 (Rev 2) 151 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Massflowliquid

This module calculatesmass flow from volumetricflow.

Analog Inputs Description Usagetempinlet inlet temperature REQUIREDpressinlet inlet pressure REQUIREDpatmos atmospheric pressure REQUIREDwvolume volumetric flow REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputspabssat saturated pressure [Optional]pabsinlet inlet pressure absolute [Optional]vinlet inlet volume [Optional]dinlet inlet density [Optional]Sspecgrav specific gravity [Optional]wmass mass flow [Optional]

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 152 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Mixer

This modulecalculates theenthalpy, flowand heat for 10combined flows.

UnitsConverted.

YES

Analog Inputs Description Usagewin1 mixer 1 flow REQUIREDwin2 mixer 2 flow REQUIREDwin3 mixer 3 flow [Optional]win4 mixer 4 flow [Optional]win5 mixer 5 flow [Optional]win6 mixer 6 flow [Optional]win7 mixer 7 flow [Optional]win8 mixer 8 flow [Optional]win9 mixer 9 flow [Optional]win10 mixer 10 flow [Optional]hin1 mixer 1 enthalpy REQUIREDhin2 mixer 2 enthalpy REQUIREDhin3 mixer 3 enthalpy [Optional]hin4 mixer 4 enthalpy [Optional]hin5 mixer 5 enthalpy [Optional]hin6 mixer 6 enthalpy [Optional]hin7 mixer 7 enthalpy [Optional]hin8 mixer 8 enthalpy [Optional]hin9 mixer 9 enthalpy [Optional]hin10 mixer 10 enthalpy [Optional]kptqgain point gain [Optional]kptqbias point bias [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputswoutlt mixer outlet flow [Optional]qoutlt mixer outlet heat [Optional]houtlt mixer outlet enthalpy [Optional]

Digital Outputs< NONE >

Constantskcqgain = 1 kcqbias = 0

Global Performance Advisor

05/02 (Rev 2) 153 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Moistair

The moist air functioncalculates the ambient humiditygiven two of the following(tambnt, twetblb, wv, relhum)Moist air calculates the othertwo input values not input to theroutine.

UnitsConverted.

YES

Analog Inputs Description Usagetdryarg dew point temp input [Optional] Two of 5 inputs must be

configured: tdryargtwetarg wet bulb temp input [Optional] Two of 5 inputs must be

configured: tdryargWvarg ambient humidity input [Optional] Two of 5 inputs must be

configured: tdryargRlhumarg relative humidity input [Optional] Two of 5 inputs must be

configured: tdryargtdewarg dew point input [Optional] Two of 5 inputs must be

configured: tdryargpatmos atmospheric pressure input REQUIRED

Digital Inputszdocalc perf calc run flag REQUIRED

Analog Outputstdrybulb dry bulb temperature [Optional]twetbulb wet bulb temperature [Optional]Wvap ambient humidity [Optional]Relhum relative humidity [Optional]tdewpnt dew point temperature [Optional]

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 154 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Mult_add

This module will add eight pairs of numbersmultiplied together. The eight pairs ofnumbers result is then divided by the sumof the odd input values. The eight pairsadded together result can then be biased orgained by constants, points or both.

UnitsConverted.

NO

Analog Inputs Description Usagekmult_val1 pair 1 - value 1 **REQUIREDkmult_val2 pair 1 - value 2 **REQUIREDkmult_val3 pair 2 - value 1 [Optional]kmult_val4 pair 2 - value 2 [Optional]kmult_val5 pair 3 - value 1 [Optional]kmult_val6 pair 3 - value 2 [Optional]kmult_val7 pair 4 - value 1 [Optional]kmult_val8 pair 4 - value 2 [Optional]kmult_val9 pair 5 - value 1 [Optional]kmult_val10 pair 5 - value 2 [Optional]kmult_val11 pair 6 - value 1 [Optional]kmult_val12 pair 6 - value 2 [Optional]kmult_val13 pair 7 - value 1 [Optional]kmult_val14 pair 7 - value 2 [Optional]kmult_val15 pair 8 - value 1 [Optional]kmult_val16 pair 8 - value 2 [Optional]kptgain point gain [Optional]kptbias point bias [Optional]

Digital Inputs Description Usagezdocalc digital perf calc run flag **REQUIRED

Analog Outputs Description Usagekmult_add_res sum of 8 product pairs [Optional]kmult_add_div sum 8 pairs div sum odd inputs [Optional]

Digital Outputs Description Usage< NONE >

Constantskcgain = 1kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 155 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Multdiv

This modulemultiplies fournumbers anddivides byfour numbers.

UnitsConverted.

NO

Analog Inputs Description Usagekmval1 multiply value 1 REQUIREDkmval2 multiply value 2 REQUIREDkmval3 multiply value 3 [Optional]kmval4 multiply value 4 [Optional]kdval1 divide value 1 [Optional]kdval2 divide value 2 [Optional]kdval3 divide value 3 [Optional]kdval4 divide value 4 [Optional]kptgain point gain [Optional]kptbias point bias [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputskmultdiv_res multiply / divide output REQUIRED

Digital Outputs< NONE >

Constantskcgain = 1.0 kcbias = 0.0 kcdiv = 1.0

Global Performance Advisor

05/02 (Rev 2) 156 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Multiply4

This modulemultiplies 4numberstogether.

UnitsConverted.

NO

Analog Inputs Description Usagekvalue1 multiply value 1 REQUIREDkvalue2 multiply value 2 REQUIREDkvalue3 multiply value 3 [Optional]kvalue4 multiply value 4 [Optional]kptgain point gain [Optional]kptbias point bias [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputskmult4_res multiply 4 output REQUIRED

Digital Outputs< NONE >

Constantskcgain = 1 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 157 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Nlog

This modulecalculatesthe naturallog of aninput.

UnitsConverted.

NO

Analog Inputs Description Usagekvalue input to natural log module REQUIREDkptgain abs val gain value [Optional]kptbias abs val bias value [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputsknlog_res natural log result value REQUIRED

Digital Outputs< NONE >

Constantskcgain = 1 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 158 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

O2calc

This module estimates theo2 in the flue gas from theestimated air heaterleakage.

UnitsConverted.

NO

Analog Inputs Description UsageRash pcnt of CO2 **REQUIRED output from fuelsWairth stoichiometric weight of air **REQUIRED output from airhtrsWairex wt ex air per lb fuel at STP **REQUIRED output from airhtrsWvap water content of vapor **REQUIRED output from airhtrsRahlkg pcnt of air htr lkg **REQUIRED output from airhtrsFtratio temp corr ratio **REQUIRED output from airhtrskconst temp used in calc free o2 vol [Optional] required if o2 bef ahtr

meas wetvfgtot total vol of stoich fl gases [Optional] required if o2 bef ahtr

meas wetvfgstp vol of stoich fl gases at stp [Optional] required if o2 bef ahtr

meas dry

Digital Inputszdocalc digital perf calc run flag **REQUIREDzwetflag air htr o2 bef meas type **REQUIRED

Analog OutputsWwetgas calc wet gas per lb of fuel [Optional]Wexairhtrout excess air at air htr out [Optional]vo2airhtrout vol of free oxygen [Optional]Ro2out o2 at air htr outlet **REQUIRED

Digital Outputs< NONE >

ConstantsKVO2AIR = 0.232 KO2OUT = 1.104761905

Global Performance Advisor

05/02 (Rev 2) 159 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Or6

This moduleors together6 Digitalinputs.

UnitsConverted.

NO

Analog Inputs Description Usagekdummy dummy input [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIREDzdvalue1 or flag 1 REQUIREDzdvalue2 or flag 2 REQUIREDzdvalue3 or flag 3 [Optional]zdvalue4 or flag 4 [Optional]zdvalue5 or flag 5 [Optional]zdvalue6 or flag 6 [Optional]

Analog Outputs < NONE >

Digital Outputszor6_result or 6 output REQUIRED

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 160 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Overall_trb

This module calculates theoverall turbine efficiencyfrom the hp stage to the lpstage using the enthalpydrop method.

UnitsConverted.

NO

Analog Inputs Description Usagepturbin turbine inlet pressure **REQUIREDpatmos atmospheric pressure **REQUIREDtturbin turbine inlet temperature **REQUIREDpturbout turbine outlet pressure **REQUIREDhturbout turbine outlet enthalpy **REQUIREDeturbdes turbine design efficiency **REQUIRED

Digital Inputszdocalc digital perf calc run flag **REQUIRED

Analog Outputspabsturbin turbine inlet absolute pres [Optional]hturbin turbine inlet enthalpy **REQUIREDpabsturbout turbine outlet absolute pres [Optional]hiturb turbine isentropic enthalpy **REQUIREDeturbeff overall turb effic **REQUIREDeturbdev overall turb effic dev **REQUIRED

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 161 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

P1stg

This module calculatesa correction factor,absolute first stagepressure, rated absolutepressure and correctedfirst stage pressure.

UnitsConverted.

YES

Analog Inputs Description Usagep1stge first stage pressure REQUIREDpatmos atmospheric pressure REQUIREDpmnstm main steam pressure REQUIREDtmnstm main steam temperature REQUIREDprated rated main steam pressure [Optional]trated rated main steam temperature [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputspabsmain abs main stm pres [Optional]vmnstm main stm specific vol [Optional]pabsrt abs rated main stm pres [Optional]vrated rated main stm specific vol [Optional]kfact throttle flow conv factor [Optional]pabs1st abs first stage pres [Optional]pabs1corr abs corr first stage pres [Optional]p1stg gauge corr first stage pres [Optional]

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 162 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Patmos

This modulecalculatesatmosphericpressure.

UnitsConverted.

YES

Analog Inputs Description Usagepabsbaro barometric pressure REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputspatmos atmospheric pressure REQUIRED

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 163 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Pntvalidate

This algorithm validates a point bychecking a primary point for selectedquality and limits. If this point is notvalid, possible substitutions arealternate point 1, alternate point 2 or aconstant value if neither the alternatepoints are configured or valid.

UnitsConverted.

NO

Analog Inputs Description Usagekprim primary input **REQUIREDkalt1 1st alternate [Optional]kalt2 2nd Alternate [Optional]

Digital Inputs< NONE >

Analog Outputskout validated output **REQUIRED

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 164 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Poly

This modulecalculates afifth orderpolynomial.

UnitsConverted.

NO

Analog Inputs Description Usagekxvalue x value [Optional]kptgain point gain value [Optional]kptbias point bias value [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputskyvalue y value REQUIRED

Digital Outputs< NONE >

Constantskpoly[0] = 0kpoly[1] = 1.0kpoly[2] = 0kpoly[3] = 0kpoly[4] = 0kpoly[5] = 0 kcgain = 1 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 165 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Pump

This modulecomputes theactual efficiency,design efficiencyand efficiencydeviation for apump.

UnitsConverted.

YES

Analog Inputs Description Usagewpmpfw pump feedwater flow [Optional]tpmpsuc pump suction temperature [Optional]pdeaout deaerator outlet pressure [Optional] Use only for boiler

feedpumps and if suction pressurenot measured.

ppmpsuc pump suction pressure [Optional] Use only if suctionpressure is measured.

patmos atmospheric pressure [Optional]ppmpdis pump discharge pressure [Optional]tpmpdis pump discharge temperature [Optional]epmpdes pump design efficiency [Optional]Ivltpmp pump volts [Optional] Use if motor driven

pump and design motor efficiencyis not available.

iamppmp pump amps [Optional] ] Use if motor drivenpump and design motor efficiencyis not available.

kpfpmp pump power factor [Optional] ] Use if motor drivenpump and design motor efficiencyis not available.

epmpmdes pump motor design efficiency [Optional] ] Use for motor drivenpump if design motor efficiency isavailable.

nspeed pump speed [Optional]Hpmpehd expected pump head [Optional]Ppmpdrvrindes driver input pwr mtr driven [Optional] Use if not motor driven.

Digital Inputszdocalc Digital perf calc run flag REQUIREDzpmpon pump running flag [Optional] Use if digital flags

determine pump in service status.zpmpoff pump off flag [Optional] Use if digital flags

determine pump in service status.

Analog Outputspabssucsat pump suction saturated pres [Optional]vpmpbfps bfp suction volume [Optional]dpmpbfps bfp suction density [Optional]Hcondea bfp cnst head add dea out pres [Optional]pabspmpsuc pump suction pressure absolute [Optional]hpmpsuc pump suction enthalpy [Optional]pabsdissat pump discharge sat pres [Optional]pabspmpdis pump discharge pres abs [Optional]hpmpdis pump discharge enthalpy [Optional]hpmpadd pump added heat [Optional]vpmpsuc pump suction volume [Optional]

Global Performance Advisor

05/02 (Rev 2) 166 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Pump (Cont.)Analog Outputs (Cont.) Description Usagedpmpsuc pump suction density [Optional]Spmpsgrv pump suction specific gravity [Optional]ksucindia pump suction inner diameter [Optional]apmpsxa pump nozzle suction area [Optional]Vpmpsvel pump suction velocity [Optional]Hpmpsvel pump suction head velocity [Optional]vpmpdis pump discharge volume [Optional]dpmpdis pump discharge density [Optional]Spmpdgrv pump disch specific gravity [Optional]kdisindia discharge inner diameter [Optional]apmpdxa pump discharge area [Optional]Vpmpdvel pump discharge velocity [Optional]Hpmpdvel pump discharge head velocity [Optional]Hpmpselv pump suctionElevation head [Optional]Hpmpshd total pump suction head [Optional]Hpmpdelv pump dischargeElevation head [Optional]Hpmpdhd total pump discharge head [Optional]Hpmphd total pump head [Optional]epmpmeff pump motor efficiency [Optional]Ppmpmtr pump motor power [Optional]Ipmpvltmtr pump motor volts [Optional]ipmpampmtr pump motor amps [Optional]kpmppfmtr pump motor power factor [Optional]Ppmpdrvrin pump driver input power [Optional]Ppmpin pump input power [Optional]wvolpmp pump volumetric flow [Optional]Ppmpout pump output power [Optional]epmpaeff pump actual efficiency [Optional]epmpedev pump efficiency deviation [Optional]epmpoeff pump overall efficiency [Optional]ndesspeed pump design speed [Optional]Fspeed pmp spd ratio var spd pumps [Optional]Hpmpcorr pump corrected head [Optional]wvolpmpcorr correct vol flow [Optional]Rpmphddev pump head capacity [Optional]

Digital Outputszinsvcpmp pump in-service flag [Optional] Use if pump in service

status needed for OPC outputpoint.

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 167 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Qavg10

This modulecalculates theaverage of 10values Only thepoints with goodquality will count inthe average.

UnitsConverted.

NO

Analog Inputs Description Usagekvalue1 qavg10 value 1 REQUIREDkvalue2 qavg10 value 2 REQUIREDkvalue3 qavg10 value 3 [Optional]kvalue4 qavg10 value 4 [Optional]kvalue5 qavg10 value 5 [Optional]kvalue6 qavg10 value 6 [Optional]kvalue7 qavg10 value 7 [Optional]kvalue8 qavg10 value 8 [Optional]kvalue9 qavg10 value 9 [Optional]kvalue10 qavg10 value 10 [Optional]kptgain qavg10 gain value [Optional]kptbias qavg10 bias value [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputskqavg10_result quality avg10 result REQUIRED

Digital Outputs< NONE >

Constantskcgain = 1 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 168 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Qavg4

This modulecalculates theaverage of 4 valuesOnly the goodquality points willbe counted in theaveraged value.

UnitsConverted.

NO

Analog Inputs Description Usagekvalue1 avg4 value 1 REQUIREDkvalue2 avg4 value 2 REQUIREDkvalue3 avg4 value 3 [Optional]kvalue4 avg4 value 4 [Optional]Kptgain avg4 gain value [Optional]kptbias avg4 bias value [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputskqavg4_result quality avg4 result REQUIRED

Digital Outputs< NONE >

Constantskcgain = 1 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 169 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Reheat_trb

This routine calculates thereheat turbine efficiency,design efficiency anddeviation. The designefficiency is obtained bycalculating the expectedused energy end point.

UnitsConverted.

NO

Analog Inputs Description Usagepabspcnprs single zone cndsr pres [Optional] required if single zone cndsrpabspcnprslp dual zone lp cndsr pres [Optional] required if dual zone cndsrpabspcnprshp dual zone hp cndsr pres [Optional] required if dual zone cndsrhtheor_elep theoretical expan line end pt [Optional] will be calc as htheo_elep if not configkparallel_flows num par flow secs begin expan **REQUIREDwltrex lp turbine exhaust flow **REQUIREDpipbwl ip turbine bowl pressure **REQUIREDtipbwl ip turbine bowl temp **REQUIREDpreheat_des ip des pres ahead interc vlvs [Optional] req if htheor_elep not configtreheat_des ip des temp ahead interc vlvs [Optional] req if htheor_elep not configwreheat_des ip turbine bowl flow [Optional] req if htheor_elep not confighitrex ip turbine exhaust enth [Optional] req if htheor_elep not configpatmos atmospheric pressure **REQUIREDhltrex lp turbine exhaust enth **REQUIRED

Digital Inputszdocalc digital perf calc run flag REQUIRED

Analog Outputspabspcnprs_avg average condsr pres [Optional]hchng_elep chng in elep due to 0 pcnt mst [Optional]pabsipbwl abs ip bowl pressure [Optional]pabsrht_des abs ip bowl des pres [Optional]sipbwl ip bowl entropy [Optional]hipbwl ip bowl enthalpy [Optional]vreheat_des ip bowl des volume [Optional]htheo_elep theo expan line end pt [Optional]pabselep abs theo expan ln end pt pres [Optional]Fqualtheo_elep stm qu theo expan ln end pt [Optional]Rmst_theo_elep pct mst theo expan ln end pt [Optional]hcorelep exh pres cor expan ln end pt [Optional]hexpect_elep exp expan line end pt [Optional]Fqualexp_elep stm qu exp expan ln end pt [Optional]Rmst_exp_elep pct mst exp expan ln end pt [Optional]vcnprs sat spec vol cndsr avg pres [Optional]alpannulus lp annulus area [Optional]klpextflows number of lp ext flows [Optional]Vannulus lp annulus velocity [Optional]hexloss exhaust loss [Optional]hexp_uenergy exp used energy end point [Optional]hisen_uenergy isen used energy end point [Optional]erheff reheat efficiency REQUIREDerheffdes reheat efficiency design REQUIREDerheffdev reheat efficiency deviation REQUIRED

Global Performance Advisor

05/02 (Rev 2) 170 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Reheat_trb (Cont.)Digital Outputs Description Usagezipspd3600 ip turb 3600 spd flag [Optional]zlpspd3600 lp turb 3600 spd flag [Optional]zerrcode error code flag [Optional]

ConstantsCORTOT[0] = 0.87 CORTOT[4] = 0.0065CORTOT[1] = 1.0 VLIMIT = 1400.0 CORELEP[0] = -23.984811CORTOT[2] = 0.01 CPABSELEP = 1.5 CORELEP[1] = 57.862440CORTOT[3] = 1.0 CORELEP[2] = 3.1849404

Global Performance Advisor

05/02 (Rev 2) 171 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Reheat

This module calculates the coldreheat flow and enthalpy beforeand after the cold reheat flow ismixed with the ip outlet flow. Thehot reheat flow and enthalpy arealso calculated.

UnitsConverted.

YES

Analog Inputs Description Usagepcrnmx cold rht pres before mix REQUIRED patmos atmospheric pressure REQUIRED tcrnmx cold rht temp before mix REQUIRED wcrhrsg total cold rht stm flow REQUIRED wcrnmx flow bef mix point REQUIRED wmistm mix fl add to crh fl bef mix [Optional]hmistm mix enth add to crh bef mix REQUIRED wrhdshr reheat desup spray flow [Optional]phrhrh hot reheat pressure REQUIRED thrhrh hot reheat temp REQUIRED

Digital Inputszdocalc digital perf calc run flag REQUIRED

Analog Outputspabscrnmx cold reheat abs pres [Optional] hcrnmx cold reheat stm enth [Optional]whrcrh cold rht stm flow after mix [Optional]hrhcrh cold rht enth after mix [Optional]whrhrh hot reheat flow [Optional]pabshr abs hot reheat pres [Optional] hhrhrh hot reheat enth [Optional]

Digital Outputs < NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 172 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Setdig

This algorithm sets aDigital to 1 if anAnalog value isgreater than a limit.Otherwise, theDigital is set to zero.

UnitsConverted.

NO

Analog Inputs Description Usagekptload Analog val checks Digital set [Optional]kptlimit limit checks if Digital set [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputs < NONE >

Digital Outputszflag Digital flag REQUIRED

Constantskcload = 0 0 kclimit = 0 0

Global Performance Advisor

05/02 (Rev 2) 173 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Sin

Sine algorithm. UnitsConverted.

NO

Analog Inputs Description Usagekvalue input to sine module **REQUIREDkptgain abs val gain value [Optional]kptbias abs val bias value [Optional]

Digital Inputszdocalc digital perf calc run flag **REQUIRED

Analog Outputsksin_res sine result value **REQUIRED

Digital Outputs< NONE >

Constantskcgain = 1 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 174 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Specheatair

This module calculates thespecific heat of air at a given airtemperature The coefficientsused are obtained fromregressing the curve in Figure 3of ASME PTC-4 1.

UnitsConverted.

YES

Analog Inputs Description Usagetair air temperature REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputscpair specific heat of air REQUIRED

Digital Outputs< NONE >

ConstantsCPAIR[0] = 0.23897CPAIR[1] = 6.7857E-06CPAIR[2] = 1.9643E-08

Global Performance Advisor

05/02 (Rev 2) 175 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Specheatgas

This module calculates thespecific heat of flue gas at agiven temperature. Thecoefficients are obtained fromregressing the curve in Figure 7of AMSE PTC-4 1.

UnitsConverted.

YES

Analog Inputs Description Usagetfluegas flue gas temperature REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputscpfluegas specific heat of flue gas REQUIRED

Digital Outputs< NONE >

ConstantsCPGAS[0] = 0.237058CPGAS[1] = 1.065875E-05CPGAS[2] = 4.18508E-08CPGAS[3] = 2.20475E-11

Global Performance Advisor

05/02 (Rev 2) 176 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Squareroot

This modulecalculatesthesquarerootof a giveninput.

UnitsConverted.

NO

Analog Inputs Description Usagekvalue squareroot input value REQUIREDkptgain squareroot gain value [Optional]kptbias squareroot bias value [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputsksquareroot_res squareroot result value REQUIRED

Digital Outputs< NONE >

Constantskcgain = 1 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 177 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Sub10

This modulesubtractsthe sum of10 valuesfrom theinput value.

UnitsConverted.

NO

Analog Inputs Description Usagekinvalue inlet value REQUIREDksvalue1 subtract value 1 REQUIREDksvalue2 subtract value 2 [Optional]ksvalue3 subtract value 3 [Optional]ksvalue4 subtract value 4 [Optional]ksvalue5 subtract value 5 [Optional]ksvalue6 subtract value 6 [Optional]ksvalue7 subtract value 7 [Optional]ksvalue8 subtract value 8 [Optional]ksvalue9 subtract value 9 [Optional]ksvalue10 subtract value 10 [Optional]kptgain point gain [Optional]kptbias point bias [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputsksub10_res subtract 10 result REQUIRED

Digital Outputs< NONE >

Constantskcgain = 1 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 178 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Sub4

This modulesubtractsthe sum of 4numbersfrom avariable.

UnitsConverted.

NO

Analog Inputs Description Usagekinvalue input value REQUIREDksvalue1 subtract value 1 REQUIREDksvalue2 subtract value 2 [Optional]ksvalue3 subtract value 3 [Optional]ksvalue4 subtract value 4 [Optional]kptgain point gain [Optional]kptbias point bias [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputsksub4_res subtract 4 result REQUIRED

Digital Outputs< NONE >

Constantskcgain = 1 kcbias = 0

Global Performance Advisor

05/02 (Rev 2) 179 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Ttd

This modulecalculatesthe terminaltemperaturedifferenceanddeviation.

UnitsConverted.

YES

Analog Inputs Description Usagetsat saturation temp REQUIREDtfhoutlt outlet temp REQUIREDtfhdsttd des terminal temp diff [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputstfhttd term temp diff [Optional]tfhttddev term temp diff dev [Optional]

Digital Outputs< NONE >

Constants< NONE >

Global Performance Advisor

05/02 (Rev 2) 180 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Turbgen

Function computes heatgenerated and percent loadproduced by each turbinesection.

UnitsConverted.

NO

Analog Inputs Description UsagePshaft total shaft power **REQUIREDwhpstm hp turb thr stm flow **REQUIREDhhpstm hp turb thr stm enth **REQUIREDwhpmisc1-2 hp turb misc in 1-2 stm flow [Optional]hhpmisc1-2 hp turb misc in 1-2 stm enth [Optional]whpex1 hp turb extr 1 stm flow [Optional]whpex2-6 hp turb extr 2-6 stm flow [Optional]hhpex1 hp turb extr 1 stm enth [Optional]hhpex2-6 hp turb extr 2-8 stm enth [Optional]whpleak1 hp turb lkg 1 flow [Optional]whpleak2-8 hp turb lkg 2-8 flow [Optional]hhpleak1 hp turb lkg 1 enth [Optional]hhpleak2-8 hp turb lkg 2-6 enth [Optional]whpexhst hp turb exh stm flow **REQUIREDhhpexhst hp turb exh stm enth **REQUIREDWipinlet ip turb in (or bowl) stm flow [Optional]Hipinlet ip turb in (or bowl) stm enth [Optional]Wipmisc1-2 ip turb misc inlet 1-2 stm flow [Optional]Hipmisc1-2 ip turb misc inlet 1-2 stm enth [Optional]wipex1 ip turb extr 1 stm flow [Optional]wipex2-6 ip turb extr 2-6 stm flow [Optional]hipex1 ip turb extr 1 stm enth [Optional]hipex2-6 ip turb extr 2-6 stm enth [Optional]Wipleak1 ip turb lkg 1 flow [Optional]Wipleak2-8 ip turb lkg 2-8 flow [Optional]Hipleak1 ip turb lkg 1 enth [Optional]Hipleak2-8 ip turb lkg 2-8 enth [Optional]Wipexhst ip turb exh stm flow [Optional]Hipexhst ip turb exh stm enth [Optional]

Digital Inputszdocalc digital perf calc run flag **REQUIRED

Analog OutputsPhpturb heat generated by hp turb [Optional]Rhpturb pcnt total load hp turb [Optional]Pipturb heat generated ip turb [Optional]Ripturb pcnt total load ip turb [Optional]Plpturb heat generated lp turb [Optional]Rlpturb pcnt total load lp turb [Optional]Prhturb heat generated reheat turb [Optional]Rrhturb pcnt total load reheat turb [Optional]

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 181 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Turbin

This module calculates theturbine inlet enthalpy, theturbine outlet flow, the turbineoutlet enthalpy, the isentropicenthalpy and the turbineefficiency.

UnitsConverted.

YES

Analog Inputs Description Usagepturbin turbine inlet pressure REQUIREDpatmos atmospheric pressure REQUIREDtturbin turbine inlet temperature REQUIREDwturbin turbine inlet flow REQUIREDwturbext turbine extraction flow REQUIREDpturbout turbine outlet pressure REQUIREDtturbout turbine outlet temperature REQUIREDeturbdes turbine design efficiency REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputspabsturbin turbine inlet absolute pres [Optional]hturbin turbine inlet enthalpy REQUIREDwturboutlet turbine outlet flow REQUIREDpabsturbout turbine outlet absolute pres [Optional]hturbout turbine outlet enthalpy REQUIREDhiturb turbine isentropic enthalpy REQUIREDeturbeff turbine efficiency REQUIREDeturbdev turbine efficiency deviation REQUIRED

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 182 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhraitdev

This modulecalculates the unitheat rate deviationfor air heater air inlettemperaturedeviation and thecost of the deviation.

UnitsConverted.

YES

Analog Inputs Description Usageeblreffc corrected ht loss blr effic REQUIREDeblreffa actual boiler efficiency REQUIREDrhrnetref design net unit heat rate REQUIREDDcstbtu cost of fuel REQUIREDPennet net generation power REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog OutputsFaitble blr eff chg ahtr air in tmp [Optional]Faitcor un ht rt chg ahtr air in tmp [Optional]raitdev ht rt dev ahtr air in tmp REQUIREDDaitdhr un ht rt cost ahtr air tmp dev REQUIRED

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 183 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrasmecsc

This module calculatesthe ASME heat ratecorrection for five degreesFahrenheit of subcoolingat the percent of valveswide open throttle flow.

UnitsConverted.

YES

Analog Inputs Description UsageRthtle pcnt thr flow/vlvs wide open REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog OutputsRsubcoolcor ASME ht rt corr 5 deg subcool REQUIRED

Digital Outputs< NONE >

ConstantsCONCSC[0] = 0.066CONCSC[1] = -0.00036

Global Performance Advisor

05/02 (Rev 2) 184 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrasmeffw

This module calculates theASME heat rate correction forfive degrees Fahrenheit finalfeedwater temperaturedeviation at the percent ofvalves wide open throttle flow.

UnitsConverted.

YES

Analog Inputs Description UsageRthtle pcnt thr flow vlvs wide open REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog OutputsRffwcor ASME ht rt cor 5 deg fw tmp dv REQUIRED

Digital Outputs< NONE >

ConstantsCONFFW[0] = 0.024CONFFW[1] = 0.00114

Global Performance Advisor

05/02 (Rev 2) 185 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrasmeipdev1

This module calculatesthe ASME IP turbine lossfactor number 1 as afunction of ipExhaustpressure.

UnitsConverted.

YES

Analog Inputs Description Usagepabsit ip turbineExhaust pressure REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputsklsfcor1 ASME IP turb loss factor 1 REQUIRED

Digital Outputs< NONE >

ConstantsCONLS1[0] = 0.7990657CONLS1[1] = - 0.4785131E-02CONLS1[2] = 0.3258645E-04CONLS1[3] = -0.853411E-07

Global Performance Advisor

05/02 (Rev 2) 186 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrasmeipdev2

This modulecalculates theASME IP turbineloss factor number2 as a function ofipExhaustpressure.

UnitsConverted.

YES

Analog Inputs Description Usagepabsit ip turbineExhaust pressure REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputsklsfcor2 ASME IP turb loss factor 2 REQUIRED

Digital Outputs< NONE >

ConstantsCONLS2[0] = 0.7781887CONLS2[1] = -0.4812128E-02CONLS2[2] = 0.3382398E-04CONLS2[3] = -0.914272E-07

Global Performance Advisor

05/02 (Rev 2) 187 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrasmemkp

This module calculatesthe ASME heat ratecorrection for onepercent makeup flow atthe percent of valveswide open throttle flow.

UnitsConverted.

YES

Analog Inputs Description UsageRthtle pcnt thr flow/vlvs wide open REQUIRED Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputs:Rmkpcor ASME ht rt corr 1 pcnt mkup fl REQUIRED

Digital Outputs< NONE >

ConstantsCONMKP[0] = 0.1410CONMKP[1] = 0.00034

Global Performance Advisor

05/02 (Rev 2) 188 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrasmersf

This module calculatesthe ASME heat ratecorrection for onepercent reheat sprayflow at the percent ofvalves wide openthrottle flow.

UnitsConverted.

YES

Analog Inputs Description UsageRthtle pcnt thr flow/vlvs wide open REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog OutputsRrsfcor ASME ht rt corr rht spr fl REQUIRED

Digital Outputs< NONE >

ConstantsCONRSF[0] = 0.05CONRSF[1] = 0.0015

Global Performance Advisor

05/02 (Rev 2) 189 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrasmessf

This module calculatesthe ASME heat ratecorrection for onepercent superheat sprayflow at the percent ofvalves wide openthrottle flow.

UnitsConverted.

YES

Analog Inputs Description UsageRthtle pcnt thr flow/vlvs wide open REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog OutputsRssfcor ASME ht rt corr sht spr fl REQUIRED

Digital Outputs< NONE >

ConstantsCONSSF[0] = 0.007CONSSF[1] = 0.00016

Global Performance Advisor

05/02 (Rev 2) 190 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrauxdev

This module calculates theunit heat rate deviation forauxiliary power deviation andthe cost of the deviation.

UnitsConverted.

YES

Analog Inputs Description UsagePauxpwr auxiliary power REQUIREDPauxdes design auxiliary power REQUIREDPennet net power REQUIREDrhrnetref design net unit heat rate REQUIREDDcstbtu cost of fuel REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputsrstsdev aux power dev ht rt dev REQUIREDDstsdhr aux power unit ht rt cost REQUIRED

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 191 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrauxstm

This modulecalculates the unitheat rate deviation forauxiliary steam andthe cost of thedeviation.

UnitsConverted.

YES

Analog Inputs Description Usagewauxstm auxiliary steam flow REQUIREDhauxstm auxiliary steam enthalpy REQUIREDhcycle cycle enthalpy REQUIREDPennet net generation power REQUIREDDcstbtu cost of fuel REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputsrauxstmdev unit ht rt dev aux stm REQUIREDDauxstmdhr unit ht rt cost aux stm REQUIRED

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 192 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrbfpt

This module calculates theunit heat rate deviation forthe total boiler feed pumpturbine auxiliary steam heatrate and the cost of thedeviations.

UnitsConverted.

NO

Analog Inputs Description Usagewhpbfpt main stm aux bfpt supply stm **REQUIREDhhpbfpt main stm aux bfpt sup stm enth **REQUIREDPennet net power **REQUIREDwmnstm turb throttle stm flow **REQUIREDhcycle final feedwater enth **REQUIREDrnrref ref net unit heat rate **REQUIREDDcstbtu cost of fuel **REQUIREDFhpbfpt rel wght main stm aux bfpt sup **REQUIREDFexbfpt rel wght extr aux stm bfpt sup **REQUIREDwdsrhta bfp a reheat spray flow **REQUIREDwexbfpta bfpt a extr stm flow **REQUIREDhexbfpta bfpt a extr stm enth **REQUIREDhexbfptisena bfpt a isentropic enth **REQUIREDpabsexbfpta bfpt a abs extr stm pres **REQUIREDpabfptexha bfpt a exh abs hg stm pres **REQUIREDwdsrhtb bfp b reheat spray flow [Optional]wexbfptb bfpt b extr stm flow [Optional]hexbfptb bfpt b extr stm enth [Optional]hexbfptisenb bfpt b isentropic enth [Optional]pabsexbfptb bfpt b abs extr stm pres [Optional]pabfptexhb bfpt b exh abs hg stm pres [Optional]knobfp num bfp/bfp turbs in svc **REQUIREDwhpbfptdes exp bfpt high pres stm supply **REQUIREDwexbfptdes exp bfpt extraction stm supply **REQUIREDhexbfptdes exp bfpt extraction stm enth **REQUIREDpabfptexdesa bfpt a exp exh pressure **REQUIREDpabfptexdesb bfpt b exp exh pressure [Optional]

Digital Inputszdocalc digital perf calc run flag **REQUIRED

Analog Outputswarga throttle flow arg/bfpt a [Optional]wargb throttle flow arg/bfpt b [Optional]rmnbfptdev hp bfpt sup stm ht rate dev [Optional]wbfptdes design bfpt supply steam flow [Optional]wexbfptdesa des bfpt a ext stm flow [Optional]hexbfptaea bfpt a extr av ener/act con [Optional]hexbfptaebpa bfpt a extr ener/des exh [Optional]hexbfptaeinita bfpt a extr av ener/act exh [Optional]hexbfptisenbpa bfpt a extr isen enth/des exh [Optional]hexbfptiseninita bfpt a extr is enth/act exh [Optional]Fexbfptcorrbpa bfpt a ex stm fl corr fac [Optional]Fexbfptcorrinita bfpt a extr stm/corr fact [Optional]

Global Performance Advisor

05/02 (Rev 2) 193 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrbfpt (Cont.)Analog Outputs Description UsageFexbfptrhta bfpt a ex flw/rht spr corr [Optional]wexbfptcorra corr bfpt a extr stm flow [Optional]wexbfptdesb des bfpt b ext stm flow [Optional]hexbfptaeb bfpt b extr av ener act cond [Optional]hexbfptaebpb bfpt b extr av ener/des exh [Optional]hexbfptaeinitb bfpt b ext av ener/act exh [Optional]hexbfptisenbpb bfpt b ext isen enth/des exh [Optional]hexbfptiseninitb bfpt b ext is enth/act exh [Optional]Fexbfptcorrbpb bfpt b ext stm/exh pres corr [Optional]Fexbfptcorrinitb bfpt b ext stm init con cor [Optional]Fexbfptrhtb bfpt b ex flw/rht spr corr [Optional]wexbfptcorrb corr bfpt b extr stm flw [Optional]Rexbfpta pcnt bfpt a ext stm/thr flw [Optional]Rexbfptdesa bfpt a pcnt des ext/thr flw [Optional]Frefcora frac corr at lower flow in seg [Optional]Fupcora frac corr at upper flow in seg [Optional]Frefcorb frac corr at lower flow in seg [Optional]Fupcorb frac corr at upper flow in seg [Optional]Fexbfptcora corr 1 pcnt bfpt a extr stm [Optional]rexbfptdeva bfpt a extr stm ht rate dev [Optional]Rexbfptb pcnt bfpt b ext stm/thr flow [Optional]Rexbfptdesb bfpt b pcnt des ext/thr flow [Optional]Fexbfptcorb rr 1 pcnt bfpt b ext stm [Optional]rexbfptdevb bfpt b ext stm ht rate dev [Optional]rbfptdev tot bfpt sup stm ht rate dev **REQUIREDDbfptdhr bfpt sup stm ht rate dev cost **REQUIREDwrefa bfpt a thr flow lower bound [Optional]wupa bfpt a thr flow upper bound [Optional]wrefb bfpt b thr flow lower bound [Optional]wupb bfpt b thr flow upper bound [Optional]

Digital Outputs< NONE >

Constants WVWO50 = 1849.955 WVWO75 = 2774.9325 WVWO = 3699.91

Global Performance Advisor

05/02 (Rev 2) 194 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrcbp

This modulecalculates the unitheat rate deviationfor main steamtemperature andthe cost of thedeviation in $/hr.

UnitsConverted.

YES

Analog Inputs Description UsageFhrdcp ht rt fact act cond back pres REQUIREDFhrdcx ht rt factExp cond back pres REQUIREDrhrnetref design net unit heat rate REQUIREDDcstbtu cost of fuel REQUIREDPennet net generation power REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputsrcbpdev cond back pres unit ht rt dev REQUIREDDbpcdhr cond back pres heat rate cost REQUIRED

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 195 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrcontot

Compute the total unitheat rate deviationsand cost of thedeviation in $/hr forthe controllableparameters.

UnitsConverted.

YES

Analog Inputs Description Usagermstdev main stm temp unit ht rt dev [Optional] Use if main steam temp

unit heat rate deviation iscalculated.

rrstdev reheat stm temp unit ht rt dev [Optional] Use if reheat steamtemp unit heat rate deviation iscalculated.

rmspdev mn stm pressure unit ht rt dev [Optional] Use if main steampressure unit heat rate deviation iscalculated.

rssfdev supht spr flow unit ht rt dev [Optional] Use if superheat flowunit heat rate deviation iscalculated.

rrsfdev reht spr flow unit ht rt dev [Optional] Use if reheat spray flowunit heat rate deviation iscalculated.

regtdev exit gas temp dev ht rt dev [Optional] Use ifExit gas temp unitheat rate deviation is calculated.

ro2edev o2 unit ht rt dev [Optional] Use if O2 unit heat ratedeviation is calculated.

Dcstbtu cost for fuel [Optional]Pennet net generation power REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputsrtotcdev total control unit ht rt devs [Optional]Dtotcdhr total control unit ht rt cost [Optional]

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 196 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrcsc

This modulecalculates the unitheat rate deviation forcondenser subcoolingand the cost of thedeviation in $/hr.

UnitsConverted.

YES

Analog Inputs Description Usagetcnvac cnd sat tmp at cond back pres [Optional]thtwll cond hotwell temp REQUIREDRcsccor percent heat rate correction REQUIREDrhrnetref design net unit heat rate REQUIREDDcstbtu cost of fuel REQUIREDPennet net generation power REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputstcondsub condenser subcooling [Optional]rcscdev cond subcooling unit ht rt dev REQUIREDDscdhr cond subcool unit ht rt cost REQUIRED

Digital Outputs< NONE >

ConstantsKTEMP = 5.0

Global Performance Advisor

05/02 (Rev 2) 197 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhregt

This modulecalculates the heatrate deviation andthe cost of deviationforExit gastemperature.

UnitsConverted.

YES

Analog Inputs Description Usagethtrairin air htr air in temp REQUIREDtgasdesin in gas des temp REQUIREDtgasdesout exit gas des temp REQUIREDthtradesin air htr air in des temp REQUIREDthtrgasin air htr gas in temp REQUIREDRahlkg air htr leakage REQUIREDcahair specific ht of air REQUIREDcahgas specific ht of gas REQUIREDRdglsc pcnt corr ht loss fr dry gas REQUIREDhfuel hting value of fuel REQUIREDcflgasc spec ht of flue gasExit blr REQUIREDthtrmoc corr non-lkgExit gas temp REQUIREDRflmsc pcnt corr ht loss moist fuel REQUIREDRcmbhc pcnt corr ht loss moist h2 REQUIREDhfgexc vap enth cor nonlkgEx gas tmp REQUIREDhfghoc enth of air htr des in temp REQUIREDWairth stoich wt air compl comb REQUIREDWairex wt ofExc air per lb fuel STP REQUIREDhrvapc enth of saturated vapor REQUIREDWvap water content of vapor REQUIREDRwvaic pcnt corr ht loss moist air REQUIREDeblreffc corr boiler efficiency REQUIREDrhrnetref des net unit ht rate REQUIREDDcstbtu cost for fuel REQUIREDPennet net generation power REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputstcorairin corr ahtr air in temp [Optional]tcorgasin corr ahtr gas in temp [Optional]tcordesgasout corr ahtr desExit gas temp [Optional]thtrmos mod desExit gas temp [Optional]hfgexs vapor enthalpy [Optional]cahgasmdes sp ht fl gas cor desExit tmp [Optional]hdglsd dry gas ht lsEx gas tmp dev [Optional]hmslsd corr heat loss moist in fuel [Optional]hwvdeg corr heat loss moist in air [Optional]hwvdev ht ls moist airEx gas tmp dev [Optional]Fgtble blr eff cor/ex gas tmp off des [Optional]Fgtcor fr chng ht rtEx gas tmp dev [Optional]regtdev exit gas temp dev ht rt dev REQUIREDDegtdhr exit gas temp dev cost REQUIRED

Global Performance Advisor

05/02 (Rev 2) 198 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhregt (Cont.)Digital Outputs Description Usage< NONE >

ConstantsCONQAHFGDS[0] = 0.237058 CONQAHFGDS[1] = 1.065875E-05 CONQAHFGDS[2] = 4.18508E-08CONQAHFGDS[3] = 2.20475E-11

Global Performance Advisor

05/02 (Rev 2) 199 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrffw

This module calculatesthe heat rate deviationand the cost ofdeviation in $/hr forfinal feedwatertemperature.

UnitsConverted.

YES

Analog Inputs Description UsageRfwcor percent heat rate correction REQUIREDtfhttd terminal temperature deviation REQUIREDrhrnetref design net unit heat rate [Optional]Dcstbtu cost of fuel REQUIREDPennet net generation power REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputsrffwdev unit ht rt dev fin fw tmp dev REQUIREDDffwdhr unit ht rt tmp fin fw tmp cost REQUIRED

Digital Outputs< NONE >

ConstantsKTEMP = 5.0

Global Performance Advisor

05/02 (Rev 2) 200 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrhpdev

This module calculatesthe unit heat ratedeviation for hp turbineefficiency deviation andthe cost of thedeviation.

UnitsConverted.

YES

Analog Inputs Description Usageehpefdes hp design efficiency REQUIREDehpeff actual hp efficiency REQUIREDhuehp hp turbine used energy REQUIREDwmnstm main steam flow REQUIREDPmwatt power generation REQUIREDwhtrex turbineExhaust flow REQUIREDrhrtcg gross turbine cycle heat rate REQUIREDrhrnetref design net unit heat rate REQUIREDDcstbtu cost of fuel REQUIREDPennet net power REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputsehppdev pcnt hp turb effic dev [Optional]Rhpcor1 ht rt change 1 hp trb eff dev [Optional]Rhpcor2 ht rt change 2 hp trb eff dev [Optional]Rhpcor tot ht rt chng hp trb eff dev [Optional]rhpedev ht rt dev hp trb eff dev REQUIREDDhpedhr ht rt cost hp trb eff dev REQUIRED

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 201 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhripdev

This modulecalculates the unitheat rate deviationfor ip turbineefficiency deviationand the cost of thedeviation.

UnitsConverted.

YES

Analog Inputs Description Usagethrhte hot reheat temp REQUIREDklsfc1 loss factor 1 due toExh pres REQUIREDklsfc2 loss factor 2 due toExh pres REQUIREDhueip ip turb used energy REQUIREDhuerh reheat turbine used energy REQUIREDhuehp hp turbine used energy REQUIREDwmnstm main steam flow REQUIREDPmwatt generator power REQUIREDeipefdes ip turb des effic REQUIREDeipeff ip turb effic REQUIREDrhrnetref design net unit heat rate REQUIREDDcstbtu cost of fuel REQUIREDPennet net power REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputsklsfct tot lss fac xovr pres/rht tmp [Optional]Ripcor1 pcnt chng 1 ht rt due to ip [Optional]Ripcor2 pcnt chng 2 ht rt due to ip [Optional]eipdev ip turb efficiency dev [Optional]Ripcor total ip loss pcnt [Optional]ripedev ip effic dev unit ht rt dev REQUIREDDipedhr ip effic dev unit ht rt cost REQUIRED

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 202 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrmaintot

This module totals theunit heat ratedeviations for themaintenanceparameters and thecost of the deviations in$/hr.

UnitsConverted.

YES

Analog Inputs Description Usagerrpddev rht pres dr ht rt corr fact [Optional] Use if reheat pressure

drop heat rate deviation iscalculated.

rcbpdev cnd back pres ht rt corr fact [Optional] Use if condenser backpressure heat rate deviation iscalculated.

rmkpdev mkup wtr dev ht rt corr fact [Optional] Use if makeup waterdev heat rate deviation iscalculated.

rffwdev fin fw tmp dev ht rt corr fact [Optional] Use if final feedwaterunit heat rate deviation iscalculated.

rcscdev cond subcl dev ht rt corr fact [Optional] Use if condensersubcooling heat rate deviation iscalculated.

Dcstbtu cost of fuel REQUIREDPennet net generation power REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputsrmaindev total maintenance ht rt dev REQUIREDDmaindhr total maintenance ht rt cost REQUIRED

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 203 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrmisctot

This module totals theunit heat ratedeviations for themiscellaneousparameters and thecost of the deviations.

UnitsConverted.

YES

Analog Inputs Description Usagerhpedev ht rt dev hp trb eff dev [Optional] Use if unit heat rate for

hp dev is calculated.ripedev ip eff dev unit ht rt dev [Optional] Use if unit heat rate for

ip dev is calculated.rlpedev lp eff dev unit ht rt dev [Optional] Use if unit heat rate for

lp dev is calculated.rstsdev aux pwr dev ht rt dev [Optional] Use if unit heat rate for

aux pwr dev is calculated.raitdev ht rt dev ahtr air in temp [Optional] Use if unit heat rate for

air htr air inlet temp dev iscalculated.

rauxstmdev aux pwr dev unit ht rt dev [Optional] Use if unit heat rate foraux stm dev is calculated.

rphdev plant heat unit ht rt dev [Optional] Use if unit heat rate forplant heating dev is calculated.

Dcstbtu cost of heat rate dev REQUIREDPennet net power REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputsrmiscdev total misc unit ht rt devs REQUIREDDmiscdhr total misc unit ht rt cost REQUIRED

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 204 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrmkp

This modulecalculates the heatrate deviation andthe cost ofdeviation in $/hr formakeup water flow.

UnitsConverted.

YES

Analog Inputs Description Usagewmkupw makeup water flow REQUIREDwmnstm main steam flow REQUIREDwmkdes design makeup water flow REQUIREDRmkpcor pcnt ht rt corr mkup fl REQUIREDrhrnetref design net unit heat rate REQUIREDDcstbtu cost of fuel REQUIREDPennet net generation power REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog OutputsRmakeup pcnt mkup wtr flow/thr flow [Optional]Rmkpdes design makeup water flow [Optional]rmkpdev ht rt corr mkup wtr flow REQUIREDDmkpdhr ht rt cost mkup wtr flow REQUIRED

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 205 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrmsp

Compute the unitheat rate deviationand cost of thedeviation in $/hrfor main steampressure.

UnitsConverted.

YES

Analog Inputs Description UsageFhrdmp ht rt fac-mn stm pres off des REQUIREDrhrnetref des net unit heat rate REQUIREDDcstbtu cost of fuel REQUIRED Pennet net generation power REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputsrmspdev main stm pres unit heat rt dev REQUIREDDmspdhr main stm pres heat rate cost REQUIRED

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 206 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrmst

Compute the unitheat rate deviationand cost of thedeviation in $/hr formain steamtemperature.

UnitsConverted.

YES

Analog Inputs Description UsageFhrdmt ht rt fac-mn stm temp off des REQUIREDrhrnetref des net unit heat rate REQUIREDDcstbtu cost for fuel REQUIREDPennet net generation power REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputsrmstdev mn stm temp ht rt corr factor REQUIREDDmstdhr main stm temp unit ht rt cost REQUIRED

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 207 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhro2calc

This modulecalculates the heatrate deviation andthe cost ofdeviation forExitoxygen deviation.

UnitsConverted.

YES

Analog Inputs Description UsageRo2edes desExcess oxygen REQUIREDvfgtot total vol of stoich fl gas REQUIREDkconst temp const calc free o2 vol REQUIREDFtratio temp corr ratio REQUIREDWfuel mass of flue gas REQUIREDcflgasc spec ht fl gasExit blr REQUIREDthtrmoc corr non-lkgExit gas temp REQUIREDthtradesin ahtr air des inlet temp REQUIREDRdglsc pcnt corr ht loss dry gas REQUIREDhfuel heating value of fuel REQUIREDWairth stoich wt air complete comb REQUIREDhfgexc vap enth corr non-lkgExit tmp REQUIREDhrvapc enth of sat vapor REQUIREDWvap water cont of vapor REQUIREDRwvaic pcnt corr ht lss moist air sup REQUIREDeblreffc corr heat loss blr effic REQUIREDrhrnetref des net unit heat rate REQUIREDDcstbtu cost for fuel REQUIREDPennet net generation power REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputsvolovs vol of des o2 in fl gases [Optional]Warexs wt ofExcess air desExcess o2 [Optional]Wdgdes mass fl fl gas desExcess o2 [Optional]hdgdes dry gas ht lossExcess o2 [Optional]hdev1 dry gas ht lossExcess o2 dev [Optional]hwvdes ht loss moist airExcess air [Optional]hdev2 ht lss air moistExcess o2 dev [Optional]hlosso2 tot loss forExcess o2 dev [Optional]Fo2ble frac blr effic corrExcess o2 [Optional]Fo2cor frac chg u ht rtExcess o2 dev [Optional]ro2edev unit ht rt devExcess o2 dev REQUIREDDo2edhr unit ht rt costExcess o2 dev REQUIRED

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 208 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrpcthr

This modulecalculates thepercentage ofactual mainsteam flow tovalves wide openthrottle flow.

UnitsConverted.

YES

Analog Inputs Description Usagewmnstm main steam flow REQUIREDwwideopen valves wide open throttle flow REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog OutputsRthtle pcnt thr fl to vlvs wide open REQUIRED

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 209 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrrpd

This modulecalculates the unitheat rate deviationfor reheatpressure drop andthe cost of thedeviation.

UnitsConverted.

YES

Analog Inputs Description UsageFhrdpd corr fact rht pres dr off des REQUIREDrhrnetref design net unit heat rate REQUIREDDcstbtu cost of fuel REQUIREDPennet net generation power REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputsrrpddev unit ht rt dev reht pres dr REQUIREDDrpddhr unit ht rt cost reht pres dr REQUIRED

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 210 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrrsf

This modulecalculates theheat ratedeviation and thecost of deviationin $/hr for reheatspray flow.

UnitsConverted.

YES

Analog Inputs Description UsageRrscor pcnt ht rt corr reht spr fl REQUIREDwdsrht reheat spray flow REQUIREDwmnstm main steam flow REQUIREDrhrnetref design net unit heat rate REQUIREDDcstbtu cost for fuel REQUIREDPennet net generation power REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog OutputsRrsp pcnt of reht spr fl to thr fl [Optional]rrsfdev reht spr flow unit ht rt dev REQUIREDDrsfdhr reht spr flow unit ht rt cost REQUIRED

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 211 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrrst

This modulecalculates the unitheat rate deviationfor reheat steamtemperature and thecost of the deviationin $/hr.

UnitsConverted.

YES

Analog Inputs Description UsageFhrdrt ht rt fac-rht stm tmp off des REQUIREDrhrnetref des net unit heat rate REQUIREDDcstbtu cost of fuel REQUIREDPennet net generation power REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputsrrstdev reht stm temp unit ht rt dev REQUIREDDrstdhr reht stm temp ht rt cost REQUIRED

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 212 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrscah

This module calculates theunit heat rate deviation forthe stm coil air htr and thecost of the deviation.

UnitsConverted.

NO

Analog Inputs Description Usagewmnscah main stm aux scah supply stm [Optional]wexscah extration aux scah supply stm [Optional]wscah total scah supply steam [Optional]wblrstm boiler suprhtr out stm flow [Optional]hscah aggregate scah supply stm enth [Optional]hscahd aggrgat scah cond drain enth [Optional]hmnscah main stm aux scah sup stm enth [Optional]wmnstm turbine throttle steam flow [Optional]pabsexstm abs extraction aux steam press [Optional]hcycle final feedwater enthalpy [Optional]rnrref reference net unit heat rate [Optional]Dcstbtu cost per million btu's fuel [Optional]Pennet net power output [Optional]wexscahdes des extr scah stm supply [Optional]wmnscahdes des high press scah stm supply [Optional]

Digital Inputszdocalc digital perf calc run flag **REQUIRED

Analog OutputsFmnscah relwt main stm aux scah s/stm [Optional]Fexscah relwt extr aux stm scah s/stm [Optional]wscahdes design scah supply steam flow [Optional]rmnscahdev m/stm aux scah s/stm htrt dev [Optional]Rexscah pct extr scah s/stm-throtflow [Optional]Rexscahdes pctdes extrscah s/stm thrflow [Optional]Frefcor fract corr at lwr flow in seg [Optional]Fupcor fract corr at upr flow in seg [Optional]Fexscahcor fract cor 1pct aux extr s/stm [Optional]rexscahdev extr auxstm scah s/stm hr dev [Optional]rscdev tot scah heat rate dev credit [Optional]Dscdhr cost scah heat rte dev credit [Optional]warg throttle flow argument [Optional]wref throttle flow lower bound [Optional]wup throttle flow upper bound [Optional]

Digital Outputs< NONE >

ConstantsWVWO50 = 1849.955 WVWO75 = 2774.9325 WVWO = 3699.91

Global Performance Advisor

05/02 (Rev 2) 213 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrssf

This modulecalculates the heatrate deviation and thecost of deviation in$/hr for superheatspray flow.

UnitsConverted.

YES

Analog Inputs Description UsageRsscor pcnt ht rt corr supht spr fl REQUIREDwdssht superheat spray flow REQUIREDwmnstm main steam flow REQUIREDwdssdes superheat spray design flow REQUIREDrhrnetref des net unit heat rate REQUIREDDcstbtu cost of fuel REQUIREDPennet net generation power REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog OutputsRssp pcnt sht spr fl/mn stm fl [Optional]Rsspdes pcnt des sht spr fl/mn stm fl [Optional]rssfdev REQUIREDDssfdhr sht spr fl unit ht rt cost REQUIRED

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 214 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrtot

Compute the totalunit heat ratedeviation in Btu/kWhand cost of thedeviation in $/hr forall parameters.

UnitsConverted.

YES

Analog Inputs Description Usagermstdev mn stm temp ht rt corr fact [Optional] Use if main steam temp heat

rate correction factor is calculated.rrstdev reht stm temp unit ht rt dev [Optional] Use if reheat steam temp

heat rate correction factor is calculated.rmspdev mn stm pres unit ht rt dev [Optional]rssfdev supht spr flow unit ht rt dev [Optional] Use if superheat spray flow

heat rate correction factor is calculated.rrsfdev reht spray flow unit ht rt dev [Optional] Use if reheat spray flow heat

rate correction factor is calculated.regtdev exit gas temp dev ht rt dev [Optional] Use ifExit gas temp heat rate

correction factor is calculated.ro2edev excess oxygen unit ht rt dev [Optional] Use ifExit oxygen heat rate

correction factor is calculated.rhpedev ht rt dev hp turb effic dev [Optional] Use if hp effic dev heat rate

correction factor is calculated.ripedev ip turb effic unit ht rt dev [Optional] Use if ip effic dev heat rate

correction factor is calculated.rlpedev lp turb effic unit ht rt dev [Optional] Use if lp effic dev heat rate

correction factor is calculated.rstsdev aux power dev ht rt dev [Optional] Use if aux pwr dev heat rate

correction factor is calculated.raitdev air htr air in temp ht rt dev [Optional] Use if air htr air in temp dev

heat rate correction factor is calculated.rauxstmdev aux stm unit ht rt dev [Optional] Use if aux stm dev heat rate

correction factor is calculated.rrpddev reht pres drop unit ht rt dev [Optional] Use if reheat pressure drop

heat rate correction factor is calculated.rcbpdev cond back pres unit ht rt dev [Optional] Use if cond back pressure

dev heat rate correction factor iscalculated.

rmkpdev makeup water unit ht rt dev [Optional] Use if makeup water dev heatrate correction factor is calculated.

rffwdev final fdwtr tmp unit ht rt dev [Optional] Use if final feedwater tempdev heat rate correction factor iscalculated.

rcscdev cond subcool unit ht rt dev [Optional] Use if condenser subcoolingheat rate correction factor is calculated.

Dcstbtu cost for heat rate dev REQUIREDPennet net power REQUIREDrhrnet net unit heat rate [Optional]rhrnetref design net unit heat rate [Optional]

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Global Performance Advisor

05/02 (Rev 2) 215 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhrtot (Cont.)Analog Outputsrunhrtotdev unit heat rate total dev [Optional]Dunhrtot total unit heat rate cost [Optional]runaccdev total unaccount ht rt dev [Optional]Dunacchr unit ht rt unaccount loss cost [Optional]

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 216 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Unhtrt

This module calculates the netunit heat rate of the plant as wellas the gross net unit heat rate Thedesign gross and net unit heatrates are also calculated Finally,the deviations for the gross andnet unit heat rates are calculated.

UnitsConverted.

YES

Analog Inputs Description Usageqboilr boiler heat REQUIREDPmwatt generator power REQUIREDeblreff boiler efficiency REQUIREDPnetpwr net power REQUIREDrhrref reference net unit heat rate [Optional]eblreffdes boiler design efficiency [Optional]Pauxdes design auxiliary power REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputsrhrgrs gross unit heat rate [Optional]rhrnet net unit heat rate [Optional]rhrgrsref design gross unit heat rate [Optional]rhrnetref design net unit heat rate [Optional]rgrsdev gross unit heat rate dev [Optional]rnetdev net unit heat rate dev [Optional]Dfactconv cost factor conv to US Dollars [Optional]

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 217 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Volflowgas

This moduleconverts amass gasflow to avolumetricflow.

UnitsConverted.

YES

Analog Inputs Description Usagewmass mass gas flow REQUIREDdfancor corrected density REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputswgvolume volumetric flow REQUIRED

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 218 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Volflowliquid

This moduleconverts aliquid massflow to avolumetricflow.

UnitsConverted.

YES

Analog Inputs Description Usagetempinlet inlet temperature REQUIREDpressinlet inlet pressure REQUIREDpatmos atmospheric pressure REQUIREDwmass mass flow REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputspabssat saturated pressure [Optional]pabsinlet inlet pressure absolute [Optional]vinlet inlet volume [Optional]dinlet inlet density [Optional]Sspecgrav specific gravity [Optional]wvolume volumetric flow REQUIRED

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 219 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Wmncor

This modulecalculates the mainsteam flow deviationbetween referencemain steam flow andcorrected main steamflow.

UnitsConverted.

YES

Analog Inputs Description Usagewmnstm main steam flow REQUIREDwmnref main steam reference flow [Optional]kfact throttle flow conv factor REQUIRED

Digital Inputszdocalc Digital perf calc run flag REQUIRED

Analog Outputswmncor corrected throttle flow [Optional]wmndev main steam flow deviation [Optional]

Digital Outputs< NONE >

Constants < NONE >

Global Performance Advisor

05/02 (Rev 2) 220 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

D Steamtable AlgorithmsName Description Analog

InputsDescription Usage Analog

OutputsDescription Usage

Hclsp scliquid inlet entropy Required patmos atmospheric pressure

Optional

pabsbaro barometric pressure

Required pabs absolute pressure

Optional

presg inlet gauge pressure

Required henthal compressed liquid enthalpy

Required

Digital Inputs

Digital Outputs

NONE

zdocalc digital perf calc run flag

Required

Hclsp_chk scliquid inlet entropy Required patmos atmospheric pressure

Optional

pabsbaro barometric pressure

Required pabs absolute pressure

Optional

presg inlet gauge pressure

Required henthal compressed liquid enthalpy

Required

kinvalue input value to check for limit

Required

kptlimit point limit OptionalConstants Digital

InputsDigital Outputs

NONE

kclimit = 0.0 zdocalc digital perf calc run flag

Required

Hcltp temp inlet temperature

Required patmos atmospheric pressure

Optional

pabsbaro barometric pressure

Required pabs absolute pressure

Optional

presg inlet gauge pressure

Required hcliquid compressed liquid enthalpy

Required

Digital Inputs

Digital Outputs

NONE

zdocalc digital perf calc run flag

Required

Calculate compressed liquid enthalpy given entropy and absolute pressure.

Calculate compressed liquid enthalpy, given temperature and absolutepressure.

Check input value and if above limit, call steam table call.

Global Performance Advisor

05/02 (Rev 2) 221 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Name Description Analog Inputs

Description Usage Analog Outputs

Description Usage

Hcltp_chk temp inlet temperature

Required patmos atmospheric pressure

Optional

pabsbaro barometric pressure

Required pabs absolute pressure

Optional

presg inlet gauge pressure

Required hcliquid compressed liquid enthalpy

Required

kptlimit point value limit

Optional

kinvalue input value to check limit

Required

Constants Digital Inputs

Digital Outputs

NONE

kclimit = 0.0 zdocalc digital perf calc run flag

Required

Hichpp hin inlet enthalpy Required patmos atmospheric pressure

Optional

pabsbaro barometric pressure

Required pabs1 absolute pressure 1

Optional

presg1 inlet gauge pressure 1

Required pabs2 absolute pressure 2

Optional

presg2 inlet gauge pressure 2

Required henthal enthalpy Required

Digital Inputs

Digital Outputs

NONE

zdocalc digital perf calc run flag

Required

Hichpp_chk hin inlet enthalpy Required patmos atmospheric pressure

Optional

pabsbaro barometric pressure

Required pabs1 absolute pressure 1

Optional

presg1 inlet gauge pressure 1

Required pabs2 absolute pressure 2

Optional

presg2 inlet gauge pressure 2

Required henthal enthalpy Required

kptlimit point limit Optionalkinvalue input value to

check limitRequired

Constants Digital Inputs

Digital Outputs

NONE

kclimit = 0.0 zdocalc digital perf calc run flag

Required

Calculate enthalpy of the outlet of an isentropic process given inlet pressure, exit absolute pressures and inlet enthalpy in compressed liquid region.

If input value above limit, call hcltp Otherwise set the enthalpy to 0.

If input value above limit, calculate enthalpy Otherwise, set enthalpy to 0.

Global Performance Advisor

05/02 (Rev 2) 222 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Name Description Analog Inputs

Description Usage Analog Outputs

Description Usage

Hictpp temp inlet temperature

Required patmos atmospheric pressure

Optional

pabsbaro barometric pressure

Required pabs1 absolute pressure 1

Optional

presg1 inlet gauge pressure 1

Required pabs2 absolute pressure 2

Optional

presg2 inlet gauge pressure 2

Required henthal enthalpy Required

Digital Inputs

Digital Outputs

NONE

zdocalc digital perf calc run flag

Required

Hishpp henthal inlet enthalpy Required patmos atmospheric pressure

Optional

pabsbaro barometric pressure

Required pabs1 absolute pressure 1

Optional

presg1 inlet gauge pressure 1

Required pabs2 absolute pressure 2

Optional

presg2 inlet gauge pressure 2

Required hisen-tropic

isentropic enthalpy

Required

Digital Inputs

Digital Outputs

NONE

zdocalc digital perf calc run flag

Required

Histpp temp inlet temperature

Required patmos atmospheric pressure

Optional

pabsbaro barometric pressure

Required pabs1 absolute pressure 1

Optional

presg1 inlet gauge pressure 1

Required pabs2 absolute pressure 2

Optional

presg2 inlet gauge pressure 2

Required hisen-tropic

isentropic enthalpy

Required

Digital Inputs

Digital Outputs

NONE

zdocalc digital perf calc run flag

Required

Hslp pabsbaro barometric pressure

Required patmos atmospheric pressure

Optional

presg inlet gauge pressure

Required pabs absolute pressure

Optional

hsat saturation enthalpy

Required

Digital Inputs

Digital Outputs

NONE

zdocalc digitial perf calc run flag

Required

Calculate enthalpy of outlet of an isentropic process given inlet pressure, exit absolute pressure and inlet enthalpy in super-heated or wet steam regions.

Calculate saturated liquid enthalpy, given absolute pressure.

Calculate enthalpy of an isentropic drop from conditions t1, p1, down to pressure p2.

Calculate enthalpy of isentropic rise from conditions t1, p1 to pressure p2 in compressed liquid region.

Global Performance Advisor

05/02 (Rev 2) 223 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Name Description Analog Inputs

Description Usage Analog Outputs

Description Usage

Hslp_chk pabsbaro barometric pressure

Required patmos atmospheric pressure

Optional

presg inlet gauge pressure

Required pabs absolute pressure

Optional

kptlimit point limit Optional hsat saturation enthalpy

Required

kinvalue input value to check limit

Required

Constants Digital Inputs

Digital Outputs

NONE

kclimit = 0.0 zdocalc digitial perf calc run flag

Required

Hslt temp inlet temperature

Required hsat saturation enthalpy

Required

Digital Inputs

Digital Outputs

NONE

zdocalc digitial perf calc run flag

Required

Hslt_chk temp inlet temperature

Required hsat saturation enthalpy

Required

kptlimit point limit Optionalkinvalue in val to

check against limit

Required

Constants Digital Inputs

Digital Outputs

NONE

kclimit = 0.0 zdocalc digitial perf calc run flag

Required

Hsstp temp inlet temperature

Required patmos atmospheric pressure

Optional

pabsbaro barometric pressure

Required pabs absolute pressure

Optional

presg inlet gauge pressure

Required hssteam superheated steam enthalpy

Required

Digital Inputs

Digital Outputs

NONE

zdocalc digital perf calc run flag

Required

Calculate saturated liquid enthalpy, given temperature.

Calculate superheated steam enthalpy, given temperature and absolutepressure.

If input value above limit, calculate enthalpy. Otherwise, set to 0.

If input value above limit, calculate enthalpy. Otherwise, set enthalpy to 0.

Global Performance Advisor

05/02 (Rev 2) 224 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Name Description Analog Inputs

Description Usage Analog Outputs

Description Usage

Hsstp_chk temp inlet temperature

Required patmos atmospheric pressure

Optional

pabsbaro barometric pressure

Required pabs absolute pressure

Optional

presg inlet gauge pressure

Required hssteam superheated steam enthalpy

Required

kptlimit point limit information

Optional

kinvalue in val to check against limits

Required

Constants Digital Inputs

Digital Outputs

NONE

kclimit = 0.0 zdocalc digital perf calc run flag

Required

Hsvp pabsbaro barometric pressure

Required patmos atmospheric pressure

Optional

presg inlet gauge pressure

Required pabs absolute pressure

Optional

hsvap saturated vapor enthalpy

Required

Digital Inputs

Digital Outputs

NONE

zdocalc digital perf calc run flag

Required

Hswsp sentropy entropy Required patmos atmospheric pressure

Optional

pabsbaro barometric pressure

Required pabs absolute pressure

Optional

presg inlet gauge pressure

Required hsw enthalpy Required

Digital Inputs

Digital Outputs

NONE

zdocalc digital perf calc run flag

Required

Pslt temp inlet temperature

Required pabssat saturated pressure

Required

Digital Inputs

Digital Outputs

NONE

zdocalc digital perf calc run flag

Required

If input value above limit, calculate enthalpy. Otherwise, set to 0.

Calculated saturated vapor enthalpy, given absolute pressure.

Calculated saturated liquid pressure, given temperature.

Calculate steam enthalpy, given entropy and absolute pressure of superheated or wet steam.

Global Performance Advisor

05/02 (Rev 2) 225 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Name Description Analog Inputs

Description Usage Analog Outputs

Description Usage

Psvs sentropy entropy Required pabssat absolute pressure

Required

Digital Inputs

Digital Outputs

NONE

zdocalc digital perf calc run flag

Required

Sclhp henthal inlet enthalpy Required patmos atmospheric pressure

Optional

pabsbaro barometric pressure

Required pabs absolute pressure

Optional

presg inlet gauge pressure

Required scliquid compressed liquid entropy

Required

Digital Inputs

Digital Outputs

NONE

zdocalc digital perf calc run flag

Required

Scltp temp inlet temperature

Required patmos atmospheric pressure

Optional

pabsbaro barometric pressure

Required pabs absolute pressure

Optional

presg inlet gauge pressure

Required scliquid compressed liquid entropy

Required

Digital Inputs

Digital Outputs

NONE

zdocalc digital perf calc run flag

Required

Sslp pabsbaro barometric pressure

Required patmos atmospheric pressure

Optional

presg inlet gauge pressure

Required pabs absolute pressure

Optional

ssat saturated entropy

Required

Digital Inputs

Digital Outputs

NONE

zdocalc digital perf calc run flag

Required

Calculate compressed liquid entropy, given temperature and absolute pressure.

Calculate saturated liquid entropy, given absolute pressure.

Calculate compressed liquid entropy, given enthalpy and absolute pressure.

Calculate pressure of saturated pressure given entropy.

Global Performance Advisor

05/02 (Rev 2) 226 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Name Description Analog Inputs

Description Usage Analog Outputs

Description Usage

Sslt temp inlet temperature

Required ssat saturated entropy

Required

Digital Inputs

Digital Outputs

NONE

zdocalc digital perf calc run flag

Required

Ssstp temp inlet temperature

Required patmos atmospheric pressure

Optional

pabsbaro barometric pressure

Required pabs absolute pressure

Optional

presg inlet gauge pressure

Required sssteam superheat steam entropy

Required

Digital Inputs

Digital Outputs

NONE

zdocalc digital perf calc run flag

Required

Ssvp pabsbaro barometric pressure

Required patmos atmospheric pressure

Optional

presg inlet gauge pressure

Required pabs absolute pressure

Optional

vsvap saturated vapor volume

Required

Digital Inputs

Digital Outputs

NONE

zdocalc Digital perf calc run flag

Required

Sswhp henthal inlet enthalpy Required patmos atmospheric pressure

Optional

pabsbaro barometric pressure

Required pabs absolute pressure

Optional

presg inlet gauge pressure

Required ssw entropy Required

Digital Inputs

Digital Outputs

NONE

zdocalc Digital perf calc run flag

Required

Calculate saturated vapor entropy, given absolute pressure.

Calculate superheated steam entropy, given temperature and absolute pressure.

Calculate steam entropy, given enthalpy and absolute pressure of superheated or wet steam.

Calculate saturated liquid entropy, given temperature.

Global Performance Advisor

05/02 (Rev 2) 227 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Name Description Analog Inputs

Description Usage Analog Outputs

Description Usage

Tclhp henthal inlet enthalpy Required patmos atmospheric pressure

Optional

pabsbaro barometric pressure

Required pabs absolute pressure

Optional

presg inlet gauge pressure

Required temp temperature Required

Digital Inputs

Digital Outputs

NONE

zdocalc Digital perf calc run flag

Required

Tslp pabsbaro barometric pressure

Required patmos atmospheric pressure

Optional

presg inlet gauge pressure

Required pabs absolute pressure

Optional

tsat saturation temperature

Required

Digital Inputs

Digital Outputs

NONE

zdocalc Digital perf calc run flag

Required

Tslqh henthal inlet enthalpy Required temp outlet temperature

Required

Digital Inputs

Digital Outputs

zdocalc Digital perf calc run flag

Required

Tswhp henthal enthalpy Required patmos atmospheric pressure

Optional

pabsbaro barometric pressure

Required pabs absolute pressure

Optional

presg inlet gauge pressure

Required temp outlet temperature

Required

Digital Inputs

Digital Outputs

NONE

zdocalc Digital perf calc run flag

Required

Calculate compressed liquid temperature given enthalpy and absolute pressure.

Calculate saturated steam temp given enthalpy.

Calculate saturated liquid temperature, given absolute pressure.

Calculate steam temperature, given entropy and absolute pressure of superheated or wet steam.

Global Performance Advisor

05/02 (Rev 2) 228 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Name Description Analog Inputs

Description Usage Analog Outputs

Description Usage

Tswsp sentropy entropy Required patmos atmospheric pressure

Optional

pabsbaro barometric pressure

Required pabs absolute pressure

Optional

presg inlet gauge pressure

Required temp temperature Required

Digital Inputs

Digital Outputs

NONE

zdocalc Required

Vcltp temp inlet temperature

Required patmos atmospheric pressure

Optional

pabsbaro barometric pressure

Required pabs absolute pressure

Optional

presg inlet gauge pressure

Required vcliquid compressed liquid volume

Required

Digital Inputs

Digital Outputs

NONE

zdocalc Digital perf calc run flag

Required

Vslt temp inlet temperature

Required vsat saturated volume

Required

Digital Inputs

Digital Outputs

NONE

zdocalc Digital perf calc run flag

Required

Vsstp temp inlet temperature

Required patmos atmospheric pressure

Optional

pabsbaro barometric pressure

Required pabs absolute pressure

Optional

presg inlet gauge pressure

Required vssteam superheated steam volume

Required

Digital Inputs

Digital Outputs

NONE

zdocalc Digital perf calc run flag

Required

Calculate steam temperature, given entropy and absolute pressure of superheated or wet steam.

Calculated compressed liquid specific volume, given temperature and absolute pressure.

Calculate superheated steam specific volume, given temperature and absolute pressure.

This module calculates saturated liquid specific volume given temperature.

Global Performance Advisor

05/02 (Rev 2) 229 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Name Description Analog Inputs

Description Usage Analog Outputs

Description Usage

Vsvp pabsbaro barometric pressure

Required patmos atmospheric pressure

Optional

presg inlet gauge pressure

Required pabs absolute pressure

Optional

vsvap saturated vapor volume

Required

Digital Inputs

Digital Outputs

NONE

zdocalc RequiredVswhp henthal inlet enthalpy Required patmos atmospheric

pressureOptional

pabsbaro barometric pressure

Required pabs absolute pressure

Optional

presg inlet gauge pressure

Required vsw superheated steam volume

Required

Digital Inputs

Digital Outputs

NONE

zdocalc Digital perf calc run flag

Required

Vswsp sentropy entropy Required patmos atmospheric pressure

Optional

pabsbaro barometric pressure

Required pabs absolute pressure

Optional

presg inlet gauge pressure

Required vsw volume Required

Digital Inputs

Digital Outputs

NONE

zdocalc Digital perf calc run flag

Required

Xswhp henthal inlet enthalpy Required patmos atmospheric pressure

Optional

pabsbaro barometric pressure

Required pabs absolute pressure

Optional

presg inlet gauge pressure

Required kqual quality Required

Digital Inputs

Digital Outputs

NONE

zdocalc Digital perf calc run flag

Required

Calculate steam quality, given entropy and absolute pressure of superheated or wet steam.

Calculate saturated vapor specific volume, given absolute pressure.

Calculate steam specific volume, given entropy and absolute pressure of superheated or wet steam.

Calculated steam specific volume, given enthalpy and absolute pressure of superheated or wet steam.

Global Performance Advisor

05/02 (Rev 2) 230 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Name Description Analog Inputs

Description Usage Analog Outputs

Description Usage

Xswsp sentropy entropy Required patmos atmospheric pressure

Optional

pabsbaro barometric pressure

Required pabs absolute pressure

Optional

presg inlet gauge pressure

Required kqual quality Required

Digital Inputs

Digital Outputs

NONE

zdocalc Digital perf calc run flag

Required

Calculate steam quality, given entropy and absolute pressure of superheated or wet steam.

Global Performance Advisor

05/02 (Rev 2) 231 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

E Scan Period Time SettingsInitially the scan setting is set at 10 seconds, as seen in the Scan Period box of theConfiguration tab of any Algorithm Properties dialog box. Notice that the value is"grayed out", meaning that it can not be set from that dialog box. In order to change thevalue, do the following:

4. Double-click on the Tags icon in the Workspace Window.

5. Find the scantime Tag and double-click on it.

6. Use the pull-down in the Style box to find "Style-scantimeTag" then click on edit Styles.

Global Performance Advisor

05/02 (Rev 2) 232 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

7. Find and double-click on the "Style-scantimeaTag" file, then the Details tab.

8. Set the Initial Value to the desired time (the default time is 10 seconds which shows upas "0" in the box). Click on OK then Use, then OK. The time will now be set to the newvalue.

Global Performance Advisor

05/02 (Rev 2) 233 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

F Common Functional Block DiagramsInput Functional Block Diagram

The GPA package collects data through the input functional block diagram. Thisfunctional block diagram should contain the input algorithms (analog and digital) as wellas the FBD ordering algorithm.

After creating the INPUT DOCUMENT, tab over to the W INPUT algorithm tab. Thisgroup contains the Analoginavg, Digitalin and FBDorder algorithms. The Analoginavgalgorithm inputs OPC server analog values and outputs local GPA averaged analogvalues. The Digitalin algorithm inputs OPC server digital values and outputs local GPAdigital values. The FBDorder algorithm orders the functional block diagrams.

The Analoginavg algorithm CONFIGURATION tab allows the averaged period as well asthe type of average and percentages of samples to be changed. The name can also bechanged to accommodate multiple Analoginavg algorithms. This algorithm along with theDigitalin algorithm(s) should be the first algorithms configured as no other algorithms canbe created until the algorithm’s input points exist.

The TAGS tab allows the points to be created/configured/listed. To create tags, choosecreate/configure tags. The next screen will allow the user to define a new set, list thecurrent sets already defined, choose default units and the OPC server name and node.On the define tag screen, select a point, check the configure box and fill in the pointinformation. After completing the information, select Update List. Continue configuring allthe analog inputs needed. Notice that nothing needs to be done with the output points asthese points are automatically updated from the input list. After configuring all the analoginputs, select the Save or Save as button. If more analog inputs are needed thancontained in the Analoginavg algorithm, a second Analoginavg algorithm can be droppedand configured.

The Digitalin algorithm CONFIGURATION tab does not contain any average information.Only the analoginavg algorithms contain this information. The name and descriptionfields can be modified on this screen.

The Digitalin algorithm TAGS tab allows the points to be created/configured/listed. Afterchoosing the create/configure tags, select the default units as well as the OPC servername and node. On the define tags screen, select a point, check the configure box andfill in the point information. After completing the information, select Update List. Continueconfiguring all the digital inputs needed. Notice that nothing needs to be done with theoutput points as these points are automatically updated from the input list. Afterconfiguring all the digital inputs, select the Save or Save As button. If more digital inputsare needed than contained in the Digitalin algorithm, a second Digitalin algorithm can bedropped and configured.

The FBDorder algorithm only needs the Design Info configured. After adding a functionalblock diagram, the FBDorder algorithm Design Info tab needs to be updated. Note thatthis algorithm must be put on the very first document.

Global Performance Advisor

05/02 (Rev 2) 234 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

INPUT DOCUMENT CHECKLIST� Analoginavg and Digitalin algorithms must be configured first before subsequent

algorithms.� Fbdorder algorithm must be put on the first functional block diagram to order the

functional block diagrams.

Main Functional Block DiagramThe main functional block diagram contains calculations concerning the entire plant,such as checking the load, atmospheric pressure, boiler steam enthalpy and flow, mainsteam enthalpy and flow, rated main steam pressure, rated main steam temperature,first stage pressure, reference main steam flow and the deviation between main steamcorrected flow and reference main steam flow. Any other calculations, such asaverages, pertaining to the entire plant should also be done on this FBD.

The check load algorithm (Chkload) checks the load and will set the flag for the GPApackage to run if the load is above the user-specified load.

The atmospheric pressure algorithm (Patmos) calculates the atmospheric pressureaccording to the barometric pressure.

The boiler steam enthalpy and flow algorithm (Hwblrstm) calculates the boiler steam flowand enthalpy. The flow is calculated according to any flows added and subtracted fromthe boiler steam flow. These flows are selected from the design screen. The enthalpy iscalculated from a steam table call using the temperature and pressure.

The main steam enthalpy and flow algorithm (Hwmnstm) calculates the main steam flowand enthalpy. The flow is calculated according to any flows added and subtracted fromthe main steam flow. These flows are selected from the design screen. The enthalpy iscalculated from a steam table call using the temperature and pressure.

The rated main steam temperature and pressure are calculated as a curve fit and thecurve fit algorithms can be found in the W Curves algorithm section.

The first stage pressure algorithm (P1stg) calculates a correction factor, absolute firststage pressure, rated absolute pressure and corrected first stage pressure.

The reference main steam flow is calculated from a curve fit and the curve fit algorithmscan be found in the W Curves algorithm section.

The main steam corrected flow and deviation algorithm (Wmncor) calculates the mainsteam corrected flow and the deviation from the reference main steam flow.

MAIN INPUT ALGORITHM CHECKLIST� Chkload algorithm must be used first after the analoginavg and digital algorithms.

This algorithm sets the digital flag zdocalc, which allows all other algorithmstoExecute.

Global Performance Advisor

05/02 (Rev 2) 235 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

"Equipment" Functional Block Diagrams

FEEDHEATER FUNCTIONAL BLOCK DIAGRAM

The feedheater functional block diagram document contains the feedheater algorithm, aswell as any curve fits needed for the design terminal temperature differences and designdrain cooler approaches. The feedheater algorithms are hpfedhtr, lpfedhtr, deaerator, ttdand drnclr. These will be described below.

The hp feedheater algorithm (Hpfedhtr) calculates a heat and materials balance arounda shell and tube type heatExchanger. extraction and drain flows are calculated. Turbineextraction flow and enthalpy are also calculated. This module does not account fordrains pumped forward. The design information needed for this algorithm is as follows:

Feedheater numberIn-service logic – digital signal or feedheater temperature riseOut-of-service logic – cascading drain flow to condenser or anotherfeedheaterExtraction temperature and pressure measurement locationsLeakage existence and the locationAuxiliary leakage split from extraction flow existence

The lp feedheater algorithm (Lpfedhtr) calculates a heat and materials balance around alow pressure shell and tube type heatExchanger. The extraction and drain flows arecalculated for the feedheater. The turbine extraction flow and enthalpy are alsocalculated. This module does not account for drains pumped forward. The designinformation needed for this algorithm is as follows:

Feedheater numberIn-service logic – digital signal or feedheater temperature riseOut-of-service logic – cascading drain flow to condenser or anotherfeedheater and SSR overflow diverted existenceExtraction temperature and pressure measurement locationsLeakage existence and the locationAuxiliary leakage split from extraction flow existence

The deaerator algorithm (Deaerator) calculates the condensate inlet flow, outlet flow,inlet enthalpy and outlet enthalpy for a direct contact heatExchanger. The extractionsteam flow and enthalpy are also calculated. The design information needed for thisalgorithm is as follows:

Reheat and superheat spray flows existence and locationsExtraction temperature and pressure measurement locationsLeakage existence and the location

Global Performance Advisor

05/02 (Rev 2) 236 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Auxiliary leakage split from extraction flow existence

The drain cooler approach algorithm (drnclr) calculates drain cooler approach anddeviation. The design drain cooler approach for a particular feedheater has to becalculated by a curve fit algorithm before the drain cooler approach algorithm for thisfeedheater is placed on the document.

The terminal temperature difference algorithm (ttd) calculates the terminal temperaturedifference and deviation. The design terminal temperature difference for a particularfeedheater has to be calculated by a curve fit algorithm before the terminal temperaturedifference algorithm for this feedheater is placed on the document.

CONDENSER FUNCTIONAL BLOCK DIAGRAM

The condenser functional block diagram contains the algorithms for condenserperformance. These include the condenser design, condenser average temperature,condenser specific heat, condenser temperature correction factor, and condenseralgorithms.

The condenser design algorithm (Cnddesign) reads in the condenser design information.The design information along with the length, outer diameter, bwg, condenser materialcorrection factor and thickness are all assigned to output points. The inner diameter isalso calculated for the compartment(s).

The condenser average temperature algorithm (cndavgtemp) calculates the condenseraverage inlet and outlet temperature as well as the average circulating watertemperature.

The condenser specific heat algorithm (Cndspecheat) calculates the specific heat of thecondenser circulating water temperature.

The condenser temperature correction factor is calculated as a curve fit. The curve fitalgorithms can be found in the W Curves section of the algorithms.

The condenser algorithm (Condsr) determines the method for out-of-servicecompartments. After checking for out-of-service compartments, the specific heat,specific volume and specific gravity of circulating water are calculated. Next, thecondenser duty, the condenser circulating water flow, the actual and design heattransfer, the cleanliness factor,Expected back pressure with clean tubes and thebackpressure deviation are calculated. The calculations are done in accordance withASME Power Test Code PTC 12.2 (1983) and HeatExchange Institute Standards forSteam Surface Condensers, Ninth edition.

STEAM TURBINE FUNCTIONAL BLOCK DIAGRAM

The steam turbine functional block diagram document contains the generator-relatedalgorithm and the turbine stage efficiency algorithms.

The generator algorithm (Gennet) calculates the generator mva, the generator powerfactor, the auxiliary power, the ratio of auxiliary power to gross power, the total shaft

Global Performance Advisor

05/02 (Rev 2) 237 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

power and generator efficiency. Variable generator losses need to be calculated beforethis algorithm by a curve fit.

Next, any flows and leakages associated with the high-pressure stage need to becalculated by using W Curves algorithms and W Math algorithms. After these arecalculated, the high-pressure design efficiency needs to calculate by a curve fitalgorithm. Finally, the turbine algorithm should be used for the hp stage. The turbinealgorithm (turbin) calculates the turbine inlet enthalpy, the turbine outlet flow, the turbineoutlet enthalpy, the isentropic enthalpy and the turbine efficiency.

The calculations for the intermediate pressure stage are done the same as the high-pressure stage. Flows and leakages associated with the intermediate pressure stage arecalculated and then the turbine algorithm should be used for the intermediate stage.

The low pressure stage efficiency is calculated by summing the total heat and dividingby the total flow. The mixer algorithm can be used to calculate the total heat. Next, thedesign low pressure efficiency is calculated by a curve fit and the low pressure efficiencydeviation is calculated using a subtraction algorithm.

Lastly, the stage(s) used energy and the condenser vapor enthalpy are calculated.

BOILER FUNCTIONAL BLOCK DIAGRAM

The boiler functional block diagram contains the fuels, modified air heater temperature,boiler, corrected boiler efficiency and air heater algorithms. The design boiler efficiency,designExcess air and design air heater air inlet temperature also needs to be calculatedon this document.

The fuels algorithm (Fuels) is under the W Fuel tab and performs a fuel analysis on thetotal fuel(s) used. This algorithm requires design information.

The modified air heater temperature algorithm (modahtemp) calculates the air heaterleakage and modified outlet temperature for the air heater(s).

The boiler algorithm (Boiler) calculates the boiler efficiency by the heat loss method.Before this module is used, the design boiler efficiency, designExcess air and design airheater air inlet temperature need to be calculated by a curve fit.

The corrected boiler efficiency (Corblrloss) calculates the corrected boiler efficiency anddeviation.

The air heater algorithm (Airhtr) monitors the performance of the air heater. It computesthe x-ratio, the air side efficiency and the gas side efficiency.

FAN FUNCTIONAL BLOCK DIAGRAM

The fan functional block diagram contains the fan design, the density correction, designdischarge pressure, design horsepower, design fan motor efficiency (if available) and thefan algorithm. The fan airflow isExpected to be in volumetric units. If the airflow is not involumetric units, the Volflowgas algorithm under the W Misc tab can be used to change

Global Performance Advisor

05/02 (Rev 2) 238 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

the mass flow into a volumetric flow.

The fan design algorithm (Fandesign) is under the W Fan tab and reads the fan designinformation. The information required is fan discharge area, reference temperature andpressure for fan curves, fan characteristic curve reference density, design fan motorefficiency existence and the type of in-service logic used – digital signal or minimum airflow.

The corrected density algorithm (Densitycor) is under the W Misc tab and computes adensity corrected to current temperature and pressure conditions as well as a densitycorrection factor. The corrected density is needed as an input to the fan algorithm.

The design discharge pressure, design horsepower and design fan efficiencies arecalculated from curve fits. These algorithms are also needed for the fan algorithm.

The fan algorithm (Fan) is found under the W Fan tab and calculates the fan efficiency,design fan efficiency and the fan efficiency deviation.

PUMP FUNCTIONAL BLOCK DIAGRAM

The pump functional block diagram contains the pump design efficiency, the pumpdesign head, the pump motor design efficiency (if available) and the pump algorithm.

The pump design efficiency, the pump design head and the pump motor designefficiency (if available) are calculated by curve fits.

The pump algorithm (Pump) is under the W Pump tab and calculates the actualefficiency, design efficiency and efficiency deviation for a pump. Design information isrequired for this algorithm. The pump suction and discharge inner diameter and suctionheads as well as in-service logic, design pump motor efficiency existence, constantspeed existence and for boiler feedpumps only – suction pressure measurementexistence.

COMBUSTION TURBINE FUNCTIONAL BLOCK DIAGRAM

The combustion turbine functional block diagram contains designs for power, heat rateandEvaporator (if one is present) and the combustion turbine algorithm.

The design combustion turbine power, heat rate andEvaporator are calculated by usingcurve fits.

The combustion turbine algorithm (Combturb) is under the W Cturb tab and calculatescorrected power, heat rate, thermal efficiency, corrected thermal efficiency and heatconsumption. This algorithm has design information which includes the types of fuel(s)being used, the types of corrections used, chillier/cooler existence, miscellaneous heatloss percentage and injection existence.

Global Performance Advisor

05/02 (Rev 2) 239 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

HEAT RECOVERY STEAM GENERATOR BLOCK DIAGRAM

The heat recovery steam generator block diagram contains all modules which calculatethe heat recovery steam generator input\output efficiency as well as the thermal lossefficiency.

The hp/ip section module (HPIPSEC) calculates the flow and enthalpies required foreach section.

The lp section module (LPSEC) calculates the flow and enthalpies required for the lpsection.

The reheat module (Reheat) calculates the flow and enahlpies required for the reheatsection.

The design input/output and thermal loss efficiencies are calculated using a curve fitalgorithm.

The final module of the heat recovery steam generator algorithm (HRSG) calculates theinput/output and thermal loss efficiencies.

HEAT RATE FUNCTIONAL BLOCK DIAGRAM

The heat rate functional block diagram contains all the corrections for the heat rate, adesign heat rate and the heat rate module.

All the heat rate corrections should be calculated by curve fits. The ASME heat ratecorrections are available for main steam pressure, main steam temperature, reheatpressure drop and reheat steam temperature and are located under the W Heatrate tab.

The design heat rate can be calculated by a curve fit.

The heat rate algorithm (Hetrte) can be found under the W Heatrate tab and calculatesgross and net turbine cycle heat rate. Adjusted turbine cycle heat rates with and withoutprocess steam are also calculated. The deviations from the reference heat rate iscalculated as well as the individual heat rate corrections for main steam temperature,main steam pressure, reheat steam temperature, reheat pressure drop, condenser backpressure and miscellaneous. The heat rate design information is a selection of whichheat rate correction factors are used.

UNIT HEAT RATE FUNCTIONAL BLOCK DIAGRAM

The unit heat rate functional block diagram contains all unit heat rate correctionsapplicable to the project. The heat rate correction factors are broken down into threecategories: controllable, maintenance and miscellaneous. At the beginning of thefunctional block diagram, the unit heat rate algorithm should be used to calculate net,gross and design unit heat rate. The unit heat rate corrections are dropped next with atotal algorithm for each category. Lastly, the total unit heat rate algorithm will be used. Allunit heat rate algorithms can be found under the W Unithr tab.

Global Performance Advisor

05/02 (Rev 2) 240 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

The unit heat rate algorithm (Unhtrt) calculates the net unit heat rate of the plant as wellas the gross net unit heat rate. The design gross and net unit heat rates are alsocalculated. Finally, the deviations for the gross and net unit heat rates are calculated.

The controllable unit heat rate corrections include:

Unit heat rate ASME reheat spray flow (Unhrasmersf) -This module calculates the ASMEheat rate correction for one percent reheat spray flow at the percent of valves wide openthrottle flow.

Unit heat rate ASME superheat spray flow (Unhrasmessf) - This module calculates theASME heat rate correction for one percent superheat spray flow at the percent of valveswide open throttle flow.

Unit heat rateExit gas temp (Unhregtcalc) - This module calculates the heat ratedeviation in Btu/kWh and the cost of deviation in $/hr forExit gas temperature.

Unit heat rate main steam pressure (Unhrmsp) – This module calculates the unit heatrate deviation for main steam pressure in Btu/kWh and the cost of the deviation in $/hr.

Unit heat rate main steam temperature (Unhrmst) - Module calculates the unit heat ratedeviation for main steam temperature in Btu/kWh and the cost of the deviation in $/hr.

Unit heat rateExcess oxygen deviation (Unhro2calc) - This module calculates the heatrate deviation in Btu/kWh and the cost of deviation in $/hr forExcess oxygen deviation.

Unit heat rate reheat spray flow (Unhrrsf) - Module calculates the heat rate deviation inBtu/kWh and the cost of deviation in $/hr for reheat spray flow.

Unit heat rate reheat steam temperature (Unhrrst) - Module calculates the unit heat ratedeviation for reheat steam temperature in Btu/kWh and the cost of the deviation in $/hr.

Unit heat rate superheat spray flow (Unhrssf) - This module calculates the heat ratedeviation in Btu/kWh and the cost of deviation in $/hr for superheat spray flow.

Percent main steam flow to valves wide open flow (Unhrpcthr) - This module calculatesthe ratio of percent of actual main steam flow to valves wide open throttle flow.

Unit heat rate controllable total (Unhrcontot) – This module totals the unit heat ratedeviations for the controllable parameters in Btu/kWh and the cost of the deviations in$/hr. This algorithm has a design screen to select which controllable heat ratecorrections are needed

The maintenance unit heat rate corrections include:

� Unit heat rate ASME condenser subcooling (Unhrasmecsc) - This modulecalculates the degrees Fahrenheit of subcooling at the percent of valves wide-open throttle flow.

� Unit heat rate ASME final feedwater temperature (Unhrasmeffw) -This modulecalculates the ASME heat rate correction for five degrees Fahrenheit finalfeedwater temperature deviation at the percent of valves wide open throttle flow.

Global Performance Advisor

05/02 (Rev 2) 241 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

� Unit heat rate ASME makeup water flow (Unhrasmemkp) - This modulecalculates the ASME heat rate correction for one percent makeup flow at thepercent of valves wide open throttle flow.

� Unit heat rate condenser back pressure (Unhrcbp) - This module calculates theunit heat rate deviation for main steam temperature in Btu/kWh and the cost ofthe deviation in $/hr.

� Unit heat rate final feedwater temperature (Unhrffw) - This module calculates theheat rate deviation in Btu/kWh and the cost of deviation in $/hr for final feedwatertemperature.

� Unit heat rate makeup water flow (Unhrmkp) - This module calculates the heatrate deviation in Btu/kWh and the cost of deviation in $/hr for makeup water flow.

� Unit heat rate reheat pressure drop (Unhrrpd) - This module calculates the unitheat rate deviation for reheat pressure drop in Btu/kWh and the cost of thedeviation in $/hr.

� Unit heat rate maintenance total (Unhrmaintot) - This module totals the unit heatrate deviations for the maintenance parameters in Btu/kWh and the cost of thedeviations in $/hr. This algorithm has a design screen to select whichmaintenance heat rate corrections are needed.

The miscellaneous unit heat rate corrections include:

� Unit heat rate ASME IP turbine loss factor number 1 (Unhrasmeipdev1) - Thismodule calculates the ASME IP turbine loss factor number 1 as a function ofipExhaust pressure.

� Unit heat rate ASME IP turbine loss factor number 2 (Unhrasmeipdev2) - Thismodule calculates the ASME IP turbine loss factor number 2 as a function ofipExhaust pressure.

� Unit heat rate air heater air inlet temperature (Unhraitdev) -This modulecalculates the unit heat rate deviation for air heater air inlet temperature deviationin Btu/kWh and the cost of the deviation in $/hr.

� Unit heat rate auxiliary power deviation (Unhrauxdev) - This module calculatesthe unit heat rate deviation for auxiliary power deviation in Btu/kWh and the costof the deviation in $/hr.

� Unit heat rate auxiliary steam (Unhrauxstm) – This module calculates the unitheat rate deviation for auxiliary steam in Btu/kWh and the cost of the deviation in$/hr.

� Unit heat rate HP turbine efficiency deviation (Unhrhpdev) - This modulecalculates the unit heat rate deviation for hp turbine efficiency deviation inBtu/kWh and the cost of the deviation in $/hr.

� Unit heat rate IP turbine efficiency deviation (Unhripdev) - This module calculatesthe unit heat rate deviation for ip turbine efficiency deviation in Btu/kWh and thecost of the deviation in $/hr.

� Unit heat rate miscellaneous totals (Unhrmisctot) - - This module totals the unitheat rate deviations for the miscellaneous parameters in Btu/kWh and the cost ofthe deviations in $/hr. This algorithm has a design screen to select whichmiscellaneous heat rate corrections are needed.

� Unit heat rate totals (Unhrtot) – This module computes the total unit heat ratedeviation in Btu/kWh and the total cost in $/hr for all the parameters.

Global Performance Advisor

05/02 (Rev 2) 242 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

COOLING TOWER FUNCTIONAL BLOCK DIAGRAM

The cooling tower functional block diagram contains four main algorithms: design,power, cooling tower and capability.

The cooling tower design (Cooltwrdes) algorithm reads in the design information andoutputs the design information to output points. The design cooling water flow, designhot water temperature, design cold water temperature, number of fans, design fanhorsepower per fan, design ambient wet bulb temperature, cooling towerElevation,design L/G, design characteristic curveExponent, design characteristic curve constantand in-service criteria must be entered on the Design Info screen.

The cooling tower power (Cooltwrpwr) algorithm calculates individual cell power, designwater flow, the ratio of design water flow to actual flow, total fan power and ratio ofdesign power to actual power.

The cooling tower (Cooltwr) algorithm computesEstimated cooling tower outlettemperature.

The last algorithm (Capab) calculates the capability of mechanical draft cooling towers.

MATH ALGORITHMS

There are two sets of math algorithms. A GPA set (Math) and a Westinghouse set (WMath). All the Westinghouse math algorithm results can be modified by a gain and bias.The result is multiplied by a gain and then increased by the bias. The total gain iscomprised of an analog input gain value and a constant gain value. The total bias valueis comprised of an analog input point bias value and a constant gain value. The defaultvalue for the constant gain value is 1 and the constant bias value is 0 so if the user doesnot need to gain or bias the results, the constants do not need to be modified and theanalog input gain and analog input bias points do not need to be configured. TheWestinghouse math algorithms consist of the following:

Absval – Returns absolute value of variable Add10 – Adds 10 valuesAdd4 – Adds 4 valuesAddsub – Adds 4 numbers together and Subtracts the total of 4 numbers And6 – Ands 6 digitals Avg4 – Averages 4 valuesDivide4 – Divides an input value by the product of 4 valuesGpalog – Calculates the base log 10 of a numberHiselect6 – Selects the highest value of 6 inputsInvdig – Inverts a digital valueLoselect6 – Selects the lowest value of 6 inputs

Global Performance Advisor

05/02 (Rev 2) 243 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Mixer - Calculates the outlet flow, total heat and enthalpy of 10 input flows andenthalpies

Multdiv – Multiplies four numbers together and divides by the product of 4 numbersMultiply4 – Multiplies four numbersNlog – Calculates the natural log of a numberOr6 – Ors 6 digitalsSquareroot – Calculates the square root of a numberSub10 – Subtracts 10 numbers from an input valueSub4 – Subtracts 4 numbers from an input value

MISCELLANEOUS ALGORITHMS

The miscellaneous algorithms are contained in the W Misc tab and calculate correcteddensity, specific heats of air and gas and volumetric flows for flue gas and water.

The analog generated value algorithm (Avalgen) transfers the value from one point toanother point. This new point value can also be biased and gained if needed. Theavalgen algorithm can also be used to generate a constant value point.

The corrected density algorithm (Densitycor) computes a density corrected to currenttemperature and pressure conditions as well as a density correction factor.

The mass flow algorithm (Massflowliquid) converts water volumetric flow to mass flow.

The set digital (Setdig) algorithm sets a digital point to 1 if a point value is above a limit.Otherwise, if the point value is below the limit, the digital point is set to zero.

The specific heat of air algorithm (Specheatair) calculates the specific heat of air at agiven air temperature. The coefficients used are obtained from regressing the curve inFigure 3 of ASME PTC-4.1.

The specific heat of gas algorithm (Specheatair) calculates the specific heat of flue gasat a given temperature. The coefficients are obtained from regressing the curve in Figure7 of AMSE PTC-4.1.

The volumetric gas flow algorithm (Volflowgas) converts a mass gas flow to a volumetricflow.

The volumetric liquid flow algorithm (Volflowliquid) converts water mass flow to avolumetric flow.

CURVE FIT ALGORITHMS

The curve fit algorithms can be found under the W Curves tab and contain differentforms of polynomials and a function generator. Multiplying by a gain and/or adding abias can modify the results from all curve fit algorithms. Note that the gain and bias canbe points, constants or both points and constants.

Global Performance Advisor

05/02 (Rev 2) 244 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

If the gains and biases are not needed, the constants do not need to be modified and theanalog input points do not need to be configured. The polynomials are as follows.

Anlgcmppoly – This module calculates the y-value of a polynomial based on the x inputbetween two values. If the x input does not fall between the two limits, the y-value is setto zero.

Anlgcmp2poly – This module calculates one of two y-value polynomials based on an xinput and is split into two polynomials by an analog value.

Diganlgcmppoly – This module calculates the y-value of a polynomial based on the xinput in a specified range and a digital flag. If the digital flag is not set and the x inputdoes not fall in the specified range, the y-value is set to zero.

Diganlgcmp2poly – This module calculates one of two y-value polynomials based on anx input value, digital input and is split by a specified analog value.

Digcmppoly – This module calculates the y-value of a polynomial based on an x inputand digital flag. If the digital flag is not set, the y-value is set to zero.

Digcmp2poly – This module calculates one of two y-value polynomials based on an xinput and a digital flag.

Poly – This module calculates a fifth order polynomial.

The function generator (Funcgen) calculates the independent value based on onevariable or the independent value based on two dependent variables. The independentvalue is calculated using linear interpolation

STEAM TABLE ALGORITHMS

The steam table algorithms are found under the Stm Algs tab. The steam tablealgorithms include the following:

Hclsp Calculate compressed liquid enthalpy given entropy and absolute pressure. Hclsp_chk Check input value and if above limit, call steam table callHcltp Calculate compressed liquid enthalpy, given temperature and absolute

pressure.Hcltp_chk If input value above limit, call hcltp. Otherwise set the enthalpy to 0.Hichpp Calculate enthalpy of the outlet of an isentropic process given inlet

pressure,Exit absolute pressures and inlet enthalpy in the compressed liquidregion.

Hichpp_chk If input value above limit, calculate enthalpy. Otherwise, set enthalpy to 0.Hictpp Calculate enthalpy of isentropic rise from conditions t1, p1 to pressure p2 in

compressed liquid region.

Global Performance Advisor

05/02 (Rev 2) 245 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Hishpp Calculate enthalpy of the outlet of an isentropic process given inletpressure,Exit absolute pressure and inlet enthalpy in the superheated or wetsteam regions.

Histpp Calculate enthalpy of an isentropic drop from conditions t1, p1, down topressure p2.

Hslp Calculate saturated liquid enthalpy, given absolute pressure.Hslp_chk If input value above limit, calculate enthalpy. Otherwise, set to 0.Hslt Calculate saturated liquid enthalpy, given temperature.Hslt_chk If input value above limit, calculate enthalpy. Otherwise, set enthalpy to 0.Hsstp Calculate superheated steam enthalpy, given temperature and absolute

pressure.Hsstp_chk If input value above limit, calculate enthalpy. Otherwise, set to 0.Hsvp Calculated saturated vapor enthalpy, given absolute pressure.Hswsp Calculate steam enthalpy, given entropy and absolute pressure of

superheated or wet steam.Pslt Calculated saturated liquid pressure, given temperature.Psvs Calculate pressure of saturated pressure given entropy Sclhp Calculate compressed liquid entropy given enthalpy and absolute pressure.Scltp Calculate compressed liquid entropy, given temperature and absolute

pressure.Sslp Calculate saturated liquid entropy, given absolute pressure.Sslt Calculate saturated liquid entropy, given temperature.Ssstp Calculate superheated steam entropy, given temperature and absolute

pressure.Ssvp Calculate saturated vapor entropy, given absolute pressure.Sswhp Calculate steam entropy, given enthalpy and absolute pressure of

superheated or wet steam.Tclhp Calculate compressed liquid temperature given enthalpy and absolute

pressure. Tslp Calculate saturated liquid temperature, given absolute pressure.Tslqh Calculate saturated steam temp given enthalpy.Tswhp Calculate steam temperature, given entropy and absolute pressure of

superheated or wet steam.Tswsp Calculate steam temperature, given entropy and absolute pressure of

superheated or wet steam.Vcltp Calculated compressed liquid specific volume, given temperature and

absolute pressure.Vslt This module calculates saturated liquid specific volume given temperature.

Global Performance Advisor

05/02 (Rev 2) 246 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Vsstp Calculate superheated steam specific volume, given temperature andabsolute pressure.

Vsvp Calculate saturated vapor specific volume, given absolute pressure.Vswhp Calculated steam specific volume, given enthalpy and absolute pressure of

superheated or wet steam.Vswsp Calculate steam specific volume, given entropy and absolute pressure of

superheated or wet steam.Xswhp Calculate steam quality, given entropy and absolute pressure of superheated

or wet steam.Xswsp Calculate steam quality, given entropy and absolute pressure of superheated

or wet steam.

Output Functional Block DiagramThe GPA package outputs data through the output functional block diagram. Thisfunctional block diagram should contain the output algorithms (analog and digital).

After creating the OUTPUT DOCUMENT, tab over to the W OUTPUT algorithm tab.This group contains the Analogout and Digitalout algorithms. The Analogout algorithmoutputs OPC server analog values and qualities from local GPA values and qualities.The Digitalout algorithm outputs OPC server digital values from local GPA digital values

The analog output algorithm (Analogout) will output the quality and value from the localGPA values and qualities to the data highway through the OPC Server. The tags for thisalgorithm are configured by selecting local tags, which will go to the data highway andassign an OPC server name. All OPC server names must exist and if they do not exist,these points will be logged in theEvent log. The OPC server points with a .QQExtensionare output points and theEvent log should not contain any unrecognized .QQ points.

The digital output algorithm (Digitalout) will output the digital local GPA values to thedata highway through the OPC Server. The tags for this algorithm are configured byselecting local tags and assigning an OPC server name.

Output Functional Block Diagram Checklist� Make sure all OPC server names exist by checking theEVENT LOG. No point

names that have two entries, an unrecognized OPC item and the sameunrecognized OPC item with a .QQExtension should be in theEvent log.

Global Performance Advisor

05/02 (Rev 2) 247 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

G Display Graphics DevelopmentBy using the drawing tools and methods displays can be built to help visualize the yourprocess by creating a representative drawing of the project. Some examples are shownbelow.

Global Performance Advisor

05/02 (Rev 2) 248 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C

Global Performance Advisor

05/02 (Rev 2) 249 SP-0030

Westinghouse Process Control, Inc. Proprietary Class 2C


Recommended