+ All Categories
Home > Documents > Sonic perceptual crossings: A tic-tac-toe audio game

Sonic perceptual crossings: A tic-tac-toe audio game

Date post: 19-Nov-2023
Category:
Upload: teipir
View: 0 times
Download: 0 times
Share this document with a friend
27
Andreas Floros Dept. of Audiovisual Arts, Ionian University Nicolas Alexander Tatlas Dept. of Electronic Engineering, Technological Educa?onal Ins?tute of Piraeus Stylianos Po?rakis Dept. of Electronic Engineering, Technological Educa?onal Ins?tute of Piraeus Sonic Perceptual Crossings: A 4ctactoe Audio Game AudioMostly’11, September 7–9, 2011, Coimbra, Portugal
Transcript

Andreas  FlorosDept.  of  Audiovisual  Arts,  

Ionian  University

Nicolas  -­‐  Alexander  TatlasDept.  of  Electronic  Engineering,  

Technological  Educa?onal  Ins?tute  of  Piraeus

Stylianos  Po?rakisDept.  of  Electronic  Engineering,  

Technological  Educa?onal  Ins?tute  of  Piraeus

Sonic  Perceptual  Crossings:  A  4c-­‐tac-­‐toe  Audio  Game

AudioMostly’11,  September  7–9,  2011,  Coimbra,  Portugal

Introduc?on

• Video  -­‐  game  concept:

-­‐ The  visual  component  is  cri?cal  for  the  game-­‐play

-­‐ Audio  informa?on  is  used  (mainly)  for  the  ambient  environment  synthesis

• Audio  -­‐  games

-­‐ Increasing  research  interest

-­‐ Sound  represents  a  prominent  component  for  realizing  the  required  human-­‐machine  interac?on  interfaces  

-­‐ Suitable  for  specific  user  target  groups,  such  as  visually  impaired  people

Introduc?on  (cont’d)

• A  defini?on  aVempt:

-­‐ Audio-­‐games  are  game  applica?ons  that  employ  appropriately  synthesized  auditory  displays  for  developing  the  game-­‐play  scenario  and  establishing  the  user-­‐computer  interac?on

• Sonic  design  is  a  key  aspect  for  audio-­‐games  development

-­‐ Design  perceptually  efficient  auditory  interfaces

• Sonifica?on

-­‐ Sonic  design  techniques  for  data  (and  game-­‐world  for  the  purposes  of  the  current  work)  representa?on

Introduc?on  (cont’d)

• The  large  variety  of  sonifica?on  techniques  has  allowed  the  development  of  mul?ple  audio  game  genres

• We  hereby  discriminate  the  following  two  categories:

-­‐ a)  audio  games  evolved  based  on  exis?ng  (video)  game  scenarios

‣ scenario  adapta?on  may  be  required,  taking  into  account  the  narra?ve  dis?nc?veness  of  an  auditory  environment

-­‐ b)  audio  game  scenarios  developed  from  the  scratch,  targeted  to  be  realized  using  auditory  displays  only

Mo?va?on

• This  work  focuses  on  the  design  /  realiza?on  of  the  ?c-­‐tac-­‐toe  game  

-­‐ We  use  a  novel  auditory  and  gestural  interface  combina?on

-­‐ Suitable  for  execu?on  in  mobile  devices  and  pla[orms

• We  aVempt  to  focus  on  sonic  design  issues:

-­‐ inves?gate  the  performance  of  an  advanced  earcons  scheme

-­‐ op?mize  playability  performance

• Our  approach  incorporates  a  gestural  /  movement-­‐tracking  user  interface  that  handles  all  the  user  movements  and  allows  a  completely  eye-­‐free  game  implementa?on

Grid-­‐based  games  pariculari?es

• Wide  acceptance:  many  legacy  ?tles  exist

-­‐ The  players  are  already  aware  of  the  applied  game  rules

-­‐ Eliminate  any  requirements  for  describing  the  game-­‐scenario  details  through  audio-­‐means  only

• The  game-­‐play  can  be  algorithmically  described

-­‐ allow  the  employment  of  a  sound  design  mechanism  that  takes  into  account  the  determinis?c  game  rules

Applied  sonifica?on  approach

• Employed  sonifica?on  strategy:  Earcons

-­‐ sounds  synthesized  by  combining  “fundamental”  building  sonic  mo?ves  created  using  variable  sound  parameter  values  

‣ i.e.  rhythm,  pitch,  ?mbre  e.tc.

• Earcons  pros  and  cons

-­‐ (+)  Their  synthesis  approach  allows  the  representa?on  of  concurrent  (parallel)  earcons,  provided  that  specific  design  rules  will  be  applied

‣ Concurrency  can  be  more  efficient  provided  that  spa?al  characteris?cs  in  three  dimensions  (3D)  are  incorporated

-­‐ (-­‐)  Since  they  do  not  relate  to  their  referent  informa?on  in  terms  of  the  targeted  context,  user  training  is  required  to  render  them  recognizable

Applied  sonifica?on  approach:  Design  layer

• Earcons  for  “X”  and  “O”

-­‐ xij  and  oij

• Earcons  for  “X”  and  “O”  placement

-­‐ xsij  and  osij

• empty  cell  earcon

-­‐ emptyij

• i  and  j  are  the  grid  coordinate  indices

• boundary0X

-­‐ the  rolling-­‐sto  wall  auditory  icon  (will  be  explained  later)

x00 xs00

o00 os00

empty00

x01 xs01

o01 os01

empty01

x02 xs02

o02 os02

empty02

x10 xs10

o10 os10

empty10

x11 xs11

o11 os11

empty11

x12 xs12

o12 os12

empty12

x20 xs20

o20 os20

empty20

x21 xs21

o21 os21

empty21

x22 xs22

o22 os22

empty22

boundary01

boundary03

boundary02

boundary04

Applied  sonifica?on  approach:  Design  layer  details

• xij  and  oij

-­‐ constructed  as  simple  note  mo?ves  with  variable  pitch  and  rhythm  parameters,  using  the  following  two  rules:

‣ For  consecu?vely  increasing  j-­‐index  values,  the  fundamental  pitch  frequency  is  doubled

‣ The  rhythm  of  the  overall  note  structure  is  propor?onal  to  the  i-­‐index  values

• xsij  and  osij

-­‐ constructed  by  mixing  the  original  xij  and  oij  earcons  with  a  very  short  impulsive  click  sound

• emptyij

-­‐ constructed  as  a  smoothed,  low  intensity  and  very  short  dura?on  “tapping”  sound  (the  same  for  all  cell-­‐posi?ons)

Applied  sonifica?on  approach:  spa?al  layer

• All  earcons  were  spa?ally  processed  using  binaural  technology

(i,j)=(0,0) (i,j)=(0,1) (i,j)=(0,2)

(i,j)=(1,0)

(i,j)=(2,0) (i,j)=(2,1) (i,j)=(2,2)

(i,j)=(1,1) (i,j)=(1,2)

φ=0ο φ=45ο

φ=90ο

φ=135οφ=180οφ=225ο

φ=270ο

φ=315ο

Applied  human  control  interface

• Basic  requirement:  eye-­‐free  control

• The  auditory  rolling  pellet:

-­‐ assume  the  game  grid  as  a  two-­‐axis  revolving  flat  surface,  with  a  pellet  rolling  on  the  top  of  it

-­‐ a  rota?on  of  the  grid  surface  would  force  the  pellet  to  roll  towards  the  direc?on  of  the  specific  rota?on

-­‐ the  user  can  control  the  pellet  instantaneous  posi?on  by  simply  arranging  the  two  rota?on  angles

‣ the  rolling  velocity  of  the  pellet  is  considered  constant  and  independent  from  the  rota?on  angle  in  both  control  axes

Applied  human  control  interface  (cont’d)

• The  auditory  rolling  pellet  is  also  aVached  to  an  earcon  depending  on

-­‐ the  spa?al  posi?on  of  the  cell  grid  it  stands  on

-­‐ the  type  of  the  cell:  filled  or  non-­‐filled

• It  is  reproduced  only  once  (by  the  moment  the  pellet  enters  the  specific  cell)

-­‐ it  is  replaced  by  another  earcon,  only  when  the  pellet  enters  a  different  cell

Applied  human  control  interface  (cont’d)

• Pellet  mo?on  tracking

-­‐ based  on  the  data  provided  by  a  2-­‐axis  gyroscope

• “X”  or  “O”  grid-­‐cell  fill

-­‐ the  user  rapidly  shakes  the  control  equipment  (an  accelerometer  is  required)

• Grid  boundaries  determina?on:

-­‐ When  the  auditory  rolling  pellet  reaches  the  grid  boundaries,  it  “crashes”  on  a  virtual  wall  causing  it  to  stop  rolling

-­‐ A  corresponding  spa?al  roll-­‐stop  auditory  icon  is  then  reproduced  (boundary0X)

Game  architecture  (sogware/hardware)

Logic Module

Player 1

Grid Controller

Player 2

Rolling pellet interface

2-axisgyroscope

accelero-meter

Earcons database

Auditory Controller

Binaural Audio Playback

Arduino Physical Computing Interface

Processing software platform

Results  -­‐  Test  methodology  overview

• Audio-­‐game  design  and  game-­‐play  assesment

• A  two-­‐level  subjec?ve  test  was  employed

-­‐ Level  #1:  

‣ consider  the  sonic  design  efficiency,  taking  into  account  the  par?cular  requirements  imposed  by  the  game  scenario  and  rules

-­‐ Level  #2:

‣ play  the  game  in  real-­‐world  condi?ons

Results  -­‐  Level  #1  tests

• 20  non-­‐audio  expert  adult  subjects  par?cipated

• All  subjects  were  first  given  a  demonstra?on  of  the  system  together  with:

-­‐ a  detailed  explana?on  of  the  correla?on  of  the  different  earcons  to  the  normal  visual  applica?on  state

-­‐ an  analy?c  descrip?on  of  the  interac?on  /  naviga?on  possibili?es

• Two  sogware  applica?ons  were  developed  and  u?lized

-­‐ one  for  measuring  the  spa?aliza?on  accuracy  for  each  set  of  earcons

-­‐ one  for  assessing  the  user  ability  to  imprint  a  given  grid  state  from  a  specific  auditory  display  state

Results  -­‐  Level  #1  test  applica?ons

!

• Measuring  the  spa?aliza?on  accuracy

-­‐ buVons  for  playing  back  the  earcons  sounds  on  demand  and  proceeding  to  the  next  sample,  

-­‐ nine  buVons  corresponding  to  the  ?c-­‐tac-­‐toe  nine  grid-­‐cells  posi?ons

-­‐ the  users  were  prompted  to  select  the  perceived  posi?on  for  each  sample  before  proceeding  to  the  next  one

Results  -­‐  Level  #1  test  applica?ons  (cont’d)

!

• Inves?ga?ng  the  user  ability  to  imprint  a  given  grid  state

-­‐ A  significant  “metric”  associated  with  the  playability  of  the  game  in  terms  of  the  earcons’  design  followed

-­‐ Users  were  requested  to  select  a  state,  namely  “X”,  “O”  or  “empty”  for  each  grid  posi?on  following  the  scenario  played  back

-­‐ 5  tes?ng  scenarios:

‣  1  -­‐  3  mainly  for  occupied  posi?ons  (“X”  or  “O”)

‣ 4  -­‐5  mainly  for  the  “empty”  earcons

Another significant issue tracked prior to the systematic evaluation of the overall sonic design and game-play was the fact that the rolling pellet movement should be limited to the game grid dimensions. If this restriction were not applied, a constant rotation of the grid flat surface would cause the pellet to roll outside the grid physical dimensions. Hence, the concept of the “rolling-stop” virtual wall was introduced, and a smoothed, crashing auditory icon was created. This audio sample was again processed using binaural technology, aiming to spatially locate it towards the four grid edges (see Figure 3).

4. ASSESMENT AND RESULTS In order to assess the efficiency of the tic-ta-toe audio – game prototype realization, we have organized a two-level subjective test. The first level considered mainly the sonic design efficiency, taking into account the particular requirements imposed by the game scenario and rules. In these tests, 20 non-audio expert adult subjects participated. Specifically, the subjects were first given a demonstration of the system, including a detailed explanation of the correlation of the different earcons to the normal visual application state and an analytic description of the interaction / navigation possibilities. At the second test level, this non-interactive demonstration session was followed by a limited five-minute period during which the subjects were allowed to play several sets of tic-tac-toe.

In order to investigate our earcons design efficiency during the first test level, two additional software applications were developed and utilized. The first one aimed to measure the spatialization accuracy for each set of earcons designed. Each subject has used a graphical interface shown in Figure 5, providing buttons for playing back the sound, proceeding to the next sample, as well as nine buttons corresponding to the tic-tac-toe nine grid-cells positions. Each sample could be repeatedly played back, however once the “Next” button was pressed, the user could not repeat the test for the previous sound. Moreover, the user was prompted to select the perceived position for each sample before proceeding to the next one. Each audible sample corresponding to a different cell state or action (i.e. “X” or “O” mark placement) was presented twice, in a fully randomized order.

Figure 5. Application interface, reception of earcon

localization

The second test application was designed to examine the user ability to imprint a given grid state from a specific auditory display state. This is a very significant assessment, since it defines the playability of the game in terms of the earcons’ design

followed. During the tests, the human subjects used an interface as shown in Figure 6, similar to the previous one. The user in this case was requested to select a state, namely “X”, “O” or “empty” for each grid position following the scenario played back. Five testing scenarios were created: Scenarios one to three consist of the earcons for occupied positions (“X” or “O”), while the scenarios four and five moreover include the “empty” earcons. The three first scenarios present respectively four, two and six occupied grid cells. The scenarios’ description is summed in Table 1.

Figure 6. Application interface, reception of auditory scenario

Figure 7 summarizes the results obtained from the first testing application. The percentage shown represents the correct grid placement for the “empty”, “O” and “X” group of earcons. While slightly different earcons are used as a confirmation of a placement action and information for an occupied block, these are concatenated under their respective symbol. Figure 8 also illustrates the results obtained from the second testing application. The red set of columns shows the percentage of the audio scenarios that have been accurately mapped, while the blue set of columns show the percentage of correct grid placement per block within each scenario.

Table 1. Test scenario summary

Scenario “X” Occurrences

“O” Occurrences

“Empty”

Earcons

1 2 2 NO

2 1 1 NO

3 3 3 NO

4 2 2 YES

5 1 1 YES

From these test results, the following conclusions can be briefly drawn:

(a) Less than 30% of the “empty” earcons are correctly placed; however, more than 70% of the “O” and “X” cues are accurately positioned, indicating the strong association between the actual earcon design and their spatial perception.

(b) The results obtained for scenarios 1 and 2 differ minimally compared to the results for scenarios 4 and 5, respectively: Therefore, the presence of “empty”

Results  -­‐  Level  #1  tests  outcome

! !

Average  correct  placement  for  the  earcons  employed,  nine  posi?ons  per  set

Average  correct  placement  for  the  five  test  scenarios

Results  -­‐  Level  #1  tests  outcome  (cont’d)

• Less  than  30%  of  the  “empty”  earcons  are  correctly  placed

-­‐ however,  more  than  70%  of  the  “O”  and  “X”  cues  are  accurately  posi?oned,  indica?ng  the  strong  associa?on  between  the  actual  earcon  design  and  their  spa?al  percep?on

• Scenarios  1  and  2  results  differ  minimally  compared  to  the  results  for  scenarios  4  and  5,  respec?vely

-­‐ the  presence  of  “empty”  earcons  does  not  seem  to  affect  the  subject  mapping  capability

Results  -­‐  Level  #1  tests  outcome  (cont’d)

• Simple  auditory  display  scenarios,  including  a  small  number  of  occupied  blocks  are  easily  mapped,  with  an  accuracy  percentage  up  to  80%.  

• The  minimum  percentage  of  accuracy  for  

-­‐ the  auditory  display  mapping  on  a  scenario  basis  is  45%

-­‐ on  a  grid  block  basis  the  minimum  is  75%

-­‐ Thus,  a  limited  number  of  erroneous  choices  lead  to  mapped  scenarios  being  dismissed  

Results  -­‐  Level  #2  tests

• the  users  were  allowed  to  play  mul?ple  ?c-­‐tac-­‐toe  sessions  within  a  limited  ?me  interval.  

• At  the  beginning  this  was  a  rela?vely  difficult  task

-­‐ it  mainly  resulted  into  random  user  ac?ons  and  symbol  placements  on  the  ?c-­‐ta-­‐toe  grid  area

• It  finally  turned  out  that  ager  a  maximum  of  three  repe??ons,  the  game-­‐play  was  natural  and  feasible

• All  subjects  responded  posi?vely  to  the  ques?on  regarding  the  ease  of  game-­‐control  through  the  auditory  rolling  pellet  mechanism

• They  also  verified  that  the  proposed  earcons  sonic  design  conceptually  fits  to  the  employed  naviga?on  mechanism

Conclusions

• We  demonstrate  and  assess  a  ?c-­‐tac-­‐toe  game  adap?on  to  an  audio-­‐only  environment

• Implementa?on  suitable  to  be  supported  by  any  mobile  pla[orm  equipped  by  specific  movement-­‐tracking  accelerometer  and  gyroscopic  sensors

• Earcons  are  employed  as  the  fundamental  means  of  sonifying  the  informa?on  required  to  construct  the  necessary  auditory  display

Conclusions  (cont’d)

• Earcons’  design  overview

-­‐ was  an  itera?ve  process,  leading  to  a  robust  and  efficient  set  of  spa?alized  earcons.

-­‐ although  earcons  concurrent  /  parallel  representa?on  was  not  required,  however,  the  spa?al  characteris?cs  of  the  sonic  mo?ves  enhanced  the  degree  of  user  immersion.  

-­‐ the  final  sonic  design  considered  the  user  control  mechanism  developed  and  employed,  providing  an  integrated,  mul?modal  interface  for  playing  the  game

Conclusions  (cont’d)

• The  efficiency  of  the  audio-­‐game  prototype  was  assessed  following  a  sequence  of  subjec?ve  tests

• Most  subjects  pointed  out  that  

-­‐ considerable  effort  was  required  to  confirm  the  possible  posi?on  selec?on  through  the  relevant  audio  playback,  a  fact  also  confirmed  by  the  assessment  results

-­‐ considerable  skill  was  necessary  in  order  to  visualize  the  game  state  and  provide  the  next  input  choice;  obviously,  this  “complexity”  increases  through  each  game  step

-­‐ while  the  discrimina?on  between  earcons  for  “X”  and  “O”  was  apparent,  some  found  it  difficult  to  specifically  iden?fy  the  “X”  and  “O”  symbols  during  the  tes?ng  phase

-­‐ the  game  play  is  natural  and  enjoyable,  requiring  though  focused  aVen?on

Future  work

• Further  playability  tes?ng

-­‐ track  intended  and  actual  game  inputs  

-­‐ correlate  the  ?me  required  for  visual  and  audio  game  play,  as  a  metric  of  the  possible  effort  required

• Tests  by  visually  impaired  subjects  are  expected  to  substan?ally  differen?ate  the  assessment  results,  given  their  increased  abili?es  to  visualize  the  game  grid  and  ac?ons

• User  centric  adapta?on:  allow  users  to  define  their  own  earcons  mappings  from  a  pre-­‐defined,  limited  set

Thank  [email protected]

hVp://www.ionio.gr/~floros


Recommended