+ All Categories
Home > Documents > Strong Convergence Theorems for Quasi-Bregman Nonexpansive Mappings in Reflexive Banach Spaces

Strong Convergence Theorems for Quasi-Bregman Nonexpansive Mappings in Reflexive Banach Spaces

Date post: 08-Dec-2023
Category:
Upload: independent
View: 0 times
Download: 0 times
Share this document with a friend
11
Research Article On Solutions of Variational Inequality Problems via Iterative Methods Mohammed Ali Alghamdi, 1 Naseer Shahzad, 1 and Habtu Zegeye 2 1 Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia 2 Department of Mathematics, University of Botswana, Private Bag 00704, Gaborone, Botswana Correspondence should be addressed to Naseer Shahzad; [email protected] Received 12 May 2014; Revised 24 June 2014; Accepted 30 June 2014; Published 4 August 2014 Academic Editor: Adrian Petrusel Copyright © 2014 Mohammed Ali Alghamdi et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We investigate an algorithm for a common point of fixed points of a finite family of Lipschitz pseudocontractive mappings and solutions of a finite family of -inverse strongly accretive mappings. Our theorems improve and unify most of the results that have been proved in this direction for this important class of nonlinear mappings. 1. Introduction Let be a subset of a real Hilbert space . Let :→ be a nonlinear mapping. e variational inequality problem for and is to find such that , V ⟩ ≥ 0, V ∈ . (1) e set of solutions of variational inequality problem is denoted by VI(, ); that is, VI (, ) = { ∈ : ⟨ ,− ⟩ ≥ 0, ∀ ∈ } . (2) It is well known that variational inequality theory has emerged as an important tool in studying a wide class of numerous problems in variational inequalities, minimax problems, optimization, physics, and the Nash equilibrium problems in noncooperative games. Several numerical meth- ods have been developed for solving variational inequalities and related optimization problems; see, for instance, [15] and the references therein. A mapping :⊆ is said to be -inverse strongly accretive (or -inverse strongly monotone) if there exists a positive real number such that ⟨ − , − ⟩ ≥ 2 , ∀, ∈ . (3) If is -inverse strongly accretive, then inequality (3) implies that is Lipschitzian with constant := 1/; that is, ‖ − ‖ ≤ (1/)‖ − ‖, for all , ∈ . If in (3) we have that =0, then is called accretive (or monotone). Let be a closed and convex subset of a real Hilbert space . A mapping :→ is called a contraction mapping if there exists ∈ [0, 1) such that ‖ − ‖ ≤ ‖ − ‖ for all , ∈ . If =1, then is called nonexpansive. A mapping :→ is called -strictly pseudocontractive of Browder- Petryshyn type [6] if and only if there exists ∈ (0, 1) such that 2 2 + ( − ) − ( − ) 2 ∀, ∈ . (4) is called pseudocontractive if 2 2 + ( − ) − ( − ) 2 , ∀, ∈ . (5) We note that inequalities (4) and (5) can be equivalently written as ⟨ − , − ⟩ ≤ 2 ( − ) − ( − ) 2 ∀, ∈ , (6) Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2014, Article ID 424875, 10 pages http://dx.doi.org/10.1155/2014/424875
Transcript

Research ArticleOn Solutions of Variational Inequality Problems viaIterative Methods

Mohammed Ali Alghamdi1 Naseer Shahzad1 and Habtu Zegeye2

1 Department of Mathematics King Abdulaziz University PO Box 80203 Jeddah 21589 Saudi Arabia2Department of Mathematics University of Botswana Private Bag 00704 Gaborone Botswana

Correspondence should be addressed to Naseer Shahzad nshahzadkauedusa

Received 12 May 2014 Revised 24 June 2014 Accepted 30 June 2014 Published 4 August 2014

Academic Editor Adrian Petrusel

Copyright copy 2014 Mohammed Ali Alghamdi et al This is an open access article distributed under the Creative CommonsAttribution License which permits unrestricted use distribution and reproduction in any medium provided the original work isproperly cited

We investigate an algorithm for a common point of fixed points of a finite family of Lipschitz pseudocontractive mappings andsolutions of a finite family of 120574-inverse strongly accretive mappings Our theorems improve and unify most of the results that havebeen proved in this direction for this important class of nonlinear mappings

1 Introduction

Let119862 be a subset of a real Hilbert space119867 Let119860 119862 rarr 119867 bea nonlinear mapping The variational inequality problem for119860 and 119862 is to

find 119909lowast

isin 119862 such that ⟨119860119909lowast

V minus 119909lowast

⟩ ge 0 forallV isin 119862 (1)

The set of solutions of variational inequality problem isdenoted by VI(119862 119860) that is

VI (119862 119860) = 119909lowast

isin 119862 ⟨119860119909lowast

119909 minus 119909lowast

⟩ ge 0 forall119909 isin 119862 (2)

It is well known that variational inequality theory hasemerged as an important tool in studying a wide classof numerous problems in variational inequalities minimaxproblems optimization physics and the Nash equilibriumproblems in noncooperative games Several numerical meth-ods have been developed for solving variational inequalitiesand related optimization problems see for instance [1ndash5]and the references therein

A mapping 119860 119862 sube 119867 rarr 119867 is said to be 120574-inversestrongly accretive (or 120574-inverse strongly monotone) if thereexists a positive real number 120574 such that

⟨119909 minus 119910 119860119909 minus 119860119910⟩ ge 1205741003817100381710038171003817119860119909 minus 119860119910

10038171003817100381710038172

forall119909 119910 isin 119862 (3)

If 119860 is 120574-inverse strongly accretive then inequality (3)implies that 119860 is Lipschitzian with constant 119871 = 1120574 that

is 119860119909minus119860119910 le (1120574)119909minus119910 for all 119909 119910 isin 119862 If in (3) we havethat 120574 = 0 then 119860 is called accretive (or monotone)

Let119862 be a closed and convex subset of a real Hilbert space119867 A mapping 119879 119862 rarr 119867 is called a contraction mapping ifthere exists 119871 isin [0 1) such that 119879119909 minus 119879119910 le 119871119909 minus 119910 for all119909 119910 isin 119862 If 119871 = 1 then 119879 is called nonexpansive A mapping119879 119862 rarr 119864 is called 120582-strictly pseudocontractive of Browder-Petryshyn type [6] if and only if there exists 120582 isin (0 1) suchthat

1003817100381710038171003817119879119909 minus 11987911991010038171003817100381710038172

le1003817100381710038171003817119909 minus 119910

10038171003817100381710038172

+ 1205821003817100381710038171003817(119868 minus 119879) 119909 minus (119868 minus 119879) 119910

10038171003817100381710038172

forall119909 119910 isin 119862

(4)

119879 is called pseudocontractive if

1003817100381710038171003817119879119909 minus 11987911991010038171003817100381710038172

le1003817100381710038171003817119909 minus 119910

10038171003817100381710038172

+1003817100381710038171003817(119868 minus 119879) 119909 minus (119868 minus 119879) 119910

10038171003817100381710038172

forall119909 119910 isin 119862

(5)

We note that inequalities (4) and (5) can be equivalentlywritten as

⟨119879119909 minus 119879119910 119909 minus 119910⟩ le1003817100381710038171003817119909 minus 119910

10038171003817100381710038172

minus 1198961003817100381710038171003817(119909 minus 119879119909) minus (119910 minus 119879119910)

10038171003817100381710038172

forall119909 119910 isin 119862

(6)

Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2014 Article ID 424875 10 pageshttpdxdoiorg1011552014424875

2 Abstract and Applied Analysis

for some 119896 gt 0 and

⟨119879119909 minus 119879119910 119909 minus 119910⟩ le1003817100381710038171003817119909 minus 119910

10038171003817100381710038172

forall119909 119910 isin 119862 (7)

respectively We remark that 119879 is pseudocontractive if andonly if 119860 = (119868 minus 119879) is accretive A point 119909 isin 119862 is a fixedpoint of 119879 if 119879119909 = 119909 and we denote by 119865(119879) the set of fixedpoints of 119879 that is 119865(119879) = 119909 isin 119862 119879119909 = 119909

We observe that in a real Hilbert space 119867 a class ofpseudocontractive mappings includes the class of 120582-strictlypseudocontractive mappings and hence the classes of nonex-pansive and contraction mappings

Closely related to the variational inequality problems isthe problem of finding fixed points of nonexpansive map-pings 120582-strict pseudocontraction mappings or pseudocon-tractive mappings which is the current interest in functionalanalysis Several researchers considered a unified approachthat approximates a commonpoint of fixed point of nonlinearproblems and solutions of variational inequality problemsand solutions of variational inequality problems see forexample [7ndash18] and the references therein

In [19] Takahashi and Toyoda studied the problem offinding a common point of fixed points of a nonexpansivemapping and solutions of a variational inequality problem (1)by considering the following iterative algorithm

1199090isin 119862

119909119899+1

= 120572119899119909119899+ (1 minus 120572

119899) 119879119875119862(119909119899minus 120582119899119860119909119899) 119899 = 0 1

(8)

where 120572119899 is a sequence in (0 1) 120582

119899 is a positive sequence

119879 119862 rarr 119862 is a nonexpansivemapping and119860 119862 rarr 119867 is an120574-inverse strongly accretive mapping They showed that thesequence 119909

119899 generated by (8) converges weakly to some 119911 isin

VI(119862 119860) cap 119865(119878) provided that the control sequences satisfysome restrictions

Iiduka and Takahashi [20] reconsidered the commonelement problem via the following iterative algorithm

1199091= 119909 isin 119862

119909119899+1

= 120572119899119909 + (1 minus 120572

119899) 119879119875119862(119909119899minus 120582119899119860119909119899) 119899 = 0 1

(9)

where119879 119862 rarr 119862 is a nonexpansivemapping119860 119862 rarr 119867 isa 120574-inverse-strongly accretive mapping 120572

119899 is a sequence in

(0 1) and 120582119899 is a sequence in (0 2120572) They proved that the

sequence 119909119899 strongly converges to some point 119911 isin 119865(119879) cap

VI(119862 119860)Recently Zegeye and Shahzad [21] investigated the prob-

lem of finding a common point of fixed points of a Lipschitzpseudocontractive mapping 119879 and solutions of a variationalinequality problem for 120574-inverse strongly accretive mapping119860 by considering the following iterative algorithm

119910119899= (1 minus 120573

119899) 119909119899+ 120573119899119879119909119899

119909119899+1

= 119875119862[(1 minus 120572

119899) (120575119899119879119910119899+ 120579119899119909119899+ 120574119899119875119862[119868 minus 120574119860] 119909

119899)]

(10)

where 119875119862

is a metric projection from 119867 onto 119862 and120575119899 120579119899 120574119899 120572119899 120573119899 are in (0 1) satisfying certain

conditions Then they proved that the sequence 119909119899 con-

verges strongly to the minimum-norm point of 119865(119879) cap

VI(119862 119860)A natural question arises whether we can obtain an itera-

tive schemewhich converges strongly to a commonpoint of fixedpoints of a finite family of pseudocontractive mappings andsolutions of a finite family of variational inequality problemsfor 120574-inverse strongly accretive mappings or not

It is our purpose in this paper to introduce an algorithmand prove that the algorithm converges strongly to a commonpoint of fixed points of a finite family of Lipschitz pseudo-contractive mappings and solutions of a finite family of vari-ational inequality problems for 120574-inverse strongly accretivemappings The results obtained in this paper improve andextend the results of Takahashi and Toyoda [19] Iiduka andTakahashi [20] and Zegeye and Shahzad [21]Theorem 32 ofYao et al [22] and some other results in this direction

2 Preliminaries

In what follows we will make use of the following lemmas

Lemma 1 Letting 119867 be a real Hilbert space the followingidentity holds

1003817100381710038171003817119909 + 11991010038171003817100381710038172

le 1199092

+ 2 ⟨119910 119909 + 119910⟩ forall119909 119910 isin 119867 (11)

Lemma 2 (see [23]) Let 119862 be a nonempty closed and convexsubset of a real Hilbert space119867 Let 119860 119862 rarr 119864 be a 120574-inversestrongly accretive mapping Then for 0 lt 120583 lt 2120574 the mapping119860120583119909 = (119909 minus 120583119860119909) is nonexpansive

Lemma 3 (see [24]) Let 119862 be a nonempty closed and convexsubset of a smooth Banach space 119864 Let 119876

119862be a sunny

nonexpansive retraction from 119864 onto 119862 and let 119860 be anaccretive operator of 119862 into 119864 Then for all 120582 gt 0

119881119868 (119862 119860) = 119865 (119876119862(119868 minus 120582119860)) (12)

Lemma 4 (see [25]) Let 119862 be a nonempty closed and convexsubset of a real Hilbert space119867 Let 119879

119894 119862 rarr 119864 119894 = 1 119873

be nonexpansive mappings such that cap119873119894=1

119865(119879119894) = 0 Let 119879 =

12057911198791+ 12057921198792+ sdot sdot sdot + 120579

119873119879119873with 120579

1+ 1205792+ sdot sdot sdot + 120579

119873= 1 Then 119879

is nonexpansive and 119865(119879) = cap119873

119894=1119865(119879119894)

Lemma 5 (see [26]) Let 119862 be a convex subset of a real Hilbertspace119867 Let 119909 isin 119867 Then 119909

0= 119875119862119909 if and only if

⟨119911 minus 1199090 119909 minus 119909

0⟩ le 0 forall119911 isin 119862 (13)

Lemma 6 (see [27]) Let 119862 be a closed convex subset of a realHilbert space 119867 and 119860 119862 rarr 119862 be a continuous pseudo-contractive mapping Then for 0 lt 120583 lt 2120574 the mapping119860120583119909 = (119909 minus 120583119860119909) is nonexpansive

(i) 119865(119879) is a closed convex subset of 119862(ii) (119868minus119879) is demiclosed at zero that is if 119909

119899 is a sequence

in119862 such that 119909119899 119909 and119879119909

119899minus119909119899rarr 0 as 119899 rarr infin

then 119909 = 119879(119909)

Abstract and Applied Analysis 3

Lemma 7 (see [28]) Let119867 be a real Hilbert spaceThen for all119909119894isin 119867 and 120572

119894isin [0 1] for 119894 = 1 2 3 such that 120572

1+ 1205722+ 1205723= 1

the following equality holds

100381710038171003817100381712057211199091 + 12057221199092+ 12057231199093

10038171003817100381710038172

=

3

sum

119894=1

120572119894

100381710038171003817100381711990911989410038171003817100381710038172

minus sum

1le119894119895le3

120572119894120572119895

10038171003817100381710038171003817119909119894minus 119909119895

10038171003817100381710038171003817

2

(14)

Lemma 8 (see [29]) Let 119886119899 be sequences of real numbers

such that there exists a subsequence 119899119894 of 119899 such that 119886

119899119894lt

119886119899119894+1

for all 119894 isin N Then there exists an increasing sequence119898119896 sub N such that119898

119896rarr infin and the following properties are

satisfied by all (sufficiently large) numbers 119896 isin N

119886119898119896

le 119886119898119896+1

119886119896le 119886119898119896+1

(15)

In fact 119898119896is the largest number 119899 in the set 1 2 119896

such that the condition 119886119899le 119886119899+1

holds

Lemma9 (see [30]) Let 119886119899 be a sequence of nonnegative real

numbers satisfying the following relation

119886119899+1

le (1 minus 120572119899) 119886119899+ 120572119899120575119899 119899 ge 119899

0 (16)

where 120572119899 sub (0 1) and 120575

119899 sub R satisfying the following condi-

tions lim119899rarrinfin

120572119899= 0sum

infin

119899=1120572119899= infin and lim sup

119899rarrinfin120575119899le 0

Then lim119899rarrinfin

119886119899= 0

3 Main Result

For the rest of this paper let 119886119899 119887119899 119888119899 sub (119888 1) sub (0 1)

for some 119888 isin (0 1) and 120572119899 sub (0 119887) sub (0 1) for some 119887 isin

(0 1) satisfy (i) 119886119899+ 119887119899+ 119888119899= 1 (ii) lim

119899rarrinfin120572119899= 0 and (iii)

sum120572119899= infin

Theorem 10 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space119867 Let 119879

119895 119862 rarr 119862 119895 = 1 2 119872 be

Lipschitz pseudocontractive mappings with Lipschitz constants119871119894 respectively Let 119860

119895 119862 rarr 119867 for 119895 = 1 2 119873

be 120574119895-inverse strongly accretive mappings Let 119891 119862 rarr

119862 be a contraction with constant 120572 Assume that F =

[cap119872

119895=1119865(119879119895)]⋂[cap

119873

119895=1VI(119862 119860

119895)] is nonempty Let a sequence

119909119899 be generated from an arbitrary 119909

0isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 120572119899119891 (119909119899) + (1 minus 120572

119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)

(17)

where 119879119899

= 119879119899(119898119900119889119872)

and 119866 = 1198900119868 + 1198901119875119862[119868 minus 120574119860

1] +

1198902119875119862[119868 minus 120574119860

2] + sdot sdot sdot + 119890

119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0=

min1le119895le119873

120574119895 with 119890

0+1198901+ sdot sdot sdot + 119890

119903= 1 and 119887

119899+ 119888119899le 120582119899le 120582 lt

1(radic1 + 1198712 + 1) forall119899 ge 0 for 119871 = max119871119895 1 le 119895 le 119872 Then

119909119899 converges strongly to a point 119909lowast isin F which is the unique

solution of the variational inequality ⟨(119868 minus 119891)(119909lowast

) 119909 minus 119909lowast

⟩ ge 0

for all 119909 isin F

Proof FromLemmas 2 4 and 3we get that119866 is nonexpansivemapping with 119865(119866) = cap

119873

119895=1VI(119862 119860

119895) Let 119901 isin F Then from

(17) (5) and Lemma 7 we have that1003817100381710038171003817119910119899 minus 119901

10038171003817100381710038172

=1003817100381710038171003817(1 minus 120582

119899) (119909119899minus 119901) + 120582

119899(119879119899119909119899minus 119901)

10038171003817100381710038172

= (1 minus 120582119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ 120582119899

1003817100381710038171003817119879119899119909119899 minus 11990110038171003817100381710038172

minus 120582119899(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

le (1 minus 120582119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ 120582119899[1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

]

minus 120582119899(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

=1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ 1205822

119899

1003817100381710038171003817119909119899 minus 119879119899119909119899

10038171003817100381710038172

(18)

1003817100381710038171003817119909119899+1 minus 11990110038171003817100381710038172

=1003817100381710038171003817120572119899119891 (119909

119899) + (1 minus 120572

119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899) minus 119901

10038171003817100381710038172

=1003817100381710038171003817120572119899 (119891 (119909

119899) minus 119901) + (1 minus 120572

119899)

times (119886119899(119909119899minus 119901) + 119887

119899(119879119899119910119899minus 119901) + 119888

119899(119866119909119899minus 119901))

10038171003817100381710038172

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899)

times1003817100381710038171003817119886119899 (119909119899 minus 119901) + 119887

119899(119879119899119910119899minus 119901) + 119888

119899(119866119909119899minus 119901)

10038171003817100381710038172

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899)

times [119886119899

1003817100381710038171003817119909119899 minus 11990110038171003817100381710038172

+ 119887119899

1003817100381710038171003817119879119899119910119899 minus 11990110038171003817100381710038172

+ 119888119899

1003817100381710038171003817119866119909119899 minus 11990110038171003817100381710038172

] minus (1 minus 120572119899) 119887119899119886119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899) [(119886119899+ 119888119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ 119887119899

1003817100381710038171003817119879119899119910119899 minus 11990110038171003817100381710038172

]

minus (1 minus 120572119899) 119887119899119886119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899) [(119886119899+ 119888119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ 119887119899(1003817100381710038171003817119910119899 minus 119901

10038171003817100381710038172

+1003817100381710038171003817119910119899 minus 119879

119899119910119899

10038171003817100381710038172

)]

minus (1 minus 120572119899) 119887119899119886119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

(19)

Now substituting (18) in (19) we get that1003817100381710038171003817119909119899+1 minus 119901

10038171003817100381710038172

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899) [(119886119899+ 119888119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ 119887119899(1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ 1205822

119899

1003817100381710038171003817119909119899 minus 119879119899119909119899

10038171003817100381710038172

)

+ 119887119899

1003817100381710038171003817119910119899 minus 119879119899119910119899

10038171003817100381710038172

]

minus (1 minus 120572119899) 119887119899119886119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

4 Abstract and Applied Analysis

= 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ (1 minus 120572119899) 1205822

119899119887119899

1003817100381710038171003817119909119899 minus 119879119899119909119899

10038171003817100381710038172

+ (1 minus 120572119899) 119887119899

1003817100381710038171003817119910119899 minus 119879119899119910119899

10038171003817100381710038172

minus (1 minus 120572119899) 119887119899119886119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

(20)

Moreover from (17) Lemma 7 and Lipschitz property of119879119899we get that

1003817100381710038171003817119910119899 minus 119879119899119910119899

10038171003817100381710038172

=1003817100381710038171003817(1 minus 120582

119899) (119909119899minus 119879119899119910119899) + 120582119899(119879119899119909119899minus 119879119899119910119899)10038171003817100381710038172

= (1 minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

+ 120582119899

1003817100381710038171003817119879119899119909119899 minus 119879119899119910119899

10038171003817100381710038172

minus 120582119899(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

le (1 minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

+ 12058211989911987121003817100381710038171003817119909119899 minus 119910

119899

10038171003817100381710038172

minus 120582119899(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

= (1 minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

+ 1205823

11989911987121003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

minus 120582119899(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

= (1 minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

minus 120582119899(1 minus 119871

2

1205822

119899minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

(21)

Substituting (21) into (20) we obtain that

1003817100381710038171003817119909119899+1 minus 11990110038171003817100381710038172

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ (1 minus 120572119899) 1198871198991205822

119899

1003817100381710038171003817119909119899 minus 119879119899119909119899

10038171003817100381710038172

+ (1 minus 120572119899) 119887119899[(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

minus120582119899(1 minus 119871

2

1205822

119899minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

]

minus (1 minus 120572119899) 119887119899119886119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

= 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

minus (1 minus 120572119899) 120582119899119887119899[1 minus 119871

2

1205822

119899minus 2120582119899]1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

+ (1 minus 120572119899) 119887119899[(1 minus 119886

119899) minus 120582119899]1003817100381710038171003817119879119899119910119899 minus 119909

119899

10038171003817100381710038172

= 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

minus (1 minus 120572119899) 120582119899119887119899[1 minus 119871

2

1205822

119899minus 2120582119899]1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

+ (1 minus 120572119899) 119887119899[119887119899+ 119888119899minus 120582119899]1003817100381710038171003817119879119899119910119899 minus 119909

119899

10038171003817100381710038172

(22)

But from the hypothesis we have that

1 minus 2120582119899minus 1198712

1205822

119899ge 1 minus 2120582 minus 119871

2

1205822

gt 0

119887119899+ 119888119899le 120582119899 forall119899 ge 0

(23)

and hence inequality (22) gives that

1003817100381710038171003817119909119899+1 minus 11990110038171003817100381710038172

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

(24)

But we have that

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

= [1003817100381710038171003817119891 (119909119899) minus 119891 (119901)

1003817100381710038171003817 +1003817100381710038171003817119891 (119901) minus 119901

1003817100381710038171003817]2

le [1205721003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817 +1003817100381710038171003817119891 (119901) minus 119901

1003817100381710038171003817]2

le 12057221003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+1003817100381710038171003817119891 (119901) minus 119901

10038171003817100381710038172

+ 21205721003817100381710038171003817119909119899 minus 119901

10038171003817100381710038171003817100381710038171003817119891 (119901) minus 119901

1003817100381710038171003817

le 120572 (1 + 120572)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ (1 + 120572)1003817100381710038171003817119891 (119901) minus 119901

10038171003817100381710038172

(25)

Substituting (25) into (24) we get that

1003817100381710038171003817119909119899+1 minus 11990110038171003817100381710038172

le (1 minus 120572119899(1 minus 120572 (1 + 120572)))

1003817100381710038171003817119909119899 minus 11990110038171003817100381710038172

+ 120572119899(1 + 120572)

1003817100381710038171003817119891 (119901) minus 11990110038171003817100381710038172

(26)

Therefore by induction we get that

1003817100381710038171003817119909119899+1 minus 11990110038171003817100381710038172

le max10038171003817100381710038171199090 minus 11990110038171003817100381710038172

1 + 120572

1 minus 120572 (1 + 120572)

1003817100381710038171003817119891 (119901) minus 11990110038171003817100381710038172

forall119899 ge 0

(27)

which implies that 119909119899 and hence 119910

119899 are bounded

Abstract and Applied Analysis 5

Let 119909lowast = 119875F119891(119909lowast

) Then from (17) Lemmas 1 and 7 andthe methods used to get (22) we obtain that

1003817100381710038171003817119909119899+1 minus 119909lowast10038171003817100381710038172

=1003817100381710038171003817120572119899 (119891 (119909

119899) minus 119909lowast

)

+ (1 minus 120572119899) [119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899minus 119909lowast

]10038171003817100381710038172

le (1 minus 120572119899)1003817100381710038171003817119886119899 (119909119899 minus 119909

lowast

) + 119887119899(119879119899119910119899minus 119909lowast

)

+119888119899(119866119909119899minus 119909lowast

)10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

le (1 minus 120572119899) 119887119899

1003817100381710038171003817119879119899119910119899 minus 119909lowast10038171003817100381710038172

+ (1 minus 120572119899) 119886119899

1003817100381710038171003817119909119899 minus 119909lowast10038171003817100381710038172

times (1 minus 120572119899) 119888119899

1003817100381710038171003817119866119909119899 minus 11990110038171003817100381710038172

minus (1 minus 120572119899) 119886119899119887119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119888119899

1003817100381710038171003817119866119909119899 minus 119909119899

10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

1003817100381710038171003817119909119899+1 minus 119909lowast10038171003817100381710038172

le (1 minus 120572119899) 119887119899[1003817100381710038171003817119910119899 minus 119909

lowast10038171003817100381710038172

+1003817100381710038171003817119910119899 minus 119879

119899119910119899

10038171003817100381710038172

]

+ (1 minus 120572119899) (119886119899+ 119888119899)1003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119887119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119888119899

1003817100381710038171003817119866119909119899 minus 119909119899

10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

le (1 minus 120572119899) 119887119899[1003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

+ 1205822

119899

1003817100381710038171003817119909119899 minus 119879119899119909119899

10038171003817100381710038172

]

+ (1 minus 120572119899) 119887119899[(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

minus 120582119899(1 minus 119871

2

1205822

119899minus 120582119899)

times1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

]

+ (1 minus 120572119899) (119886119899+ 119888119899)1003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119887119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119888119899

1003817100381710038171003817119866119909119899 minus 119909119899

10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

(28)

which implies that1003817100381710038171003817119909119899+1 minus 119909

lowast10038171003817100381710038172

le (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

minus (1 minus 120572119899) 119887119899120582119899[1 minus 119871

2

1205822

119899minus 2120582119899]

times1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

+(1minus120572119899) 119887119899(119887119899+ 119888119899minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119889119899

1003817100381710038171003817119866119909119899 minus 119909119899

10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

(29)

le (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

(30)

But

⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

= ⟨119891 (119909119899) minus 119909lowast

119909119899minus 119909lowast

⟩ + ⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909119899⟩

le ⟨119891 (119909119899) minus 119891 (119909

lowast

) 119909119899minus 119909lowast

⟩ + ⟨119891 (119909lowast

) minus 119909lowast

119909119899minus 119909lowast

+1003817100381710038171003817119909119899+1 minus 119909

119899

10038171003817100381710038171003817100381710038171003817119891 (119909119899) minus 119909lowast1003817100381710038171003817

le 1205721003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

+ ⟨119891 (119909lowast

) minus 119909lowast

119909119899minus 119909lowast

+1003817100381710038171003817119909119899+1 minus 119909

119899

10038171003817100381710038171003817100381710038171003817119891 (119909119899) minus 119909lowast1003817100381710038171003817

(31)

Thus substituting (31) in (30) we obtain that

1003817100381710038171003817119909119899+1 minus 119909lowast10038171003817100381710038172

le (1 minus 120572119899(1 minus 2120572))

1003817100381710038171003817119909119899 minus 119909lowast10038171003817100381710038172

+ 2120572119899⟨119891 (119909lowast

) minus 119909lowast

119909119899minus 119909lowast

+ 2120572119899

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817 sdot1003817100381710038171003817119891 (119909119899) minus 119909lowast1003817100381710038171003817

(32)

Next we consider two cases

Case 1 Suppose that there exists 1198990isin N such that 119909

119899minus 119909lowast

is decreasing for all 119899 ge 1198990 Then we get that 119909

119899minus 119909lowast

isconvergent Thus from (29) and (23) we have that

119909119899minus 119879119899119909119899997888rarr 0 119866119909

119899minus 119909119899997888rarr 0 as 119899 997888rarr infin (33)

Furthermore from (17) and (33) we obtain that

1003817100381710038171003817119910119899 minus 119909119899

1003817100381710038171003817 = 120582119899

1003817100381710038171003817119909119899 minus 119879119899119909119899

1003817100381710038171003817 997888rarr 0 as 119899 997888rarr infin (34)

and hence Lipschitz continuity of 119879119899 (34) and (33) implies

that1003817100381710038171003817119879119899119910119899 minus 119909

119899

1003817100381710038171003817

le1003817100381710038171003817119879119899119910119899 minus 119879

119899119909119899

1003817100381710038171003817 +1003817100381710038171003817119879119899119909119899 minus 119909

119899

1003817100381710038171003817

le 1198711003817100381710038171003817119910119899 minus 119909

119899

1003817100381710038171003817 +1003817100381710038171003817119879119899119909119899 minus 119909

119899

1003817100381710038171003817 997888rarr 0

as 119899 997888rarr infin

(35)

Thus from (33) and (35) we have that

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817

=1003817100381710038171003817120572119899 (119891 (119909

119899) minus 119909119899) + (1 minus 120572

119899)

times (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899) minus 119909119899

1003817100381710038171003817

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119909119899

1003817100381710038171003817 + (1 minus 120572119899) 119887119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

1003817100381710038171003817

+ (1 minus 120572119899) 119888119899

1003817100381710038171003817119866119909119899 minus 119909119899

1003817100381710038171003817 997888rarr 0 as 119899 997888rarr infin

(36)

6 Abstract and Applied Analysis

Therefore 119909119899+119895

minus 119909119899 rarr 0 as 119899 rarr infin for all 119895 =

1 2 119872 and hence10038171003817100381710038171003817119909119899minus 119879119899+119895

119909119899

10038171003817100381710038171003817

le10038171003817100381710038171003817119909119899minus 119909119899+119895

10038171003817100381710038171003817+10038171003817100381710038171003817119909119899+119895

minus 119879119899+119895

119909119899+119895

10038171003817100381710038171003817

+ 11987110038171003817100381710038171003817119909119899+119895

minus 119909119899

10038171003817100381710038171003817997888rarr 0

(37)

as 119899 rarr infin for all 119895 isin 1 2 119872Now since 119909

119899 is bounded subset of 119867 we can choose

a subsequence 119909119899119898 of 119909

119899 such that 119909

119899119898 119909 and

lim sup119899rarrinfin

⟨119891(119909lowast

) minus 119909lowast

119909119899minus 119909lowast

⟩ = lim119898rarrinfin

⟨119891(119909lowast

) minus

119909lowast

119909119899119898

minus 119909lowast

⟩ Then from (37) and Lemma 6 we have that119909 isin 119865(119879

119895) for each 119895 = 1 2 119872 Hence 119909 isin cap

119872

119895=1119865(119879119895)

In addition since 119866 is nonexpansive from Lemma 6 weget that 119909 isin 119865(119866) and hence by Lemmas 4 and 3 we obtainthat 119909 isin VI(119862 119860

119895) for each 119895 isin 1 2 119873

Therefore by Lemma 5 we immediately obtain that

lim sup119899rarrinfin

⟨119891 (119909lowast

) minus 119909lowast

119909119899minus 119909lowast

= lim119898rarrinfin

⟨119891 (119909lowast

) minus 119909lowast

119909119899119898

minus 119909lowast

= ⟨119891 (119909lowast

) minus 119909lowast

119909 minus 119909lowast

⟩ le 0

(38)

Then it follows from (32) (38) and Lemma 9 that 119909119899minus

119909lowast

rarr 0 as 119899 rarr infin Consequently 119909119899rarr 119909lowast

= 119875F(119891(119909lowast

))

Case 2 Suppose that there exists a subsequence 119899119894 of 119899

such that10038171003817100381710038171003817119909119899119894minus 119909lowast10038171003817100381710038171003817lt10038171003817100381710038171003817119909119899119894+1

minus 119909lowast10038171003817100381710038171003817 (39)

for all 119894 isin N Then by Lemma 8 there exists a nondecreasingsequence 119898

119896 sub N such that119898

119896rarr infin and

10038171003817100381710038171003817119909119898119896

minus 119909lowast10038171003817100381710038171003817le10038171003817100381710038171003817119909119898119896+1

minus 119909lowast10038171003817100381710038171003817

1003817100381710038171003817119909119896 minus 119909lowast1003817100381710038171003817 le

10038171003817100381710038171003817119909119898119896+1

minus 119909lowast10038171003817100381710038171003817

(40)

for all 119896 isin N Now from (29) and (23) we get that 119909119898119896

minus

119879119898119896119909119898119896

rarr 0 and 119866119909119899119896

minus 119909119899119896

rarr 0 as 119896 rarr infin Thusfollowing themethod in Case 1 we obtain that 119909

119898119896+1minus119909119898119896

rarr

0 119909119898119896

minus 119879119895119909119898119896

rarr 0 and

lim sup119896rarrinfin

⟨119891 (119909lowast

) minus 119909lowast

119909119898119896

minus 119909lowast

⟩ le 0 (41)

Furthermore from (32) and (40) we obtain that

120572119898119896(1 minus 2120572)

10038171003817100381710038171003817119909119898119896

minus 119909lowast10038171003817100381710038171003817

2

le10038171003817100381710038171003817119909119898119896

minus 119909lowast10038171003817100381710038171003817

2

minus10038171003817100381710038171003817119909119898119896+1

minus 119909lowast10038171003817100381710038171003817

2

+ 2120572119898119896

⟨119891 (119909lowast

) minus 119909lowast

119909119898119896

minus 119909lowast

+ 2120572119898119896

10038171003817100381710038171003817119909119898119896+1

minus 119909119898119896

10038171003817100381710038171003817

10038171003817100381710038171003817119891 (119909119898119896) minus 119909lowast10038171003817100381710038171003817

le 2120572119898119896

⟨119891 (119909lowast

) minus 119909lowast

119909119898119896

minus 119909lowast

+ 2120572119898119896

10038171003817100381710038171003817119909119898119896+1

minus 119909119898119896

10038171003817100381710038171003817

10038171003817100381710038171003817119891 (119909119898119896) minus 119909lowast10038171003817100381710038171003817

(42)

Now using the fact that 120572119898119896

gt 0 and (41) we get that

10038171003817100381710038171003817119909119898119896

minus 119909lowast10038171003817100381710038171003817

2

997888rarr 0 as 119896 997888rarr infin (43)

and this together with (32) implies that 119909119898119896+1

minus 119909lowast

rarr

0 as 119896 rarr infin Since 119909119896minus 119909lowast

le 119909119898119896+1

minus 119909lowast

for all119896 isin N we obtain that 119909

119896rarr 119909

lowast Hence from the abovetwo cases we can conclude that 119909

119899 converges strongly to a

point119909lowast = 119875F119891(119909lowast

) which satisfies the variational inequality⟨(119868 minus 119891)(119909

lowast

) 119909 minus 119909lowast

⟩ ge 0 for all 119909 isin F The proof iscomplete

If in Theorem 10 we assume that 119891(119909) = 119906 isin 119862 aconstant mapping then we get the following corollary

Corollary 11 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space119867 Let 119879

119895 119862 rarr 119862 119895 = 1 2 119872 be

Lipschitz pseudocontractive mappings with Lipschitz constants119871119895 respectively Let 119860

119895 119862 rarr 119867 for 119895 = 1 2 119873

be 120574119895-inverse strongly accretive mappings Assume that F =

[cap119872

119895=1119865(119879119895)]⋂[cap

119873

119895=1VI(119862 119860

119895)] is nonempty Let a sequence

119909119899 be generated from an arbitrary 119909

0 119906 isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 120572119899119906 + (1 minus 120572

119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)

(44)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198900119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119895le119873120574119895

with 1198900+1198901+ sdot sdot sdot+119890

119903= 1 and 119887

119899+119888119899le 120582119899le 120582 lt 1(radic1 + 1198712+

1) forall119899 ge 0 for 119871 = max119871119895 1 le 119895 le 119872 Then 119909

119899 converges

strongly to a unique point 119909lowast isin 119862 satisfying 119909lowast = 119875F(119906) whichis the unique solution of the variational inequality ⟨119909lowast minus 119906 119909 minus

119909lowast

⟩ ge 0 for all 119909 isin F

If inTheorem 10 we assume that119873 = 1 and119872 = 1 thenwe get the following corollary which is Theorem 31 of [21]

Corollary 12 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space 119867 Let 119879 119862 rarr 119862 be Lipschitzpseudocontractive mappings with Lipschitz constant 119871 and 119860

119862 rarr 119867 an 120574-inverse strongly accretive mapping Let 119891

119862 rarr 119862 be a contraction with constant 120572 Assume that F =

119865(119879)⋂VI(119862 119860) is nonempty Let a sequence 119909119899 be generated

from an arbitrary 1199090isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119909119899

119909119899+1

= 120572119899119891 (119909119899)

+ (1 minus 120572119899) (119886119899119909119899+ 119887119899119879119910119899+ 119888119899119875119862[119868 minus 119903119860] 119909

119899)

(45)

where 119903 isin (0 2120574) and 119887119899+119888119899le 120582119899le 120582 lt 1(radic1 + 1198712+1) forall119899 ge

0 Then 119909119899 converges strongly to a point 119909lowast isin F which is the

unique solution of the variational inequality ⟨(119868 minus 119891)(119909lowast

) 119909 minus

119909lowast

⟩ ge 0 for all 119909 isin F

If inTheorem 10 we assume that 1198791015840119894s are strictly pseudo-

contractive mappins then we get the following corollary

Abstract and Applied Analysis 7

Corollary 13 Let 119862 be a nonempty closed and convex subsetof a realHilbert space119867 Let119879

119894 119862 rarr 119862 119894 = 1 2 119872 be120582

119894-

strictly pseudocontractive mappings and let 119860119894 119862 rarr 119867 for

119894 = 1 2 119873 be an 120574119894-inverse strongly accretive mappings

Let 119891 119862 rarr 119862 be a contraction with constant 120572 Assumethat F = [cap

119872

119894=1119865(119879119894)]⋂[cap

119873

119894=1VI(119862 119860

119894)] is nonempty Let a

sequence 119909119899 be generated from an arbitrary 119909

0isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 120572119899119891 (119909119899)

+ (1 minus 120572119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)

(46)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198880119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119894le119873120574119894

with 1198900+ 1198901+ sdot sdot sdot + 119890

119903= 1 and 119887

119899+ 119888119899

le 120582119899

le 120582 lt

1(radic1 + 1198712 + 1) forall119899 ge 0 119871 = max(1 + 120582119894)120582119894 Then 119909

119899

converges strongly to a point 119909lowast isin F which is the uniquesolution of the variational inequality ⟨(119868 minus 119891)(119909

lowast

) 119909 minus 119909lowast

⟩ ge 0

for all 119909 isin F

If in Theorem 10 we assume that 1198791015840119894s are nonexpansive

mapping then we get the following corollary

Corollary 14 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space 119867 Let 119879

119894 119862 rarr 119862 119894 = 1 2 119872

be nonexpansive mappings and let 119860119894 119862 rarr 119867 for 119894 =

1 2 119873 be an 120574119894-inverse strongly accretive mappings Let

119891 119862 rarr 119862 be a contraction with constant 120572 Assume thatF =

[cap119872

119894=1119865(119879119894)]⋂[cap

119873

119894=1VI(119862 119860

119894)] is nonempty Let a sequence 119909

119899

be generated from an arbitrary 1199090isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 120572119899119891 (119909119899)

+ (1 minus 120572119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)

(47)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198880119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119894le119873120574119894

with 1198900+ 1198901+ sdot sdot sdot + 119890

119903= 1 119886

119899+ 119887119899+ 119888119899= 1 and 119887

119899+ 119888119899le

120582119899le 120582 lt 1(radic2 + 1) forall119899 ge 0 Then 119909

119899 converges strongly to

point 119909lowast isin F which is the unique solution of the variationalinequality ⟨(119868 minus 119891)(119909

lowast

) 119909 minus 119909lowast

⟩ ge 0 for all 119909 isin F

We note that the method of proof ofTheorem 10 providesthe following theorem which is a convergence theoremfor a minimum norm point of common fixed points of afinite family of Lipschitz pseudocontractive mappings andcommon solutions of a finite family of variational inequalityproblems for accretive mappings

Theorem 15 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space119867 Let 119879

119895 119862 rarr 119862 119895 = 1 2 119872 be

Lipschitz pseudocontractive mappings with Lipschitz constants119871119895 respectively Let 119860

119895 119862 rarr 119867 for 119895 = 1 2 119873

be 120574119895-inverse strongly accretive mappings Assume that F =

[cap119872

119895=1119865(119879119895)]⋂[cap

119873

119895=1VI(119862 119860

119895)] is nonempty Let a sequence

119909119899 be generated from an arbitrary 119909

0isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 119875119862[(1 minus 120572

119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)]

(48)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198900119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119895le119873120574119895

with 1198900+ 1198901+ sdot sdot sdot + 119890

119903= 1 and 119887

119899+ 119888119899

le 120582119899

le 120582 lt

1(radic1 + 1198712 + 1) forall119899 ge 0 for 119871 = max119871119895 1 le 119895 le 119872 Then

119909119899 converges strongly to a unique minimum norm point 119909lowast

of F (ie 119909lowast = 119875F(0)) which is the unique solution of thevariational inequality ⟨119909lowast 119909 minus 119909

lowast

⟩ ge 0 for all 119909 isin F

4 Numerical Example

Now we give an example of two Lipschitz pseudocontractivemappings and two 120574-inverse strongly accretive mappingssatisfyingTheorem 10 and some numerical experiment resultto explain the conclusion of the theorem as follows

Example 1 Let 119867 = R with absolute value norm Let 119862 =

[minus2 2] and let 1198791 1198792 119862 rarr 119862 be defined by

1198791119909 =

119909 + 1199092

119909 isin [minus2 0]

119909 119909 isin (0 2]

1198792119909 =

119909 119909 isin [minus21

2]

119909 minus (16

9) (119909 minus

1

2)

2

119909 isin (1

2 2]

(49)

Clearly for 119909 119910 isin 119862 we have that

⟨(119868 minus 1198791) 119909 minus (119868 minus 119879

1) 119910 119909 minus 119910⟩ ge 0

⟨(119868 minus 1198792) 119909 minus (119868 minus 119879

2) 119910 119909 minus 119910⟩ ge 0

(50)

which show that bothmappings are pseudocontractive Nextwe show that 119879

1is Lipschitz with 119871 = 5 If 119909 119910 isin [minus2 0] then

10038161003816100381610038161198791119909 minus 11987911199101003816100381610038161003816 =

10038161003816100381610038161003816119909 + 1199092

minus 119910 minus 119910210038161003816100381610038161003816

=1003816100381610038161003816(119909 + 119910) + 1

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816 le 31003816100381610038161003816119909 minus 119910

1003816100381610038161003816

(51)

If 119909 119910 isin (0 2] then10038161003816100381610038161198791119909 minus 119879

11199101003816100381610038161003816 =

1003816100381610038161003816119909 minus 1199101003816100381610038161003816 (52)

If 119909 isin [minus2 0] and 119910 isin (0 2] then10038161003816100381610038161198791119909 minus 119879

11199101003816100381610038161003816

=10038161003816100381610038161003816119909 + 1199092

minus 11991010038161003816100381610038161003816

=10038161003816100381610038161003816119909 minus 119910 + 119909

210038161003816100381610038161003816=10038161003816100381610038161003816119909 minus 119910 + 119909

2

minus 1199102

+ 119910210038161003816100381610038161003816

=10038161003816100381610038161003816119909 minus 119910 + 119909

2

minus 119910210038161003816100381610038161003816+ 1199102

le1003816100381610038161003816119909 + 119910 + 1

1003816100381610038161003816 sdot1003816100381610038161003816119909 minus 119910

1003816100381610038161003816 +1003816100381610038161003816119910 minus 119909

10038161003816100381610038162

= (1003816100381610038161003816119909 + 119910 + 1

1003816100381610038161003816 +1003816100381610038161003816119909 + 119910

1003816100381610038161003816) sdot1003816100381610038161003816119909 minus 119910

1003816100381610038161003816 le 51003816100381610038161003816119909 minus 119910

1003816100381610038161003816

(53)

8 Abstract and Applied Analysis

Thus we get that 1198791is Lipschitz pseudocontractive with

119871 = 5 and 119865(1198791) = [0 2] which is not nonexpansive since

if we take 119909 = minus2 and 119910 = minus19 we have that |1198791119909 minus 1198792119910| =

029 gt 01 = |119909minus119910| Similarly we can show that1198792is Lipschitz

pseudocontractive with 119871 = 4 and 119865(1198792) = [minus2 12] which is

not nonexpansiveFurthermore for 119862 = [minus2 2] let 119860

1 1198602 119862 rarr R be

defined by

1198601119909 =

minus(119909 minus1

2)

2

119909 isin [minus21

2)

0 119909 isin [1

2 2]

1198602119909 =

0 119909 isin [minus22

3]

3(119909 minus2

3)

2

119909 isin (2

3 2]

(54)

Then we first show that 1198601is 120574-inverse strongly accretive

mapping with 120574 = 15If 119909 119910 isin [minus2 12) then

⟨1198601119909 minus 119860

1119910 119909 minus 119910⟩

= ⟨minus(119909 minus1

2)

2

+ (119910 minus1

2)

2

119909 minus 119910⟩

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

] (119910 minus 119909)

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

] [(119910 minus1

2) minus (119909 minus

1

2)]

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

][(119910 minus 12)

2

minus (119909 minus 12)2

]

(119910 minus 12) + (119909 minus 12)

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

][(119909 minus 12)

2

minus (119910 minus 12)2

]

(12 minus 119909) + (12 minus 119910)

ge1

5

100381610038161003816100381610038161003816100381610038161003816

(119909 minus1

2)

2

minus (119910 minus1

2)

2100381610038161003816100381610038161003816100381610038161003816

2

=1

5

10038161003816100381610038161198601119909 minus 119860111991010038161003816100381610038162

(55)

If 119909 isin [minus2 12) and 119910 isin [12 2] we get that

⟨1198601119909 minus 119860

1119910 119909 minus 119910⟩

= ⟨minus(119909 minus1

2)

2

119909 minus 119910⟩ = (119909 minus1

2)

2

(119910 minus 119909)

= (119909 minus1

2)

2

[(119910 minus1

2) minus (119909 minus

1

2)]

ge (119909 minus1

2)

2

(1

2minus 119909)

= (119909 minus1

2)

2

(12 minus 119909)2

(12 minus 119909)ge2

5

100381610038161003816100381610038161003816100381610038161003816

(119909 minus1

2)

2100381610038161003816100381610038161003816100381610038161003816

2

ge1

5

10038161003816100381610038161198601119909 minus 119860111991010038161003816100381610038162

(56)

Table 1

119906 = 06 1199090= 1 119906 = 08 119909

0= minus1

119899 119909119899

119899 119909119899

0 10000 0 minus10000500 06112 5000 0062710000 05137 10000 0428212000 05121 15000 0454014000 05110 20000 0468618000 05093 25000 0478220000 05087 35000 04905

If 119909 119910 isin [12 2] then we get that |1198601119909 minus 119860

1119910| = 0 and

hence

⟨1198601119909 minus 119860

1119910 119909 minus 119910⟩ ge

1

5

10038161003816100381610038161198601119909 minus 119860111991010038161003816100381610038162

(57)

Therefore 1198601is 120574-inverse strongly accretive mapping

with 120574 = 15 andVI(119862 1198601) = [12 2] Similarly we can show

that 1198602is 120574-inverse strongly accretive mapping with 120574 = 12

and VI(119862 1198602) = [minus2 23]

Note that we have119865(1198791)cap119865(119879

2)capVI(119862 119860

1)capVI(119862 119860

2) =

12Thus taking 120572

119899= 1(10119899 + 100) 120582

119899= 2(119899 + 100) +

0065 119887119899

= 119888119899

= 1(119899 + 100) + 001 119886119899

= 1 minus 2(119899 +

100) minus 002 and 119891(119909) = 119906 isin 119862 we observe that conditionsof Theorem 10 are satisfied and Scheme (17) provides thefollowing Table 1 and Figures 1(a) and 1(b) for 119906 = 06 and119906 = 08 respectively

We observe that the data provides strong convergenceof the sequence to the common point of fixed points ofboth pseudocontractive mappings and solutions of both vari-ational inequality problems for 120574-inverse strongly accretivemappings

Remark 2 Theorem 10 provides an iteration scheme whichconverges strongly to a common point of fixed points of afinite family of Lipschitzian pseudocontractivemappings andsolutions of a finite family of variational inequality problemsin Hilbert spaces

Remark 3 Theorem 10 improves Theorem 31 of Takahashiand Toyoda [19] Iiduka and Takahashi [20] and Zegeye andShahzad [21] and Theorem 32 of Yao et al [22] in the sensethat our convergence is to a common point of fixed points of afinite family of Lipschitzian pseudocontractivemappings andsolutions of a finite family of variational inequality problems

Conflict of Interests

The authors declare that they have no conflict of interestsregarding the publication of this paper

Acknowledgments

This project was funded by the Deanship of ScientificResearch (DSR) King Abdulaziz University Jeddah undergrant no 1671301434 The authors therefore acknowledge

Abstract and Applied Analysis 9

0 05 1 15 20

0102030405060708091

x0= 1

Iterations n

x = 05

times104

Iteratesxn

(a)

0 1 2 3 4 5minus15

minus1

minus05

0

05

1

Iterations n

x0= 1

x = 05

times104

Iteratesxn

(b)

Figure 1

with thanksDSR technical and financial supportThe authorsalso thank the referees for their valuable comments andsuggestions which improved the presentation of this paper

References

[1] D Kinderlehrer and G Stampaccia An Iteration to VariationalInequalities and Their Applications Academic Press New YorkNY USA 1990

[2] H Zegeye and N Shahzad ldquoA hybrid scheme for finite familiesof equilibrium variational inequality and fixed point problemsrdquoNonlinear Analysis Theory Methods amp Applications vol 74 no1 pp 263ndash272 2011

[3] H Zegeye and N Shahzad ldquoApproximating common solutionof variational inequality problems for two monotone mappingsin Banach spacesrdquo Optimization Letters vol 5 no 4 pp 691ndash704 2011

[4] H Zegeye and N Shahzad ldquoStrong convergence theoremsfor variational inequality problems and quasi-120601-asymptoticallynonexpansive mappingsrdquo Journal of Global Optimization vol54 no 1 pp 101ndash116 2012

[5] H Zegeye and N Shahzad ldquoAn iteration to a common pointof solution of variational inequality and fixed point-problemsin Banach spacesrdquo Journal of Applied Mathematics vol 2012Article ID 504503 19 pages 2012

[6] F E Browder and W V Petryshyn ldquoConstruction of fixedpoints of nonlinear mappings in Hilbert spacerdquo Journal ofMathematical Analysis and Applications vol 20 pp 197ndash2281967

[7] L C Ceng A Petrusel and J C Yao ldquoComposite viscosityapproximation methods for equilibrium problem variationalinequality and common fixed pointsrdquo Journal of Nonlinear andConvex Analysis vol 15 no 2 pp 219ndash240 2014

[8] L C Ceng A Petrusel M M Wong and J C Yao ldquoHybridalgorithms for solving variational inequalities variational inclu-sions mixed equilibria and fixed point problemsrdquoAbstract andApplied Analysis vol 2014 Article ID 208717 22 pages 2014

[9] L Ceng A Petrusel and M Wong ldquoStrong convergencetheorem for a generalized equilibrium problem and a pseudo-contractive mapping in a Hilbert spacerdquo Taiwanese Journal ofMathematics vol 14 no 5 pp 1881ndash1901 2010

[10] D R Sahu V Colao and G Marino ldquoStrong convergencetheorems for approximating common fixed points of familiesof nonexpansive mappings and applicationsrdquo Journal of GlobalOptimization vol 56 no 4 pp 1631ndash1651 2013

[11] D R Sahu and A Petrusel ldquoStrong convergence of iterativemethods by strictly pseudocontractive mappings in BanachspacesrdquoNonlinearAnalysisTheoryMethodsampApplications vol74 no 17 pp 6012ndash6023 2011

[12] Y Yao Y Liou and N Shahzad ldquoConstruction of iterativemethods for variational inequality and fixed point problemsrdquoNumerical Functional Analysis and Optimization vol 33 no 10pp 1250ndash1267 2012

[13] Y Yao G Marino and L Muglia ldquoA modified Korpelevichrsquosmethod convergent to the minimum-norm solution of a varia-tional inequalityrdquoOptimization vol 63 no 4 pp 559ndash569 2014

[14] Y Yao and M Postolache ldquoIterative methods for pseudomono-tone variational inequalities and fixed-point problemsrdquo Journalof OptimizationTheory and Applications vol 155 no 1 pp 273ndash287 2012

[15] H Zegeye E U Ofoedu and N Shahzad ldquoConvergencetheorems for equilibrium problem variational inequality prob-lem and countably infinite relatively quasi-nonexpansive map-pingsrdquo Applied Mathematics and Computation vol 216 no 12pp 3439ndash3449 2010

[16] H Zegeye andN Shahzad ldquoAhybrid approximationmethod forequilibrium variational inequality and fixed point problemsrdquoNonlinear Analysis Hybrid Systems vol 4 no 4 pp 619ndash6302010

[17] H Zegeye and N Shahzad ldquoStrong convergence theoremsfor a solution of finite families of equilibrium and variationalinequality problemsrdquo Optimization vol 63 no 2 pp 207ndash2232014

[18] H Zegeye andN Shahzad ldquoExtragradientmethod for solutionsof variational inequality problems in Banach spacesrdquo Abstractand Applied Analysis vol 2013 Article ID 832548 8 pages 2013

10 Abstract and Applied Analysis

[19] W Takahashi andM Toyoda ldquoWeak convergence theorems fornonexpansive mappings and monotone mappingsrdquo Journal ofOptimization Theory and Applications vol 118 no 2 pp 417ndash428 2003

[20] H Iiduka and W Takahashi ldquoStrong convergence theoremsfor nonexpansive mappings and inverse-strongly monotonemappingsrdquoNonlinear AnalysisTheory Methods amp Applicationsvol 61 no 3 pp 341ndash350 2005

[21] H Zegeye and N Shahzad ldquoSolutions of variational inequalityproblems in the set of fixed points of pseudocontractive map-pingsrdquo Carpathian Journal of Mathematics vol 30 no 2 pp257ndash265 2014

[22] Y Yao Y C Liou and S M Kang ldquoAlgorithms construction forvariational inequalitiesrdquo Fixed Point Theory and Applicationsvol 2011 Article ID 794203 12 pages 2011

[23] Y Cai Y Tang and L Liu ldquoIterative algorithms for minimum-norm fixed point of non-expansive mapping in Hilbert spacerdquoFixed Point Theory and Applications vol 2012 article 49 2012

[24] K Aoyama H Iiduka andW Takahashi ldquoWeak convergence ofan iterative sequence for accretive operators in Banach spacesrdquoFixed PointTheory andApplications vol 2006 Article ID 3539013 pages 2006

[25] C E Chidume H Zegeye and E Prempeh ldquoStrong conver-gence theorems for a finite family of nonexpansive mappings inBanach spacesrdquoCommunications onAppliedNonlinearAnalysisvol 11 no 2 pp 25ndash32 2004

[26] Y I Alber ldquoMetric and generalized projection operators inBanach spaces properties and applicationsrdquo in Theory andApplications of Nonlinear Operators of Accretive and MonotoneType Lecture Notes in Pure and Applied Mathematics pp 15ndash50 Marcel Dekker New York NY USA 1996

[27] Q B Zhang and C Z Cheng ldquoStrong convergence theorem fora family of Lipschitz pseudocontractive mappings in a HilbertspacerdquoMathematical and Computer Modelling vol 48 no 3-4pp 480ndash485 2008

[28] H Zegeye and N Shahzad ldquoConvergence of Mannrsquos typeiteration method for generalized asymptotically nonexpansivemappingsrdquo Computers and Mathematics with Applications vol62 no 11 pp 4007ndash4014 2011

[29] P E Mainge ldquoStrong convergence of projected subgradientmethods for nonsmooth and nonstrictly convexminimizationrdquoSet-Valued Analysis vol 16 no 7-8 pp 899ndash912 2008

[30] H K Xu ldquoAnother control condition in an iterative method fornonexpansive mappingsrdquo Bulletin of the Australian Mathemati-cal Society vol 65 no 1 pp 109ndash113 2002

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

2 Abstract and Applied Analysis

for some 119896 gt 0 and

⟨119879119909 minus 119879119910 119909 minus 119910⟩ le1003817100381710038171003817119909 minus 119910

10038171003817100381710038172

forall119909 119910 isin 119862 (7)

respectively We remark that 119879 is pseudocontractive if andonly if 119860 = (119868 minus 119879) is accretive A point 119909 isin 119862 is a fixedpoint of 119879 if 119879119909 = 119909 and we denote by 119865(119879) the set of fixedpoints of 119879 that is 119865(119879) = 119909 isin 119862 119879119909 = 119909

We observe that in a real Hilbert space 119867 a class ofpseudocontractive mappings includes the class of 120582-strictlypseudocontractive mappings and hence the classes of nonex-pansive and contraction mappings

Closely related to the variational inequality problems isthe problem of finding fixed points of nonexpansive map-pings 120582-strict pseudocontraction mappings or pseudocon-tractive mappings which is the current interest in functionalanalysis Several researchers considered a unified approachthat approximates a commonpoint of fixed point of nonlinearproblems and solutions of variational inequality problemsand solutions of variational inequality problems see forexample [7ndash18] and the references therein

In [19] Takahashi and Toyoda studied the problem offinding a common point of fixed points of a nonexpansivemapping and solutions of a variational inequality problem (1)by considering the following iterative algorithm

1199090isin 119862

119909119899+1

= 120572119899119909119899+ (1 minus 120572

119899) 119879119875119862(119909119899minus 120582119899119860119909119899) 119899 = 0 1

(8)

where 120572119899 is a sequence in (0 1) 120582

119899 is a positive sequence

119879 119862 rarr 119862 is a nonexpansivemapping and119860 119862 rarr 119867 is an120574-inverse strongly accretive mapping They showed that thesequence 119909

119899 generated by (8) converges weakly to some 119911 isin

VI(119862 119860) cap 119865(119878) provided that the control sequences satisfysome restrictions

Iiduka and Takahashi [20] reconsidered the commonelement problem via the following iterative algorithm

1199091= 119909 isin 119862

119909119899+1

= 120572119899119909 + (1 minus 120572

119899) 119879119875119862(119909119899minus 120582119899119860119909119899) 119899 = 0 1

(9)

where119879 119862 rarr 119862 is a nonexpansivemapping119860 119862 rarr 119867 isa 120574-inverse-strongly accretive mapping 120572

119899 is a sequence in

(0 1) and 120582119899 is a sequence in (0 2120572) They proved that the

sequence 119909119899 strongly converges to some point 119911 isin 119865(119879) cap

VI(119862 119860)Recently Zegeye and Shahzad [21] investigated the prob-

lem of finding a common point of fixed points of a Lipschitzpseudocontractive mapping 119879 and solutions of a variationalinequality problem for 120574-inverse strongly accretive mapping119860 by considering the following iterative algorithm

119910119899= (1 minus 120573

119899) 119909119899+ 120573119899119879119909119899

119909119899+1

= 119875119862[(1 minus 120572

119899) (120575119899119879119910119899+ 120579119899119909119899+ 120574119899119875119862[119868 minus 120574119860] 119909

119899)]

(10)

where 119875119862

is a metric projection from 119867 onto 119862 and120575119899 120579119899 120574119899 120572119899 120573119899 are in (0 1) satisfying certain

conditions Then they proved that the sequence 119909119899 con-

verges strongly to the minimum-norm point of 119865(119879) cap

VI(119862 119860)A natural question arises whether we can obtain an itera-

tive schemewhich converges strongly to a commonpoint of fixedpoints of a finite family of pseudocontractive mappings andsolutions of a finite family of variational inequality problemsfor 120574-inverse strongly accretive mappings or not

It is our purpose in this paper to introduce an algorithmand prove that the algorithm converges strongly to a commonpoint of fixed points of a finite family of Lipschitz pseudo-contractive mappings and solutions of a finite family of vari-ational inequality problems for 120574-inverse strongly accretivemappings The results obtained in this paper improve andextend the results of Takahashi and Toyoda [19] Iiduka andTakahashi [20] and Zegeye and Shahzad [21]Theorem 32 ofYao et al [22] and some other results in this direction

2 Preliminaries

In what follows we will make use of the following lemmas

Lemma 1 Letting 119867 be a real Hilbert space the followingidentity holds

1003817100381710038171003817119909 + 11991010038171003817100381710038172

le 1199092

+ 2 ⟨119910 119909 + 119910⟩ forall119909 119910 isin 119867 (11)

Lemma 2 (see [23]) Let 119862 be a nonempty closed and convexsubset of a real Hilbert space119867 Let 119860 119862 rarr 119864 be a 120574-inversestrongly accretive mapping Then for 0 lt 120583 lt 2120574 the mapping119860120583119909 = (119909 minus 120583119860119909) is nonexpansive

Lemma 3 (see [24]) Let 119862 be a nonempty closed and convexsubset of a smooth Banach space 119864 Let 119876

119862be a sunny

nonexpansive retraction from 119864 onto 119862 and let 119860 be anaccretive operator of 119862 into 119864 Then for all 120582 gt 0

119881119868 (119862 119860) = 119865 (119876119862(119868 minus 120582119860)) (12)

Lemma 4 (see [25]) Let 119862 be a nonempty closed and convexsubset of a real Hilbert space119867 Let 119879

119894 119862 rarr 119864 119894 = 1 119873

be nonexpansive mappings such that cap119873119894=1

119865(119879119894) = 0 Let 119879 =

12057911198791+ 12057921198792+ sdot sdot sdot + 120579

119873119879119873with 120579

1+ 1205792+ sdot sdot sdot + 120579

119873= 1 Then 119879

is nonexpansive and 119865(119879) = cap119873

119894=1119865(119879119894)

Lemma 5 (see [26]) Let 119862 be a convex subset of a real Hilbertspace119867 Let 119909 isin 119867 Then 119909

0= 119875119862119909 if and only if

⟨119911 minus 1199090 119909 minus 119909

0⟩ le 0 forall119911 isin 119862 (13)

Lemma 6 (see [27]) Let 119862 be a closed convex subset of a realHilbert space 119867 and 119860 119862 rarr 119862 be a continuous pseudo-contractive mapping Then for 0 lt 120583 lt 2120574 the mapping119860120583119909 = (119909 minus 120583119860119909) is nonexpansive

(i) 119865(119879) is a closed convex subset of 119862(ii) (119868minus119879) is demiclosed at zero that is if 119909

119899 is a sequence

in119862 such that 119909119899 119909 and119879119909

119899minus119909119899rarr 0 as 119899 rarr infin

then 119909 = 119879(119909)

Abstract and Applied Analysis 3

Lemma 7 (see [28]) Let119867 be a real Hilbert spaceThen for all119909119894isin 119867 and 120572

119894isin [0 1] for 119894 = 1 2 3 such that 120572

1+ 1205722+ 1205723= 1

the following equality holds

100381710038171003817100381712057211199091 + 12057221199092+ 12057231199093

10038171003817100381710038172

=

3

sum

119894=1

120572119894

100381710038171003817100381711990911989410038171003817100381710038172

minus sum

1le119894119895le3

120572119894120572119895

10038171003817100381710038171003817119909119894minus 119909119895

10038171003817100381710038171003817

2

(14)

Lemma 8 (see [29]) Let 119886119899 be sequences of real numbers

such that there exists a subsequence 119899119894 of 119899 such that 119886

119899119894lt

119886119899119894+1

for all 119894 isin N Then there exists an increasing sequence119898119896 sub N such that119898

119896rarr infin and the following properties are

satisfied by all (sufficiently large) numbers 119896 isin N

119886119898119896

le 119886119898119896+1

119886119896le 119886119898119896+1

(15)

In fact 119898119896is the largest number 119899 in the set 1 2 119896

such that the condition 119886119899le 119886119899+1

holds

Lemma9 (see [30]) Let 119886119899 be a sequence of nonnegative real

numbers satisfying the following relation

119886119899+1

le (1 minus 120572119899) 119886119899+ 120572119899120575119899 119899 ge 119899

0 (16)

where 120572119899 sub (0 1) and 120575

119899 sub R satisfying the following condi-

tions lim119899rarrinfin

120572119899= 0sum

infin

119899=1120572119899= infin and lim sup

119899rarrinfin120575119899le 0

Then lim119899rarrinfin

119886119899= 0

3 Main Result

For the rest of this paper let 119886119899 119887119899 119888119899 sub (119888 1) sub (0 1)

for some 119888 isin (0 1) and 120572119899 sub (0 119887) sub (0 1) for some 119887 isin

(0 1) satisfy (i) 119886119899+ 119887119899+ 119888119899= 1 (ii) lim

119899rarrinfin120572119899= 0 and (iii)

sum120572119899= infin

Theorem 10 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space119867 Let 119879

119895 119862 rarr 119862 119895 = 1 2 119872 be

Lipschitz pseudocontractive mappings with Lipschitz constants119871119894 respectively Let 119860

119895 119862 rarr 119867 for 119895 = 1 2 119873

be 120574119895-inverse strongly accretive mappings Let 119891 119862 rarr

119862 be a contraction with constant 120572 Assume that F =

[cap119872

119895=1119865(119879119895)]⋂[cap

119873

119895=1VI(119862 119860

119895)] is nonempty Let a sequence

119909119899 be generated from an arbitrary 119909

0isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 120572119899119891 (119909119899) + (1 minus 120572

119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)

(17)

where 119879119899

= 119879119899(119898119900119889119872)

and 119866 = 1198900119868 + 1198901119875119862[119868 minus 120574119860

1] +

1198902119875119862[119868 minus 120574119860

2] + sdot sdot sdot + 119890

119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0=

min1le119895le119873

120574119895 with 119890

0+1198901+ sdot sdot sdot + 119890

119903= 1 and 119887

119899+ 119888119899le 120582119899le 120582 lt

1(radic1 + 1198712 + 1) forall119899 ge 0 for 119871 = max119871119895 1 le 119895 le 119872 Then

119909119899 converges strongly to a point 119909lowast isin F which is the unique

solution of the variational inequality ⟨(119868 minus 119891)(119909lowast

) 119909 minus 119909lowast

⟩ ge 0

for all 119909 isin F

Proof FromLemmas 2 4 and 3we get that119866 is nonexpansivemapping with 119865(119866) = cap

119873

119895=1VI(119862 119860

119895) Let 119901 isin F Then from

(17) (5) and Lemma 7 we have that1003817100381710038171003817119910119899 minus 119901

10038171003817100381710038172

=1003817100381710038171003817(1 minus 120582

119899) (119909119899minus 119901) + 120582

119899(119879119899119909119899minus 119901)

10038171003817100381710038172

= (1 minus 120582119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ 120582119899

1003817100381710038171003817119879119899119909119899 minus 11990110038171003817100381710038172

minus 120582119899(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

le (1 minus 120582119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ 120582119899[1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

]

minus 120582119899(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

=1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ 1205822

119899

1003817100381710038171003817119909119899 minus 119879119899119909119899

10038171003817100381710038172

(18)

1003817100381710038171003817119909119899+1 minus 11990110038171003817100381710038172

=1003817100381710038171003817120572119899119891 (119909

119899) + (1 minus 120572

119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899) minus 119901

10038171003817100381710038172

=1003817100381710038171003817120572119899 (119891 (119909

119899) minus 119901) + (1 minus 120572

119899)

times (119886119899(119909119899minus 119901) + 119887

119899(119879119899119910119899minus 119901) + 119888

119899(119866119909119899minus 119901))

10038171003817100381710038172

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899)

times1003817100381710038171003817119886119899 (119909119899 minus 119901) + 119887

119899(119879119899119910119899minus 119901) + 119888

119899(119866119909119899minus 119901)

10038171003817100381710038172

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899)

times [119886119899

1003817100381710038171003817119909119899 minus 11990110038171003817100381710038172

+ 119887119899

1003817100381710038171003817119879119899119910119899 minus 11990110038171003817100381710038172

+ 119888119899

1003817100381710038171003817119866119909119899 minus 11990110038171003817100381710038172

] minus (1 minus 120572119899) 119887119899119886119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899) [(119886119899+ 119888119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ 119887119899

1003817100381710038171003817119879119899119910119899 minus 11990110038171003817100381710038172

]

minus (1 minus 120572119899) 119887119899119886119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899) [(119886119899+ 119888119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ 119887119899(1003817100381710038171003817119910119899 minus 119901

10038171003817100381710038172

+1003817100381710038171003817119910119899 minus 119879

119899119910119899

10038171003817100381710038172

)]

minus (1 minus 120572119899) 119887119899119886119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

(19)

Now substituting (18) in (19) we get that1003817100381710038171003817119909119899+1 minus 119901

10038171003817100381710038172

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899) [(119886119899+ 119888119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ 119887119899(1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ 1205822

119899

1003817100381710038171003817119909119899 minus 119879119899119909119899

10038171003817100381710038172

)

+ 119887119899

1003817100381710038171003817119910119899 minus 119879119899119910119899

10038171003817100381710038172

]

minus (1 minus 120572119899) 119887119899119886119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

4 Abstract and Applied Analysis

= 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ (1 minus 120572119899) 1205822

119899119887119899

1003817100381710038171003817119909119899 minus 119879119899119909119899

10038171003817100381710038172

+ (1 minus 120572119899) 119887119899

1003817100381710038171003817119910119899 minus 119879119899119910119899

10038171003817100381710038172

minus (1 minus 120572119899) 119887119899119886119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

(20)

Moreover from (17) Lemma 7 and Lipschitz property of119879119899we get that

1003817100381710038171003817119910119899 minus 119879119899119910119899

10038171003817100381710038172

=1003817100381710038171003817(1 minus 120582

119899) (119909119899minus 119879119899119910119899) + 120582119899(119879119899119909119899minus 119879119899119910119899)10038171003817100381710038172

= (1 minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

+ 120582119899

1003817100381710038171003817119879119899119909119899 minus 119879119899119910119899

10038171003817100381710038172

minus 120582119899(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

le (1 minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

+ 12058211989911987121003817100381710038171003817119909119899 minus 119910

119899

10038171003817100381710038172

minus 120582119899(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

= (1 minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

+ 1205823

11989911987121003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

minus 120582119899(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

= (1 minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

minus 120582119899(1 minus 119871

2

1205822

119899minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

(21)

Substituting (21) into (20) we obtain that

1003817100381710038171003817119909119899+1 minus 11990110038171003817100381710038172

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ (1 minus 120572119899) 1198871198991205822

119899

1003817100381710038171003817119909119899 minus 119879119899119909119899

10038171003817100381710038172

+ (1 minus 120572119899) 119887119899[(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

minus120582119899(1 minus 119871

2

1205822

119899minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

]

minus (1 minus 120572119899) 119887119899119886119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

= 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

minus (1 minus 120572119899) 120582119899119887119899[1 minus 119871

2

1205822

119899minus 2120582119899]1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

+ (1 minus 120572119899) 119887119899[(1 minus 119886

119899) minus 120582119899]1003817100381710038171003817119879119899119910119899 minus 119909

119899

10038171003817100381710038172

= 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

minus (1 minus 120572119899) 120582119899119887119899[1 minus 119871

2

1205822

119899minus 2120582119899]1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

+ (1 minus 120572119899) 119887119899[119887119899+ 119888119899minus 120582119899]1003817100381710038171003817119879119899119910119899 minus 119909

119899

10038171003817100381710038172

(22)

But from the hypothesis we have that

1 minus 2120582119899minus 1198712

1205822

119899ge 1 minus 2120582 minus 119871

2

1205822

gt 0

119887119899+ 119888119899le 120582119899 forall119899 ge 0

(23)

and hence inequality (22) gives that

1003817100381710038171003817119909119899+1 minus 11990110038171003817100381710038172

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

(24)

But we have that

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

= [1003817100381710038171003817119891 (119909119899) minus 119891 (119901)

1003817100381710038171003817 +1003817100381710038171003817119891 (119901) minus 119901

1003817100381710038171003817]2

le [1205721003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817 +1003817100381710038171003817119891 (119901) minus 119901

1003817100381710038171003817]2

le 12057221003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+1003817100381710038171003817119891 (119901) minus 119901

10038171003817100381710038172

+ 21205721003817100381710038171003817119909119899 minus 119901

10038171003817100381710038171003817100381710038171003817119891 (119901) minus 119901

1003817100381710038171003817

le 120572 (1 + 120572)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ (1 + 120572)1003817100381710038171003817119891 (119901) minus 119901

10038171003817100381710038172

(25)

Substituting (25) into (24) we get that

1003817100381710038171003817119909119899+1 minus 11990110038171003817100381710038172

le (1 minus 120572119899(1 minus 120572 (1 + 120572)))

1003817100381710038171003817119909119899 minus 11990110038171003817100381710038172

+ 120572119899(1 + 120572)

1003817100381710038171003817119891 (119901) minus 11990110038171003817100381710038172

(26)

Therefore by induction we get that

1003817100381710038171003817119909119899+1 minus 11990110038171003817100381710038172

le max10038171003817100381710038171199090 minus 11990110038171003817100381710038172

1 + 120572

1 minus 120572 (1 + 120572)

1003817100381710038171003817119891 (119901) minus 11990110038171003817100381710038172

forall119899 ge 0

(27)

which implies that 119909119899 and hence 119910

119899 are bounded

Abstract and Applied Analysis 5

Let 119909lowast = 119875F119891(119909lowast

) Then from (17) Lemmas 1 and 7 andthe methods used to get (22) we obtain that

1003817100381710038171003817119909119899+1 minus 119909lowast10038171003817100381710038172

=1003817100381710038171003817120572119899 (119891 (119909

119899) minus 119909lowast

)

+ (1 minus 120572119899) [119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899minus 119909lowast

]10038171003817100381710038172

le (1 minus 120572119899)1003817100381710038171003817119886119899 (119909119899 minus 119909

lowast

) + 119887119899(119879119899119910119899minus 119909lowast

)

+119888119899(119866119909119899minus 119909lowast

)10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

le (1 minus 120572119899) 119887119899

1003817100381710038171003817119879119899119910119899 minus 119909lowast10038171003817100381710038172

+ (1 minus 120572119899) 119886119899

1003817100381710038171003817119909119899 minus 119909lowast10038171003817100381710038172

times (1 minus 120572119899) 119888119899

1003817100381710038171003817119866119909119899 minus 11990110038171003817100381710038172

minus (1 minus 120572119899) 119886119899119887119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119888119899

1003817100381710038171003817119866119909119899 minus 119909119899

10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

1003817100381710038171003817119909119899+1 minus 119909lowast10038171003817100381710038172

le (1 minus 120572119899) 119887119899[1003817100381710038171003817119910119899 minus 119909

lowast10038171003817100381710038172

+1003817100381710038171003817119910119899 minus 119879

119899119910119899

10038171003817100381710038172

]

+ (1 minus 120572119899) (119886119899+ 119888119899)1003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119887119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119888119899

1003817100381710038171003817119866119909119899 minus 119909119899

10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

le (1 minus 120572119899) 119887119899[1003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

+ 1205822

119899

1003817100381710038171003817119909119899 minus 119879119899119909119899

10038171003817100381710038172

]

+ (1 minus 120572119899) 119887119899[(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

minus 120582119899(1 minus 119871

2

1205822

119899minus 120582119899)

times1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

]

+ (1 minus 120572119899) (119886119899+ 119888119899)1003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119887119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119888119899

1003817100381710038171003817119866119909119899 minus 119909119899

10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

(28)

which implies that1003817100381710038171003817119909119899+1 minus 119909

lowast10038171003817100381710038172

le (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

minus (1 minus 120572119899) 119887119899120582119899[1 minus 119871

2

1205822

119899minus 2120582119899]

times1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

+(1minus120572119899) 119887119899(119887119899+ 119888119899minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119889119899

1003817100381710038171003817119866119909119899 minus 119909119899

10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

(29)

le (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

(30)

But

⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

= ⟨119891 (119909119899) minus 119909lowast

119909119899minus 119909lowast

⟩ + ⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909119899⟩

le ⟨119891 (119909119899) minus 119891 (119909

lowast

) 119909119899minus 119909lowast

⟩ + ⟨119891 (119909lowast

) minus 119909lowast

119909119899minus 119909lowast

+1003817100381710038171003817119909119899+1 minus 119909

119899

10038171003817100381710038171003817100381710038171003817119891 (119909119899) minus 119909lowast1003817100381710038171003817

le 1205721003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

+ ⟨119891 (119909lowast

) minus 119909lowast

119909119899minus 119909lowast

+1003817100381710038171003817119909119899+1 minus 119909

119899

10038171003817100381710038171003817100381710038171003817119891 (119909119899) minus 119909lowast1003817100381710038171003817

(31)

Thus substituting (31) in (30) we obtain that

1003817100381710038171003817119909119899+1 minus 119909lowast10038171003817100381710038172

le (1 minus 120572119899(1 minus 2120572))

1003817100381710038171003817119909119899 minus 119909lowast10038171003817100381710038172

+ 2120572119899⟨119891 (119909lowast

) minus 119909lowast

119909119899minus 119909lowast

+ 2120572119899

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817 sdot1003817100381710038171003817119891 (119909119899) minus 119909lowast1003817100381710038171003817

(32)

Next we consider two cases

Case 1 Suppose that there exists 1198990isin N such that 119909

119899minus 119909lowast

is decreasing for all 119899 ge 1198990 Then we get that 119909

119899minus 119909lowast

isconvergent Thus from (29) and (23) we have that

119909119899minus 119879119899119909119899997888rarr 0 119866119909

119899minus 119909119899997888rarr 0 as 119899 997888rarr infin (33)

Furthermore from (17) and (33) we obtain that

1003817100381710038171003817119910119899 minus 119909119899

1003817100381710038171003817 = 120582119899

1003817100381710038171003817119909119899 minus 119879119899119909119899

1003817100381710038171003817 997888rarr 0 as 119899 997888rarr infin (34)

and hence Lipschitz continuity of 119879119899 (34) and (33) implies

that1003817100381710038171003817119879119899119910119899 minus 119909

119899

1003817100381710038171003817

le1003817100381710038171003817119879119899119910119899 minus 119879

119899119909119899

1003817100381710038171003817 +1003817100381710038171003817119879119899119909119899 minus 119909

119899

1003817100381710038171003817

le 1198711003817100381710038171003817119910119899 minus 119909

119899

1003817100381710038171003817 +1003817100381710038171003817119879119899119909119899 minus 119909

119899

1003817100381710038171003817 997888rarr 0

as 119899 997888rarr infin

(35)

Thus from (33) and (35) we have that

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817

=1003817100381710038171003817120572119899 (119891 (119909

119899) minus 119909119899) + (1 minus 120572

119899)

times (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899) minus 119909119899

1003817100381710038171003817

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119909119899

1003817100381710038171003817 + (1 minus 120572119899) 119887119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

1003817100381710038171003817

+ (1 minus 120572119899) 119888119899

1003817100381710038171003817119866119909119899 minus 119909119899

1003817100381710038171003817 997888rarr 0 as 119899 997888rarr infin

(36)

6 Abstract and Applied Analysis

Therefore 119909119899+119895

minus 119909119899 rarr 0 as 119899 rarr infin for all 119895 =

1 2 119872 and hence10038171003817100381710038171003817119909119899minus 119879119899+119895

119909119899

10038171003817100381710038171003817

le10038171003817100381710038171003817119909119899minus 119909119899+119895

10038171003817100381710038171003817+10038171003817100381710038171003817119909119899+119895

minus 119879119899+119895

119909119899+119895

10038171003817100381710038171003817

+ 11987110038171003817100381710038171003817119909119899+119895

minus 119909119899

10038171003817100381710038171003817997888rarr 0

(37)

as 119899 rarr infin for all 119895 isin 1 2 119872Now since 119909

119899 is bounded subset of 119867 we can choose

a subsequence 119909119899119898 of 119909

119899 such that 119909

119899119898 119909 and

lim sup119899rarrinfin

⟨119891(119909lowast

) minus 119909lowast

119909119899minus 119909lowast

⟩ = lim119898rarrinfin

⟨119891(119909lowast

) minus

119909lowast

119909119899119898

minus 119909lowast

⟩ Then from (37) and Lemma 6 we have that119909 isin 119865(119879

119895) for each 119895 = 1 2 119872 Hence 119909 isin cap

119872

119895=1119865(119879119895)

In addition since 119866 is nonexpansive from Lemma 6 weget that 119909 isin 119865(119866) and hence by Lemmas 4 and 3 we obtainthat 119909 isin VI(119862 119860

119895) for each 119895 isin 1 2 119873

Therefore by Lemma 5 we immediately obtain that

lim sup119899rarrinfin

⟨119891 (119909lowast

) minus 119909lowast

119909119899minus 119909lowast

= lim119898rarrinfin

⟨119891 (119909lowast

) minus 119909lowast

119909119899119898

minus 119909lowast

= ⟨119891 (119909lowast

) minus 119909lowast

119909 minus 119909lowast

⟩ le 0

(38)

Then it follows from (32) (38) and Lemma 9 that 119909119899minus

119909lowast

rarr 0 as 119899 rarr infin Consequently 119909119899rarr 119909lowast

= 119875F(119891(119909lowast

))

Case 2 Suppose that there exists a subsequence 119899119894 of 119899

such that10038171003817100381710038171003817119909119899119894minus 119909lowast10038171003817100381710038171003817lt10038171003817100381710038171003817119909119899119894+1

minus 119909lowast10038171003817100381710038171003817 (39)

for all 119894 isin N Then by Lemma 8 there exists a nondecreasingsequence 119898

119896 sub N such that119898

119896rarr infin and

10038171003817100381710038171003817119909119898119896

minus 119909lowast10038171003817100381710038171003817le10038171003817100381710038171003817119909119898119896+1

minus 119909lowast10038171003817100381710038171003817

1003817100381710038171003817119909119896 minus 119909lowast1003817100381710038171003817 le

10038171003817100381710038171003817119909119898119896+1

minus 119909lowast10038171003817100381710038171003817

(40)

for all 119896 isin N Now from (29) and (23) we get that 119909119898119896

minus

119879119898119896119909119898119896

rarr 0 and 119866119909119899119896

minus 119909119899119896

rarr 0 as 119896 rarr infin Thusfollowing themethod in Case 1 we obtain that 119909

119898119896+1minus119909119898119896

rarr

0 119909119898119896

minus 119879119895119909119898119896

rarr 0 and

lim sup119896rarrinfin

⟨119891 (119909lowast

) minus 119909lowast

119909119898119896

minus 119909lowast

⟩ le 0 (41)

Furthermore from (32) and (40) we obtain that

120572119898119896(1 minus 2120572)

10038171003817100381710038171003817119909119898119896

minus 119909lowast10038171003817100381710038171003817

2

le10038171003817100381710038171003817119909119898119896

minus 119909lowast10038171003817100381710038171003817

2

minus10038171003817100381710038171003817119909119898119896+1

minus 119909lowast10038171003817100381710038171003817

2

+ 2120572119898119896

⟨119891 (119909lowast

) minus 119909lowast

119909119898119896

minus 119909lowast

+ 2120572119898119896

10038171003817100381710038171003817119909119898119896+1

minus 119909119898119896

10038171003817100381710038171003817

10038171003817100381710038171003817119891 (119909119898119896) minus 119909lowast10038171003817100381710038171003817

le 2120572119898119896

⟨119891 (119909lowast

) minus 119909lowast

119909119898119896

minus 119909lowast

+ 2120572119898119896

10038171003817100381710038171003817119909119898119896+1

minus 119909119898119896

10038171003817100381710038171003817

10038171003817100381710038171003817119891 (119909119898119896) minus 119909lowast10038171003817100381710038171003817

(42)

Now using the fact that 120572119898119896

gt 0 and (41) we get that

10038171003817100381710038171003817119909119898119896

minus 119909lowast10038171003817100381710038171003817

2

997888rarr 0 as 119896 997888rarr infin (43)

and this together with (32) implies that 119909119898119896+1

minus 119909lowast

rarr

0 as 119896 rarr infin Since 119909119896minus 119909lowast

le 119909119898119896+1

minus 119909lowast

for all119896 isin N we obtain that 119909

119896rarr 119909

lowast Hence from the abovetwo cases we can conclude that 119909

119899 converges strongly to a

point119909lowast = 119875F119891(119909lowast

) which satisfies the variational inequality⟨(119868 minus 119891)(119909

lowast

) 119909 minus 119909lowast

⟩ ge 0 for all 119909 isin F The proof iscomplete

If in Theorem 10 we assume that 119891(119909) = 119906 isin 119862 aconstant mapping then we get the following corollary

Corollary 11 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space119867 Let 119879

119895 119862 rarr 119862 119895 = 1 2 119872 be

Lipschitz pseudocontractive mappings with Lipschitz constants119871119895 respectively Let 119860

119895 119862 rarr 119867 for 119895 = 1 2 119873

be 120574119895-inverse strongly accretive mappings Assume that F =

[cap119872

119895=1119865(119879119895)]⋂[cap

119873

119895=1VI(119862 119860

119895)] is nonempty Let a sequence

119909119899 be generated from an arbitrary 119909

0 119906 isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 120572119899119906 + (1 minus 120572

119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)

(44)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198900119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119895le119873120574119895

with 1198900+1198901+ sdot sdot sdot+119890

119903= 1 and 119887

119899+119888119899le 120582119899le 120582 lt 1(radic1 + 1198712+

1) forall119899 ge 0 for 119871 = max119871119895 1 le 119895 le 119872 Then 119909

119899 converges

strongly to a unique point 119909lowast isin 119862 satisfying 119909lowast = 119875F(119906) whichis the unique solution of the variational inequality ⟨119909lowast minus 119906 119909 minus

119909lowast

⟩ ge 0 for all 119909 isin F

If inTheorem 10 we assume that119873 = 1 and119872 = 1 thenwe get the following corollary which is Theorem 31 of [21]

Corollary 12 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space 119867 Let 119879 119862 rarr 119862 be Lipschitzpseudocontractive mappings with Lipschitz constant 119871 and 119860

119862 rarr 119867 an 120574-inverse strongly accretive mapping Let 119891

119862 rarr 119862 be a contraction with constant 120572 Assume that F =

119865(119879)⋂VI(119862 119860) is nonempty Let a sequence 119909119899 be generated

from an arbitrary 1199090isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119909119899

119909119899+1

= 120572119899119891 (119909119899)

+ (1 minus 120572119899) (119886119899119909119899+ 119887119899119879119910119899+ 119888119899119875119862[119868 minus 119903119860] 119909

119899)

(45)

where 119903 isin (0 2120574) and 119887119899+119888119899le 120582119899le 120582 lt 1(radic1 + 1198712+1) forall119899 ge

0 Then 119909119899 converges strongly to a point 119909lowast isin F which is the

unique solution of the variational inequality ⟨(119868 minus 119891)(119909lowast

) 119909 minus

119909lowast

⟩ ge 0 for all 119909 isin F

If inTheorem 10 we assume that 1198791015840119894s are strictly pseudo-

contractive mappins then we get the following corollary

Abstract and Applied Analysis 7

Corollary 13 Let 119862 be a nonempty closed and convex subsetof a realHilbert space119867 Let119879

119894 119862 rarr 119862 119894 = 1 2 119872 be120582

119894-

strictly pseudocontractive mappings and let 119860119894 119862 rarr 119867 for

119894 = 1 2 119873 be an 120574119894-inverse strongly accretive mappings

Let 119891 119862 rarr 119862 be a contraction with constant 120572 Assumethat F = [cap

119872

119894=1119865(119879119894)]⋂[cap

119873

119894=1VI(119862 119860

119894)] is nonempty Let a

sequence 119909119899 be generated from an arbitrary 119909

0isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 120572119899119891 (119909119899)

+ (1 minus 120572119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)

(46)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198880119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119894le119873120574119894

with 1198900+ 1198901+ sdot sdot sdot + 119890

119903= 1 and 119887

119899+ 119888119899

le 120582119899

le 120582 lt

1(radic1 + 1198712 + 1) forall119899 ge 0 119871 = max(1 + 120582119894)120582119894 Then 119909

119899

converges strongly to a point 119909lowast isin F which is the uniquesolution of the variational inequality ⟨(119868 minus 119891)(119909

lowast

) 119909 minus 119909lowast

⟩ ge 0

for all 119909 isin F

If in Theorem 10 we assume that 1198791015840119894s are nonexpansive

mapping then we get the following corollary

Corollary 14 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space 119867 Let 119879

119894 119862 rarr 119862 119894 = 1 2 119872

be nonexpansive mappings and let 119860119894 119862 rarr 119867 for 119894 =

1 2 119873 be an 120574119894-inverse strongly accretive mappings Let

119891 119862 rarr 119862 be a contraction with constant 120572 Assume thatF =

[cap119872

119894=1119865(119879119894)]⋂[cap

119873

119894=1VI(119862 119860

119894)] is nonempty Let a sequence 119909

119899

be generated from an arbitrary 1199090isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 120572119899119891 (119909119899)

+ (1 minus 120572119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)

(47)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198880119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119894le119873120574119894

with 1198900+ 1198901+ sdot sdot sdot + 119890

119903= 1 119886

119899+ 119887119899+ 119888119899= 1 and 119887

119899+ 119888119899le

120582119899le 120582 lt 1(radic2 + 1) forall119899 ge 0 Then 119909

119899 converges strongly to

point 119909lowast isin F which is the unique solution of the variationalinequality ⟨(119868 minus 119891)(119909

lowast

) 119909 minus 119909lowast

⟩ ge 0 for all 119909 isin F

We note that the method of proof ofTheorem 10 providesthe following theorem which is a convergence theoremfor a minimum norm point of common fixed points of afinite family of Lipschitz pseudocontractive mappings andcommon solutions of a finite family of variational inequalityproblems for accretive mappings

Theorem 15 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space119867 Let 119879

119895 119862 rarr 119862 119895 = 1 2 119872 be

Lipschitz pseudocontractive mappings with Lipschitz constants119871119895 respectively Let 119860

119895 119862 rarr 119867 for 119895 = 1 2 119873

be 120574119895-inverse strongly accretive mappings Assume that F =

[cap119872

119895=1119865(119879119895)]⋂[cap

119873

119895=1VI(119862 119860

119895)] is nonempty Let a sequence

119909119899 be generated from an arbitrary 119909

0isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 119875119862[(1 minus 120572

119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)]

(48)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198900119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119895le119873120574119895

with 1198900+ 1198901+ sdot sdot sdot + 119890

119903= 1 and 119887

119899+ 119888119899

le 120582119899

le 120582 lt

1(radic1 + 1198712 + 1) forall119899 ge 0 for 119871 = max119871119895 1 le 119895 le 119872 Then

119909119899 converges strongly to a unique minimum norm point 119909lowast

of F (ie 119909lowast = 119875F(0)) which is the unique solution of thevariational inequality ⟨119909lowast 119909 minus 119909

lowast

⟩ ge 0 for all 119909 isin F

4 Numerical Example

Now we give an example of two Lipschitz pseudocontractivemappings and two 120574-inverse strongly accretive mappingssatisfyingTheorem 10 and some numerical experiment resultto explain the conclusion of the theorem as follows

Example 1 Let 119867 = R with absolute value norm Let 119862 =

[minus2 2] and let 1198791 1198792 119862 rarr 119862 be defined by

1198791119909 =

119909 + 1199092

119909 isin [minus2 0]

119909 119909 isin (0 2]

1198792119909 =

119909 119909 isin [minus21

2]

119909 minus (16

9) (119909 minus

1

2)

2

119909 isin (1

2 2]

(49)

Clearly for 119909 119910 isin 119862 we have that

⟨(119868 minus 1198791) 119909 minus (119868 minus 119879

1) 119910 119909 minus 119910⟩ ge 0

⟨(119868 minus 1198792) 119909 minus (119868 minus 119879

2) 119910 119909 minus 119910⟩ ge 0

(50)

which show that bothmappings are pseudocontractive Nextwe show that 119879

1is Lipschitz with 119871 = 5 If 119909 119910 isin [minus2 0] then

10038161003816100381610038161198791119909 minus 11987911199101003816100381610038161003816 =

10038161003816100381610038161003816119909 + 1199092

minus 119910 minus 119910210038161003816100381610038161003816

=1003816100381610038161003816(119909 + 119910) + 1

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816 le 31003816100381610038161003816119909 minus 119910

1003816100381610038161003816

(51)

If 119909 119910 isin (0 2] then10038161003816100381610038161198791119909 minus 119879

11199101003816100381610038161003816 =

1003816100381610038161003816119909 minus 1199101003816100381610038161003816 (52)

If 119909 isin [minus2 0] and 119910 isin (0 2] then10038161003816100381610038161198791119909 minus 119879

11199101003816100381610038161003816

=10038161003816100381610038161003816119909 + 1199092

minus 11991010038161003816100381610038161003816

=10038161003816100381610038161003816119909 minus 119910 + 119909

210038161003816100381610038161003816=10038161003816100381610038161003816119909 minus 119910 + 119909

2

minus 1199102

+ 119910210038161003816100381610038161003816

=10038161003816100381610038161003816119909 minus 119910 + 119909

2

minus 119910210038161003816100381610038161003816+ 1199102

le1003816100381610038161003816119909 + 119910 + 1

1003816100381610038161003816 sdot1003816100381610038161003816119909 minus 119910

1003816100381610038161003816 +1003816100381610038161003816119910 minus 119909

10038161003816100381610038162

= (1003816100381610038161003816119909 + 119910 + 1

1003816100381610038161003816 +1003816100381610038161003816119909 + 119910

1003816100381610038161003816) sdot1003816100381610038161003816119909 minus 119910

1003816100381610038161003816 le 51003816100381610038161003816119909 minus 119910

1003816100381610038161003816

(53)

8 Abstract and Applied Analysis

Thus we get that 1198791is Lipschitz pseudocontractive with

119871 = 5 and 119865(1198791) = [0 2] which is not nonexpansive since

if we take 119909 = minus2 and 119910 = minus19 we have that |1198791119909 minus 1198792119910| =

029 gt 01 = |119909minus119910| Similarly we can show that1198792is Lipschitz

pseudocontractive with 119871 = 4 and 119865(1198792) = [minus2 12] which is

not nonexpansiveFurthermore for 119862 = [minus2 2] let 119860

1 1198602 119862 rarr R be

defined by

1198601119909 =

minus(119909 minus1

2)

2

119909 isin [minus21

2)

0 119909 isin [1

2 2]

1198602119909 =

0 119909 isin [minus22

3]

3(119909 minus2

3)

2

119909 isin (2

3 2]

(54)

Then we first show that 1198601is 120574-inverse strongly accretive

mapping with 120574 = 15If 119909 119910 isin [minus2 12) then

⟨1198601119909 minus 119860

1119910 119909 minus 119910⟩

= ⟨minus(119909 minus1

2)

2

+ (119910 minus1

2)

2

119909 minus 119910⟩

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

] (119910 minus 119909)

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

] [(119910 minus1

2) minus (119909 minus

1

2)]

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

][(119910 minus 12)

2

minus (119909 minus 12)2

]

(119910 minus 12) + (119909 minus 12)

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

][(119909 minus 12)

2

minus (119910 minus 12)2

]

(12 minus 119909) + (12 minus 119910)

ge1

5

100381610038161003816100381610038161003816100381610038161003816

(119909 minus1

2)

2

minus (119910 minus1

2)

2100381610038161003816100381610038161003816100381610038161003816

2

=1

5

10038161003816100381610038161198601119909 minus 119860111991010038161003816100381610038162

(55)

If 119909 isin [minus2 12) and 119910 isin [12 2] we get that

⟨1198601119909 minus 119860

1119910 119909 minus 119910⟩

= ⟨minus(119909 minus1

2)

2

119909 minus 119910⟩ = (119909 minus1

2)

2

(119910 minus 119909)

= (119909 minus1

2)

2

[(119910 minus1

2) minus (119909 minus

1

2)]

ge (119909 minus1

2)

2

(1

2minus 119909)

= (119909 minus1

2)

2

(12 minus 119909)2

(12 minus 119909)ge2

5

100381610038161003816100381610038161003816100381610038161003816

(119909 minus1

2)

2100381610038161003816100381610038161003816100381610038161003816

2

ge1

5

10038161003816100381610038161198601119909 minus 119860111991010038161003816100381610038162

(56)

Table 1

119906 = 06 1199090= 1 119906 = 08 119909

0= minus1

119899 119909119899

119899 119909119899

0 10000 0 minus10000500 06112 5000 0062710000 05137 10000 0428212000 05121 15000 0454014000 05110 20000 0468618000 05093 25000 0478220000 05087 35000 04905

If 119909 119910 isin [12 2] then we get that |1198601119909 minus 119860

1119910| = 0 and

hence

⟨1198601119909 minus 119860

1119910 119909 minus 119910⟩ ge

1

5

10038161003816100381610038161198601119909 minus 119860111991010038161003816100381610038162

(57)

Therefore 1198601is 120574-inverse strongly accretive mapping

with 120574 = 15 andVI(119862 1198601) = [12 2] Similarly we can show

that 1198602is 120574-inverse strongly accretive mapping with 120574 = 12

and VI(119862 1198602) = [minus2 23]

Note that we have119865(1198791)cap119865(119879

2)capVI(119862 119860

1)capVI(119862 119860

2) =

12Thus taking 120572

119899= 1(10119899 + 100) 120582

119899= 2(119899 + 100) +

0065 119887119899

= 119888119899

= 1(119899 + 100) + 001 119886119899

= 1 minus 2(119899 +

100) minus 002 and 119891(119909) = 119906 isin 119862 we observe that conditionsof Theorem 10 are satisfied and Scheme (17) provides thefollowing Table 1 and Figures 1(a) and 1(b) for 119906 = 06 and119906 = 08 respectively

We observe that the data provides strong convergenceof the sequence to the common point of fixed points ofboth pseudocontractive mappings and solutions of both vari-ational inequality problems for 120574-inverse strongly accretivemappings

Remark 2 Theorem 10 provides an iteration scheme whichconverges strongly to a common point of fixed points of afinite family of Lipschitzian pseudocontractivemappings andsolutions of a finite family of variational inequality problemsin Hilbert spaces

Remark 3 Theorem 10 improves Theorem 31 of Takahashiand Toyoda [19] Iiduka and Takahashi [20] and Zegeye andShahzad [21] and Theorem 32 of Yao et al [22] in the sensethat our convergence is to a common point of fixed points of afinite family of Lipschitzian pseudocontractivemappings andsolutions of a finite family of variational inequality problems

Conflict of Interests

The authors declare that they have no conflict of interestsregarding the publication of this paper

Acknowledgments

This project was funded by the Deanship of ScientificResearch (DSR) King Abdulaziz University Jeddah undergrant no 1671301434 The authors therefore acknowledge

Abstract and Applied Analysis 9

0 05 1 15 20

0102030405060708091

x0= 1

Iterations n

x = 05

times104

Iteratesxn

(a)

0 1 2 3 4 5minus15

minus1

minus05

0

05

1

Iterations n

x0= 1

x = 05

times104

Iteratesxn

(b)

Figure 1

with thanksDSR technical and financial supportThe authorsalso thank the referees for their valuable comments andsuggestions which improved the presentation of this paper

References

[1] D Kinderlehrer and G Stampaccia An Iteration to VariationalInequalities and Their Applications Academic Press New YorkNY USA 1990

[2] H Zegeye and N Shahzad ldquoA hybrid scheme for finite familiesof equilibrium variational inequality and fixed point problemsrdquoNonlinear Analysis Theory Methods amp Applications vol 74 no1 pp 263ndash272 2011

[3] H Zegeye and N Shahzad ldquoApproximating common solutionof variational inequality problems for two monotone mappingsin Banach spacesrdquo Optimization Letters vol 5 no 4 pp 691ndash704 2011

[4] H Zegeye and N Shahzad ldquoStrong convergence theoremsfor variational inequality problems and quasi-120601-asymptoticallynonexpansive mappingsrdquo Journal of Global Optimization vol54 no 1 pp 101ndash116 2012

[5] H Zegeye and N Shahzad ldquoAn iteration to a common pointof solution of variational inequality and fixed point-problemsin Banach spacesrdquo Journal of Applied Mathematics vol 2012Article ID 504503 19 pages 2012

[6] F E Browder and W V Petryshyn ldquoConstruction of fixedpoints of nonlinear mappings in Hilbert spacerdquo Journal ofMathematical Analysis and Applications vol 20 pp 197ndash2281967

[7] L C Ceng A Petrusel and J C Yao ldquoComposite viscosityapproximation methods for equilibrium problem variationalinequality and common fixed pointsrdquo Journal of Nonlinear andConvex Analysis vol 15 no 2 pp 219ndash240 2014

[8] L C Ceng A Petrusel M M Wong and J C Yao ldquoHybridalgorithms for solving variational inequalities variational inclu-sions mixed equilibria and fixed point problemsrdquoAbstract andApplied Analysis vol 2014 Article ID 208717 22 pages 2014

[9] L Ceng A Petrusel and M Wong ldquoStrong convergencetheorem for a generalized equilibrium problem and a pseudo-contractive mapping in a Hilbert spacerdquo Taiwanese Journal ofMathematics vol 14 no 5 pp 1881ndash1901 2010

[10] D R Sahu V Colao and G Marino ldquoStrong convergencetheorems for approximating common fixed points of familiesof nonexpansive mappings and applicationsrdquo Journal of GlobalOptimization vol 56 no 4 pp 1631ndash1651 2013

[11] D R Sahu and A Petrusel ldquoStrong convergence of iterativemethods by strictly pseudocontractive mappings in BanachspacesrdquoNonlinearAnalysisTheoryMethodsampApplications vol74 no 17 pp 6012ndash6023 2011

[12] Y Yao Y Liou and N Shahzad ldquoConstruction of iterativemethods for variational inequality and fixed point problemsrdquoNumerical Functional Analysis and Optimization vol 33 no 10pp 1250ndash1267 2012

[13] Y Yao G Marino and L Muglia ldquoA modified Korpelevichrsquosmethod convergent to the minimum-norm solution of a varia-tional inequalityrdquoOptimization vol 63 no 4 pp 559ndash569 2014

[14] Y Yao and M Postolache ldquoIterative methods for pseudomono-tone variational inequalities and fixed-point problemsrdquo Journalof OptimizationTheory and Applications vol 155 no 1 pp 273ndash287 2012

[15] H Zegeye E U Ofoedu and N Shahzad ldquoConvergencetheorems for equilibrium problem variational inequality prob-lem and countably infinite relatively quasi-nonexpansive map-pingsrdquo Applied Mathematics and Computation vol 216 no 12pp 3439ndash3449 2010

[16] H Zegeye andN Shahzad ldquoAhybrid approximationmethod forequilibrium variational inequality and fixed point problemsrdquoNonlinear Analysis Hybrid Systems vol 4 no 4 pp 619ndash6302010

[17] H Zegeye and N Shahzad ldquoStrong convergence theoremsfor a solution of finite families of equilibrium and variationalinequality problemsrdquo Optimization vol 63 no 2 pp 207ndash2232014

[18] H Zegeye andN Shahzad ldquoExtragradientmethod for solutionsof variational inequality problems in Banach spacesrdquo Abstractand Applied Analysis vol 2013 Article ID 832548 8 pages 2013

10 Abstract and Applied Analysis

[19] W Takahashi andM Toyoda ldquoWeak convergence theorems fornonexpansive mappings and monotone mappingsrdquo Journal ofOptimization Theory and Applications vol 118 no 2 pp 417ndash428 2003

[20] H Iiduka and W Takahashi ldquoStrong convergence theoremsfor nonexpansive mappings and inverse-strongly monotonemappingsrdquoNonlinear AnalysisTheory Methods amp Applicationsvol 61 no 3 pp 341ndash350 2005

[21] H Zegeye and N Shahzad ldquoSolutions of variational inequalityproblems in the set of fixed points of pseudocontractive map-pingsrdquo Carpathian Journal of Mathematics vol 30 no 2 pp257ndash265 2014

[22] Y Yao Y C Liou and S M Kang ldquoAlgorithms construction forvariational inequalitiesrdquo Fixed Point Theory and Applicationsvol 2011 Article ID 794203 12 pages 2011

[23] Y Cai Y Tang and L Liu ldquoIterative algorithms for minimum-norm fixed point of non-expansive mapping in Hilbert spacerdquoFixed Point Theory and Applications vol 2012 article 49 2012

[24] K Aoyama H Iiduka andW Takahashi ldquoWeak convergence ofan iterative sequence for accretive operators in Banach spacesrdquoFixed PointTheory andApplications vol 2006 Article ID 3539013 pages 2006

[25] C E Chidume H Zegeye and E Prempeh ldquoStrong conver-gence theorems for a finite family of nonexpansive mappings inBanach spacesrdquoCommunications onAppliedNonlinearAnalysisvol 11 no 2 pp 25ndash32 2004

[26] Y I Alber ldquoMetric and generalized projection operators inBanach spaces properties and applicationsrdquo in Theory andApplications of Nonlinear Operators of Accretive and MonotoneType Lecture Notes in Pure and Applied Mathematics pp 15ndash50 Marcel Dekker New York NY USA 1996

[27] Q B Zhang and C Z Cheng ldquoStrong convergence theorem fora family of Lipschitz pseudocontractive mappings in a HilbertspacerdquoMathematical and Computer Modelling vol 48 no 3-4pp 480ndash485 2008

[28] H Zegeye and N Shahzad ldquoConvergence of Mannrsquos typeiteration method for generalized asymptotically nonexpansivemappingsrdquo Computers and Mathematics with Applications vol62 no 11 pp 4007ndash4014 2011

[29] P E Mainge ldquoStrong convergence of projected subgradientmethods for nonsmooth and nonstrictly convexminimizationrdquoSet-Valued Analysis vol 16 no 7-8 pp 899ndash912 2008

[30] H K Xu ldquoAnother control condition in an iterative method fornonexpansive mappingsrdquo Bulletin of the Australian Mathemati-cal Society vol 65 no 1 pp 109ndash113 2002

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Abstract and Applied Analysis 3

Lemma 7 (see [28]) Let119867 be a real Hilbert spaceThen for all119909119894isin 119867 and 120572

119894isin [0 1] for 119894 = 1 2 3 such that 120572

1+ 1205722+ 1205723= 1

the following equality holds

100381710038171003817100381712057211199091 + 12057221199092+ 12057231199093

10038171003817100381710038172

=

3

sum

119894=1

120572119894

100381710038171003817100381711990911989410038171003817100381710038172

minus sum

1le119894119895le3

120572119894120572119895

10038171003817100381710038171003817119909119894minus 119909119895

10038171003817100381710038171003817

2

(14)

Lemma 8 (see [29]) Let 119886119899 be sequences of real numbers

such that there exists a subsequence 119899119894 of 119899 such that 119886

119899119894lt

119886119899119894+1

for all 119894 isin N Then there exists an increasing sequence119898119896 sub N such that119898

119896rarr infin and the following properties are

satisfied by all (sufficiently large) numbers 119896 isin N

119886119898119896

le 119886119898119896+1

119886119896le 119886119898119896+1

(15)

In fact 119898119896is the largest number 119899 in the set 1 2 119896

such that the condition 119886119899le 119886119899+1

holds

Lemma9 (see [30]) Let 119886119899 be a sequence of nonnegative real

numbers satisfying the following relation

119886119899+1

le (1 minus 120572119899) 119886119899+ 120572119899120575119899 119899 ge 119899

0 (16)

where 120572119899 sub (0 1) and 120575

119899 sub R satisfying the following condi-

tions lim119899rarrinfin

120572119899= 0sum

infin

119899=1120572119899= infin and lim sup

119899rarrinfin120575119899le 0

Then lim119899rarrinfin

119886119899= 0

3 Main Result

For the rest of this paper let 119886119899 119887119899 119888119899 sub (119888 1) sub (0 1)

for some 119888 isin (0 1) and 120572119899 sub (0 119887) sub (0 1) for some 119887 isin

(0 1) satisfy (i) 119886119899+ 119887119899+ 119888119899= 1 (ii) lim

119899rarrinfin120572119899= 0 and (iii)

sum120572119899= infin

Theorem 10 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space119867 Let 119879

119895 119862 rarr 119862 119895 = 1 2 119872 be

Lipschitz pseudocontractive mappings with Lipschitz constants119871119894 respectively Let 119860

119895 119862 rarr 119867 for 119895 = 1 2 119873

be 120574119895-inverse strongly accretive mappings Let 119891 119862 rarr

119862 be a contraction with constant 120572 Assume that F =

[cap119872

119895=1119865(119879119895)]⋂[cap

119873

119895=1VI(119862 119860

119895)] is nonempty Let a sequence

119909119899 be generated from an arbitrary 119909

0isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 120572119899119891 (119909119899) + (1 minus 120572

119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)

(17)

where 119879119899

= 119879119899(119898119900119889119872)

and 119866 = 1198900119868 + 1198901119875119862[119868 minus 120574119860

1] +

1198902119875119862[119868 minus 120574119860

2] + sdot sdot sdot + 119890

119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0=

min1le119895le119873

120574119895 with 119890

0+1198901+ sdot sdot sdot + 119890

119903= 1 and 119887

119899+ 119888119899le 120582119899le 120582 lt

1(radic1 + 1198712 + 1) forall119899 ge 0 for 119871 = max119871119895 1 le 119895 le 119872 Then

119909119899 converges strongly to a point 119909lowast isin F which is the unique

solution of the variational inequality ⟨(119868 minus 119891)(119909lowast

) 119909 minus 119909lowast

⟩ ge 0

for all 119909 isin F

Proof FromLemmas 2 4 and 3we get that119866 is nonexpansivemapping with 119865(119866) = cap

119873

119895=1VI(119862 119860

119895) Let 119901 isin F Then from

(17) (5) and Lemma 7 we have that1003817100381710038171003817119910119899 minus 119901

10038171003817100381710038172

=1003817100381710038171003817(1 minus 120582

119899) (119909119899minus 119901) + 120582

119899(119879119899119909119899minus 119901)

10038171003817100381710038172

= (1 minus 120582119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ 120582119899

1003817100381710038171003817119879119899119909119899 minus 11990110038171003817100381710038172

minus 120582119899(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

le (1 minus 120582119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ 120582119899[1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

]

minus 120582119899(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

=1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ 1205822

119899

1003817100381710038171003817119909119899 minus 119879119899119909119899

10038171003817100381710038172

(18)

1003817100381710038171003817119909119899+1 minus 11990110038171003817100381710038172

=1003817100381710038171003817120572119899119891 (119909

119899) + (1 minus 120572

119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899) minus 119901

10038171003817100381710038172

=1003817100381710038171003817120572119899 (119891 (119909

119899) minus 119901) + (1 minus 120572

119899)

times (119886119899(119909119899minus 119901) + 119887

119899(119879119899119910119899minus 119901) + 119888

119899(119866119909119899minus 119901))

10038171003817100381710038172

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899)

times1003817100381710038171003817119886119899 (119909119899 minus 119901) + 119887

119899(119879119899119910119899minus 119901) + 119888

119899(119866119909119899minus 119901)

10038171003817100381710038172

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899)

times [119886119899

1003817100381710038171003817119909119899 minus 11990110038171003817100381710038172

+ 119887119899

1003817100381710038171003817119879119899119910119899 minus 11990110038171003817100381710038172

+ 119888119899

1003817100381710038171003817119866119909119899 minus 11990110038171003817100381710038172

] minus (1 minus 120572119899) 119887119899119886119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899) [(119886119899+ 119888119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ 119887119899

1003817100381710038171003817119879119899119910119899 minus 11990110038171003817100381710038172

]

minus (1 minus 120572119899) 119887119899119886119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899) [(119886119899+ 119888119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ 119887119899(1003817100381710038171003817119910119899 minus 119901

10038171003817100381710038172

+1003817100381710038171003817119910119899 minus 119879

119899119910119899

10038171003817100381710038172

)]

minus (1 minus 120572119899) 119887119899119886119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

(19)

Now substituting (18) in (19) we get that1003817100381710038171003817119909119899+1 minus 119901

10038171003817100381710038172

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899) [(119886119899+ 119888119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ 119887119899(1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ 1205822

119899

1003817100381710038171003817119909119899 minus 119879119899119909119899

10038171003817100381710038172

)

+ 119887119899

1003817100381710038171003817119910119899 minus 119879119899119910119899

10038171003817100381710038172

]

minus (1 minus 120572119899) 119887119899119886119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

4 Abstract and Applied Analysis

= 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ (1 minus 120572119899) 1205822

119899119887119899

1003817100381710038171003817119909119899 minus 119879119899119909119899

10038171003817100381710038172

+ (1 minus 120572119899) 119887119899

1003817100381710038171003817119910119899 minus 119879119899119910119899

10038171003817100381710038172

minus (1 minus 120572119899) 119887119899119886119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

(20)

Moreover from (17) Lemma 7 and Lipschitz property of119879119899we get that

1003817100381710038171003817119910119899 minus 119879119899119910119899

10038171003817100381710038172

=1003817100381710038171003817(1 minus 120582

119899) (119909119899minus 119879119899119910119899) + 120582119899(119879119899119909119899minus 119879119899119910119899)10038171003817100381710038172

= (1 minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

+ 120582119899

1003817100381710038171003817119879119899119909119899 minus 119879119899119910119899

10038171003817100381710038172

minus 120582119899(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

le (1 minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

+ 12058211989911987121003817100381710038171003817119909119899 minus 119910

119899

10038171003817100381710038172

minus 120582119899(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

= (1 minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

+ 1205823

11989911987121003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

minus 120582119899(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

= (1 minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

minus 120582119899(1 minus 119871

2

1205822

119899minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

(21)

Substituting (21) into (20) we obtain that

1003817100381710038171003817119909119899+1 minus 11990110038171003817100381710038172

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ (1 minus 120572119899) 1198871198991205822

119899

1003817100381710038171003817119909119899 minus 119879119899119909119899

10038171003817100381710038172

+ (1 minus 120572119899) 119887119899[(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

minus120582119899(1 minus 119871

2

1205822

119899minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

]

minus (1 minus 120572119899) 119887119899119886119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

= 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

minus (1 minus 120572119899) 120582119899119887119899[1 minus 119871

2

1205822

119899minus 2120582119899]1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

+ (1 minus 120572119899) 119887119899[(1 minus 119886

119899) minus 120582119899]1003817100381710038171003817119879119899119910119899 minus 119909

119899

10038171003817100381710038172

= 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

minus (1 minus 120572119899) 120582119899119887119899[1 minus 119871

2

1205822

119899minus 2120582119899]1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

+ (1 minus 120572119899) 119887119899[119887119899+ 119888119899minus 120582119899]1003817100381710038171003817119879119899119910119899 minus 119909

119899

10038171003817100381710038172

(22)

But from the hypothesis we have that

1 minus 2120582119899minus 1198712

1205822

119899ge 1 minus 2120582 minus 119871

2

1205822

gt 0

119887119899+ 119888119899le 120582119899 forall119899 ge 0

(23)

and hence inequality (22) gives that

1003817100381710038171003817119909119899+1 minus 11990110038171003817100381710038172

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

(24)

But we have that

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

= [1003817100381710038171003817119891 (119909119899) minus 119891 (119901)

1003817100381710038171003817 +1003817100381710038171003817119891 (119901) minus 119901

1003817100381710038171003817]2

le [1205721003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817 +1003817100381710038171003817119891 (119901) minus 119901

1003817100381710038171003817]2

le 12057221003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+1003817100381710038171003817119891 (119901) minus 119901

10038171003817100381710038172

+ 21205721003817100381710038171003817119909119899 minus 119901

10038171003817100381710038171003817100381710038171003817119891 (119901) minus 119901

1003817100381710038171003817

le 120572 (1 + 120572)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ (1 + 120572)1003817100381710038171003817119891 (119901) minus 119901

10038171003817100381710038172

(25)

Substituting (25) into (24) we get that

1003817100381710038171003817119909119899+1 minus 11990110038171003817100381710038172

le (1 minus 120572119899(1 minus 120572 (1 + 120572)))

1003817100381710038171003817119909119899 minus 11990110038171003817100381710038172

+ 120572119899(1 + 120572)

1003817100381710038171003817119891 (119901) minus 11990110038171003817100381710038172

(26)

Therefore by induction we get that

1003817100381710038171003817119909119899+1 minus 11990110038171003817100381710038172

le max10038171003817100381710038171199090 minus 11990110038171003817100381710038172

1 + 120572

1 minus 120572 (1 + 120572)

1003817100381710038171003817119891 (119901) minus 11990110038171003817100381710038172

forall119899 ge 0

(27)

which implies that 119909119899 and hence 119910

119899 are bounded

Abstract and Applied Analysis 5

Let 119909lowast = 119875F119891(119909lowast

) Then from (17) Lemmas 1 and 7 andthe methods used to get (22) we obtain that

1003817100381710038171003817119909119899+1 minus 119909lowast10038171003817100381710038172

=1003817100381710038171003817120572119899 (119891 (119909

119899) minus 119909lowast

)

+ (1 minus 120572119899) [119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899minus 119909lowast

]10038171003817100381710038172

le (1 minus 120572119899)1003817100381710038171003817119886119899 (119909119899 minus 119909

lowast

) + 119887119899(119879119899119910119899minus 119909lowast

)

+119888119899(119866119909119899minus 119909lowast

)10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

le (1 minus 120572119899) 119887119899

1003817100381710038171003817119879119899119910119899 minus 119909lowast10038171003817100381710038172

+ (1 minus 120572119899) 119886119899

1003817100381710038171003817119909119899 minus 119909lowast10038171003817100381710038172

times (1 minus 120572119899) 119888119899

1003817100381710038171003817119866119909119899 minus 11990110038171003817100381710038172

minus (1 minus 120572119899) 119886119899119887119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119888119899

1003817100381710038171003817119866119909119899 minus 119909119899

10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

1003817100381710038171003817119909119899+1 minus 119909lowast10038171003817100381710038172

le (1 minus 120572119899) 119887119899[1003817100381710038171003817119910119899 minus 119909

lowast10038171003817100381710038172

+1003817100381710038171003817119910119899 minus 119879

119899119910119899

10038171003817100381710038172

]

+ (1 minus 120572119899) (119886119899+ 119888119899)1003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119887119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119888119899

1003817100381710038171003817119866119909119899 minus 119909119899

10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

le (1 minus 120572119899) 119887119899[1003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

+ 1205822

119899

1003817100381710038171003817119909119899 minus 119879119899119909119899

10038171003817100381710038172

]

+ (1 minus 120572119899) 119887119899[(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

minus 120582119899(1 minus 119871

2

1205822

119899minus 120582119899)

times1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

]

+ (1 minus 120572119899) (119886119899+ 119888119899)1003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119887119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119888119899

1003817100381710038171003817119866119909119899 minus 119909119899

10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

(28)

which implies that1003817100381710038171003817119909119899+1 minus 119909

lowast10038171003817100381710038172

le (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

minus (1 minus 120572119899) 119887119899120582119899[1 minus 119871

2

1205822

119899minus 2120582119899]

times1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

+(1minus120572119899) 119887119899(119887119899+ 119888119899minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119889119899

1003817100381710038171003817119866119909119899 minus 119909119899

10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

(29)

le (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

(30)

But

⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

= ⟨119891 (119909119899) minus 119909lowast

119909119899minus 119909lowast

⟩ + ⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909119899⟩

le ⟨119891 (119909119899) minus 119891 (119909

lowast

) 119909119899minus 119909lowast

⟩ + ⟨119891 (119909lowast

) minus 119909lowast

119909119899minus 119909lowast

+1003817100381710038171003817119909119899+1 minus 119909

119899

10038171003817100381710038171003817100381710038171003817119891 (119909119899) minus 119909lowast1003817100381710038171003817

le 1205721003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

+ ⟨119891 (119909lowast

) minus 119909lowast

119909119899minus 119909lowast

+1003817100381710038171003817119909119899+1 minus 119909

119899

10038171003817100381710038171003817100381710038171003817119891 (119909119899) minus 119909lowast1003817100381710038171003817

(31)

Thus substituting (31) in (30) we obtain that

1003817100381710038171003817119909119899+1 minus 119909lowast10038171003817100381710038172

le (1 minus 120572119899(1 minus 2120572))

1003817100381710038171003817119909119899 minus 119909lowast10038171003817100381710038172

+ 2120572119899⟨119891 (119909lowast

) minus 119909lowast

119909119899minus 119909lowast

+ 2120572119899

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817 sdot1003817100381710038171003817119891 (119909119899) minus 119909lowast1003817100381710038171003817

(32)

Next we consider two cases

Case 1 Suppose that there exists 1198990isin N such that 119909

119899minus 119909lowast

is decreasing for all 119899 ge 1198990 Then we get that 119909

119899minus 119909lowast

isconvergent Thus from (29) and (23) we have that

119909119899minus 119879119899119909119899997888rarr 0 119866119909

119899minus 119909119899997888rarr 0 as 119899 997888rarr infin (33)

Furthermore from (17) and (33) we obtain that

1003817100381710038171003817119910119899 minus 119909119899

1003817100381710038171003817 = 120582119899

1003817100381710038171003817119909119899 minus 119879119899119909119899

1003817100381710038171003817 997888rarr 0 as 119899 997888rarr infin (34)

and hence Lipschitz continuity of 119879119899 (34) and (33) implies

that1003817100381710038171003817119879119899119910119899 minus 119909

119899

1003817100381710038171003817

le1003817100381710038171003817119879119899119910119899 minus 119879

119899119909119899

1003817100381710038171003817 +1003817100381710038171003817119879119899119909119899 minus 119909

119899

1003817100381710038171003817

le 1198711003817100381710038171003817119910119899 minus 119909

119899

1003817100381710038171003817 +1003817100381710038171003817119879119899119909119899 minus 119909

119899

1003817100381710038171003817 997888rarr 0

as 119899 997888rarr infin

(35)

Thus from (33) and (35) we have that

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817

=1003817100381710038171003817120572119899 (119891 (119909

119899) minus 119909119899) + (1 minus 120572

119899)

times (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899) minus 119909119899

1003817100381710038171003817

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119909119899

1003817100381710038171003817 + (1 minus 120572119899) 119887119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

1003817100381710038171003817

+ (1 minus 120572119899) 119888119899

1003817100381710038171003817119866119909119899 minus 119909119899

1003817100381710038171003817 997888rarr 0 as 119899 997888rarr infin

(36)

6 Abstract and Applied Analysis

Therefore 119909119899+119895

minus 119909119899 rarr 0 as 119899 rarr infin for all 119895 =

1 2 119872 and hence10038171003817100381710038171003817119909119899minus 119879119899+119895

119909119899

10038171003817100381710038171003817

le10038171003817100381710038171003817119909119899minus 119909119899+119895

10038171003817100381710038171003817+10038171003817100381710038171003817119909119899+119895

minus 119879119899+119895

119909119899+119895

10038171003817100381710038171003817

+ 11987110038171003817100381710038171003817119909119899+119895

minus 119909119899

10038171003817100381710038171003817997888rarr 0

(37)

as 119899 rarr infin for all 119895 isin 1 2 119872Now since 119909

119899 is bounded subset of 119867 we can choose

a subsequence 119909119899119898 of 119909

119899 such that 119909

119899119898 119909 and

lim sup119899rarrinfin

⟨119891(119909lowast

) minus 119909lowast

119909119899minus 119909lowast

⟩ = lim119898rarrinfin

⟨119891(119909lowast

) minus

119909lowast

119909119899119898

minus 119909lowast

⟩ Then from (37) and Lemma 6 we have that119909 isin 119865(119879

119895) for each 119895 = 1 2 119872 Hence 119909 isin cap

119872

119895=1119865(119879119895)

In addition since 119866 is nonexpansive from Lemma 6 weget that 119909 isin 119865(119866) and hence by Lemmas 4 and 3 we obtainthat 119909 isin VI(119862 119860

119895) for each 119895 isin 1 2 119873

Therefore by Lemma 5 we immediately obtain that

lim sup119899rarrinfin

⟨119891 (119909lowast

) minus 119909lowast

119909119899minus 119909lowast

= lim119898rarrinfin

⟨119891 (119909lowast

) minus 119909lowast

119909119899119898

minus 119909lowast

= ⟨119891 (119909lowast

) minus 119909lowast

119909 minus 119909lowast

⟩ le 0

(38)

Then it follows from (32) (38) and Lemma 9 that 119909119899minus

119909lowast

rarr 0 as 119899 rarr infin Consequently 119909119899rarr 119909lowast

= 119875F(119891(119909lowast

))

Case 2 Suppose that there exists a subsequence 119899119894 of 119899

such that10038171003817100381710038171003817119909119899119894minus 119909lowast10038171003817100381710038171003817lt10038171003817100381710038171003817119909119899119894+1

minus 119909lowast10038171003817100381710038171003817 (39)

for all 119894 isin N Then by Lemma 8 there exists a nondecreasingsequence 119898

119896 sub N such that119898

119896rarr infin and

10038171003817100381710038171003817119909119898119896

minus 119909lowast10038171003817100381710038171003817le10038171003817100381710038171003817119909119898119896+1

minus 119909lowast10038171003817100381710038171003817

1003817100381710038171003817119909119896 minus 119909lowast1003817100381710038171003817 le

10038171003817100381710038171003817119909119898119896+1

minus 119909lowast10038171003817100381710038171003817

(40)

for all 119896 isin N Now from (29) and (23) we get that 119909119898119896

minus

119879119898119896119909119898119896

rarr 0 and 119866119909119899119896

minus 119909119899119896

rarr 0 as 119896 rarr infin Thusfollowing themethod in Case 1 we obtain that 119909

119898119896+1minus119909119898119896

rarr

0 119909119898119896

minus 119879119895119909119898119896

rarr 0 and

lim sup119896rarrinfin

⟨119891 (119909lowast

) minus 119909lowast

119909119898119896

minus 119909lowast

⟩ le 0 (41)

Furthermore from (32) and (40) we obtain that

120572119898119896(1 minus 2120572)

10038171003817100381710038171003817119909119898119896

minus 119909lowast10038171003817100381710038171003817

2

le10038171003817100381710038171003817119909119898119896

minus 119909lowast10038171003817100381710038171003817

2

minus10038171003817100381710038171003817119909119898119896+1

minus 119909lowast10038171003817100381710038171003817

2

+ 2120572119898119896

⟨119891 (119909lowast

) minus 119909lowast

119909119898119896

minus 119909lowast

+ 2120572119898119896

10038171003817100381710038171003817119909119898119896+1

minus 119909119898119896

10038171003817100381710038171003817

10038171003817100381710038171003817119891 (119909119898119896) minus 119909lowast10038171003817100381710038171003817

le 2120572119898119896

⟨119891 (119909lowast

) minus 119909lowast

119909119898119896

minus 119909lowast

+ 2120572119898119896

10038171003817100381710038171003817119909119898119896+1

minus 119909119898119896

10038171003817100381710038171003817

10038171003817100381710038171003817119891 (119909119898119896) minus 119909lowast10038171003817100381710038171003817

(42)

Now using the fact that 120572119898119896

gt 0 and (41) we get that

10038171003817100381710038171003817119909119898119896

minus 119909lowast10038171003817100381710038171003817

2

997888rarr 0 as 119896 997888rarr infin (43)

and this together with (32) implies that 119909119898119896+1

minus 119909lowast

rarr

0 as 119896 rarr infin Since 119909119896minus 119909lowast

le 119909119898119896+1

minus 119909lowast

for all119896 isin N we obtain that 119909

119896rarr 119909

lowast Hence from the abovetwo cases we can conclude that 119909

119899 converges strongly to a

point119909lowast = 119875F119891(119909lowast

) which satisfies the variational inequality⟨(119868 minus 119891)(119909

lowast

) 119909 minus 119909lowast

⟩ ge 0 for all 119909 isin F The proof iscomplete

If in Theorem 10 we assume that 119891(119909) = 119906 isin 119862 aconstant mapping then we get the following corollary

Corollary 11 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space119867 Let 119879

119895 119862 rarr 119862 119895 = 1 2 119872 be

Lipschitz pseudocontractive mappings with Lipschitz constants119871119895 respectively Let 119860

119895 119862 rarr 119867 for 119895 = 1 2 119873

be 120574119895-inverse strongly accretive mappings Assume that F =

[cap119872

119895=1119865(119879119895)]⋂[cap

119873

119895=1VI(119862 119860

119895)] is nonempty Let a sequence

119909119899 be generated from an arbitrary 119909

0 119906 isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 120572119899119906 + (1 minus 120572

119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)

(44)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198900119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119895le119873120574119895

with 1198900+1198901+ sdot sdot sdot+119890

119903= 1 and 119887

119899+119888119899le 120582119899le 120582 lt 1(radic1 + 1198712+

1) forall119899 ge 0 for 119871 = max119871119895 1 le 119895 le 119872 Then 119909

119899 converges

strongly to a unique point 119909lowast isin 119862 satisfying 119909lowast = 119875F(119906) whichis the unique solution of the variational inequality ⟨119909lowast minus 119906 119909 minus

119909lowast

⟩ ge 0 for all 119909 isin F

If inTheorem 10 we assume that119873 = 1 and119872 = 1 thenwe get the following corollary which is Theorem 31 of [21]

Corollary 12 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space 119867 Let 119879 119862 rarr 119862 be Lipschitzpseudocontractive mappings with Lipschitz constant 119871 and 119860

119862 rarr 119867 an 120574-inverse strongly accretive mapping Let 119891

119862 rarr 119862 be a contraction with constant 120572 Assume that F =

119865(119879)⋂VI(119862 119860) is nonempty Let a sequence 119909119899 be generated

from an arbitrary 1199090isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119909119899

119909119899+1

= 120572119899119891 (119909119899)

+ (1 minus 120572119899) (119886119899119909119899+ 119887119899119879119910119899+ 119888119899119875119862[119868 minus 119903119860] 119909

119899)

(45)

where 119903 isin (0 2120574) and 119887119899+119888119899le 120582119899le 120582 lt 1(radic1 + 1198712+1) forall119899 ge

0 Then 119909119899 converges strongly to a point 119909lowast isin F which is the

unique solution of the variational inequality ⟨(119868 minus 119891)(119909lowast

) 119909 minus

119909lowast

⟩ ge 0 for all 119909 isin F

If inTheorem 10 we assume that 1198791015840119894s are strictly pseudo-

contractive mappins then we get the following corollary

Abstract and Applied Analysis 7

Corollary 13 Let 119862 be a nonempty closed and convex subsetof a realHilbert space119867 Let119879

119894 119862 rarr 119862 119894 = 1 2 119872 be120582

119894-

strictly pseudocontractive mappings and let 119860119894 119862 rarr 119867 for

119894 = 1 2 119873 be an 120574119894-inverse strongly accretive mappings

Let 119891 119862 rarr 119862 be a contraction with constant 120572 Assumethat F = [cap

119872

119894=1119865(119879119894)]⋂[cap

119873

119894=1VI(119862 119860

119894)] is nonempty Let a

sequence 119909119899 be generated from an arbitrary 119909

0isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 120572119899119891 (119909119899)

+ (1 minus 120572119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)

(46)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198880119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119894le119873120574119894

with 1198900+ 1198901+ sdot sdot sdot + 119890

119903= 1 and 119887

119899+ 119888119899

le 120582119899

le 120582 lt

1(radic1 + 1198712 + 1) forall119899 ge 0 119871 = max(1 + 120582119894)120582119894 Then 119909

119899

converges strongly to a point 119909lowast isin F which is the uniquesolution of the variational inequality ⟨(119868 minus 119891)(119909

lowast

) 119909 minus 119909lowast

⟩ ge 0

for all 119909 isin F

If in Theorem 10 we assume that 1198791015840119894s are nonexpansive

mapping then we get the following corollary

Corollary 14 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space 119867 Let 119879

119894 119862 rarr 119862 119894 = 1 2 119872

be nonexpansive mappings and let 119860119894 119862 rarr 119867 for 119894 =

1 2 119873 be an 120574119894-inverse strongly accretive mappings Let

119891 119862 rarr 119862 be a contraction with constant 120572 Assume thatF =

[cap119872

119894=1119865(119879119894)]⋂[cap

119873

119894=1VI(119862 119860

119894)] is nonempty Let a sequence 119909

119899

be generated from an arbitrary 1199090isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 120572119899119891 (119909119899)

+ (1 minus 120572119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)

(47)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198880119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119894le119873120574119894

with 1198900+ 1198901+ sdot sdot sdot + 119890

119903= 1 119886

119899+ 119887119899+ 119888119899= 1 and 119887

119899+ 119888119899le

120582119899le 120582 lt 1(radic2 + 1) forall119899 ge 0 Then 119909

119899 converges strongly to

point 119909lowast isin F which is the unique solution of the variationalinequality ⟨(119868 minus 119891)(119909

lowast

) 119909 minus 119909lowast

⟩ ge 0 for all 119909 isin F

We note that the method of proof ofTheorem 10 providesthe following theorem which is a convergence theoremfor a minimum norm point of common fixed points of afinite family of Lipschitz pseudocontractive mappings andcommon solutions of a finite family of variational inequalityproblems for accretive mappings

Theorem 15 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space119867 Let 119879

119895 119862 rarr 119862 119895 = 1 2 119872 be

Lipschitz pseudocontractive mappings with Lipschitz constants119871119895 respectively Let 119860

119895 119862 rarr 119867 for 119895 = 1 2 119873

be 120574119895-inverse strongly accretive mappings Assume that F =

[cap119872

119895=1119865(119879119895)]⋂[cap

119873

119895=1VI(119862 119860

119895)] is nonempty Let a sequence

119909119899 be generated from an arbitrary 119909

0isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 119875119862[(1 minus 120572

119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)]

(48)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198900119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119895le119873120574119895

with 1198900+ 1198901+ sdot sdot sdot + 119890

119903= 1 and 119887

119899+ 119888119899

le 120582119899

le 120582 lt

1(radic1 + 1198712 + 1) forall119899 ge 0 for 119871 = max119871119895 1 le 119895 le 119872 Then

119909119899 converges strongly to a unique minimum norm point 119909lowast

of F (ie 119909lowast = 119875F(0)) which is the unique solution of thevariational inequality ⟨119909lowast 119909 minus 119909

lowast

⟩ ge 0 for all 119909 isin F

4 Numerical Example

Now we give an example of two Lipschitz pseudocontractivemappings and two 120574-inverse strongly accretive mappingssatisfyingTheorem 10 and some numerical experiment resultto explain the conclusion of the theorem as follows

Example 1 Let 119867 = R with absolute value norm Let 119862 =

[minus2 2] and let 1198791 1198792 119862 rarr 119862 be defined by

1198791119909 =

119909 + 1199092

119909 isin [minus2 0]

119909 119909 isin (0 2]

1198792119909 =

119909 119909 isin [minus21

2]

119909 minus (16

9) (119909 minus

1

2)

2

119909 isin (1

2 2]

(49)

Clearly for 119909 119910 isin 119862 we have that

⟨(119868 minus 1198791) 119909 minus (119868 minus 119879

1) 119910 119909 minus 119910⟩ ge 0

⟨(119868 minus 1198792) 119909 minus (119868 minus 119879

2) 119910 119909 minus 119910⟩ ge 0

(50)

which show that bothmappings are pseudocontractive Nextwe show that 119879

1is Lipschitz with 119871 = 5 If 119909 119910 isin [minus2 0] then

10038161003816100381610038161198791119909 minus 11987911199101003816100381610038161003816 =

10038161003816100381610038161003816119909 + 1199092

minus 119910 minus 119910210038161003816100381610038161003816

=1003816100381610038161003816(119909 + 119910) + 1

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816 le 31003816100381610038161003816119909 minus 119910

1003816100381610038161003816

(51)

If 119909 119910 isin (0 2] then10038161003816100381610038161198791119909 minus 119879

11199101003816100381610038161003816 =

1003816100381610038161003816119909 minus 1199101003816100381610038161003816 (52)

If 119909 isin [minus2 0] and 119910 isin (0 2] then10038161003816100381610038161198791119909 minus 119879

11199101003816100381610038161003816

=10038161003816100381610038161003816119909 + 1199092

minus 11991010038161003816100381610038161003816

=10038161003816100381610038161003816119909 minus 119910 + 119909

210038161003816100381610038161003816=10038161003816100381610038161003816119909 minus 119910 + 119909

2

minus 1199102

+ 119910210038161003816100381610038161003816

=10038161003816100381610038161003816119909 minus 119910 + 119909

2

minus 119910210038161003816100381610038161003816+ 1199102

le1003816100381610038161003816119909 + 119910 + 1

1003816100381610038161003816 sdot1003816100381610038161003816119909 minus 119910

1003816100381610038161003816 +1003816100381610038161003816119910 minus 119909

10038161003816100381610038162

= (1003816100381610038161003816119909 + 119910 + 1

1003816100381610038161003816 +1003816100381610038161003816119909 + 119910

1003816100381610038161003816) sdot1003816100381610038161003816119909 minus 119910

1003816100381610038161003816 le 51003816100381610038161003816119909 minus 119910

1003816100381610038161003816

(53)

8 Abstract and Applied Analysis

Thus we get that 1198791is Lipschitz pseudocontractive with

119871 = 5 and 119865(1198791) = [0 2] which is not nonexpansive since

if we take 119909 = minus2 and 119910 = minus19 we have that |1198791119909 minus 1198792119910| =

029 gt 01 = |119909minus119910| Similarly we can show that1198792is Lipschitz

pseudocontractive with 119871 = 4 and 119865(1198792) = [minus2 12] which is

not nonexpansiveFurthermore for 119862 = [minus2 2] let 119860

1 1198602 119862 rarr R be

defined by

1198601119909 =

minus(119909 minus1

2)

2

119909 isin [minus21

2)

0 119909 isin [1

2 2]

1198602119909 =

0 119909 isin [minus22

3]

3(119909 minus2

3)

2

119909 isin (2

3 2]

(54)

Then we first show that 1198601is 120574-inverse strongly accretive

mapping with 120574 = 15If 119909 119910 isin [minus2 12) then

⟨1198601119909 minus 119860

1119910 119909 minus 119910⟩

= ⟨minus(119909 minus1

2)

2

+ (119910 minus1

2)

2

119909 minus 119910⟩

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

] (119910 minus 119909)

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

] [(119910 minus1

2) minus (119909 minus

1

2)]

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

][(119910 minus 12)

2

minus (119909 minus 12)2

]

(119910 minus 12) + (119909 minus 12)

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

][(119909 minus 12)

2

minus (119910 minus 12)2

]

(12 minus 119909) + (12 minus 119910)

ge1

5

100381610038161003816100381610038161003816100381610038161003816

(119909 minus1

2)

2

minus (119910 minus1

2)

2100381610038161003816100381610038161003816100381610038161003816

2

=1

5

10038161003816100381610038161198601119909 minus 119860111991010038161003816100381610038162

(55)

If 119909 isin [minus2 12) and 119910 isin [12 2] we get that

⟨1198601119909 minus 119860

1119910 119909 minus 119910⟩

= ⟨minus(119909 minus1

2)

2

119909 minus 119910⟩ = (119909 minus1

2)

2

(119910 minus 119909)

= (119909 minus1

2)

2

[(119910 minus1

2) minus (119909 minus

1

2)]

ge (119909 minus1

2)

2

(1

2minus 119909)

= (119909 minus1

2)

2

(12 minus 119909)2

(12 minus 119909)ge2

5

100381610038161003816100381610038161003816100381610038161003816

(119909 minus1

2)

2100381610038161003816100381610038161003816100381610038161003816

2

ge1

5

10038161003816100381610038161198601119909 minus 119860111991010038161003816100381610038162

(56)

Table 1

119906 = 06 1199090= 1 119906 = 08 119909

0= minus1

119899 119909119899

119899 119909119899

0 10000 0 minus10000500 06112 5000 0062710000 05137 10000 0428212000 05121 15000 0454014000 05110 20000 0468618000 05093 25000 0478220000 05087 35000 04905

If 119909 119910 isin [12 2] then we get that |1198601119909 minus 119860

1119910| = 0 and

hence

⟨1198601119909 minus 119860

1119910 119909 minus 119910⟩ ge

1

5

10038161003816100381610038161198601119909 minus 119860111991010038161003816100381610038162

(57)

Therefore 1198601is 120574-inverse strongly accretive mapping

with 120574 = 15 andVI(119862 1198601) = [12 2] Similarly we can show

that 1198602is 120574-inverse strongly accretive mapping with 120574 = 12

and VI(119862 1198602) = [minus2 23]

Note that we have119865(1198791)cap119865(119879

2)capVI(119862 119860

1)capVI(119862 119860

2) =

12Thus taking 120572

119899= 1(10119899 + 100) 120582

119899= 2(119899 + 100) +

0065 119887119899

= 119888119899

= 1(119899 + 100) + 001 119886119899

= 1 minus 2(119899 +

100) minus 002 and 119891(119909) = 119906 isin 119862 we observe that conditionsof Theorem 10 are satisfied and Scheme (17) provides thefollowing Table 1 and Figures 1(a) and 1(b) for 119906 = 06 and119906 = 08 respectively

We observe that the data provides strong convergenceof the sequence to the common point of fixed points ofboth pseudocontractive mappings and solutions of both vari-ational inequality problems for 120574-inverse strongly accretivemappings

Remark 2 Theorem 10 provides an iteration scheme whichconverges strongly to a common point of fixed points of afinite family of Lipschitzian pseudocontractivemappings andsolutions of a finite family of variational inequality problemsin Hilbert spaces

Remark 3 Theorem 10 improves Theorem 31 of Takahashiand Toyoda [19] Iiduka and Takahashi [20] and Zegeye andShahzad [21] and Theorem 32 of Yao et al [22] in the sensethat our convergence is to a common point of fixed points of afinite family of Lipschitzian pseudocontractivemappings andsolutions of a finite family of variational inequality problems

Conflict of Interests

The authors declare that they have no conflict of interestsregarding the publication of this paper

Acknowledgments

This project was funded by the Deanship of ScientificResearch (DSR) King Abdulaziz University Jeddah undergrant no 1671301434 The authors therefore acknowledge

Abstract and Applied Analysis 9

0 05 1 15 20

0102030405060708091

x0= 1

Iterations n

x = 05

times104

Iteratesxn

(a)

0 1 2 3 4 5minus15

minus1

minus05

0

05

1

Iterations n

x0= 1

x = 05

times104

Iteratesxn

(b)

Figure 1

with thanksDSR technical and financial supportThe authorsalso thank the referees for their valuable comments andsuggestions which improved the presentation of this paper

References

[1] D Kinderlehrer and G Stampaccia An Iteration to VariationalInequalities and Their Applications Academic Press New YorkNY USA 1990

[2] H Zegeye and N Shahzad ldquoA hybrid scheme for finite familiesof equilibrium variational inequality and fixed point problemsrdquoNonlinear Analysis Theory Methods amp Applications vol 74 no1 pp 263ndash272 2011

[3] H Zegeye and N Shahzad ldquoApproximating common solutionof variational inequality problems for two monotone mappingsin Banach spacesrdquo Optimization Letters vol 5 no 4 pp 691ndash704 2011

[4] H Zegeye and N Shahzad ldquoStrong convergence theoremsfor variational inequality problems and quasi-120601-asymptoticallynonexpansive mappingsrdquo Journal of Global Optimization vol54 no 1 pp 101ndash116 2012

[5] H Zegeye and N Shahzad ldquoAn iteration to a common pointof solution of variational inequality and fixed point-problemsin Banach spacesrdquo Journal of Applied Mathematics vol 2012Article ID 504503 19 pages 2012

[6] F E Browder and W V Petryshyn ldquoConstruction of fixedpoints of nonlinear mappings in Hilbert spacerdquo Journal ofMathematical Analysis and Applications vol 20 pp 197ndash2281967

[7] L C Ceng A Petrusel and J C Yao ldquoComposite viscosityapproximation methods for equilibrium problem variationalinequality and common fixed pointsrdquo Journal of Nonlinear andConvex Analysis vol 15 no 2 pp 219ndash240 2014

[8] L C Ceng A Petrusel M M Wong and J C Yao ldquoHybridalgorithms for solving variational inequalities variational inclu-sions mixed equilibria and fixed point problemsrdquoAbstract andApplied Analysis vol 2014 Article ID 208717 22 pages 2014

[9] L Ceng A Petrusel and M Wong ldquoStrong convergencetheorem for a generalized equilibrium problem and a pseudo-contractive mapping in a Hilbert spacerdquo Taiwanese Journal ofMathematics vol 14 no 5 pp 1881ndash1901 2010

[10] D R Sahu V Colao and G Marino ldquoStrong convergencetheorems for approximating common fixed points of familiesof nonexpansive mappings and applicationsrdquo Journal of GlobalOptimization vol 56 no 4 pp 1631ndash1651 2013

[11] D R Sahu and A Petrusel ldquoStrong convergence of iterativemethods by strictly pseudocontractive mappings in BanachspacesrdquoNonlinearAnalysisTheoryMethodsampApplications vol74 no 17 pp 6012ndash6023 2011

[12] Y Yao Y Liou and N Shahzad ldquoConstruction of iterativemethods for variational inequality and fixed point problemsrdquoNumerical Functional Analysis and Optimization vol 33 no 10pp 1250ndash1267 2012

[13] Y Yao G Marino and L Muglia ldquoA modified Korpelevichrsquosmethod convergent to the minimum-norm solution of a varia-tional inequalityrdquoOptimization vol 63 no 4 pp 559ndash569 2014

[14] Y Yao and M Postolache ldquoIterative methods for pseudomono-tone variational inequalities and fixed-point problemsrdquo Journalof OptimizationTheory and Applications vol 155 no 1 pp 273ndash287 2012

[15] H Zegeye E U Ofoedu and N Shahzad ldquoConvergencetheorems for equilibrium problem variational inequality prob-lem and countably infinite relatively quasi-nonexpansive map-pingsrdquo Applied Mathematics and Computation vol 216 no 12pp 3439ndash3449 2010

[16] H Zegeye andN Shahzad ldquoAhybrid approximationmethod forequilibrium variational inequality and fixed point problemsrdquoNonlinear Analysis Hybrid Systems vol 4 no 4 pp 619ndash6302010

[17] H Zegeye and N Shahzad ldquoStrong convergence theoremsfor a solution of finite families of equilibrium and variationalinequality problemsrdquo Optimization vol 63 no 2 pp 207ndash2232014

[18] H Zegeye andN Shahzad ldquoExtragradientmethod for solutionsof variational inequality problems in Banach spacesrdquo Abstractand Applied Analysis vol 2013 Article ID 832548 8 pages 2013

10 Abstract and Applied Analysis

[19] W Takahashi andM Toyoda ldquoWeak convergence theorems fornonexpansive mappings and monotone mappingsrdquo Journal ofOptimization Theory and Applications vol 118 no 2 pp 417ndash428 2003

[20] H Iiduka and W Takahashi ldquoStrong convergence theoremsfor nonexpansive mappings and inverse-strongly monotonemappingsrdquoNonlinear AnalysisTheory Methods amp Applicationsvol 61 no 3 pp 341ndash350 2005

[21] H Zegeye and N Shahzad ldquoSolutions of variational inequalityproblems in the set of fixed points of pseudocontractive map-pingsrdquo Carpathian Journal of Mathematics vol 30 no 2 pp257ndash265 2014

[22] Y Yao Y C Liou and S M Kang ldquoAlgorithms construction forvariational inequalitiesrdquo Fixed Point Theory and Applicationsvol 2011 Article ID 794203 12 pages 2011

[23] Y Cai Y Tang and L Liu ldquoIterative algorithms for minimum-norm fixed point of non-expansive mapping in Hilbert spacerdquoFixed Point Theory and Applications vol 2012 article 49 2012

[24] K Aoyama H Iiduka andW Takahashi ldquoWeak convergence ofan iterative sequence for accretive operators in Banach spacesrdquoFixed PointTheory andApplications vol 2006 Article ID 3539013 pages 2006

[25] C E Chidume H Zegeye and E Prempeh ldquoStrong conver-gence theorems for a finite family of nonexpansive mappings inBanach spacesrdquoCommunications onAppliedNonlinearAnalysisvol 11 no 2 pp 25ndash32 2004

[26] Y I Alber ldquoMetric and generalized projection operators inBanach spaces properties and applicationsrdquo in Theory andApplications of Nonlinear Operators of Accretive and MonotoneType Lecture Notes in Pure and Applied Mathematics pp 15ndash50 Marcel Dekker New York NY USA 1996

[27] Q B Zhang and C Z Cheng ldquoStrong convergence theorem fora family of Lipschitz pseudocontractive mappings in a HilbertspacerdquoMathematical and Computer Modelling vol 48 no 3-4pp 480ndash485 2008

[28] H Zegeye and N Shahzad ldquoConvergence of Mannrsquos typeiteration method for generalized asymptotically nonexpansivemappingsrdquo Computers and Mathematics with Applications vol62 no 11 pp 4007ndash4014 2011

[29] P E Mainge ldquoStrong convergence of projected subgradientmethods for nonsmooth and nonstrictly convexminimizationrdquoSet-Valued Analysis vol 16 no 7-8 pp 899ndash912 2008

[30] H K Xu ldquoAnother control condition in an iterative method fornonexpansive mappingsrdquo Bulletin of the Australian Mathemati-cal Society vol 65 no 1 pp 109ndash113 2002

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

4 Abstract and Applied Analysis

= 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ (1 minus 120572119899) 1205822

119899119887119899

1003817100381710038171003817119909119899 minus 119879119899119909119899

10038171003817100381710038172

+ (1 minus 120572119899) 119887119899

1003817100381710038171003817119910119899 minus 119879119899119910119899

10038171003817100381710038172

minus (1 minus 120572119899) 119887119899119886119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

(20)

Moreover from (17) Lemma 7 and Lipschitz property of119879119899we get that

1003817100381710038171003817119910119899 minus 119879119899119910119899

10038171003817100381710038172

=1003817100381710038171003817(1 minus 120582

119899) (119909119899minus 119879119899119910119899) + 120582119899(119879119899119909119899minus 119879119899119910119899)10038171003817100381710038172

= (1 minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

+ 120582119899

1003817100381710038171003817119879119899119909119899 minus 119879119899119910119899

10038171003817100381710038172

minus 120582119899(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

le (1 minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

+ 12058211989911987121003817100381710038171003817119909119899 minus 119910

119899

10038171003817100381710038172

minus 120582119899(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

= (1 minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

+ 1205823

11989911987121003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

minus 120582119899(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

= (1 minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

minus 120582119899(1 minus 119871

2

1205822

119899minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

(21)

Substituting (21) into (20) we obtain that

1003817100381710038171003817119909119899+1 minus 11990110038171003817100381710038172

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ (1 minus 120572119899) 1198871198991205822

119899

1003817100381710038171003817119909119899 minus 119879119899119909119899

10038171003817100381710038172

+ (1 minus 120572119899) 119887119899[(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

minus120582119899(1 minus 119871

2

1205822

119899minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

]

minus (1 minus 120572119899) 119887119899119886119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

= 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

minus (1 minus 120572119899) 120582119899119887119899[1 minus 119871

2

1205822

119899minus 2120582119899]1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

+ (1 minus 120572119899) 119887119899[(1 minus 119886

119899) minus 120582119899]1003817100381710038171003817119879119899119910119899 minus 119909

119899

10038171003817100381710038172

= 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

minus (1 minus 120572119899) 120582119899119887119899[1 minus 119871

2

1205822

119899minus 2120582119899]1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

+ (1 minus 120572119899) 119887119899[119887119899+ 119888119899minus 120582119899]1003817100381710038171003817119879119899119910119899 minus 119909

119899

10038171003817100381710038172

(22)

But from the hypothesis we have that

1 minus 2120582119899minus 1198712

1205822

119899ge 1 minus 2120582 minus 119871

2

1205822

gt 0

119887119899+ 119888119899le 120582119899 forall119899 ge 0

(23)

and hence inequality (22) gives that

1003817100381710038171003817119909119899+1 minus 11990110038171003817100381710038172

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

+ (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

(24)

But we have that

1003817100381710038171003817119891 (119909119899) minus 119901

10038171003817100381710038172

= [1003817100381710038171003817119891 (119909119899) minus 119891 (119901)

1003817100381710038171003817 +1003817100381710038171003817119891 (119901) minus 119901

1003817100381710038171003817]2

le [1205721003817100381710038171003817119909119899 minus 119901

1003817100381710038171003817 +1003817100381710038171003817119891 (119901) minus 119901

1003817100381710038171003817]2

le 12057221003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+1003817100381710038171003817119891 (119901) minus 119901

10038171003817100381710038172

+ 21205721003817100381710038171003817119909119899 minus 119901

10038171003817100381710038171003817100381710038171003817119891 (119901) minus 119901

1003817100381710038171003817

le 120572 (1 + 120572)1003817100381710038171003817119909119899 minus 119901

10038171003817100381710038172

+ (1 + 120572)1003817100381710038171003817119891 (119901) minus 119901

10038171003817100381710038172

(25)

Substituting (25) into (24) we get that

1003817100381710038171003817119909119899+1 minus 11990110038171003817100381710038172

le (1 minus 120572119899(1 minus 120572 (1 + 120572)))

1003817100381710038171003817119909119899 minus 11990110038171003817100381710038172

+ 120572119899(1 + 120572)

1003817100381710038171003817119891 (119901) minus 11990110038171003817100381710038172

(26)

Therefore by induction we get that

1003817100381710038171003817119909119899+1 minus 11990110038171003817100381710038172

le max10038171003817100381710038171199090 minus 11990110038171003817100381710038172

1 + 120572

1 minus 120572 (1 + 120572)

1003817100381710038171003817119891 (119901) minus 11990110038171003817100381710038172

forall119899 ge 0

(27)

which implies that 119909119899 and hence 119910

119899 are bounded

Abstract and Applied Analysis 5

Let 119909lowast = 119875F119891(119909lowast

) Then from (17) Lemmas 1 and 7 andthe methods used to get (22) we obtain that

1003817100381710038171003817119909119899+1 minus 119909lowast10038171003817100381710038172

=1003817100381710038171003817120572119899 (119891 (119909

119899) minus 119909lowast

)

+ (1 minus 120572119899) [119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899minus 119909lowast

]10038171003817100381710038172

le (1 minus 120572119899)1003817100381710038171003817119886119899 (119909119899 minus 119909

lowast

) + 119887119899(119879119899119910119899minus 119909lowast

)

+119888119899(119866119909119899minus 119909lowast

)10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

le (1 minus 120572119899) 119887119899

1003817100381710038171003817119879119899119910119899 minus 119909lowast10038171003817100381710038172

+ (1 minus 120572119899) 119886119899

1003817100381710038171003817119909119899 minus 119909lowast10038171003817100381710038172

times (1 minus 120572119899) 119888119899

1003817100381710038171003817119866119909119899 minus 11990110038171003817100381710038172

minus (1 minus 120572119899) 119886119899119887119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119888119899

1003817100381710038171003817119866119909119899 minus 119909119899

10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

1003817100381710038171003817119909119899+1 minus 119909lowast10038171003817100381710038172

le (1 minus 120572119899) 119887119899[1003817100381710038171003817119910119899 minus 119909

lowast10038171003817100381710038172

+1003817100381710038171003817119910119899 minus 119879

119899119910119899

10038171003817100381710038172

]

+ (1 minus 120572119899) (119886119899+ 119888119899)1003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119887119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119888119899

1003817100381710038171003817119866119909119899 minus 119909119899

10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

le (1 minus 120572119899) 119887119899[1003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

+ 1205822

119899

1003817100381710038171003817119909119899 minus 119879119899119909119899

10038171003817100381710038172

]

+ (1 minus 120572119899) 119887119899[(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

minus 120582119899(1 minus 119871

2

1205822

119899minus 120582119899)

times1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

]

+ (1 minus 120572119899) (119886119899+ 119888119899)1003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119887119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119888119899

1003817100381710038171003817119866119909119899 minus 119909119899

10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

(28)

which implies that1003817100381710038171003817119909119899+1 minus 119909

lowast10038171003817100381710038172

le (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

minus (1 minus 120572119899) 119887119899120582119899[1 minus 119871

2

1205822

119899minus 2120582119899]

times1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

+(1minus120572119899) 119887119899(119887119899+ 119888119899minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119889119899

1003817100381710038171003817119866119909119899 minus 119909119899

10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

(29)

le (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

(30)

But

⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

= ⟨119891 (119909119899) minus 119909lowast

119909119899minus 119909lowast

⟩ + ⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909119899⟩

le ⟨119891 (119909119899) minus 119891 (119909

lowast

) 119909119899minus 119909lowast

⟩ + ⟨119891 (119909lowast

) minus 119909lowast

119909119899minus 119909lowast

+1003817100381710038171003817119909119899+1 minus 119909

119899

10038171003817100381710038171003817100381710038171003817119891 (119909119899) minus 119909lowast1003817100381710038171003817

le 1205721003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

+ ⟨119891 (119909lowast

) minus 119909lowast

119909119899minus 119909lowast

+1003817100381710038171003817119909119899+1 minus 119909

119899

10038171003817100381710038171003817100381710038171003817119891 (119909119899) minus 119909lowast1003817100381710038171003817

(31)

Thus substituting (31) in (30) we obtain that

1003817100381710038171003817119909119899+1 minus 119909lowast10038171003817100381710038172

le (1 minus 120572119899(1 minus 2120572))

1003817100381710038171003817119909119899 minus 119909lowast10038171003817100381710038172

+ 2120572119899⟨119891 (119909lowast

) minus 119909lowast

119909119899minus 119909lowast

+ 2120572119899

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817 sdot1003817100381710038171003817119891 (119909119899) minus 119909lowast1003817100381710038171003817

(32)

Next we consider two cases

Case 1 Suppose that there exists 1198990isin N such that 119909

119899minus 119909lowast

is decreasing for all 119899 ge 1198990 Then we get that 119909

119899minus 119909lowast

isconvergent Thus from (29) and (23) we have that

119909119899minus 119879119899119909119899997888rarr 0 119866119909

119899minus 119909119899997888rarr 0 as 119899 997888rarr infin (33)

Furthermore from (17) and (33) we obtain that

1003817100381710038171003817119910119899 minus 119909119899

1003817100381710038171003817 = 120582119899

1003817100381710038171003817119909119899 minus 119879119899119909119899

1003817100381710038171003817 997888rarr 0 as 119899 997888rarr infin (34)

and hence Lipschitz continuity of 119879119899 (34) and (33) implies

that1003817100381710038171003817119879119899119910119899 minus 119909

119899

1003817100381710038171003817

le1003817100381710038171003817119879119899119910119899 minus 119879

119899119909119899

1003817100381710038171003817 +1003817100381710038171003817119879119899119909119899 minus 119909

119899

1003817100381710038171003817

le 1198711003817100381710038171003817119910119899 minus 119909

119899

1003817100381710038171003817 +1003817100381710038171003817119879119899119909119899 minus 119909

119899

1003817100381710038171003817 997888rarr 0

as 119899 997888rarr infin

(35)

Thus from (33) and (35) we have that

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817

=1003817100381710038171003817120572119899 (119891 (119909

119899) minus 119909119899) + (1 minus 120572

119899)

times (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899) minus 119909119899

1003817100381710038171003817

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119909119899

1003817100381710038171003817 + (1 minus 120572119899) 119887119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

1003817100381710038171003817

+ (1 minus 120572119899) 119888119899

1003817100381710038171003817119866119909119899 minus 119909119899

1003817100381710038171003817 997888rarr 0 as 119899 997888rarr infin

(36)

6 Abstract and Applied Analysis

Therefore 119909119899+119895

minus 119909119899 rarr 0 as 119899 rarr infin for all 119895 =

1 2 119872 and hence10038171003817100381710038171003817119909119899minus 119879119899+119895

119909119899

10038171003817100381710038171003817

le10038171003817100381710038171003817119909119899minus 119909119899+119895

10038171003817100381710038171003817+10038171003817100381710038171003817119909119899+119895

minus 119879119899+119895

119909119899+119895

10038171003817100381710038171003817

+ 11987110038171003817100381710038171003817119909119899+119895

minus 119909119899

10038171003817100381710038171003817997888rarr 0

(37)

as 119899 rarr infin for all 119895 isin 1 2 119872Now since 119909

119899 is bounded subset of 119867 we can choose

a subsequence 119909119899119898 of 119909

119899 such that 119909

119899119898 119909 and

lim sup119899rarrinfin

⟨119891(119909lowast

) minus 119909lowast

119909119899minus 119909lowast

⟩ = lim119898rarrinfin

⟨119891(119909lowast

) minus

119909lowast

119909119899119898

minus 119909lowast

⟩ Then from (37) and Lemma 6 we have that119909 isin 119865(119879

119895) for each 119895 = 1 2 119872 Hence 119909 isin cap

119872

119895=1119865(119879119895)

In addition since 119866 is nonexpansive from Lemma 6 weget that 119909 isin 119865(119866) and hence by Lemmas 4 and 3 we obtainthat 119909 isin VI(119862 119860

119895) for each 119895 isin 1 2 119873

Therefore by Lemma 5 we immediately obtain that

lim sup119899rarrinfin

⟨119891 (119909lowast

) minus 119909lowast

119909119899minus 119909lowast

= lim119898rarrinfin

⟨119891 (119909lowast

) minus 119909lowast

119909119899119898

minus 119909lowast

= ⟨119891 (119909lowast

) minus 119909lowast

119909 minus 119909lowast

⟩ le 0

(38)

Then it follows from (32) (38) and Lemma 9 that 119909119899minus

119909lowast

rarr 0 as 119899 rarr infin Consequently 119909119899rarr 119909lowast

= 119875F(119891(119909lowast

))

Case 2 Suppose that there exists a subsequence 119899119894 of 119899

such that10038171003817100381710038171003817119909119899119894minus 119909lowast10038171003817100381710038171003817lt10038171003817100381710038171003817119909119899119894+1

minus 119909lowast10038171003817100381710038171003817 (39)

for all 119894 isin N Then by Lemma 8 there exists a nondecreasingsequence 119898

119896 sub N such that119898

119896rarr infin and

10038171003817100381710038171003817119909119898119896

minus 119909lowast10038171003817100381710038171003817le10038171003817100381710038171003817119909119898119896+1

minus 119909lowast10038171003817100381710038171003817

1003817100381710038171003817119909119896 minus 119909lowast1003817100381710038171003817 le

10038171003817100381710038171003817119909119898119896+1

minus 119909lowast10038171003817100381710038171003817

(40)

for all 119896 isin N Now from (29) and (23) we get that 119909119898119896

minus

119879119898119896119909119898119896

rarr 0 and 119866119909119899119896

minus 119909119899119896

rarr 0 as 119896 rarr infin Thusfollowing themethod in Case 1 we obtain that 119909

119898119896+1minus119909119898119896

rarr

0 119909119898119896

minus 119879119895119909119898119896

rarr 0 and

lim sup119896rarrinfin

⟨119891 (119909lowast

) minus 119909lowast

119909119898119896

minus 119909lowast

⟩ le 0 (41)

Furthermore from (32) and (40) we obtain that

120572119898119896(1 minus 2120572)

10038171003817100381710038171003817119909119898119896

minus 119909lowast10038171003817100381710038171003817

2

le10038171003817100381710038171003817119909119898119896

minus 119909lowast10038171003817100381710038171003817

2

minus10038171003817100381710038171003817119909119898119896+1

minus 119909lowast10038171003817100381710038171003817

2

+ 2120572119898119896

⟨119891 (119909lowast

) minus 119909lowast

119909119898119896

minus 119909lowast

+ 2120572119898119896

10038171003817100381710038171003817119909119898119896+1

minus 119909119898119896

10038171003817100381710038171003817

10038171003817100381710038171003817119891 (119909119898119896) minus 119909lowast10038171003817100381710038171003817

le 2120572119898119896

⟨119891 (119909lowast

) minus 119909lowast

119909119898119896

minus 119909lowast

+ 2120572119898119896

10038171003817100381710038171003817119909119898119896+1

minus 119909119898119896

10038171003817100381710038171003817

10038171003817100381710038171003817119891 (119909119898119896) minus 119909lowast10038171003817100381710038171003817

(42)

Now using the fact that 120572119898119896

gt 0 and (41) we get that

10038171003817100381710038171003817119909119898119896

minus 119909lowast10038171003817100381710038171003817

2

997888rarr 0 as 119896 997888rarr infin (43)

and this together with (32) implies that 119909119898119896+1

minus 119909lowast

rarr

0 as 119896 rarr infin Since 119909119896minus 119909lowast

le 119909119898119896+1

minus 119909lowast

for all119896 isin N we obtain that 119909

119896rarr 119909

lowast Hence from the abovetwo cases we can conclude that 119909

119899 converges strongly to a

point119909lowast = 119875F119891(119909lowast

) which satisfies the variational inequality⟨(119868 minus 119891)(119909

lowast

) 119909 minus 119909lowast

⟩ ge 0 for all 119909 isin F The proof iscomplete

If in Theorem 10 we assume that 119891(119909) = 119906 isin 119862 aconstant mapping then we get the following corollary

Corollary 11 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space119867 Let 119879

119895 119862 rarr 119862 119895 = 1 2 119872 be

Lipschitz pseudocontractive mappings with Lipschitz constants119871119895 respectively Let 119860

119895 119862 rarr 119867 for 119895 = 1 2 119873

be 120574119895-inverse strongly accretive mappings Assume that F =

[cap119872

119895=1119865(119879119895)]⋂[cap

119873

119895=1VI(119862 119860

119895)] is nonempty Let a sequence

119909119899 be generated from an arbitrary 119909

0 119906 isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 120572119899119906 + (1 minus 120572

119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)

(44)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198900119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119895le119873120574119895

with 1198900+1198901+ sdot sdot sdot+119890

119903= 1 and 119887

119899+119888119899le 120582119899le 120582 lt 1(radic1 + 1198712+

1) forall119899 ge 0 for 119871 = max119871119895 1 le 119895 le 119872 Then 119909

119899 converges

strongly to a unique point 119909lowast isin 119862 satisfying 119909lowast = 119875F(119906) whichis the unique solution of the variational inequality ⟨119909lowast minus 119906 119909 minus

119909lowast

⟩ ge 0 for all 119909 isin F

If inTheorem 10 we assume that119873 = 1 and119872 = 1 thenwe get the following corollary which is Theorem 31 of [21]

Corollary 12 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space 119867 Let 119879 119862 rarr 119862 be Lipschitzpseudocontractive mappings with Lipschitz constant 119871 and 119860

119862 rarr 119867 an 120574-inverse strongly accretive mapping Let 119891

119862 rarr 119862 be a contraction with constant 120572 Assume that F =

119865(119879)⋂VI(119862 119860) is nonempty Let a sequence 119909119899 be generated

from an arbitrary 1199090isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119909119899

119909119899+1

= 120572119899119891 (119909119899)

+ (1 minus 120572119899) (119886119899119909119899+ 119887119899119879119910119899+ 119888119899119875119862[119868 minus 119903119860] 119909

119899)

(45)

where 119903 isin (0 2120574) and 119887119899+119888119899le 120582119899le 120582 lt 1(radic1 + 1198712+1) forall119899 ge

0 Then 119909119899 converges strongly to a point 119909lowast isin F which is the

unique solution of the variational inequality ⟨(119868 minus 119891)(119909lowast

) 119909 minus

119909lowast

⟩ ge 0 for all 119909 isin F

If inTheorem 10 we assume that 1198791015840119894s are strictly pseudo-

contractive mappins then we get the following corollary

Abstract and Applied Analysis 7

Corollary 13 Let 119862 be a nonempty closed and convex subsetof a realHilbert space119867 Let119879

119894 119862 rarr 119862 119894 = 1 2 119872 be120582

119894-

strictly pseudocontractive mappings and let 119860119894 119862 rarr 119867 for

119894 = 1 2 119873 be an 120574119894-inverse strongly accretive mappings

Let 119891 119862 rarr 119862 be a contraction with constant 120572 Assumethat F = [cap

119872

119894=1119865(119879119894)]⋂[cap

119873

119894=1VI(119862 119860

119894)] is nonempty Let a

sequence 119909119899 be generated from an arbitrary 119909

0isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 120572119899119891 (119909119899)

+ (1 minus 120572119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)

(46)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198880119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119894le119873120574119894

with 1198900+ 1198901+ sdot sdot sdot + 119890

119903= 1 and 119887

119899+ 119888119899

le 120582119899

le 120582 lt

1(radic1 + 1198712 + 1) forall119899 ge 0 119871 = max(1 + 120582119894)120582119894 Then 119909

119899

converges strongly to a point 119909lowast isin F which is the uniquesolution of the variational inequality ⟨(119868 minus 119891)(119909

lowast

) 119909 minus 119909lowast

⟩ ge 0

for all 119909 isin F

If in Theorem 10 we assume that 1198791015840119894s are nonexpansive

mapping then we get the following corollary

Corollary 14 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space 119867 Let 119879

119894 119862 rarr 119862 119894 = 1 2 119872

be nonexpansive mappings and let 119860119894 119862 rarr 119867 for 119894 =

1 2 119873 be an 120574119894-inverse strongly accretive mappings Let

119891 119862 rarr 119862 be a contraction with constant 120572 Assume thatF =

[cap119872

119894=1119865(119879119894)]⋂[cap

119873

119894=1VI(119862 119860

119894)] is nonempty Let a sequence 119909

119899

be generated from an arbitrary 1199090isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 120572119899119891 (119909119899)

+ (1 minus 120572119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)

(47)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198880119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119894le119873120574119894

with 1198900+ 1198901+ sdot sdot sdot + 119890

119903= 1 119886

119899+ 119887119899+ 119888119899= 1 and 119887

119899+ 119888119899le

120582119899le 120582 lt 1(radic2 + 1) forall119899 ge 0 Then 119909

119899 converges strongly to

point 119909lowast isin F which is the unique solution of the variationalinequality ⟨(119868 minus 119891)(119909

lowast

) 119909 minus 119909lowast

⟩ ge 0 for all 119909 isin F

We note that the method of proof ofTheorem 10 providesthe following theorem which is a convergence theoremfor a minimum norm point of common fixed points of afinite family of Lipschitz pseudocontractive mappings andcommon solutions of a finite family of variational inequalityproblems for accretive mappings

Theorem 15 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space119867 Let 119879

119895 119862 rarr 119862 119895 = 1 2 119872 be

Lipschitz pseudocontractive mappings with Lipschitz constants119871119895 respectively Let 119860

119895 119862 rarr 119867 for 119895 = 1 2 119873

be 120574119895-inverse strongly accretive mappings Assume that F =

[cap119872

119895=1119865(119879119895)]⋂[cap

119873

119895=1VI(119862 119860

119895)] is nonempty Let a sequence

119909119899 be generated from an arbitrary 119909

0isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 119875119862[(1 minus 120572

119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)]

(48)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198900119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119895le119873120574119895

with 1198900+ 1198901+ sdot sdot sdot + 119890

119903= 1 and 119887

119899+ 119888119899

le 120582119899

le 120582 lt

1(radic1 + 1198712 + 1) forall119899 ge 0 for 119871 = max119871119895 1 le 119895 le 119872 Then

119909119899 converges strongly to a unique minimum norm point 119909lowast

of F (ie 119909lowast = 119875F(0)) which is the unique solution of thevariational inequality ⟨119909lowast 119909 minus 119909

lowast

⟩ ge 0 for all 119909 isin F

4 Numerical Example

Now we give an example of two Lipschitz pseudocontractivemappings and two 120574-inverse strongly accretive mappingssatisfyingTheorem 10 and some numerical experiment resultto explain the conclusion of the theorem as follows

Example 1 Let 119867 = R with absolute value norm Let 119862 =

[minus2 2] and let 1198791 1198792 119862 rarr 119862 be defined by

1198791119909 =

119909 + 1199092

119909 isin [minus2 0]

119909 119909 isin (0 2]

1198792119909 =

119909 119909 isin [minus21

2]

119909 minus (16

9) (119909 minus

1

2)

2

119909 isin (1

2 2]

(49)

Clearly for 119909 119910 isin 119862 we have that

⟨(119868 minus 1198791) 119909 minus (119868 minus 119879

1) 119910 119909 minus 119910⟩ ge 0

⟨(119868 minus 1198792) 119909 minus (119868 minus 119879

2) 119910 119909 minus 119910⟩ ge 0

(50)

which show that bothmappings are pseudocontractive Nextwe show that 119879

1is Lipschitz with 119871 = 5 If 119909 119910 isin [minus2 0] then

10038161003816100381610038161198791119909 minus 11987911199101003816100381610038161003816 =

10038161003816100381610038161003816119909 + 1199092

minus 119910 minus 119910210038161003816100381610038161003816

=1003816100381610038161003816(119909 + 119910) + 1

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816 le 31003816100381610038161003816119909 minus 119910

1003816100381610038161003816

(51)

If 119909 119910 isin (0 2] then10038161003816100381610038161198791119909 minus 119879

11199101003816100381610038161003816 =

1003816100381610038161003816119909 minus 1199101003816100381610038161003816 (52)

If 119909 isin [minus2 0] and 119910 isin (0 2] then10038161003816100381610038161198791119909 minus 119879

11199101003816100381610038161003816

=10038161003816100381610038161003816119909 + 1199092

minus 11991010038161003816100381610038161003816

=10038161003816100381610038161003816119909 minus 119910 + 119909

210038161003816100381610038161003816=10038161003816100381610038161003816119909 minus 119910 + 119909

2

minus 1199102

+ 119910210038161003816100381610038161003816

=10038161003816100381610038161003816119909 minus 119910 + 119909

2

minus 119910210038161003816100381610038161003816+ 1199102

le1003816100381610038161003816119909 + 119910 + 1

1003816100381610038161003816 sdot1003816100381610038161003816119909 minus 119910

1003816100381610038161003816 +1003816100381610038161003816119910 minus 119909

10038161003816100381610038162

= (1003816100381610038161003816119909 + 119910 + 1

1003816100381610038161003816 +1003816100381610038161003816119909 + 119910

1003816100381610038161003816) sdot1003816100381610038161003816119909 minus 119910

1003816100381610038161003816 le 51003816100381610038161003816119909 minus 119910

1003816100381610038161003816

(53)

8 Abstract and Applied Analysis

Thus we get that 1198791is Lipschitz pseudocontractive with

119871 = 5 and 119865(1198791) = [0 2] which is not nonexpansive since

if we take 119909 = minus2 and 119910 = minus19 we have that |1198791119909 minus 1198792119910| =

029 gt 01 = |119909minus119910| Similarly we can show that1198792is Lipschitz

pseudocontractive with 119871 = 4 and 119865(1198792) = [minus2 12] which is

not nonexpansiveFurthermore for 119862 = [minus2 2] let 119860

1 1198602 119862 rarr R be

defined by

1198601119909 =

minus(119909 minus1

2)

2

119909 isin [minus21

2)

0 119909 isin [1

2 2]

1198602119909 =

0 119909 isin [minus22

3]

3(119909 minus2

3)

2

119909 isin (2

3 2]

(54)

Then we first show that 1198601is 120574-inverse strongly accretive

mapping with 120574 = 15If 119909 119910 isin [minus2 12) then

⟨1198601119909 minus 119860

1119910 119909 minus 119910⟩

= ⟨minus(119909 minus1

2)

2

+ (119910 minus1

2)

2

119909 minus 119910⟩

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

] (119910 minus 119909)

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

] [(119910 minus1

2) minus (119909 minus

1

2)]

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

][(119910 minus 12)

2

minus (119909 minus 12)2

]

(119910 minus 12) + (119909 minus 12)

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

][(119909 minus 12)

2

minus (119910 minus 12)2

]

(12 minus 119909) + (12 minus 119910)

ge1

5

100381610038161003816100381610038161003816100381610038161003816

(119909 minus1

2)

2

minus (119910 minus1

2)

2100381610038161003816100381610038161003816100381610038161003816

2

=1

5

10038161003816100381610038161198601119909 minus 119860111991010038161003816100381610038162

(55)

If 119909 isin [minus2 12) and 119910 isin [12 2] we get that

⟨1198601119909 minus 119860

1119910 119909 minus 119910⟩

= ⟨minus(119909 minus1

2)

2

119909 minus 119910⟩ = (119909 minus1

2)

2

(119910 minus 119909)

= (119909 minus1

2)

2

[(119910 minus1

2) minus (119909 minus

1

2)]

ge (119909 minus1

2)

2

(1

2minus 119909)

= (119909 minus1

2)

2

(12 minus 119909)2

(12 minus 119909)ge2

5

100381610038161003816100381610038161003816100381610038161003816

(119909 minus1

2)

2100381610038161003816100381610038161003816100381610038161003816

2

ge1

5

10038161003816100381610038161198601119909 minus 119860111991010038161003816100381610038162

(56)

Table 1

119906 = 06 1199090= 1 119906 = 08 119909

0= minus1

119899 119909119899

119899 119909119899

0 10000 0 minus10000500 06112 5000 0062710000 05137 10000 0428212000 05121 15000 0454014000 05110 20000 0468618000 05093 25000 0478220000 05087 35000 04905

If 119909 119910 isin [12 2] then we get that |1198601119909 minus 119860

1119910| = 0 and

hence

⟨1198601119909 minus 119860

1119910 119909 minus 119910⟩ ge

1

5

10038161003816100381610038161198601119909 minus 119860111991010038161003816100381610038162

(57)

Therefore 1198601is 120574-inverse strongly accretive mapping

with 120574 = 15 andVI(119862 1198601) = [12 2] Similarly we can show

that 1198602is 120574-inverse strongly accretive mapping with 120574 = 12

and VI(119862 1198602) = [minus2 23]

Note that we have119865(1198791)cap119865(119879

2)capVI(119862 119860

1)capVI(119862 119860

2) =

12Thus taking 120572

119899= 1(10119899 + 100) 120582

119899= 2(119899 + 100) +

0065 119887119899

= 119888119899

= 1(119899 + 100) + 001 119886119899

= 1 minus 2(119899 +

100) minus 002 and 119891(119909) = 119906 isin 119862 we observe that conditionsof Theorem 10 are satisfied and Scheme (17) provides thefollowing Table 1 and Figures 1(a) and 1(b) for 119906 = 06 and119906 = 08 respectively

We observe that the data provides strong convergenceof the sequence to the common point of fixed points ofboth pseudocontractive mappings and solutions of both vari-ational inequality problems for 120574-inverse strongly accretivemappings

Remark 2 Theorem 10 provides an iteration scheme whichconverges strongly to a common point of fixed points of afinite family of Lipschitzian pseudocontractivemappings andsolutions of a finite family of variational inequality problemsin Hilbert spaces

Remark 3 Theorem 10 improves Theorem 31 of Takahashiand Toyoda [19] Iiduka and Takahashi [20] and Zegeye andShahzad [21] and Theorem 32 of Yao et al [22] in the sensethat our convergence is to a common point of fixed points of afinite family of Lipschitzian pseudocontractivemappings andsolutions of a finite family of variational inequality problems

Conflict of Interests

The authors declare that they have no conflict of interestsregarding the publication of this paper

Acknowledgments

This project was funded by the Deanship of ScientificResearch (DSR) King Abdulaziz University Jeddah undergrant no 1671301434 The authors therefore acknowledge

Abstract and Applied Analysis 9

0 05 1 15 20

0102030405060708091

x0= 1

Iterations n

x = 05

times104

Iteratesxn

(a)

0 1 2 3 4 5minus15

minus1

minus05

0

05

1

Iterations n

x0= 1

x = 05

times104

Iteratesxn

(b)

Figure 1

with thanksDSR technical and financial supportThe authorsalso thank the referees for their valuable comments andsuggestions which improved the presentation of this paper

References

[1] D Kinderlehrer and G Stampaccia An Iteration to VariationalInequalities and Their Applications Academic Press New YorkNY USA 1990

[2] H Zegeye and N Shahzad ldquoA hybrid scheme for finite familiesof equilibrium variational inequality and fixed point problemsrdquoNonlinear Analysis Theory Methods amp Applications vol 74 no1 pp 263ndash272 2011

[3] H Zegeye and N Shahzad ldquoApproximating common solutionof variational inequality problems for two monotone mappingsin Banach spacesrdquo Optimization Letters vol 5 no 4 pp 691ndash704 2011

[4] H Zegeye and N Shahzad ldquoStrong convergence theoremsfor variational inequality problems and quasi-120601-asymptoticallynonexpansive mappingsrdquo Journal of Global Optimization vol54 no 1 pp 101ndash116 2012

[5] H Zegeye and N Shahzad ldquoAn iteration to a common pointof solution of variational inequality and fixed point-problemsin Banach spacesrdquo Journal of Applied Mathematics vol 2012Article ID 504503 19 pages 2012

[6] F E Browder and W V Petryshyn ldquoConstruction of fixedpoints of nonlinear mappings in Hilbert spacerdquo Journal ofMathematical Analysis and Applications vol 20 pp 197ndash2281967

[7] L C Ceng A Petrusel and J C Yao ldquoComposite viscosityapproximation methods for equilibrium problem variationalinequality and common fixed pointsrdquo Journal of Nonlinear andConvex Analysis vol 15 no 2 pp 219ndash240 2014

[8] L C Ceng A Petrusel M M Wong and J C Yao ldquoHybridalgorithms for solving variational inequalities variational inclu-sions mixed equilibria and fixed point problemsrdquoAbstract andApplied Analysis vol 2014 Article ID 208717 22 pages 2014

[9] L Ceng A Petrusel and M Wong ldquoStrong convergencetheorem for a generalized equilibrium problem and a pseudo-contractive mapping in a Hilbert spacerdquo Taiwanese Journal ofMathematics vol 14 no 5 pp 1881ndash1901 2010

[10] D R Sahu V Colao and G Marino ldquoStrong convergencetheorems for approximating common fixed points of familiesof nonexpansive mappings and applicationsrdquo Journal of GlobalOptimization vol 56 no 4 pp 1631ndash1651 2013

[11] D R Sahu and A Petrusel ldquoStrong convergence of iterativemethods by strictly pseudocontractive mappings in BanachspacesrdquoNonlinearAnalysisTheoryMethodsampApplications vol74 no 17 pp 6012ndash6023 2011

[12] Y Yao Y Liou and N Shahzad ldquoConstruction of iterativemethods for variational inequality and fixed point problemsrdquoNumerical Functional Analysis and Optimization vol 33 no 10pp 1250ndash1267 2012

[13] Y Yao G Marino and L Muglia ldquoA modified Korpelevichrsquosmethod convergent to the minimum-norm solution of a varia-tional inequalityrdquoOptimization vol 63 no 4 pp 559ndash569 2014

[14] Y Yao and M Postolache ldquoIterative methods for pseudomono-tone variational inequalities and fixed-point problemsrdquo Journalof OptimizationTheory and Applications vol 155 no 1 pp 273ndash287 2012

[15] H Zegeye E U Ofoedu and N Shahzad ldquoConvergencetheorems for equilibrium problem variational inequality prob-lem and countably infinite relatively quasi-nonexpansive map-pingsrdquo Applied Mathematics and Computation vol 216 no 12pp 3439ndash3449 2010

[16] H Zegeye andN Shahzad ldquoAhybrid approximationmethod forequilibrium variational inequality and fixed point problemsrdquoNonlinear Analysis Hybrid Systems vol 4 no 4 pp 619ndash6302010

[17] H Zegeye and N Shahzad ldquoStrong convergence theoremsfor a solution of finite families of equilibrium and variationalinequality problemsrdquo Optimization vol 63 no 2 pp 207ndash2232014

[18] H Zegeye andN Shahzad ldquoExtragradientmethod for solutionsof variational inequality problems in Banach spacesrdquo Abstractand Applied Analysis vol 2013 Article ID 832548 8 pages 2013

10 Abstract and Applied Analysis

[19] W Takahashi andM Toyoda ldquoWeak convergence theorems fornonexpansive mappings and monotone mappingsrdquo Journal ofOptimization Theory and Applications vol 118 no 2 pp 417ndash428 2003

[20] H Iiduka and W Takahashi ldquoStrong convergence theoremsfor nonexpansive mappings and inverse-strongly monotonemappingsrdquoNonlinear AnalysisTheory Methods amp Applicationsvol 61 no 3 pp 341ndash350 2005

[21] H Zegeye and N Shahzad ldquoSolutions of variational inequalityproblems in the set of fixed points of pseudocontractive map-pingsrdquo Carpathian Journal of Mathematics vol 30 no 2 pp257ndash265 2014

[22] Y Yao Y C Liou and S M Kang ldquoAlgorithms construction forvariational inequalitiesrdquo Fixed Point Theory and Applicationsvol 2011 Article ID 794203 12 pages 2011

[23] Y Cai Y Tang and L Liu ldquoIterative algorithms for minimum-norm fixed point of non-expansive mapping in Hilbert spacerdquoFixed Point Theory and Applications vol 2012 article 49 2012

[24] K Aoyama H Iiduka andW Takahashi ldquoWeak convergence ofan iterative sequence for accretive operators in Banach spacesrdquoFixed PointTheory andApplications vol 2006 Article ID 3539013 pages 2006

[25] C E Chidume H Zegeye and E Prempeh ldquoStrong conver-gence theorems for a finite family of nonexpansive mappings inBanach spacesrdquoCommunications onAppliedNonlinearAnalysisvol 11 no 2 pp 25ndash32 2004

[26] Y I Alber ldquoMetric and generalized projection operators inBanach spaces properties and applicationsrdquo in Theory andApplications of Nonlinear Operators of Accretive and MonotoneType Lecture Notes in Pure and Applied Mathematics pp 15ndash50 Marcel Dekker New York NY USA 1996

[27] Q B Zhang and C Z Cheng ldquoStrong convergence theorem fora family of Lipschitz pseudocontractive mappings in a HilbertspacerdquoMathematical and Computer Modelling vol 48 no 3-4pp 480ndash485 2008

[28] H Zegeye and N Shahzad ldquoConvergence of Mannrsquos typeiteration method for generalized asymptotically nonexpansivemappingsrdquo Computers and Mathematics with Applications vol62 no 11 pp 4007ndash4014 2011

[29] P E Mainge ldquoStrong convergence of projected subgradientmethods for nonsmooth and nonstrictly convexminimizationrdquoSet-Valued Analysis vol 16 no 7-8 pp 899ndash912 2008

[30] H K Xu ldquoAnother control condition in an iterative method fornonexpansive mappingsrdquo Bulletin of the Australian Mathemati-cal Society vol 65 no 1 pp 109ndash113 2002

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Abstract and Applied Analysis 5

Let 119909lowast = 119875F119891(119909lowast

) Then from (17) Lemmas 1 and 7 andthe methods used to get (22) we obtain that

1003817100381710038171003817119909119899+1 minus 119909lowast10038171003817100381710038172

=1003817100381710038171003817120572119899 (119891 (119909

119899) minus 119909lowast

)

+ (1 minus 120572119899) [119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899minus 119909lowast

]10038171003817100381710038172

le (1 minus 120572119899)1003817100381710038171003817119886119899 (119909119899 minus 119909

lowast

) + 119887119899(119879119899119910119899minus 119909lowast

)

+119888119899(119866119909119899minus 119909lowast

)10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

le (1 minus 120572119899) 119887119899

1003817100381710038171003817119879119899119910119899 minus 119909lowast10038171003817100381710038172

+ (1 minus 120572119899) 119886119899

1003817100381710038171003817119909119899 minus 119909lowast10038171003817100381710038172

times (1 minus 120572119899) 119888119899

1003817100381710038171003817119866119909119899 minus 11990110038171003817100381710038172

minus (1 minus 120572119899) 119886119899119887119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119888119899

1003817100381710038171003817119866119909119899 minus 119909119899

10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

1003817100381710038171003817119909119899+1 minus 119909lowast10038171003817100381710038172

le (1 minus 120572119899) 119887119899[1003817100381710038171003817119910119899 minus 119909

lowast10038171003817100381710038172

+1003817100381710038171003817119910119899 minus 119879

119899119910119899

10038171003817100381710038172

]

+ (1 minus 120572119899) (119886119899+ 119888119899)1003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119887119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119888119899

1003817100381710038171003817119866119909119899 minus 119909119899

10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

le (1 minus 120572119899) 119887119899[1003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

+ 1205822

119899

1003817100381710038171003817119909119899 minus 119879119899119909119899

10038171003817100381710038172

]

+ (1 minus 120572119899) 119887119899[(1 minus 120582

119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

minus 120582119899(1 minus 119871

2

1205822

119899minus 120582119899)

times1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

]

+ (1 minus 120572119899) (119886119899+ 119888119899)1003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119887119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119888119899

1003817100381710038171003817119866119909119899 minus 119909119899

10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

(28)

which implies that1003817100381710038171003817119909119899+1 minus 119909

lowast10038171003817100381710038172

le (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

minus (1 minus 120572119899) 119887119899120582119899[1 minus 119871

2

1205822

119899minus 2120582119899]

times1003817100381710038171003817119909119899 minus 119879

119899119909119899

10038171003817100381710038172

+(1minus120572119899) 119887119899(119887119899+ 119888119899minus 120582119899)1003817100381710038171003817119909119899 minus 119879

119899119910119899

10038171003817100381710038172

minus (1 minus 120572119899) 119886119899119889119899

1003817100381710038171003817119866119909119899 minus 119909119899

10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

(29)

le (1 minus 120572119899)1003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

+ 2120572119899⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

(30)

But

⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909lowast

= ⟨119891 (119909119899) minus 119909lowast

119909119899minus 119909lowast

⟩ + ⟨119891 (119909119899) minus 119909lowast

119909119899+1

minus 119909119899⟩

le ⟨119891 (119909119899) minus 119891 (119909

lowast

) 119909119899minus 119909lowast

⟩ + ⟨119891 (119909lowast

) minus 119909lowast

119909119899minus 119909lowast

+1003817100381710038171003817119909119899+1 minus 119909

119899

10038171003817100381710038171003817100381710038171003817119891 (119909119899) minus 119909lowast1003817100381710038171003817

le 1205721003817100381710038171003817119909119899 minus 119909

lowast10038171003817100381710038172

+ ⟨119891 (119909lowast

) minus 119909lowast

119909119899minus 119909lowast

+1003817100381710038171003817119909119899+1 minus 119909

119899

10038171003817100381710038171003817100381710038171003817119891 (119909119899) minus 119909lowast1003817100381710038171003817

(31)

Thus substituting (31) in (30) we obtain that

1003817100381710038171003817119909119899+1 minus 119909lowast10038171003817100381710038172

le (1 minus 120572119899(1 minus 2120572))

1003817100381710038171003817119909119899 minus 119909lowast10038171003817100381710038172

+ 2120572119899⟨119891 (119909lowast

) minus 119909lowast

119909119899minus 119909lowast

+ 2120572119899

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817 sdot1003817100381710038171003817119891 (119909119899) minus 119909lowast1003817100381710038171003817

(32)

Next we consider two cases

Case 1 Suppose that there exists 1198990isin N such that 119909

119899minus 119909lowast

is decreasing for all 119899 ge 1198990 Then we get that 119909

119899minus 119909lowast

isconvergent Thus from (29) and (23) we have that

119909119899minus 119879119899119909119899997888rarr 0 119866119909

119899minus 119909119899997888rarr 0 as 119899 997888rarr infin (33)

Furthermore from (17) and (33) we obtain that

1003817100381710038171003817119910119899 minus 119909119899

1003817100381710038171003817 = 120582119899

1003817100381710038171003817119909119899 minus 119879119899119909119899

1003817100381710038171003817 997888rarr 0 as 119899 997888rarr infin (34)

and hence Lipschitz continuity of 119879119899 (34) and (33) implies

that1003817100381710038171003817119879119899119910119899 minus 119909

119899

1003817100381710038171003817

le1003817100381710038171003817119879119899119910119899 minus 119879

119899119909119899

1003817100381710038171003817 +1003817100381710038171003817119879119899119909119899 minus 119909

119899

1003817100381710038171003817

le 1198711003817100381710038171003817119910119899 minus 119909

119899

1003817100381710038171003817 +1003817100381710038171003817119879119899119909119899 minus 119909

119899

1003817100381710038171003817 997888rarr 0

as 119899 997888rarr infin

(35)

Thus from (33) and (35) we have that

1003817100381710038171003817119909119899+1 minus 119909119899

1003817100381710038171003817

=1003817100381710038171003817120572119899 (119891 (119909

119899) minus 119909119899) + (1 minus 120572

119899)

times (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899) minus 119909119899

1003817100381710038171003817

le 120572119899

1003817100381710038171003817119891 (119909119899) minus 119909119899

1003817100381710038171003817 + (1 minus 120572119899) 119887119899

1003817100381710038171003817119879119899119910119899 minus 119909119899

1003817100381710038171003817

+ (1 minus 120572119899) 119888119899

1003817100381710038171003817119866119909119899 minus 119909119899

1003817100381710038171003817 997888rarr 0 as 119899 997888rarr infin

(36)

6 Abstract and Applied Analysis

Therefore 119909119899+119895

minus 119909119899 rarr 0 as 119899 rarr infin for all 119895 =

1 2 119872 and hence10038171003817100381710038171003817119909119899minus 119879119899+119895

119909119899

10038171003817100381710038171003817

le10038171003817100381710038171003817119909119899minus 119909119899+119895

10038171003817100381710038171003817+10038171003817100381710038171003817119909119899+119895

minus 119879119899+119895

119909119899+119895

10038171003817100381710038171003817

+ 11987110038171003817100381710038171003817119909119899+119895

minus 119909119899

10038171003817100381710038171003817997888rarr 0

(37)

as 119899 rarr infin for all 119895 isin 1 2 119872Now since 119909

119899 is bounded subset of 119867 we can choose

a subsequence 119909119899119898 of 119909

119899 such that 119909

119899119898 119909 and

lim sup119899rarrinfin

⟨119891(119909lowast

) minus 119909lowast

119909119899minus 119909lowast

⟩ = lim119898rarrinfin

⟨119891(119909lowast

) minus

119909lowast

119909119899119898

minus 119909lowast

⟩ Then from (37) and Lemma 6 we have that119909 isin 119865(119879

119895) for each 119895 = 1 2 119872 Hence 119909 isin cap

119872

119895=1119865(119879119895)

In addition since 119866 is nonexpansive from Lemma 6 weget that 119909 isin 119865(119866) and hence by Lemmas 4 and 3 we obtainthat 119909 isin VI(119862 119860

119895) for each 119895 isin 1 2 119873

Therefore by Lemma 5 we immediately obtain that

lim sup119899rarrinfin

⟨119891 (119909lowast

) minus 119909lowast

119909119899minus 119909lowast

= lim119898rarrinfin

⟨119891 (119909lowast

) minus 119909lowast

119909119899119898

minus 119909lowast

= ⟨119891 (119909lowast

) minus 119909lowast

119909 minus 119909lowast

⟩ le 0

(38)

Then it follows from (32) (38) and Lemma 9 that 119909119899minus

119909lowast

rarr 0 as 119899 rarr infin Consequently 119909119899rarr 119909lowast

= 119875F(119891(119909lowast

))

Case 2 Suppose that there exists a subsequence 119899119894 of 119899

such that10038171003817100381710038171003817119909119899119894minus 119909lowast10038171003817100381710038171003817lt10038171003817100381710038171003817119909119899119894+1

minus 119909lowast10038171003817100381710038171003817 (39)

for all 119894 isin N Then by Lemma 8 there exists a nondecreasingsequence 119898

119896 sub N such that119898

119896rarr infin and

10038171003817100381710038171003817119909119898119896

minus 119909lowast10038171003817100381710038171003817le10038171003817100381710038171003817119909119898119896+1

minus 119909lowast10038171003817100381710038171003817

1003817100381710038171003817119909119896 minus 119909lowast1003817100381710038171003817 le

10038171003817100381710038171003817119909119898119896+1

minus 119909lowast10038171003817100381710038171003817

(40)

for all 119896 isin N Now from (29) and (23) we get that 119909119898119896

minus

119879119898119896119909119898119896

rarr 0 and 119866119909119899119896

minus 119909119899119896

rarr 0 as 119896 rarr infin Thusfollowing themethod in Case 1 we obtain that 119909

119898119896+1minus119909119898119896

rarr

0 119909119898119896

minus 119879119895119909119898119896

rarr 0 and

lim sup119896rarrinfin

⟨119891 (119909lowast

) minus 119909lowast

119909119898119896

minus 119909lowast

⟩ le 0 (41)

Furthermore from (32) and (40) we obtain that

120572119898119896(1 minus 2120572)

10038171003817100381710038171003817119909119898119896

minus 119909lowast10038171003817100381710038171003817

2

le10038171003817100381710038171003817119909119898119896

minus 119909lowast10038171003817100381710038171003817

2

minus10038171003817100381710038171003817119909119898119896+1

minus 119909lowast10038171003817100381710038171003817

2

+ 2120572119898119896

⟨119891 (119909lowast

) minus 119909lowast

119909119898119896

minus 119909lowast

+ 2120572119898119896

10038171003817100381710038171003817119909119898119896+1

minus 119909119898119896

10038171003817100381710038171003817

10038171003817100381710038171003817119891 (119909119898119896) minus 119909lowast10038171003817100381710038171003817

le 2120572119898119896

⟨119891 (119909lowast

) minus 119909lowast

119909119898119896

minus 119909lowast

+ 2120572119898119896

10038171003817100381710038171003817119909119898119896+1

minus 119909119898119896

10038171003817100381710038171003817

10038171003817100381710038171003817119891 (119909119898119896) minus 119909lowast10038171003817100381710038171003817

(42)

Now using the fact that 120572119898119896

gt 0 and (41) we get that

10038171003817100381710038171003817119909119898119896

minus 119909lowast10038171003817100381710038171003817

2

997888rarr 0 as 119896 997888rarr infin (43)

and this together with (32) implies that 119909119898119896+1

minus 119909lowast

rarr

0 as 119896 rarr infin Since 119909119896minus 119909lowast

le 119909119898119896+1

minus 119909lowast

for all119896 isin N we obtain that 119909

119896rarr 119909

lowast Hence from the abovetwo cases we can conclude that 119909

119899 converges strongly to a

point119909lowast = 119875F119891(119909lowast

) which satisfies the variational inequality⟨(119868 minus 119891)(119909

lowast

) 119909 minus 119909lowast

⟩ ge 0 for all 119909 isin F The proof iscomplete

If in Theorem 10 we assume that 119891(119909) = 119906 isin 119862 aconstant mapping then we get the following corollary

Corollary 11 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space119867 Let 119879

119895 119862 rarr 119862 119895 = 1 2 119872 be

Lipschitz pseudocontractive mappings with Lipschitz constants119871119895 respectively Let 119860

119895 119862 rarr 119867 for 119895 = 1 2 119873

be 120574119895-inverse strongly accretive mappings Assume that F =

[cap119872

119895=1119865(119879119895)]⋂[cap

119873

119895=1VI(119862 119860

119895)] is nonempty Let a sequence

119909119899 be generated from an arbitrary 119909

0 119906 isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 120572119899119906 + (1 minus 120572

119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)

(44)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198900119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119895le119873120574119895

with 1198900+1198901+ sdot sdot sdot+119890

119903= 1 and 119887

119899+119888119899le 120582119899le 120582 lt 1(radic1 + 1198712+

1) forall119899 ge 0 for 119871 = max119871119895 1 le 119895 le 119872 Then 119909

119899 converges

strongly to a unique point 119909lowast isin 119862 satisfying 119909lowast = 119875F(119906) whichis the unique solution of the variational inequality ⟨119909lowast minus 119906 119909 minus

119909lowast

⟩ ge 0 for all 119909 isin F

If inTheorem 10 we assume that119873 = 1 and119872 = 1 thenwe get the following corollary which is Theorem 31 of [21]

Corollary 12 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space 119867 Let 119879 119862 rarr 119862 be Lipschitzpseudocontractive mappings with Lipschitz constant 119871 and 119860

119862 rarr 119867 an 120574-inverse strongly accretive mapping Let 119891

119862 rarr 119862 be a contraction with constant 120572 Assume that F =

119865(119879)⋂VI(119862 119860) is nonempty Let a sequence 119909119899 be generated

from an arbitrary 1199090isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119909119899

119909119899+1

= 120572119899119891 (119909119899)

+ (1 minus 120572119899) (119886119899119909119899+ 119887119899119879119910119899+ 119888119899119875119862[119868 minus 119903119860] 119909

119899)

(45)

where 119903 isin (0 2120574) and 119887119899+119888119899le 120582119899le 120582 lt 1(radic1 + 1198712+1) forall119899 ge

0 Then 119909119899 converges strongly to a point 119909lowast isin F which is the

unique solution of the variational inequality ⟨(119868 minus 119891)(119909lowast

) 119909 minus

119909lowast

⟩ ge 0 for all 119909 isin F

If inTheorem 10 we assume that 1198791015840119894s are strictly pseudo-

contractive mappins then we get the following corollary

Abstract and Applied Analysis 7

Corollary 13 Let 119862 be a nonempty closed and convex subsetof a realHilbert space119867 Let119879

119894 119862 rarr 119862 119894 = 1 2 119872 be120582

119894-

strictly pseudocontractive mappings and let 119860119894 119862 rarr 119867 for

119894 = 1 2 119873 be an 120574119894-inverse strongly accretive mappings

Let 119891 119862 rarr 119862 be a contraction with constant 120572 Assumethat F = [cap

119872

119894=1119865(119879119894)]⋂[cap

119873

119894=1VI(119862 119860

119894)] is nonempty Let a

sequence 119909119899 be generated from an arbitrary 119909

0isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 120572119899119891 (119909119899)

+ (1 minus 120572119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)

(46)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198880119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119894le119873120574119894

with 1198900+ 1198901+ sdot sdot sdot + 119890

119903= 1 and 119887

119899+ 119888119899

le 120582119899

le 120582 lt

1(radic1 + 1198712 + 1) forall119899 ge 0 119871 = max(1 + 120582119894)120582119894 Then 119909

119899

converges strongly to a point 119909lowast isin F which is the uniquesolution of the variational inequality ⟨(119868 minus 119891)(119909

lowast

) 119909 minus 119909lowast

⟩ ge 0

for all 119909 isin F

If in Theorem 10 we assume that 1198791015840119894s are nonexpansive

mapping then we get the following corollary

Corollary 14 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space 119867 Let 119879

119894 119862 rarr 119862 119894 = 1 2 119872

be nonexpansive mappings and let 119860119894 119862 rarr 119867 for 119894 =

1 2 119873 be an 120574119894-inverse strongly accretive mappings Let

119891 119862 rarr 119862 be a contraction with constant 120572 Assume thatF =

[cap119872

119894=1119865(119879119894)]⋂[cap

119873

119894=1VI(119862 119860

119894)] is nonempty Let a sequence 119909

119899

be generated from an arbitrary 1199090isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 120572119899119891 (119909119899)

+ (1 minus 120572119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)

(47)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198880119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119894le119873120574119894

with 1198900+ 1198901+ sdot sdot sdot + 119890

119903= 1 119886

119899+ 119887119899+ 119888119899= 1 and 119887

119899+ 119888119899le

120582119899le 120582 lt 1(radic2 + 1) forall119899 ge 0 Then 119909

119899 converges strongly to

point 119909lowast isin F which is the unique solution of the variationalinequality ⟨(119868 minus 119891)(119909

lowast

) 119909 minus 119909lowast

⟩ ge 0 for all 119909 isin F

We note that the method of proof ofTheorem 10 providesthe following theorem which is a convergence theoremfor a minimum norm point of common fixed points of afinite family of Lipschitz pseudocontractive mappings andcommon solutions of a finite family of variational inequalityproblems for accretive mappings

Theorem 15 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space119867 Let 119879

119895 119862 rarr 119862 119895 = 1 2 119872 be

Lipschitz pseudocontractive mappings with Lipschitz constants119871119895 respectively Let 119860

119895 119862 rarr 119867 for 119895 = 1 2 119873

be 120574119895-inverse strongly accretive mappings Assume that F =

[cap119872

119895=1119865(119879119895)]⋂[cap

119873

119895=1VI(119862 119860

119895)] is nonempty Let a sequence

119909119899 be generated from an arbitrary 119909

0isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 119875119862[(1 minus 120572

119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)]

(48)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198900119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119895le119873120574119895

with 1198900+ 1198901+ sdot sdot sdot + 119890

119903= 1 and 119887

119899+ 119888119899

le 120582119899

le 120582 lt

1(radic1 + 1198712 + 1) forall119899 ge 0 for 119871 = max119871119895 1 le 119895 le 119872 Then

119909119899 converges strongly to a unique minimum norm point 119909lowast

of F (ie 119909lowast = 119875F(0)) which is the unique solution of thevariational inequality ⟨119909lowast 119909 minus 119909

lowast

⟩ ge 0 for all 119909 isin F

4 Numerical Example

Now we give an example of two Lipschitz pseudocontractivemappings and two 120574-inverse strongly accretive mappingssatisfyingTheorem 10 and some numerical experiment resultto explain the conclusion of the theorem as follows

Example 1 Let 119867 = R with absolute value norm Let 119862 =

[minus2 2] and let 1198791 1198792 119862 rarr 119862 be defined by

1198791119909 =

119909 + 1199092

119909 isin [minus2 0]

119909 119909 isin (0 2]

1198792119909 =

119909 119909 isin [minus21

2]

119909 minus (16

9) (119909 minus

1

2)

2

119909 isin (1

2 2]

(49)

Clearly for 119909 119910 isin 119862 we have that

⟨(119868 minus 1198791) 119909 minus (119868 minus 119879

1) 119910 119909 minus 119910⟩ ge 0

⟨(119868 minus 1198792) 119909 minus (119868 minus 119879

2) 119910 119909 minus 119910⟩ ge 0

(50)

which show that bothmappings are pseudocontractive Nextwe show that 119879

1is Lipschitz with 119871 = 5 If 119909 119910 isin [minus2 0] then

10038161003816100381610038161198791119909 minus 11987911199101003816100381610038161003816 =

10038161003816100381610038161003816119909 + 1199092

minus 119910 minus 119910210038161003816100381610038161003816

=1003816100381610038161003816(119909 + 119910) + 1

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816 le 31003816100381610038161003816119909 minus 119910

1003816100381610038161003816

(51)

If 119909 119910 isin (0 2] then10038161003816100381610038161198791119909 minus 119879

11199101003816100381610038161003816 =

1003816100381610038161003816119909 minus 1199101003816100381610038161003816 (52)

If 119909 isin [minus2 0] and 119910 isin (0 2] then10038161003816100381610038161198791119909 minus 119879

11199101003816100381610038161003816

=10038161003816100381610038161003816119909 + 1199092

minus 11991010038161003816100381610038161003816

=10038161003816100381610038161003816119909 minus 119910 + 119909

210038161003816100381610038161003816=10038161003816100381610038161003816119909 minus 119910 + 119909

2

minus 1199102

+ 119910210038161003816100381610038161003816

=10038161003816100381610038161003816119909 minus 119910 + 119909

2

minus 119910210038161003816100381610038161003816+ 1199102

le1003816100381610038161003816119909 + 119910 + 1

1003816100381610038161003816 sdot1003816100381610038161003816119909 minus 119910

1003816100381610038161003816 +1003816100381610038161003816119910 minus 119909

10038161003816100381610038162

= (1003816100381610038161003816119909 + 119910 + 1

1003816100381610038161003816 +1003816100381610038161003816119909 + 119910

1003816100381610038161003816) sdot1003816100381610038161003816119909 minus 119910

1003816100381610038161003816 le 51003816100381610038161003816119909 minus 119910

1003816100381610038161003816

(53)

8 Abstract and Applied Analysis

Thus we get that 1198791is Lipschitz pseudocontractive with

119871 = 5 and 119865(1198791) = [0 2] which is not nonexpansive since

if we take 119909 = minus2 and 119910 = minus19 we have that |1198791119909 minus 1198792119910| =

029 gt 01 = |119909minus119910| Similarly we can show that1198792is Lipschitz

pseudocontractive with 119871 = 4 and 119865(1198792) = [minus2 12] which is

not nonexpansiveFurthermore for 119862 = [minus2 2] let 119860

1 1198602 119862 rarr R be

defined by

1198601119909 =

minus(119909 minus1

2)

2

119909 isin [minus21

2)

0 119909 isin [1

2 2]

1198602119909 =

0 119909 isin [minus22

3]

3(119909 minus2

3)

2

119909 isin (2

3 2]

(54)

Then we first show that 1198601is 120574-inverse strongly accretive

mapping with 120574 = 15If 119909 119910 isin [minus2 12) then

⟨1198601119909 minus 119860

1119910 119909 minus 119910⟩

= ⟨minus(119909 minus1

2)

2

+ (119910 minus1

2)

2

119909 minus 119910⟩

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

] (119910 minus 119909)

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

] [(119910 minus1

2) minus (119909 minus

1

2)]

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

][(119910 minus 12)

2

minus (119909 minus 12)2

]

(119910 minus 12) + (119909 minus 12)

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

][(119909 minus 12)

2

minus (119910 minus 12)2

]

(12 minus 119909) + (12 minus 119910)

ge1

5

100381610038161003816100381610038161003816100381610038161003816

(119909 minus1

2)

2

minus (119910 minus1

2)

2100381610038161003816100381610038161003816100381610038161003816

2

=1

5

10038161003816100381610038161198601119909 minus 119860111991010038161003816100381610038162

(55)

If 119909 isin [minus2 12) and 119910 isin [12 2] we get that

⟨1198601119909 minus 119860

1119910 119909 minus 119910⟩

= ⟨minus(119909 minus1

2)

2

119909 minus 119910⟩ = (119909 minus1

2)

2

(119910 minus 119909)

= (119909 minus1

2)

2

[(119910 minus1

2) minus (119909 minus

1

2)]

ge (119909 minus1

2)

2

(1

2minus 119909)

= (119909 minus1

2)

2

(12 minus 119909)2

(12 minus 119909)ge2

5

100381610038161003816100381610038161003816100381610038161003816

(119909 minus1

2)

2100381610038161003816100381610038161003816100381610038161003816

2

ge1

5

10038161003816100381610038161198601119909 minus 119860111991010038161003816100381610038162

(56)

Table 1

119906 = 06 1199090= 1 119906 = 08 119909

0= minus1

119899 119909119899

119899 119909119899

0 10000 0 minus10000500 06112 5000 0062710000 05137 10000 0428212000 05121 15000 0454014000 05110 20000 0468618000 05093 25000 0478220000 05087 35000 04905

If 119909 119910 isin [12 2] then we get that |1198601119909 minus 119860

1119910| = 0 and

hence

⟨1198601119909 minus 119860

1119910 119909 minus 119910⟩ ge

1

5

10038161003816100381610038161198601119909 minus 119860111991010038161003816100381610038162

(57)

Therefore 1198601is 120574-inverse strongly accretive mapping

with 120574 = 15 andVI(119862 1198601) = [12 2] Similarly we can show

that 1198602is 120574-inverse strongly accretive mapping with 120574 = 12

and VI(119862 1198602) = [minus2 23]

Note that we have119865(1198791)cap119865(119879

2)capVI(119862 119860

1)capVI(119862 119860

2) =

12Thus taking 120572

119899= 1(10119899 + 100) 120582

119899= 2(119899 + 100) +

0065 119887119899

= 119888119899

= 1(119899 + 100) + 001 119886119899

= 1 minus 2(119899 +

100) minus 002 and 119891(119909) = 119906 isin 119862 we observe that conditionsof Theorem 10 are satisfied and Scheme (17) provides thefollowing Table 1 and Figures 1(a) and 1(b) for 119906 = 06 and119906 = 08 respectively

We observe that the data provides strong convergenceof the sequence to the common point of fixed points ofboth pseudocontractive mappings and solutions of both vari-ational inequality problems for 120574-inverse strongly accretivemappings

Remark 2 Theorem 10 provides an iteration scheme whichconverges strongly to a common point of fixed points of afinite family of Lipschitzian pseudocontractivemappings andsolutions of a finite family of variational inequality problemsin Hilbert spaces

Remark 3 Theorem 10 improves Theorem 31 of Takahashiand Toyoda [19] Iiduka and Takahashi [20] and Zegeye andShahzad [21] and Theorem 32 of Yao et al [22] in the sensethat our convergence is to a common point of fixed points of afinite family of Lipschitzian pseudocontractivemappings andsolutions of a finite family of variational inequality problems

Conflict of Interests

The authors declare that they have no conflict of interestsregarding the publication of this paper

Acknowledgments

This project was funded by the Deanship of ScientificResearch (DSR) King Abdulaziz University Jeddah undergrant no 1671301434 The authors therefore acknowledge

Abstract and Applied Analysis 9

0 05 1 15 20

0102030405060708091

x0= 1

Iterations n

x = 05

times104

Iteratesxn

(a)

0 1 2 3 4 5minus15

minus1

minus05

0

05

1

Iterations n

x0= 1

x = 05

times104

Iteratesxn

(b)

Figure 1

with thanksDSR technical and financial supportThe authorsalso thank the referees for their valuable comments andsuggestions which improved the presentation of this paper

References

[1] D Kinderlehrer and G Stampaccia An Iteration to VariationalInequalities and Their Applications Academic Press New YorkNY USA 1990

[2] H Zegeye and N Shahzad ldquoA hybrid scheme for finite familiesof equilibrium variational inequality and fixed point problemsrdquoNonlinear Analysis Theory Methods amp Applications vol 74 no1 pp 263ndash272 2011

[3] H Zegeye and N Shahzad ldquoApproximating common solutionof variational inequality problems for two monotone mappingsin Banach spacesrdquo Optimization Letters vol 5 no 4 pp 691ndash704 2011

[4] H Zegeye and N Shahzad ldquoStrong convergence theoremsfor variational inequality problems and quasi-120601-asymptoticallynonexpansive mappingsrdquo Journal of Global Optimization vol54 no 1 pp 101ndash116 2012

[5] H Zegeye and N Shahzad ldquoAn iteration to a common pointof solution of variational inequality and fixed point-problemsin Banach spacesrdquo Journal of Applied Mathematics vol 2012Article ID 504503 19 pages 2012

[6] F E Browder and W V Petryshyn ldquoConstruction of fixedpoints of nonlinear mappings in Hilbert spacerdquo Journal ofMathematical Analysis and Applications vol 20 pp 197ndash2281967

[7] L C Ceng A Petrusel and J C Yao ldquoComposite viscosityapproximation methods for equilibrium problem variationalinequality and common fixed pointsrdquo Journal of Nonlinear andConvex Analysis vol 15 no 2 pp 219ndash240 2014

[8] L C Ceng A Petrusel M M Wong and J C Yao ldquoHybridalgorithms for solving variational inequalities variational inclu-sions mixed equilibria and fixed point problemsrdquoAbstract andApplied Analysis vol 2014 Article ID 208717 22 pages 2014

[9] L Ceng A Petrusel and M Wong ldquoStrong convergencetheorem for a generalized equilibrium problem and a pseudo-contractive mapping in a Hilbert spacerdquo Taiwanese Journal ofMathematics vol 14 no 5 pp 1881ndash1901 2010

[10] D R Sahu V Colao and G Marino ldquoStrong convergencetheorems for approximating common fixed points of familiesof nonexpansive mappings and applicationsrdquo Journal of GlobalOptimization vol 56 no 4 pp 1631ndash1651 2013

[11] D R Sahu and A Petrusel ldquoStrong convergence of iterativemethods by strictly pseudocontractive mappings in BanachspacesrdquoNonlinearAnalysisTheoryMethodsampApplications vol74 no 17 pp 6012ndash6023 2011

[12] Y Yao Y Liou and N Shahzad ldquoConstruction of iterativemethods for variational inequality and fixed point problemsrdquoNumerical Functional Analysis and Optimization vol 33 no 10pp 1250ndash1267 2012

[13] Y Yao G Marino and L Muglia ldquoA modified Korpelevichrsquosmethod convergent to the minimum-norm solution of a varia-tional inequalityrdquoOptimization vol 63 no 4 pp 559ndash569 2014

[14] Y Yao and M Postolache ldquoIterative methods for pseudomono-tone variational inequalities and fixed-point problemsrdquo Journalof OptimizationTheory and Applications vol 155 no 1 pp 273ndash287 2012

[15] H Zegeye E U Ofoedu and N Shahzad ldquoConvergencetheorems for equilibrium problem variational inequality prob-lem and countably infinite relatively quasi-nonexpansive map-pingsrdquo Applied Mathematics and Computation vol 216 no 12pp 3439ndash3449 2010

[16] H Zegeye andN Shahzad ldquoAhybrid approximationmethod forequilibrium variational inequality and fixed point problemsrdquoNonlinear Analysis Hybrid Systems vol 4 no 4 pp 619ndash6302010

[17] H Zegeye and N Shahzad ldquoStrong convergence theoremsfor a solution of finite families of equilibrium and variationalinequality problemsrdquo Optimization vol 63 no 2 pp 207ndash2232014

[18] H Zegeye andN Shahzad ldquoExtragradientmethod for solutionsof variational inequality problems in Banach spacesrdquo Abstractand Applied Analysis vol 2013 Article ID 832548 8 pages 2013

10 Abstract and Applied Analysis

[19] W Takahashi andM Toyoda ldquoWeak convergence theorems fornonexpansive mappings and monotone mappingsrdquo Journal ofOptimization Theory and Applications vol 118 no 2 pp 417ndash428 2003

[20] H Iiduka and W Takahashi ldquoStrong convergence theoremsfor nonexpansive mappings and inverse-strongly monotonemappingsrdquoNonlinear AnalysisTheory Methods amp Applicationsvol 61 no 3 pp 341ndash350 2005

[21] H Zegeye and N Shahzad ldquoSolutions of variational inequalityproblems in the set of fixed points of pseudocontractive map-pingsrdquo Carpathian Journal of Mathematics vol 30 no 2 pp257ndash265 2014

[22] Y Yao Y C Liou and S M Kang ldquoAlgorithms construction forvariational inequalitiesrdquo Fixed Point Theory and Applicationsvol 2011 Article ID 794203 12 pages 2011

[23] Y Cai Y Tang and L Liu ldquoIterative algorithms for minimum-norm fixed point of non-expansive mapping in Hilbert spacerdquoFixed Point Theory and Applications vol 2012 article 49 2012

[24] K Aoyama H Iiduka andW Takahashi ldquoWeak convergence ofan iterative sequence for accretive operators in Banach spacesrdquoFixed PointTheory andApplications vol 2006 Article ID 3539013 pages 2006

[25] C E Chidume H Zegeye and E Prempeh ldquoStrong conver-gence theorems for a finite family of nonexpansive mappings inBanach spacesrdquoCommunications onAppliedNonlinearAnalysisvol 11 no 2 pp 25ndash32 2004

[26] Y I Alber ldquoMetric and generalized projection operators inBanach spaces properties and applicationsrdquo in Theory andApplications of Nonlinear Operators of Accretive and MonotoneType Lecture Notes in Pure and Applied Mathematics pp 15ndash50 Marcel Dekker New York NY USA 1996

[27] Q B Zhang and C Z Cheng ldquoStrong convergence theorem fora family of Lipschitz pseudocontractive mappings in a HilbertspacerdquoMathematical and Computer Modelling vol 48 no 3-4pp 480ndash485 2008

[28] H Zegeye and N Shahzad ldquoConvergence of Mannrsquos typeiteration method for generalized asymptotically nonexpansivemappingsrdquo Computers and Mathematics with Applications vol62 no 11 pp 4007ndash4014 2011

[29] P E Mainge ldquoStrong convergence of projected subgradientmethods for nonsmooth and nonstrictly convexminimizationrdquoSet-Valued Analysis vol 16 no 7-8 pp 899ndash912 2008

[30] H K Xu ldquoAnother control condition in an iterative method fornonexpansive mappingsrdquo Bulletin of the Australian Mathemati-cal Society vol 65 no 1 pp 109ndash113 2002

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

6 Abstract and Applied Analysis

Therefore 119909119899+119895

minus 119909119899 rarr 0 as 119899 rarr infin for all 119895 =

1 2 119872 and hence10038171003817100381710038171003817119909119899minus 119879119899+119895

119909119899

10038171003817100381710038171003817

le10038171003817100381710038171003817119909119899minus 119909119899+119895

10038171003817100381710038171003817+10038171003817100381710038171003817119909119899+119895

minus 119879119899+119895

119909119899+119895

10038171003817100381710038171003817

+ 11987110038171003817100381710038171003817119909119899+119895

minus 119909119899

10038171003817100381710038171003817997888rarr 0

(37)

as 119899 rarr infin for all 119895 isin 1 2 119872Now since 119909

119899 is bounded subset of 119867 we can choose

a subsequence 119909119899119898 of 119909

119899 such that 119909

119899119898 119909 and

lim sup119899rarrinfin

⟨119891(119909lowast

) minus 119909lowast

119909119899minus 119909lowast

⟩ = lim119898rarrinfin

⟨119891(119909lowast

) minus

119909lowast

119909119899119898

minus 119909lowast

⟩ Then from (37) and Lemma 6 we have that119909 isin 119865(119879

119895) for each 119895 = 1 2 119872 Hence 119909 isin cap

119872

119895=1119865(119879119895)

In addition since 119866 is nonexpansive from Lemma 6 weget that 119909 isin 119865(119866) and hence by Lemmas 4 and 3 we obtainthat 119909 isin VI(119862 119860

119895) for each 119895 isin 1 2 119873

Therefore by Lemma 5 we immediately obtain that

lim sup119899rarrinfin

⟨119891 (119909lowast

) minus 119909lowast

119909119899minus 119909lowast

= lim119898rarrinfin

⟨119891 (119909lowast

) minus 119909lowast

119909119899119898

minus 119909lowast

= ⟨119891 (119909lowast

) minus 119909lowast

119909 minus 119909lowast

⟩ le 0

(38)

Then it follows from (32) (38) and Lemma 9 that 119909119899minus

119909lowast

rarr 0 as 119899 rarr infin Consequently 119909119899rarr 119909lowast

= 119875F(119891(119909lowast

))

Case 2 Suppose that there exists a subsequence 119899119894 of 119899

such that10038171003817100381710038171003817119909119899119894minus 119909lowast10038171003817100381710038171003817lt10038171003817100381710038171003817119909119899119894+1

minus 119909lowast10038171003817100381710038171003817 (39)

for all 119894 isin N Then by Lemma 8 there exists a nondecreasingsequence 119898

119896 sub N such that119898

119896rarr infin and

10038171003817100381710038171003817119909119898119896

minus 119909lowast10038171003817100381710038171003817le10038171003817100381710038171003817119909119898119896+1

minus 119909lowast10038171003817100381710038171003817

1003817100381710038171003817119909119896 minus 119909lowast1003817100381710038171003817 le

10038171003817100381710038171003817119909119898119896+1

minus 119909lowast10038171003817100381710038171003817

(40)

for all 119896 isin N Now from (29) and (23) we get that 119909119898119896

minus

119879119898119896119909119898119896

rarr 0 and 119866119909119899119896

minus 119909119899119896

rarr 0 as 119896 rarr infin Thusfollowing themethod in Case 1 we obtain that 119909

119898119896+1minus119909119898119896

rarr

0 119909119898119896

minus 119879119895119909119898119896

rarr 0 and

lim sup119896rarrinfin

⟨119891 (119909lowast

) minus 119909lowast

119909119898119896

minus 119909lowast

⟩ le 0 (41)

Furthermore from (32) and (40) we obtain that

120572119898119896(1 minus 2120572)

10038171003817100381710038171003817119909119898119896

minus 119909lowast10038171003817100381710038171003817

2

le10038171003817100381710038171003817119909119898119896

minus 119909lowast10038171003817100381710038171003817

2

minus10038171003817100381710038171003817119909119898119896+1

minus 119909lowast10038171003817100381710038171003817

2

+ 2120572119898119896

⟨119891 (119909lowast

) minus 119909lowast

119909119898119896

minus 119909lowast

+ 2120572119898119896

10038171003817100381710038171003817119909119898119896+1

minus 119909119898119896

10038171003817100381710038171003817

10038171003817100381710038171003817119891 (119909119898119896) minus 119909lowast10038171003817100381710038171003817

le 2120572119898119896

⟨119891 (119909lowast

) minus 119909lowast

119909119898119896

minus 119909lowast

+ 2120572119898119896

10038171003817100381710038171003817119909119898119896+1

minus 119909119898119896

10038171003817100381710038171003817

10038171003817100381710038171003817119891 (119909119898119896) minus 119909lowast10038171003817100381710038171003817

(42)

Now using the fact that 120572119898119896

gt 0 and (41) we get that

10038171003817100381710038171003817119909119898119896

minus 119909lowast10038171003817100381710038171003817

2

997888rarr 0 as 119896 997888rarr infin (43)

and this together with (32) implies that 119909119898119896+1

minus 119909lowast

rarr

0 as 119896 rarr infin Since 119909119896minus 119909lowast

le 119909119898119896+1

minus 119909lowast

for all119896 isin N we obtain that 119909

119896rarr 119909

lowast Hence from the abovetwo cases we can conclude that 119909

119899 converges strongly to a

point119909lowast = 119875F119891(119909lowast

) which satisfies the variational inequality⟨(119868 minus 119891)(119909

lowast

) 119909 minus 119909lowast

⟩ ge 0 for all 119909 isin F The proof iscomplete

If in Theorem 10 we assume that 119891(119909) = 119906 isin 119862 aconstant mapping then we get the following corollary

Corollary 11 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space119867 Let 119879

119895 119862 rarr 119862 119895 = 1 2 119872 be

Lipschitz pseudocontractive mappings with Lipschitz constants119871119895 respectively Let 119860

119895 119862 rarr 119867 for 119895 = 1 2 119873

be 120574119895-inverse strongly accretive mappings Assume that F =

[cap119872

119895=1119865(119879119895)]⋂[cap

119873

119895=1VI(119862 119860

119895)] is nonempty Let a sequence

119909119899 be generated from an arbitrary 119909

0 119906 isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 120572119899119906 + (1 minus 120572

119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)

(44)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198900119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119895le119873120574119895

with 1198900+1198901+ sdot sdot sdot+119890

119903= 1 and 119887

119899+119888119899le 120582119899le 120582 lt 1(radic1 + 1198712+

1) forall119899 ge 0 for 119871 = max119871119895 1 le 119895 le 119872 Then 119909

119899 converges

strongly to a unique point 119909lowast isin 119862 satisfying 119909lowast = 119875F(119906) whichis the unique solution of the variational inequality ⟨119909lowast minus 119906 119909 minus

119909lowast

⟩ ge 0 for all 119909 isin F

If inTheorem 10 we assume that119873 = 1 and119872 = 1 thenwe get the following corollary which is Theorem 31 of [21]

Corollary 12 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space 119867 Let 119879 119862 rarr 119862 be Lipschitzpseudocontractive mappings with Lipschitz constant 119871 and 119860

119862 rarr 119867 an 120574-inverse strongly accretive mapping Let 119891

119862 rarr 119862 be a contraction with constant 120572 Assume that F =

119865(119879)⋂VI(119862 119860) is nonempty Let a sequence 119909119899 be generated

from an arbitrary 1199090isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119909119899

119909119899+1

= 120572119899119891 (119909119899)

+ (1 minus 120572119899) (119886119899119909119899+ 119887119899119879119910119899+ 119888119899119875119862[119868 minus 119903119860] 119909

119899)

(45)

where 119903 isin (0 2120574) and 119887119899+119888119899le 120582119899le 120582 lt 1(radic1 + 1198712+1) forall119899 ge

0 Then 119909119899 converges strongly to a point 119909lowast isin F which is the

unique solution of the variational inequality ⟨(119868 minus 119891)(119909lowast

) 119909 minus

119909lowast

⟩ ge 0 for all 119909 isin F

If inTheorem 10 we assume that 1198791015840119894s are strictly pseudo-

contractive mappins then we get the following corollary

Abstract and Applied Analysis 7

Corollary 13 Let 119862 be a nonempty closed and convex subsetof a realHilbert space119867 Let119879

119894 119862 rarr 119862 119894 = 1 2 119872 be120582

119894-

strictly pseudocontractive mappings and let 119860119894 119862 rarr 119867 for

119894 = 1 2 119873 be an 120574119894-inverse strongly accretive mappings

Let 119891 119862 rarr 119862 be a contraction with constant 120572 Assumethat F = [cap

119872

119894=1119865(119879119894)]⋂[cap

119873

119894=1VI(119862 119860

119894)] is nonempty Let a

sequence 119909119899 be generated from an arbitrary 119909

0isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 120572119899119891 (119909119899)

+ (1 minus 120572119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)

(46)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198880119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119894le119873120574119894

with 1198900+ 1198901+ sdot sdot sdot + 119890

119903= 1 and 119887

119899+ 119888119899

le 120582119899

le 120582 lt

1(radic1 + 1198712 + 1) forall119899 ge 0 119871 = max(1 + 120582119894)120582119894 Then 119909

119899

converges strongly to a point 119909lowast isin F which is the uniquesolution of the variational inequality ⟨(119868 minus 119891)(119909

lowast

) 119909 minus 119909lowast

⟩ ge 0

for all 119909 isin F

If in Theorem 10 we assume that 1198791015840119894s are nonexpansive

mapping then we get the following corollary

Corollary 14 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space 119867 Let 119879

119894 119862 rarr 119862 119894 = 1 2 119872

be nonexpansive mappings and let 119860119894 119862 rarr 119867 for 119894 =

1 2 119873 be an 120574119894-inverse strongly accretive mappings Let

119891 119862 rarr 119862 be a contraction with constant 120572 Assume thatF =

[cap119872

119894=1119865(119879119894)]⋂[cap

119873

119894=1VI(119862 119860

119894)] is nonempty Let a sequence 119909

119899

be generated from an arbitrary 1199090isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 120572119899119891 (119909119899)

+ (1 minus 120572119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)

(47)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198880119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119894le119873120574119894

with 1198900+ 1198901+ sdot sdot sdot + 119890

119903= 1 119886

119899+ 119887119899+ 119888119899= 1 and 119887

119899+ 119888119899le

120582119899le 120582 lt 1(radic2 + 1) forall119899 ge 0 Then 119909

119899 converges strongly to

point 119909lowast isin F which is the unique solution of the variationalinequality ⟨(119868 minus 119891)(119909

lowast

) 119909 minus 119909lowast

⟩ ge 0 for all 119909 isin F

We note that the method of proof ofTheorem 10 providesthe following theorem which is a convergence theoremfor a minimum norm point of common fixed points of afinite family of Lipschitz pseudocontractive mappings andcommon solutions of a finite family of variational inequalityproblems for accretive mappings

Theorem 15 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space119867 Let 119879

119895 119862 rarr 119862 119895 = 1 2 119872 be

Lipschitz pseudocontractive mappings with Lipschitz constants119871119895 respectively Let 119860

119895 119862 rarr 119867 for 119895 = 1 2 119873

be 120574119895-inverse strongly accretive mappings Assume that F =

[cap119872

119895=1119865(119879119895)]⋂[cap

119873

119895=1VI(119862 119860

119895)] is nonempty Let a sequence

119909119899 be generated from an arbitrary 119909

0isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 119875119862[(1 minus 120572

119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)]

(48)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198900119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119895le119873120574119895

with 1198900+ 1198901+ sdot sdot sdot + 119890

119903= 1 and 119887

119899+ 119888119899

le 120582119899

le 120582 lt

1(radic1 + 1198712 + 1) forall119899 ge 0 for 119871 = max119871119895 1 le 119895 le 119872 Then

119909119899 converges strongly to a unique minimum norm point 119909lowast

of F (ie 119909lowast = 119875F(0)) which is the unique solution of thevariational inequality ⟨119909lowast 119909 minus 119909

lowast

⟩ ge 0 for all 119909 isin F

4 Numerical Example

Now we give an example of two Lipschitz pseudocontractivemappings and two 120574-inverse strongly accretive mappingssatisfyingTheorem 10 and some numerical experiment resultto explain the conclusion of the theorem as follows

Example 1 Let 119867 = R with absolute value norm Let 119862 =

[minus2 2] and let 1198791 1198792 119862 rarr 119862 be defined by

1198791119909 =

119909 + 1199092

119909 isin [minus2 0]

119909 119909 isin (0 2]

1198792119909 =

119909 119909 isin [minus21

2]

119909 minus (16

9) (119909 minus

1

2)

2

119909 isin (1

2 2]

(49)

Clearly for 119909 119910 isin 119862 we have that

⟨(119868 minus 1198791) 119909 minus (119868 minus 119879

1) 119910 119909 minus 119910⟩ ge 0

⟨(119868 minus 1198792) 119909 minus (119868 minus 119879

2) 119910 119909 minus 119910⟩ ge 0

(50)

which show that bothmappings are pseudocontractive Nextwe show that 119879

1is Lipschitz with 119871 = 5 If 119909 119910 isin [minus2 0] then

10038161003816100381610038161198791119909 minus 11987911199101003816100381610038161003816 =

10038161003816100381610038161003816119909 + 1199092

minus 119910 minus 119910210038161003816100381610038161003816

=1003816100381610038161003816(119909 + 119910) + 1

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816 le 31003816100381610038161003816119909 minus 119910

1003816100381610038161003816

(51)

If 119909 119910 isin (0 2] then10038161003816100381610038161198791119909 minus 119879

11199101003816100381610038161003816 =

1003816100381610038161003816119909 minus 1199101003816100381610038161003816 (52)

If 119909 isin [minus2 0] and 119910 isin (0 2] then10038161003816100381610038161198791119909 minus 119879

11199101003816100381610038161003816

=10038161003816100381610038161003816119909 + 1199092

minus 11991010038161003816100381610038161003816

=10038161003816100381610038161003816119909 minus 119910 + 119909

210038161003816100381610038161003816=10038161003816100381610038161003816119909 minus 119910 + 119909

2

minus 1199102

+ 119910210038161003816100381610038161003816

=10038161003816100381610038161003816119909 minus 119910 + 119909

2

minus 119910210038161003816100381610038161003816+ 1199102

le1003816100381610038161003816119909 + 119910 + 1

1003816100381610038161003816 sdot1003816100381610038161003816119909 minus 119910

1003816100381610038161003816 +1003816100381610038161003816119910 minus 119909

10038161003816100381610038162

= (1003816100381610038161003816119909 + 119910 + 1

1003816100381610038161003816 +1003816100381610038161003816119909 + 119910

1003816100381610038161003816) sdot1003816100381610038161003816119909 minus 119910

1003816100381610038161003816 le 51003816100381610038161003816119909 minus 119910

1003816100381610038161003816

(53)

8 Abstract and Applied Analysis

Thus we get that 1198791is Lipschitz pseudocontractive with

119871 = 5 and 119865(1198791) = [0 2] which is not nonexpansive since

if we take 119909 = minus2 and 119910 = minus19 we have that |1198791119909 minus 1198792119910| =

029 gt 01 = |119909minus119910| Similarly we can show that1198792is Lipschitz

pseudocontractive with 119871 = 4 and 119865(1198792) = [minus2 12] which is

not nonexpansiveFurthermore for 119862 = [minus2 2] let 119860

1 1198602 119862 rarr R be

defined by

1198601119909 =

minus(119909 minus1

2)

2

119909 isin [minus21

2)

0 119909 isin [1

2 2]

1198602119909 =

0 119909 isin [minus22

3]

3(119909 minus2

3)

2

119909 isin (2

3 2]

(54)

Then we first show that 1198601is 120574-inverse strongly accretive

mapping with 120574 = 15If 119909 119910 isin [minus2 12) then

⟨1198601119909 minus 119860

1119910 119909 minus 119910⟩

= ⟨minus(119909 minus1

2)

2

+ (119910 minus1

2)

2

119909 minus 119910⟩

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

] (119910 minus 119909)

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

] [(119910 minus1

2) minus (119909 minus

1

2)]

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

][(119910 minus 12)

2

minus (119909 minus 12)2

]

(119910 minus 12) + (119909 minus 12)

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

][(119909 minus 12)

2

minus (119910 minus 12)2

]

(12 minus 119909) + (12 minus 119910)

ge1

5

100381610038161003816100381610038161003816100381610038161003816

(119909 minus1

2)

2

minus (119910 minus1

2)

2100381610038161003816100381610038161003816100381610038161003816

2

=1

5

10038161003816100381610038161198601119909 minus 119860111991010038161003816100381610038162

(55)

If 119909 isin [minus2 12) and 119910 isin [12 2] we get that

⟨1198601119909 minus 119860

1119910 119909 minus 119910⟩

= ⟨minus(119909 minus1

2)

2

119909 minus 119910⟩ = (119909 minus1

2)

2

(119910 minus 119909)

= (119909 minus1

2)

2

[(119910 minus1

2) minus (119909 minus

1

2)]

ge (119909 minus1

2)

2

(1

2minus 119909)

= (119909 minus1

2)

2

(12 minus 119909)2

(12 minus 119909)ge2

5

100381610038161003816100381610038161003816100381610038161003816

(119909 minus1

2)

2100381610038161003816100381610038161003816100381610038161003816

2

ge1

5

10038161003816100381610038161198601119909 minus 119860111991010038161003816100381610038162

(56)

Table 1

119906 = 06 1199090= 1 119906 = 08 119909

0= minus1

119899 119909119899

119899 119909119899

0 10000 0 minus10000500 06112 5000 0062710000 05137 10000 0428212000 05121 15000 0454014000 05110 20000 0468618000 05093 25000 0478220000 05087 35000 04905

If 119909 119910 isin [12 2] then we get that |1198601119909 minus 119860

1119910| = 0 and

hence

⟨1198601119909 minus 119860

1119910 119909 minus 119910⟩ ge

1

5

10038161003816100381610038161198601119909 minus 119860111991010038161003816100381610038162

(57)

Therefore 1198601is 120574-inverse strongly accretive mapping

with 120574 = 15 andVI(119862 1198601) = [12 2] Similarly we can show

that 1198602is 120574-inverse strongly accretive mapping with 120574 = 12

and VI(119862 1198602) = [minus2 23]

Note that we have119865(1198791)cap119865(119879

2)capVI(119862 119860

1)capVI(119862 119860

2) =

12Thus taking 120572

119899= 1(10119899 + 100) 120582

119899= 2(119899 + 100) +

0065 119887119899

= 119888119899

= 1(119899 + 100) + 001 119886119899

= 1 minus 2(119899 +

100) minus 002 and 119891(119909) = 119906 isin 119862 we observe that conditionsof Theorem 10 are satisfied and Scheme (17) provides thefollowing Table 1 and Figures 1(a) and 1(b) for 119906 = 06 and119906 = 08 respectively

We observe that the data provides strong convergenceof the sequence to the common point of fixed points ofboth pseudocontractive mappings and solutions of both vari-ational inequality problems for 120574-inverse strongly accretivemappings

Remark 2 Theorem 10 provides an iteration scheme whichconverges strongly to a common point of fixed points of afinite family of Lipschitzian pseudocontractivemappings andsolutions of a finite family of variational inequality problemsin Hilbert spaces

Remark 3 Theorem 10 improves Theorem 31 of Takahashiand Toyoda [19] Iiduka and Takahashi [20] and Zegeye andShahzad [21] and Theorem 32 of Yao et al [22] in the sensethat our convergence is to a common point of fixed points of afinite family of Lipschitzian pseudocontractivemappings andsolutions of a finite family of variational inequality problems

Conflict of Interests

The authors declare that they have no conflict of interestsregarding the publication of this paper

Acknowledgments

This project was funded by the Deanship of ScientificResearch (DSR) King Abdulaziz University Jeddah undergrant no 1671301434 The authors therefore acknowledge

Abstract and Applied Analysis 9

0 05 1 15 20

0102030405060708091

x0= 1

Iterations n

x = 05

times104

Iteratesxn

(a)

0 1 2 3 4 5minus15

minus1

minus05

0

05

1

Iterations n

x0= 1

x = 05

times104

Iteratesxn

(b)

Figure 1

with thanksDSR technical and financial supportThe authorsalso thank the referees for their valuable comments andsuggestions which improved the presentation of this paper

References

[1] D Kinderlehrer and G Stampaccia An Iteration to VariationalInequalities and Their Applications Academic Press New YorkNY USA 1990

[2] H Zegeye and N Shahzad ldquoA hybrid scheme for finite familiesof equilibrium variational inequality and fixed point problemsrdquoNonlinear Analysis Theory Methods amp Applications vol 74 no1 pp 263ndash272 2011

[3] H Zegeye and N Shahzad ldquoApproximating common solutionof variational inequality problems for two monotone mappingsin Banach spacesrdquo Optimization Letters vol 5 no 4 pp 691ndash704 2011

[4] H Zegeye and N Shahzad ldquoStrong convergence theoremsfor variational inequality problems and quasi-120601-asymptoticallynonexpansive mappingsrdquo Journal of Global Optimization vol54 no 1 pp 101ndash116 2012

[5] H Zegeye and N Shahzad ldquoAn iteration to a common pointof solution of variational inequality and fixed point-problemsin Banach spacesrdquo Journal of Applied Mathematics vol 2012Article ID 504503 19 pages 2012

[6] F E Browder and W V Petryshyn ldquoConstruction of fixedpoints of nonlinear mappings in Hilbert spacerdquo Journal ofMathematical Analysis and Applications vol 20 pp 197ndash2281967

[7] L C Ceng A Petrusel and J C Yao ldquoComposite viscosityapproximation methods for equilibrium problem variationalinequality and common fixed pointsrdquo Journal of Nonlinear andConvex Analysis vol 15 no 2 pp 219ndash240 2014

[8] L C Ceng A Petrusel M M Wong and J C Yao ldquoHybridalgorithms for solving variational inequalities variational inclu-sions mixed equilibria and fixed point problemsrdquoAbstract andApplied Analysis vol 2014 Article ID 208717 22 pages 2014

[9] L Ceng A Petrusel and M Wong ldquoStrong convergencetheorem for a generalized equilibrium problem and a pseudo-contractive mapping in a Hilbert spacerdquo Taiwanese Journal ofMathematics vol 14 no 5 pp 1881ndash1901 2010

[10] D R Sahu V Colao and G Marino ldquoStrong convergencetheorems for approximating common fixed points of familiesof nonexpansive mappings and applicationsrdquo Journal of GlobalOptimization vol 56 no 4 pp 1631ndash1651 2013

[11] D R Sahu and A Petrusel ldquoStrong convergence of iterativemethods by strictly pseudocontractive mappings in BanachspacesrdquoNonlinearAnalysisTheoryMethodsampApplications vol74 no 17 pp 6012ndash6023 2011

[12] Y Yao Y Liou and N Shahzad ldquoConstruction of iterativemethods for variational inequality and fixed point problemsrdquoNumerical Functional Analysis and Optimization vol 33 no 10pp 1250ndash1267 2012

[13] Y Yao G Marino and L Muglia ldquoA modified Korpelevichrsquosmethod convergent to the minimum-norm solution of a varia-tional inequalityrdquoOptimization vol 63 no 4 pp 559ndash569 2014

[14] Y Yao and M Postolache ldquoIterative methods for pseudomono-tone variational inequalities and fixed-point problemsrdquo Journalof OptimizationTheory and Applications vol 155 no 1 pp 273ndash287 2012

[15] H Zegeye E U Ofoedu and N Shahzad ldquoConvergencetheorems for equilibrium problem variational inequality prob-lem and countably infinite relatively quasi-nonexpansive map-pingsrdquo Applied Mathematics and Computation vol 216 no 12pp 3439ndash3449 2010

[16] H Zegeye andN Shahzad ldquoAhybrid approximationmethod forequilibrium variational inequality and fixed point problemsrdquoNonlinear Analysis Hybrid Systems vol 4 no 4 pp 619ndash6302010

[17] H Zegeye and N Shahzad ldquoStrong convergence theoremsfor a solution of finite families of equilibrium and variationalinequality problemsrdquo Optimization vol 63 no 2 pp 207ndash2232014

[18] H Zegeye andN Shahzad ldquoExtragradientmethod for solutionsof variational inequality problems in Banach spacesrdquo Abstractand Applied Analysis vol 2013 Article ID 832548 8 pages 2013

10 Abstract and Applied Analysis

[19] W Takahashi andM Toyoda ldquoWeak convergence theorems fornonexpansive mappings and monotone mappingsrdquo Journal ofOptimization Theory and Applications vol 118 no 2 pp 417ndash428 2003

[20] H Iiduka and W Takahashi ldquoStrong convergence theoremsfor nonexpansive mappings and inverse-strongly monotonemappingsrdquoNonlinear AnalysisTheory Methods amp Applicationsvol 61 no 3 pp 341ndash350 2005

[21] H Zegeye and N Shahzad ldquoSolutions of variational inequalityproblems in the set of fixed points of pseudocontractive map-pingsrdquo Carpathian Journal of Mathematics vol 30 no 2 pp257ndash265 2014

[22] Y Yao Y C Liou and S M Kang ldquoAlgorithms construction forvariational inequalitiesrdquo Fixed Point Theory and Applicationsvol 2011 Article ID 794203 12 pages 2011

[23] Y Cai Y Tang and L Liu ldquoIterative algorithms for minimum-norm fixed point of non-expansive mapping in Hilbert spacerdquoFixed Point Theory and Applications vol 2012 article 49 2012

[24] K Aoyama H Iiduka andW Takahashi ldquoWeak convergence ofan iterative sequence for accretive operators in Banach spacesrdquoFixed PointTheory andApplications vol 2006 Article ID 3539013 pages 2006

[25] C E Chidume H Zegeye and E Prempeh ldquoStrong conver-gence theorems for a finite family of nonexpansive mappings inBanach spacesrdquoCommunications onAppliedNonlinearAnalysisvol 11 no 2 pp 25ndash32 2004

[26] Y I Alber ldquoMetric and generalized projection operators inBanach spaces properties and applicationsrdquo in Theory andApplications of Nonlinear Operators of Accretive and MonotoneType Lecture Notes in Pure and Applied Mathematics pp 15ndash50 Marcel Dekker New York NY USA 1996

[27] Q B Zhang and C Z Cheng ldquoStrong convergence theorem fora family of Lipschitz pseudocontractive mappings in a HilbertspacerdquoMathematical and Computer Modelling vol 48 no 3-4pp 480ndash485 2008

[28] H Zegeye and N Shahzad ldquoConvergence of Mannrsquos typeiteration method for generalized asymptotically nonexpansivemappingsrdquo Computers and Mathematics with Applications vol62 no 11 pp 4007ndash4014 2011

[29] P E Mainge ldquoStrong convergence of projected subgradientmethods for nonsmooth and nonstrictly convexminimizationrdquoSet-Valued Analysis vol 16 no 7-8 pp 899ndash912 2008

[30] H K Xu ldquoAnother control condition in an iterative method fornonexpansive mappingsrdquo Bulletin of the Australian Mathemati-cal Society vol 65 no 1 pp 109ndash113 2002

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Abstract and Applied Analysis 7

Corollary 13 Let 119862 be a nonempty closed and convex subsetof a realHilbert space119867 Let119879

119894 119862 rarr 119862 119894 = 1 2 119872 be120582

119894-

strictly pseudocontractive mappings and let 119860119894 119862 rarr 119867 for

119894 = 1 2 119873 be an 120574119894-inverse strongly accretive mappings

Let 119891 119862 rarr 119862 be a contraction with constant 120572 Assumethat F = [cap

119872

119894=1119865(119879119894)]⋂[cap

119873

119894=1VI(119862 119860

119894)] is nonempty Let a

sequence 119909119899 be generated from an arbitrary 119909

0isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 120572119899119891 (119909119899)

+ (1 minus 120572119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)

(46)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198880119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119894le119873120574119894

with 1198900+ 1198901+ sdot sdot sdot + 119890

119903= 1 and 119887

119899+ 119888119899

le 120582119899

le 120582 lt

1(radic1 + 1198712 + 1) forall119899 ge 0 119871 = max(1 + 120582119894)120582119894 Then 119909

119899

converges strongly to a point 119909lowast isin F which is the uniquesolution of the variational inequality ⟨(119868 minus 119891)(119909

lowast

) 119909 minus 119909lowast

⟩ ge 0

for all 119909 isin F

If in Theorem 10 we assume that 1198791015840119894s are nonexpansive

mapping then we get the following corollary

Corollary 14 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space 119867 Let 119879

119894 119862 rarr 119862 119894 = 1 2 119872

be nonexpansive mappings and let 119860119894 119862 rarr 119867 for 119894 =

1 2 119873 be an 120574119894-inverse strongly accretive mappings Let

119891 119862 rarr 119862 be a contraction with constant 120572 Assume thatF =

[cap119872

119894=1119865(119879119894)]⋂[cap

119873

119894=1VI(119862 119860

119894)] is nonempty Let a sequence 119909

119899

be generated from an arbitrary 1199090isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 120572119899119891 (119909119899)

+ (1 minus 120572119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)

(47)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198880119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119894le119873120574119894

with 1198900+ 1198901+ sdot sdot sdot + 119890

119903= 1 119886

119899+ 119887119899+ 119888119899= 1 and 119887

119899+ 119888119899le

120582119899le 120582 lt 1(radic2 + 1) forall119899 ge 0 Then 119909

119899 converges strongly to

point 119909lowast isin F which is the unique solution of the variationalinequality ⟨(119868 minus 119891)(119909

lowast

) 119909 minus 119909lowast

⟩ ge 0 for all 119909 isin F

We note that the method of proof ofTheorem 10 providesthe following theorem which is a convergence theoremfor a minimum norm point of common fixed points of afinite family of Lipschitz pseudocontractive mappings andcommon solutions of a finite family of variational inequalityproblems for accretive mappings

Theorem 15 Let 119862 be a nonempty closed and convex subsetof a real Hilbert space119867 Let 119879

119895 119862 rarr 119862 119895 = 1 2 119872 be

Lipschitz pseudocontractive mappings with Lipschitz constants119871119895 respectively Let 119860

119895 119862 rarr 119867 for 119895 = 1 2 119873

be 120574119895-inverse strongly accretive mappings Assume that F =

[cap119872

119895=1119865(119879119895)]⋂[cap

119873

119895=1VI(119862 119860

119895)] is nonempty Let a sequence

119909119899 be generated from an arbitrary 119909

0isin 119862 by

119910119899= (1 minus 120582

119899) 119909119899+ 120582119899119879119899119909119899

119909119899+1

= 119875119862[(1 minus 120572

119899) (119886119899119909119899+ 119887119899119879119899119910119899+ 119888119899119866119909119899)]

(48)

where119879119899= 119879119899(119898119900119889119872)

119866 = 1198900119868+1198901119875119862[119868minus120574119860

1]+1198902119875119862[119868minus120574119860

2]+

sdot sdot sdot + 119890119873119875119862[119868 minus 120574119860

119903] for 120574 isin (0 2120574

0) for 120574

0= min

1le119895le119873120574119895

with 1198900+ 1198901+ sdot sdot sdot + 119890

119903= 1 and 119887

119899+ 119888119899

le 120582119899

le 120582 lt

1(radic1 + 1198712 + 1) forall119899 ge 0 for 119871 = max119871119895 1 le 119895 le 119872 Then

119909119899 converges strongly to a unique minimum norm point 119909lowast

of F (ie 119909lowast = 119875F(0)) which is the unique solution of thevariational inequality ⟨119909lowast 119909 minus 119909

lowast

⟩ ge 0 for all 119909 isin F

4 Numerical Example

Now we give an example of two Lipschitz pseudocontractivemappings and two 120574-inverse strongly accretive mappingssatisfyingTheorem 10 and some numerical experiment resultto explain the conclusion of the theorem as follows

Example 1 Let 119867 = R with absolute value norm Let 119862 =

[minus2 2] and let 1198791 1198792 119862 rarr 119862 be defined by

1198791119909 =

119909 + 1199092

119909 isin [minus2 0]

119909 119909 isin (0 2]

1198792119909 =

119909 119909 isin [minus21

2]

119909 minus (16

9) (119909 minus

1

2)

2

119909 isin (1

2 2]

(49)

Clearly for 119909 119910 isin 119862 we have that

⟨(119868 minus 1198791) 119909 minus (119868 minus 119879

1) 119910 119909 minus 119910⟩ ge 0

⟨(119868 minus 1198792) 119909 minus (119868 minus 119879

2) 119910 119909 minus 119910⟩ ge 0

(50)

which show that bothmappings are pseudocontractive Nextwe show that 119879

1is Lipschitz with 119871 = 5 If 119909 119910 isin [minus2 0] then

10038161003816100381610038161198791119909 minus 11987911199101003816100381610038161003816 =

10038161003816100381610038161003816119909 + 1199092

minus 119910 minus 119910210038161003816100381610038161003816

=1003816100381610038161003816(119909 + 119910) + 1

10038161003816100381610038161003816100381610038161003816119909 minus 119910

1003816100381610038161003816 le 31003816100381610038161003816119909 minus 119910

1003816100381610038161003816

(51)

If 119909 119910 isin (0 2] then10038161003816100381610038161198791119909 minus 119879

11199101003816100381610038161003816 =

1003816100381610038161003816119909 minus 1199101003816100381610038161003816 (52)

If 119909 isin [minus2 0] and 119910 isin (0 2] then10038161003816100381610038161198791119909 minus 119879

11199101003816100381610038161003816

=10038161003816100381610038161003816119909 + 1199092

minus 11991010038161003816100381610038161003816

=10038161003816100381610038161003816119909 minus 119910 + 119909

210038161003816100381610038161003816=10038161003816100381610038161003816119909 minus 119910 + 119909

2

minus 1199102

+ 119910210038161003816100381610038161003816

=10038161003816100381610038161003816119909 minus 119910 + 119909

2

minus 119910210038161003816100381610038161003816+ 1199102

le1003816100381610038161003816119909 + 119910 + 1

1003816100381610038161003816 sdot1003816100381610038161003816119909 minus 119910

1003816100381610038161003816 +1003816100381610038161003816119910 minus 119909

10038161003816100381610038162

= (1003816100381610038161003816119909 + 119910 + 1

1003816100381610038161003816 +1003816100381610038161003816119909 + 119910

1003816100381610038161003816) sdot1003816100381610038161003816119909 minus 119910

1003816100381610038161003816 le 51003816100381610038161003816119909 minus 119910

1003816100381610038161003816

(53)

8 Abstract and Applied Analysis

Thus we get that 1198791is Lipschitz pseudocontractive with

119871 = 5 and 119865(1198791) = [0 2] which is not nonexpansive since

if we take 119909 = minus2 and 119910 = minus19 we have that |1198791119909 minus 1198792119910| =

029 gt 01 = |119909minus119910| Similarly we can show that1198792is Lipschitz

pseudocontractive with 119871 = 4 and 119865(1198792) = [minus2 12] which is

not nonexpansiveFurthermore for 119862 = [minus2 2] let 119860

1 1198602 119862 rarr R be

defined by

1198601119909 =

minus(119909 minus1

2)

2

119909 isin [minus21

2)

0 119909 isin [1

2 2]

1198602119909 =

0 119909 isin [minus22

3]

3(119909 minus2

3)

2

119909 isin (2

3 2]

(54)

Then we first show that 1198601is 120574-inverse strongly accretive

mapping with 120574 = 15If 119909 119910 isin [minus2 12) then

⟨1198601119909 minus 119860

1119910 119909 minus 119910⟩

= ⟨minus(119909 minus1

2)

2

+ (119910 minus1

2)

2

119909 minus 119910⟩

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

] (119910 minus 119909)

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

] [(119910 minus1

2) minus (119909 minus

1

2)]

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

][(119910 minus 12)

2

minus (119909 minus 12)2

]

(119910 minus 12) + (119909 minus 12)

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

][(119909 minus 12)

2

minus (119910 minus 12)2

]

(12 minus 119909) + (12 minus 119910)

ge1

5

100381610038161003816100381610038161003816100381610038161003816

(119909 minus1

2)

2

minus (119910 minus1

2)

2100381610038161003816100381610038161003816100381610038161003816

2

=1

5

10038161003816100381610038161198601119909 minus 119860111991010038161003816100381610038162

(55)

If 119909 isin [minus2 12) and 119910 isin [12 2] we get that

⟨1198601119909 minus 119860

1119910 119909 minus 119910⟩

= ⟨minus(119909 minus1

2)

2

119909 minus 119910⟩ = (119909 minus1

2)

2

(119910 minus 119909)

= (119909 minus1

2)

2

[(119910 minus1

2) minus (119909 minus

1

2)]

ge (119909 minus1

2)

2

(1

2minus 119909)

= (119909 minus1

2)

2

(12 minus 119909)2

(12 minus 119909)ge2

5

100381610038161003816100381610038161003816100381610038161003816

(119909 minus1

2)

2100381610038161003816100381610038161003816100381610038161003816

2

ge1

5

10038161003816100381610038161198601119909 minus 119860111991010038161003816100381610038162

(56)

Table 1

119906 = 06 1199090= 1 119906 = 08 119909

0= minus1

119899 119909119899

119899 119909119899

0 10000 0 minus10000500 06112 5000 0062710000 05137 10000 0428212000 05121 15000 0454014000 05110 20000 0468618000 05093 25000 0478220000 05087 35000 04905

If 119909 119910 isin [12 2] then we get that |1198601119909 minus 119860

1119910| = 0 and

hence

⟨1198601119909 minus 119860

1119910 119909 minus 119910⟩ ge

1

5

10038161003816100381610038161198601119909 minus 119860111991010038161003816100381610038162

(57)

Therefore 1198601is 120574-inverse strongly accretive mapping

with 120574 = 15 andVI(119862 1198601) = [12 2] Similarly we can show

that 1198602is 120574-inverse strongly accretive mapping with 120574 = 12

and VI(119862 1198602) = [minus2 23]

Note that we have119865(1198791)cap119865(119879

2)capVI(119862 119860

1)capVI(119862 119860

2) =

12Thus taking 120572

119899= 1(10119899 + 100) 120582

119899= 2(119899 + 100) +

0065 119887119899

= 119888119899

= 1(119899 + 100) + 001 119886119899

= 1 minus 2(119899 +

100) minus 002 and 119891(119909) = 119906 isin 119862 we observe that conditionsof Theorem 10 are satisfied and Scheme (17) provides thefollowing Table 1 and Figures 1(a) and 1(b) for 119906 = 06 and119906 = 08 respectively

We observe that the data provides strong convergenceof the sequence to the common point of fixed points ofboth pseudocontractive mappings and solutions of both vari-ational inequality problems for 120574-inverse strongly accretivemappings

Remark 2 Theorem 10 provides an iteration scheme whichconverges strongly to a common point of fixed points of afinite family of Lipschitzian pseudocontractivemappings andsolutions of a finite family of variational inequality problemsin Hilbert spaces

Remark 3 Theorem 10 improves Theorem 31 of Takahashiand Toyoda [19] Iiduka and Takahashi [20] and Zegeye andShahzad [21] and Theorem 32 of Yao et al [22] in the sensethat our convergence is to a common point of fixed points of afinite family of Lipschitzian pseudocontractivemappings andsolutions of a finite family of variational inequality problems

Conflict of Interests

The authors declare that they have no conflict of interestsregarding the publication of this paper

Acknowledgments

This project was funded by the Deanship of ScientificResearch (DSR) King Abdulaziz University Jeddah undergrant no 1671301434 The authors therefore acknowledge

Abstract and Applied Analysis 9

0 05 1 15 20

0102030405060708091

x0= 1

Iterations n

x = 05

times104

Iteratesxn

(a)

0 1 2 3 4 5minus15

minus1

minus05

0

05

1

Iterations n

x0= 1

x = 05

times104

Iteratesxn

(b)

Figure 1

with thanksDSR technical and financial supportThe authorsalso thank the referees for their valuable comments andsuggestions which improved the presentation of this paper

References

[1] D Kinderlehrer and G Stampaccia An Iteration to VariationalInequalities and Their Applications Academic Press New YorkNY USA 1990

[2] H Zegeye and N Shahzad ldquoA hybrid scheme for finite familiesof equilibrium variational inequality and fixed point problemsrdquoNonlinear Analysis Theory Methods amp Applications vol 74 no1 pp 263ndash272 2011

[3] H Zegeye and N Shahzad ldquoApproximating common solutionof variational inequality problems for two monotone mappingsin Banach spacesrdquo Optimization Letters vol 5 no 4 pp 691ndash704 2011

[4] H Zegeye and N Shahzad ldquoStrong convergence theoremsfor variational inequality problems and quasi-120601-asymptoticallynonexpansive mappingsrdquo Journal of Global Optimization vol54 no 1 pp 101ndash116 2012

[5] H Zegeye and N Shahzad ldquoAn iteration to a common pointof solution of variational inequality and fixed point-problemsin Banach spacesrdquo Journal of Applied Mathematics vol 2012Article ID 504503 19 pages 2012

[6] F E Browder and W V Petryshyn ldquoConstruction of fixedpoints of nonlinear mappings in Hilbert spacerdquo Journal ofMathematical Analysis and Applications vol 20 pp 197ndash2281967

[7] L C Ceng A Petrusel and J C Yao ldquoComposite viscosityapproximation methods for equilibrium problem variationalinequality and common fixed pointsrdquo Journal of Nonlinear andConvex Analysis vol 15 no 2 pp 219ndash240 2014

[8] L C Ceng A Petrusel M M Wong and J C Yao ldquoHybridalgorithms for solving variational inequalities variational inclu-sions mixed equilibria and fixed point problemsrdquoAbstract andApplied Analysis vol 2014 Article ID 208717 22 pages 2014

[9] L Ceng A Petrusel and M Wong ldquoStrong convergencetheorem for a generalized equilibrium problem and a pseudo-contractive mapping in a Hilbert spacerdquo Taiwanese Journal ofMathematics vol 14 no 5 pp 1881ndash1901 2010

[10] D R Sahu V Colao and G Marino ldquoStrong convergencetheorems for approximating common fixed points of familiesof nonexpansive mappings and applicationsrdquo Journal of GlobalOptimization vol 56 no 4 pp 1631ndash1651 2013

[11] D R Sahu and A Petrusel ldquoStrong convergence of iterativemethods by strictly pseudocontractive mappings in BanachspacesrdquoNonlinearAnalysisTheoryMethodsampApplications vol74 no 17 pp 6012ndash6023 2011

[12] Y Yao Y Liou and N Shahzad ldquoConstruction of iterativemethods for variational inequality and fixed point problemsrdquoNumerical Functional Analysis and Optimization vol 33 no 10pp 1250ndash1267 2012

[13] Y Yao G Marino and L Muglia ldquoA modified Korpelevichrsquosmethod convergent to the minimum-norm solution of a varia-tional inequalityrdquoOptimization vol 63 no 4 pp 559ndash569 2014

[14] Y Yao and M Postolache ldquoIterative methods for pseudomono-tone variational inequalities and fixed-point problemsrdquo Journalof OptimizationTheory and Applications vol 155 no 1 pp 273ndash287 2012

[15] H Zegeye E U Ofoedu and N Shahzad ldquoConvergencetheorems for equilibrium problem variational inequality prob-lem and countably infinite relatively quasi-nonexpansive map-pingsrdquo Applied Mathematics and Computation vol 216 no 12pp 3439ndash3449 2010

[16] H Zegeye andN Shahzad ldquoAhybrid approximationmethod forequilibrium variational inequality and fixed point problemsrdquoNonlinear Analysis Hybrid Systems vol 4 no 4 pp 619ndash6302010

[17] H Zegeye and N Shahzad ldquoStrong convergence theoremsfor a solution of finite families of equilibrium and variationalinequality problemsrdquo Optimization vol 63 no 2 pp 207ndash2232014

[18] H Zegeye andN Shahzad ldquoExtragradientmethod for solutionsof variational inequality problems in Banach spacesrdquo Abstractand Applied Analysis vol 2013 Article ID 832548 8 pages 2013

10 Abstract and Applied Analysis

[19] W Takahashi andM Toyoda ldquoWeak convergence theorems fornonexpansive mappings and monotone mappingsrdquo Journal ofOptimization Theory and Applications vol 118 no 2 pp 417ndash428 2003

[20] H Iiduka and W Takahashi ldquoStrong convergence theoremsfor nonexpansive mappings and inverse-strongly monotonemappingsrdquoNonlinear AnalysisTheory Methods amp Applicationsvol 61 no 3 pp 341ndash350 2005

[21] H Zegeye and N Shahzad ldquoSolutions of variational inequalityproblems in the set of fixed points of pseudocontractive map-pingsrdquo Carpathian Journal of Mathematics vol 30 no 2 pp257ndash265 2014

[22] Y Yao Y C Liou and S M Kang ldquoAlgorithms construction forvariational inequalitiesrdquo Fixed Point Theory and Applicationsvol 2011 Article ID 794203 12 pages 2011

[23] Y Cai Y Tang and L Liu ldquoIterative algorithms for minimum-norm fixed point of non-expansive mapping in Hilbert spacerdquoFixed Point Theory and Applications vol 2012 article 49 2012

[24] K Aoyama H Iiduka andW Takahashi ldquoWeak convergence ofan iterative sequence for accretive operators in Banach spacesrdquoFixed PointTheory andApplications vol 2006 Article ID 3539013 pages 2006

[25] C E Chidume H Zegeye and E Prempeh ldquoStrong conver-gence theorems for a finite family of nonexpansive mappings inBanach spacesrdquoCommunications onAppliedNonlinearAnalysisvol 11 no 2 pp 25ndash32 2004

[26] Y I Alber ldquoMetric and generalized projection operators inBanach spaces properties and applicationsrdquo in Theory andApplications of Nonlinear Operators of Accretive and MonotoneType Lecture Notes in Pure and Applied Mathematics pp 15ndash50 Marcel Dekker New York NY USA 1996

[27] Q B Zhang and C Z Cheng ldquoStrong convergence theorem fora family of Lipschitz pseudocontractive mappings in a HilbertspacerdquoMathematical and Computer Modelling vol 48 no 3-4pp 480ndash485 2008

[28] H Zegeye and N Shahzad ldquoConvergence of Mannrsquos typeiteration method for generalized asymptotically nonexpansivemappingsrdquo Computers and Mathematics with Applications vol62 no 11 pp 4007ndash4014 2011

[29] P E Mainge ldquoStrong convergence of projected subgradientmethods for nonsmooth and nonstrictly convexminimizationrdquoSet-Valued Analysis vol 16 no 7-8 pp 899ndash912 2008

[30] H K Xu ldquoAnother control condition in an iterative method fornonexpansive mappingsrdquo Bulletin of the Australian Mathemati-cal Society vol 65 no 1 pp 109ndash113 2002

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

8 Abstract and Applied Analysis

Thus we get that 1198791is Lipschitz pseudocontractive with

119871 = 5 and 119865(1198791) = [0 2] which is not nonexpansive since

if we take 119909 = minus2 and 119910 = minus19 we have that |1198791119909 minus 1198792119910| =

029 gt 01 = |119909minus119910| Similarly we can show that1198792is Lipschitz

pseudocontractive with 119871 = 4 and 119865(1198792) = [minus2 12] which is

not nonexpansiveFurthermore for 119862 = [minus2 2] let 119860

1 1198602 119862 rarr R be

defined by

1198601119909 =

minus(119909 minus1

2)

2

119909 isin [minus21

2)

0 119909 isin [1

2 2]

1198602119909 =

0 119909 isin [minus22

3]

3(119909 minus2

3)

2

119909 isin (2

3 2]

(54)

Then we first show that 1198601is 120574-inverse strongly accretive

mapping with 120574 = 15If 119909 119910 isin [minus2 12) then

⟨1198601119909 minus 119860

1119910 119909 minus 119910⟩

= ⟨minus(119909 minus1

2)

2

+ (119910 minus1

2)

2

119909 minus 119910⟩

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

] (119910 minus 119909)

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

] [(119910 minus1

2) minus (119909 minus

1

2)]

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

][(119910 minus 12)

2

minus (119909 minus 12)2

]

(119910 minus 12) + (119909 minus 12)

= [(119909 minus1

2)

2

minus (119910 minus1

2)

2

][(119909 minus 12)

2

minus (119910 minus 12)2

]

(12 minus 119909) + (12 minus 119910)

ge1

5

100381610038161003816100381610038161003816100381610038161003816

(119909 minus1

2)

2

minus (119910 minus1

2)

2100381610038161003816100381610038161003816100381610038161003816

2

=1

5

10038161003816100381610038161198601119909 minus 119860111991010038161003816100381610038162

(55)

If 119909 isin [minus2 12) and 119910 isin [12 2] we get that

⟨1198601119909 minus 119860

1119910 119909 minus 119910⟩

= ⟨minus(119909 minus1

2)

2

119909 minus 119910⟩ = (119909 minus1

2)

2

(119910 minus 119909)

= (119909 minus1

2)

2

[(119910 minus1

2) minus (119909 minus

1

2)]

ge (119909 minus1

2)

2

(1

2minus 119909)

= (119909 minus1

2)

2

(12 minus 119909)2

(12 minus 119909)ge2

5

100381610038161003816100381610038161003816100381610038161003816

(119909 minus1

2)

2100381610038161003816100381610038161003816100381610038161003816

2

ge1

5

10038161003816100381610038161198601119909 minus 119860111991010038161003816100381610038162

(56)

Table 1

119906 = 06 1199090= 1 119906 = 08 119909

0= minus1

119899 119909119899

119899 119909119899

0 10000 0 minus10000500 06112 5000 0062710000 05137 10000 0428212000 05121 15000 0454014000 05110 20000 0468618000 05093 25000 0478220000 05087 35000 04905

If 119909 119910 isin [12 2] then we get that |1198601119909 minus 119860

1119910| = 0 and

hence

⟨1198601119909 minus 119860

1119910 119909 minus 119910⟩ ge

1

5

10038161003816100381610038161198601119909 minus 119860111991010038161003816100381610038162

(57)

Therefore 1198601is 120574-inverse strongly accretive mapping

with 120574 = 15 andVI(119862 1198601) = [12 2] Similarly we can show

that 1198602is 120574-inverse strongly accretive mapping with 120574 = 12

and VI(119862 1198602) = [minus2 23]

Note that we have119865(1198791)cap119865(119879

2)capVI(119862 119860

1)capVI(119862 119860

2) =

12Thus taking 120572

119899= 1(10119899 + 100) 120582

119899= 2(119899 + 100) +

0065 119887119899

= 119888119899

= 1(119899 + 100) + 001 119886119899

= 1 minus 2(119899 +

100) minus 002 and 119891(119909) = 119906 isin 119862 we observe that conditionsof Theorem 10 are satisfied and Scheme (17) provides thefollowing Table 1 and Figures 1(a) and 1(b) for 119906 = 06 and119906 = 08 respectively

We observe that the data provides strong convergenceof the sequence to the common point of fixed points ofboth pseudocontractive mappings and solutions of both vari-ational inequality problems for 120574-inverse strongly accretivemappings

Remark 2 Theorem 10 provides an iteration scheme whichconverges strongly to a common point of fixed points of afinite family of Lipschitzian pseudocontractivemappings andsolutions of a finite family of variational inequality problemsin Hilbert spaces

Remark 3 Theorem 10 improves Theorem 31 of Takahashiand Toyoda [19] Iiduka and Takahashi [20] and Zegeye andShahzad [21] and Theorem 32 of Yao et al [22] in the sensethat our convergence is to a common point of fixed points of afinite family of Lipschitzian pseudocontractivemappings andsolutions of a finite family of variational inequality problems

Conflict of Interests

The authors declare that they have no conflict of interestsregarding the publication of this paper

Acknowledgments

This project was funded by the Deanship of ScientificResearch (DSR) King Abdulaziz University Jeddah undergrant no 1671301434 The authors therefore acknowledge

Abstract and Applied Analysis 9

0 05 1 15 20

0102030405060708091

x0= 1

Iterations n

x = 05

times104

Iteratesxn

(a)

0 1 2 3 4 5minus15

minus1

minus05

0

05

1

Iterations n

x0= 1

x = 05

times104

Iteratesxn

(b)

Figure 1

with thanksDSR technical and financial supportThe authorsalso thank the referees for their valuable comments andsuggestions which improved the presentation of this paper

References

[1] D Kinderlehrer and G Stampaccia An Iteration to VariationalInequalities and Their Applications Academic Press New YorkNY USA 1990

[2] H Zegeye and N Shahzad ldquoA hybrid scheme for finite familiesof equilibrium variational inequality and fixed point problemsrdquoNonlinear Analysis Theory Methods amp Applications vol 74 no1 pp 263ndash272 2011

[3] H Zegeye and N Shahzad ldquoApproximating common solutionof variational inequality problems for two monotone mappingsin Banach spacesrdquo Optimization Letters vol 5 no 4 pp 691ndash704 2011

[4] H Zegeye and N Shahzad ldquoStrong convergence theoremsfor variational inequality problems and quasi-120601-asymptoticallynonexpansive mappingsrdquo Journal of Global Optimization vol54 no 1 pp 101ndash116 2012

[5] H Zegeye and N Shahzad ldquoAn iteration to a common pointof solution of variational inequality and fixed point-problemsin Banach spacesrdquo Journal of Applied Mathematics vol 2012Article ID 504503 19 pages 2012

[6] F E Browder and W V Petryshyn ldquoConstruction of fixedpoints of nonlinear mappings in Hilbert spacerdquo Journal ofMathematical Analysis and Applications vol 20 pp 197ndash2281967

[7] L C Ceng A Petrusel and J C Yao ldquoComposite viscosityapproximation methods for equilibrium problem variationalinequality and common fixed pointsrdquo Journal of Nonlinear andConvex Analysis vol 15 no 2 pp 219ndash240 2014

[8] L C Ceng A Petrusel M M Wong and J C Yao ldquoHybridalgorithms for solving variational inequalities variational inclu-sions mixed equilibria and fixed point problemsrdquoAbstract andApplied Analysis vol 2014 Article ID 208717 22 pages 2014

[9] L Ceng A Petrusel and M Wong ldquoStrong convergencetheorem for a generalized equilibrium problem and a pseudo-contractive mapping in a Hilbert spacerdquo Taiwanese Journal ofMathematics vol 14 no 5 pp 1881ndash1901 2010

[10] D R Sahu V Colao and G Marino ldquoStrong convergencetheorems for approximating common fixed points of familiesof nonexpansive mappings and applicationsrdquo Journal of GlobalOptimization vol 56 no 4 pp 1631ndash1651 2013

[11] D R Sahu and A Petrusel ldquoStrong convergence of iterativemethods by strictly pseudocontractive mappings in BanachspacesrdquoNonlinearAnalysisTheoryMethodsampApplications vol74 no 17 pp 6012ndash6023 2011

[12] Y Yao Y Liou and N Shahzad ldquoConstruction of iterativemethods for variational inequality and fixed point problemsrdquoNumerical Functional Analysis and Optimization vol 33 no 10pp 1250ndash1267 2012

[13] Y Yao G Marino and L Muglia ldquoA modified Korpelevichrsquosmethod convergent to the minimum-norm solution of a varia-tional inequalityrdquoOptimization vol 63 no 4 pp 559ndash569 2014

[14] Y Yao and M Postolache ldquoIterative methods for pseudomono-tone variational inequalities and fixed-point problemsrdquo Journalof OptimizationTheory and Applications vol 155 no 1 pp 273ndash287 2012

[15] H Zegeye E U Ofoedu and N Shahzad ldquoConvergencetheorems for equilibrium problem variational inequality prob-lem and countably infinite relatively quasi-nonexpansive map-pingsrdquo Applied Mathematics and Computation vol 216 no 12pp 3439ndash3449 2010

[16] H Zegeye andN Shahzad ldquoAhybrid approximationmethod forequilibrium variational inequality and fixed point problemsrdquoNonlinear Analysis Hybrid Systems vol 4 no 4 pp 619ndash6302010

[17] H Zegeye and N Shahzad ldquoStrong convergence theoremsfor a solution of finite families of equilibrium and variationalinequality problemsrdquo Optimization vol 63 no 2 pp 207ndash2232014

[18] H Zegeye andN Shahzad ldquoExtragradientmethod for solutionsof variational inequality problems in Banach spacesrdquo Abstractand Applied Analysis vol 2013 Article ID 832548 8 pages 2013

10 Abstract and Applied Analysis

[19] W Takahashi andM Toyoda ldquoWeak convergence theorems fornonexpansive mappings and monotone mappingsrdquo Journal ofOptimization Theory and Applications vol 118 no 2 pp 417ndash428 2003

[20] H Iiduka and W Takahashi ldquoStrong convergence theoremsfor nonexpansive mappings and inverse-strongly monotonemappingsrdquoNonlinear AnalysisTheory Methods amp Applicationsvol 61 no 3 pp 341ndash350 2005

[21] H Zegeye and N Shahzad ldquoSolutions of variational inequalityproblems in the set of fixed points of pseudocontractive map-pingsrdquo Carpathian Journal of Mathematics vol 30 no 2 pp257ndash265 2014

[22] Y Yao Y C Liou and S M Kang ldquoAlgorithms construction forvariational inequalitiesrdquo Fixed Point Theory and Applicationsvol 2011 Article ID 794203 12 pages 2011

[23] Y Cai Y Tang and L Liu ldquoIterative algorithms for minimum-norm fixed point of non-expansive mapping in Hilbert spacerdquoFixed Point Theory and Applications vol 2012 article 49 2012

[24] K Aoyama H Iiduka andW Takahashi ldquoWeak convergence ofan iterative sequence for accretive operators in Banach spacesrdquoFixed PointTheory andApplications vol 2006 Article ID 3539013 pages 2006

[25] C E Chidume H Zegeye and E Prempeh ldquoStrong conver-gence theorems for a finite family of nonexpansive mappings inBanach spacesrdquoCommunications onAppliedNonlinearAnalysisvol 11 no 2 pp 25ndash32 2004

[26] Y I Alber ldquoMetric and generalized projection operators inBanach spaces properties and applicationsrdquo in Theory andApplications of Nonlinear Operators of Accretive and MonotoneType Lecture Notes in Pure and Applied Mathematics pp 15ndash50 Marcel Dekker New York NY USA 1996

[27] Q B Zhang and C Z Cheng ldquoStrong convergence theorem fora family of Lipschitz pseudocontractive mappings in a HilbertspacerdquoMathematical and Computer Modelling vol 48 no 3-4pp 480ndash485 2008

[28] H Zegeye and N Shahzad ldquoConvergence of Mannrsquos typeiteration method for generalized asymptotically nonexpansivemappingsrdquo Computers and Mathematics with Applications vol62 no 11 pp 4007ndash4014 2011

[29] P E Mainge ldquoStrong convergence of projected subgradientmethods for nonsmooth and nonstrictly convexminimizationrdquoSet-Valued Analysis vol 16 no 7-8 pp 899ndash912 2008

[30] H K Xu ldquoAnother control condition in an iterative method fornonexpansive mappingsrdquo Bulletin of the Australian Mathemati-cal Society vol 65 no 1 pp 109ndash113 2002

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Abstract and Applied Analysis 9

0 05 1 15 20

0102030405060708091

x0= 1

Iterations n

x = 05

times104

Iteratesxn

(a)

0 1 2 3 4 5minus15

minus1

minus05

0

05

1

Iterations n

x0= 1

x = 05

times104

Iteratesxn

(b)

Figure 1

with thanksDSR technical and financial supportThe authorsalso thank the referees for their valuable comments andsuggestions which improved the presentation of this paper

References

[1] D Kinderlehrer and G Stampaccia An Iteration to VariationalInequalities and Their Applications Academic Press New YorkNY USA 1990

[2] H Zegeye and N Shahzad ldquoA hybrid scheme for finite familiesof equilibrium variational inequality and fixed point problemsrdquoNonlinear Analysis Theory Methods amp Applications vol 74 no1 pp 263ndash272 2011

[3] H Zegeye and N Shahzad ldquoApproximating common solutionof variational inequality problems for two monotone mappingsin Banach spacesrdquo Optimization Letters vol 5 no 4 pp 691ndash704 2011

[4] H Zegeye and N Shahzad ldquoStrong convergence theoremsfor variational inequality problems and quasi-120601-asymptoticallynonexpansive mappingsrdquo Journal of Global Optimization vol54 no 1 pp 101ndash116 2012

[5] H Zegeye and N Shahzad ldquoAn iteration to a common pointof solution of variational inequality and fixed point-problemsin Banach spacesrdquo Journal of Applied Mathematics vol 2012Article ID 504503 19 pages 2012

[6] F E Browder and W V Petryshyn ldquoConstruction of fixedpoints of nonlinear mappings in Hilbert spacerdquo Journal ofMathematical Analysis and Applications vol 20 pp 197ndash2281967

[7] L C Ceng A Petrusel and J C Yao ldquoComposite viscosityapproximation methods for equilibrium problem variationalinequality and common fixed pointsrdquo Journal of Nonlinear andConvex Analysis vol 15 no 2 pp 219ndash240 2014

[8] L C Ceng A Petrusel M M Wong and J C Yao ldquoHybridalgorithms for solving variational inequalities variational inclu-sions mixed equilibria and fixed point problemsrdquoAbstract andApplied Analysis vol 2014 Article ID 208717 22 pages 2014

[9] L Ceng A Petrusel and M Wong ldquoStrong convergencetheorem for a generalized equilibrium problem and a pseudo-contractive mapping in a Hilbert spacerdquo Taiwanese Journal ofMathematics vol 14 no 5 pp 1881ndash1901 2010

[10] D R Sahu V Colao and G Marino ldquoStrong convergencetheorems for approximating common fixed points of familiesof nonexpansive mappings and applicationsrdquo Journal of GlobalOptimization vol 56 no 4 pp 1631ndash1651 2013

[11] D R Sahu and A Petrusel ldquoStrong convergence of iterativemethods by strictly pseudocontractive mappings in BanachspacesrdquoNonlinearAnalysisTheoryMethodsampApplications vol74 no 17 pp 6012ndash6023 2011

[12] Y Yao Y Liou and N Shahzad ldquoConstruction of iterativemethods for variational inequality and fixed point problemsrdquoNumerical Functional Analysis and Optimization vol 33 no 10pp 1250ndash1267 2012

[13] Y Yao G Marino and L Muglia ldquoA modified Korpelevichrsquosmethod convergent to the minimum-norm solution of a varia-tional inequalityrdquoOptimization vol 63 no 4 pp 559ndash569 2014

[14] Y Yao and M Postolache ldquoIterative methods for pseudomono-tone variational inequalities and fixed-point problemsrdquo Journalof OptimizationTheory and Applications vol 155 no 1 pp 273ndash287 2012

[15] H Zegeye E U Ofoedu and N Shahzad ldquoConvergencetheorems for equilibrium problem variational inequality prob-lem and countably infinite relatively quasi-nonexpansive map-pingsrdquo Applied Mathematics and Computation vol 216 no 12pp 3439ndash3449 2010

[16] H Zegeye andN Shahzad ldquoAhybrid approximationmethod forequilibrium variational inequality and fixed point problemsrdquoNonlinear Analysis Hybrid Systems vol 4 no 4 pp 619ndash6302010

[17] H Zegeye and N Shahzad ldquoStrong convergence theoremsfor a solution of finite families of equilibrium and variationalinequality problemsrdquo Optimization vol 63 no 2 pp 207ndash2232014

[18] H Zegeye andN Shahzad ldquoExtragradientmethod for solutionsof variational inequality problems in Banach spacesrdquo Abstractand Applied Analysis vol 2013 Article ID 832548 8 pages 2013

10 Abstract and Applied Analysis

[19] W Takahashi andM Toyoda ldquoWeak convergence theorems fornonexpansive mappings and monotone mappingsrdquo Journal ofOptimization Theory and Applications vol 118 no 2 pp 417ndash428 2003

[20] H Iiduka and W Takahashi ldquoStrong convergence theoremsfor nonexpansive mappings and inverse-strongly monotonemappingsrdquoNonlinear AnalysisTheory Methods amp Applicationsvol 61 no 3 pp 341ndash350 2005

[21] H Zegeye and N Shahzad ldquoSolutions of variational inequalityproblems in the set of fixed points of pseudocontractive map-pingsrdquo Carpathian Journal of Mathematics vol 30 no 2 pp257ndash265 2014

[22] Y Yao Y C Liou and S M Kang ldquoAlgorithms construction forvariational inequalitiesrdquo Fixed Point Theory and Applicationsvol 2011 Article ID 794203 12 pages 2011

[23] Y Cai Y Tang and L Liu ldquoIterative algorithms for minimum-norm fixed point of non-expansive mapping in Hilbert spacerdquoFixed Point Theory and Applications vol 2012 article 49 2012

[24] K Aoyama H Iiduka andW Takahashi ldquoWeak convergence ofan iterative sequence for accretive operators in Banach spacesrdquoFixed PointTheory andApplications vol 2006 Article ID 3539013 pages 2006

[25] C E Chidume H Zegeye and E Prempeh ldquoStrong conver-gence theorems for a finite family of nonexpansive mappings inBanach spacesrdquoCommunications onAppliedNonlinearAnalysisvol 11 no 2 pp 25ndash32 2004

[26] Y I Alber ldquoMetric and generalized projection operators inBanach spaces properties and applicationsrdquo in Theory andApplications of Nonlinear Operators of Accretive and MonotoneType Lecture Notes in Pure and Applied Mathematics pp 15ndash50 Marcel Dekker New York NY USA 1996

[27] Q B Zhang and C Z Cheng ldquoStrong convergence theorem fora family of Lipschitz pseudocontractive mappings in a HilbertspacerdquoMathematical and Computer Modelling vol 48 no 3-4pp 480ndash485 2008

[28] H Zegeye and N Shahzad ldquoConvergence of Mannrsquos typeiteration method for generalized asymptotically nonexpansivemappingsrdquo Computers and Mathematics with Applications vol62 no 11 pp 4007ndash4014 2011

[29] P E Mainge ldquoStrong convergence of projected subgradientmethods for nonsmooth and nonstrictly convexminimizationrdquoSet-Valued Analysis vol 16 no 7-8 pp 899ndash912 2008

[30] H K Xu ldquoAnother control condition in an iterative method fornonexpansive mappingsrdquo Bulletin of the Australian Mathemati-cal Society vol 65 no 1 pp 109ndash113 2002

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

10 Abstract and Applied Analysis

[19] W Takahashi andM Toyoda ldquoWeak convergence theorems fornonexpansive mappings and monotone mappingsrdquo Journal ofOptimization Theory and Applications vol 118 no 2 pp 417ndash428 2003

[20] H Iiduka and W Takahashi ldquoStrong convergence theoremsfor nonexpansive mappings and inverse-strongly monotonemappingsrdquoNonlinear AnalysisTheory Methods amp Applicationsvol 61 no 3 pp 341ndash350 2005

[21] H Zegeye and N Shahzad ldquoSolutions of variational inequalityproblems in the set of fixed points of pseudocontractive map-pingsrdquo Carpathian Journal of Mathematics vol 30 no 2 pp257ndash265 2014

[22] Y Yao Y C Liou and S M Kang ldquoAlgorithms construction forvariational inequalitiesrdquo Fixed Point Theory and Applicationsvol 2011 Article ID 794203 12 pages 2011

[23] Y Cai Y Tang and L Liu ldquoIterative algorithms for minimum-norm fixed point of non-expansive mapping in Hilbert spacerdquoFixed Point Theory and Applications vol 2012 article 49 2012

[24] K Aoyama H Iiduka andW Takahashi ldquoWeak convergence ofan iterative sequence for accretive operators in Banach spacesrdquoFixed PointTheory andApplications vol 2006 Article ID 3539013 pages 2006

[25] C E Chidume H Zegeye and E Prempeh ldquoStrong conver-gence theorems for a finite family of nonexpansive mappings inBanach spacesrdquoCommunications onAppliedNonlinearAnalysisvol 11 no 2 pp 25ndash32 2004

[26] Y I Alber ldquoMetric and generalized projection operators inBanach spaces properties and applicationsrdquo in Theory andApplications of Nonlinear Operators of Accretive and MonotoneType Lecture Notes in Pure and Applied Mathematics pp 15ndash50 Marcel Dekker New York NY USA 1996

[27] Q B Zhang and C Z Cheng ldquoStrong convergence theorem fora family of Lipschitz pseudocontractive mappings in a HilbertspacerdquoMathematical and Computer Modelling vol 48 no 3-4pp 480ndash485 2008

[28] H Zegeye and N Shahzad ldquoConvergence of Mannrsquos typeiteration method for generalized asymptotically nonexpansivemappingsrdquo Computers and Mathematics with Applications vol62 no 11 pp 4007ndash4014 2011

[29] P E Mainge ldquoStrong convergence of projected subgradientmethods for nonsmooth and nonstrictly convexminimizationrdquoSet-Valued Analysis vol 16 no 7-8 pp 899ndash912 2008

[30] H K Xu ldquoAnother control condition in an iterative method fornonexpansive mappingsrdquo Bulletin of the Australian Mathemati-cal Society vol 65 no 1 pp 109ndash113 2002

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of


Recommended