+ All Categories
Home > Documents > Surfactant Nanostructures in Foam Films

Surfactant Nanostructures in Foam Films

Date post: 01-Dec-2023
Category:
Upload: independent
View: 0 times
Download: 0 times
Share this document with a friend
20
YZ,NIT- LZS-E-8I6 :NgSI uraqurrly\'ve))I'o:) T Hqlu) SeFan g3n-1t11,4N /002 o tqSuldo3 sorpel 'C re^\reql {.1 p"4pt 'I uod 'sailol atofing lo apy aql :lqtyqolg ptolo) I 'lo^ 'salras eruaDs areJrelul pue sprollo) 'serlquessejles lrlrqdrqdue Jo dpnls eql ur uorlelusrunJlsur a^rlfadsoJd se prlualod roleru seq enbruq]el urlu ureoJ frdols -oJfrrrr eql pue suo4nlos lrlrqdrqdrue ur sJ.rnlfnJlsoueu luelfeJ-rns 3o aruasard er{} roJ sJolefipur se J^]JS deur suoqeuiloJ {lEIq elqe}sun pa^resqo 3r{+ leq} 1sa33ns sllnser arII 'seleJrelur str uo pue urlu aqt Jo {lnq eq} ur qtoq sarlqrues -se luelleJrns Suqsrxe aqi Jo uorlrn4sep pue uoqezrue8roer rr{t {t1m (s1odspue slop) suraned {lelq alqelsun Jo uor}euroJ erl+ Surl:auuof rusrueq)aru e s1sa3 -3ns auraqrs Ierrleroeqt pesodord aq1 'rulg urq] er{} rprsur pue sereJrr}ur aq} 1e lsrxa sate8a,rSSe pelquesse3las Jo serres E ler-l] uortdurnsse eLIt Jo srseq eql uo palardrelur eJe sluauruadxe eql 'a8uer uorleJlue)uof luelfeJ.rns ,^aoJJeu e ur -r{il1v\ a8ueq: dreqs e ,{eldsrp srul5 arll Jo sfr}srral)ereq) lqeuDl aql Jo pra.,r.as (7) :dpprnb a;nldn; ureql ureJuor ]Er{} surlu eq} pue seur+eJll tror{s dra.t aleq qllqa 'prlrrsqo a,re (s1ods pue slop) su,ra11ed {lelq elqe}sun (1) :SumolloJ er{} 1(oqs slFsar aq1 'srs,(pue aSeurr s^qn)3suof pue Surprorar oeph 8urpn1:ur ,,(q parrord -rur (lleuollppe sr dntas pluarur;adxe eql 'e,l\o.rexf pue o{pnleqls Jo 11a: 8ur -JnseJur aql qll.A salerado LIllr{rK 'por{+Jru frrleuroJaJJaluroJfrur e er^ pe}e8Esa,r -ur are sfrlst;apeJer{l urlg ar{J 'pJ^resqo eq o1 sr dlqurosse1lJs Jo lesuo Ier+rur uaqa saqquenb apqdrqdrue Surqrear go ,Qrpqrssodanbrun e sa.tr8 srql 'sa8ueqr uorleJluaruof llerus dlaura.4xa pue slueluor luepeJrns ^ oi JoJ sar+radord url5 ul sa8ueq: aa,rl:adsar er{l Jo uorlerurlsa ar{l slv\olle sre}aurered uralsds go Io4uor au5 aql }eqtr sr anbruqral urlg rrdorsoJrrur ar{t Jo a8elue.tpe rgr:ads eq1 'paluasard sr sernlrnJlsoueu rrpqdrqdure pelquresse1les Surureluor stulu ureoJ rrdo:sor:rur Jo suorleS4salur lefqa.roeq] pue pluaurr;adxJ luefeJ go da,trns y l]EJlsqV Ao\noqL uzu0ld puo 0Azltw oualf surlll tueoJ ur sarnl)nrFoueN luepe#ns 8 rsr I
Transcript

YZ,NIT- LZS-E-8I6 :NgSIuraqurrly\'ve))I'o:) T Hqlu) SeFan g3n-1t11,4N /002 o tqSuldo3

sorpel 'C re^\reql {.1 p"4pt 'I uod 'sailol atofing lo apy aql :lqtyqolg ptolo)

I 'lo^ 'salras eruaDs areJrelul pue sprollo)

'serlquessejles lrlrqdrqdue Jo dpnls eql ur

uorlelusrunJlsur a^rlfadsoJd se prlualod roleru seq enbruq]el urlu ureoJ frdols-oJfrrrr eql pue suo4nlos lrlrqdrqdrue ur sJ.rnlfnJlsoueu luelfeJ-rns 3o aruasard

er{} roJ sJolefipur se J^]JS deur suoqeuiloJ {lEIq elqe}sun pa^resqo 3r{+ leq}

1sa33ns sllnser arII 'seleJrelur str uo pue urlu aqt Jo {lnq eq} ur qtoq sarlqrues-se luelleJrns Suqsrxe aqi Jo uorlrn4sep pue uoqezrue8roer rr{t {t1m (s1ods pue

slop) suraned {lelq alqelsun Jo uor}euroJ erl+ Surl:auuof rusrueq)aru e s1sa3-3ns auraqrs Ierrleroeqt pesodord aq1 'rulg urq] er{} rprsur pue sereJrr}ur aq}

1e lsrxa sate8a,rSSe pelquesse3las Jo serres E ler-l] uortdurnsse eLIt Jo srseq eql

uo palardrelur eJe sluauruadxe eql 'a8uer uorleJlue)uof luelfeJ.rns ,^aoJJeu e ur-r{il1v\ a8ueq: dreqs e ,{eldsrp srul5 arll Jo sfr}srral)ereq) lqeuDl aql Jo pra.,r.as (7)

:dpprnb a;nldn; ureql ureJuor ]Er{} surlu eq} pue seur+eJll tror{s dra.t aleq qllqa'prlrrsqo a,re (s1ods pue slop) su,ra11ed {lelq elqe}sun (1) :SumolloJ er{} 1(oqs

slFsar aq1 'srs,(pue aSeurr s^qn)3suof pue Surprorar oeph 8urpn1:ur ,,(q parrord-rur (lleuollppe sr dntas pluarur;adxe eql 'e,l\o.rexf pue o{pnleqls Jo 11a: 8ur-JnseJur aql qll.A salerado LIllr{rK 'por{+Jru frrleuroJaJJaluroJfrur e er^ pe}e8Esa,r-ur are sfrlst;apeJer{l urlg ar{J 'pJ^resqo eq o1 sr dlqurosse1lJs Jo lesuo Ier+ruruaqa saqquenb apqdrqdrue Surqrear go ,Qrpqrssod anbrun e sa.tr8 srql 'sa8ueqr

uorleJluaruof llerus dlaura.4xa pue slueluor luepeJrns ^ oi JoJ sar+radord

url5 ul sa8ueq: aa,rl:adsar er{l Jo uorlerurlsa ar{l slv\olle sre}aurered uralsds go

Io4uor au5 aql }eqtr sr anbruqral urlg rrdorsoJrrur ar{t Jo a8elue.tpe rgr:ads eq1'paluasard sr sernlrnJlsoueu rrpqdrqdure pelquresse1les Surureluor stulu ureoJ

rrdo:sor:rur Jo suorleS4salur lefqa.roeq] pue pluaurr;adxJ luefeJ go da,trns y

l]EJlsqV

Ao\noqL uzu0ld puo 0Azltw oualf

surlll tueoJ ur sarnl)nrFoueN luepe#ns

8

'tjr

plotlo) I ' v's

atnltaqul plolln'['zrr

k00zl29,''l't 'a{peu

'rrg atr{tayu1 pro11t

'ng atrttayul pro11t

z)L g'1u21.1)laurJque{un'l 'n

(9002) t8z-z8z v:y'pry sprollc

'LgZ \500Z) t9Z s1

:y ltng sprollc

(IOOZ) 97 nnur?ur

'watp'wV'[ ":'€.2

\996il zf 1os

ler^eslfl 'splollo):

{o tuoaq1 '')'qJ'1 'l't66I '>lro^ .\\rN

snoanby w sauol'rcr \2004 96'!.

"g'l ^oue^I "c')'rsr€ (166r)

-Jeuuelx\ "c'c 'sr'06I

ptollo) 'f ''tt'a 'r"g ^eopEd "

'lro^ ,{ JN 'Jluar'sauatqwary

1nttflo-riLwol :1tffi src1o

Sn ''J'H 'PrErId-{

g '1)1a11) 'slqa '[ "a

66y 'ng acv{ta

sLL 'Z plouox ''c'l

rsr I

f SS I S Surfactant Nanostructures in Foam FilmsI

8.1Background

The investigation of the self,assembly of amphiphilic molecules into micellaraggregates is one of the oldest topics in colloid chemistry 17,2]. Within the widediversity of nanophenomena in fluid media, of particular importance is the on-set of seliassembled nanostructures in aqueous solutions of surfactants [3-11].

For more than 40 years the microscopic foam fi1m technique has been a ma-jor instrumentation mode in the study of surface forces and stability of colloidsystems 112-77). One of the major advantages of this instrumentation is thepossibility of registering and following fine changes in these forces during thedrainage of the liquid fi1ms. The films have radii in the range 10-500 pm andare formed in the Scheludko-Exerowa measuring cell of the thin liquid fi1m mi-crointerferometric technique. This instrumentation allows the direct measure-ment of most parameters that determine the properties and the behavior offoam films. The microscopic foam film was the first simple model of two inter-acting fluid interfaces related to the study of the classical theory of Derjaguin,Landau, Verwey and Overbeek (DLVO theory) 172-231and also provided its firstexperimental verification [13-1 5, 23].

Recent investigations on foam films from aqueous amphiphilic solutions haveproved that the film drainage kinetics contain important information about thepresence and reorganization of self,assembled nanostructures 124-271. Thesestudies are related to some other surfactant solution properties and particularlyto the data obtained in surface tension measurements [28, 291. In earlier stud-ies, Exerowa and Scheludko [30] and iater Exerowa and coworkers 128,29,3I)reported precise results concerning the surface tension isotherms for amphi-philic solutions. The basic outcome was that the surface tension curves of aque-ous solutions of certain surfactants (alkyl sulfate homologues, etc.) in the pres-ence of added electrolyte run in an unexpected manner.

In Fig. 8.1 are reproduced the data [28, 291 for the case of solutions of sodiumdodecyl sulfate obtained by the spherotensiometric technique of Scheludko [32](accuracy+0.005-0.01 mN m-1;. The curves contain distinct kinks and plateausectors. These regions are situated within the range of amphiphilic quantitiesthat are orders of magnitude lower than both the bulk critical micellar concen-tration (CMC) and the close packing values of the adsorption layers on thewater/air interface. One plateau portion is distinctly observed when the quantityof the added electrolyte is high: C"r,.,:0.5 M (curve 1). For a iower quantity ofadded electrolyte, C"1,.,:0.1 M, there are two portions: a plateau at lower surfac-tant concentration and a kink at high surfactant concentration (curve 2). Exero-wa and coworkers 128, 291were the first to advance the idea that this odd behav-ior might be due to the presence of smaller selflassembled structures. Theycalled them premicelles and introduced the concept of critical premicellar concen-tration (CPC). If premicellar entities could exist, their presence should inevitablyshow up in the results from other types of experiments also, as is the case withthe usual micelles (at the CMC).

40€ZE; 3 0

20

Fig. 8.1 Surface ten:at dif ferent electroly

One specific fer

tions is their labil

and to the innate

as a result of weal

ing forces" [8, 10

do not maintain iwith each other llsusceptible to eve

lution, temperatt

fects the overall c

the amphiphilic :

identification of I

proaches that cou

struction of surfa

instrumentation

Generally, the

for the formatior

distribution com

bling principles :

demands for the

ing surfactant ag

potentially contai

factant selfassen

the specific adsor

tion demands "n

faces. The waterT

option'that migt

'areJrelul sII{} Jeeu ssaro-rd Surlqurasse1les Jr{} ur e.raJrelur }q8rur leql ,,uor1dorrqoqdo-rp,{q,, e,rrleula}le uB seJnsua reprrged ur e)eJJelur .rre/ralervl JrIf 'seleJ

-Jelur p1ng {q papr,tord are }eq} suor}rpuo) pluauruadxe ,,.replnu,, spueurep uoq-rurlsrp srr{f 'eueuouaqd Surlqurasse1les aqt pue s}telJa uoqd.rospe :grtads aq}uaa^qeq uollellueJaJJlp alernffe ar-11 sr enssr luegodun uy ,{lqurasse1lJs luelleJ-Jns Jo ursruerlreur aql ]noqe uoqeurJoJur le.rntrnJls alqenpl ureluof ,{1p4ua1odserlrlrqrssod uorlezrue8roa; esrql 'ISS] ,qlrulxo;d s1r ur sate8arSSe luepeg.rns 8ur-3.rarua rql Jo uorlnqrrtsrp azrs eql pue sa1e8a;88e er{} Jo urroJ ai{} roJ spueuep:gnads sefnpul ereJ-ralul ue Jo ,firurxo;d eql 'Jlrlerado ,(1pg are saldrturrd 3ur1q-uesse1lrs llere^o aqt q8noqllv 'uorlnlos

{1nc[ rr{t q}r1v\ pa.redulo: uoqnqrlsrpJZrs rrer{} ur sa8ueqf safnpur pue seJnpnrls pJlquesse1les Jo uor}EurroJ Jql roJsuortrpuot tgrtads eql seruangur .Lrepunoq aseqd e Jo afuasard aqt dlerauaS

'ltZ-tZ] puDi srq+ go uoqdo .Aaeu e paloutord seq uorlelueurn.rtsur)IrleruoraJJelulo.rflur urlg prnbrl uF{l Sursn seJn}fnJlsoueu }uelfeJJns Jo uorllnJ}s-ep pue uoqezrue?roar er{}Jo,(pn1s er{f 'sruets,{s qrns sserppe ppo) }eq} saq:eo,rd-de as,raa,tp aJolrr JoJ pueuap luelsuol B sr aJer{I 'sar:ads aseql Jo uor}Elgliuepraq] uI seqFlIJJIp snoIJJS lnoqe s8urrq taa,a,lrr,oq 'sarnlrnrlsoueu trpqdrqdure aLIl

Jo retrlerel{r ellqel rql'sarn}rm}s rrlrqdrqdure eq}Jo uoqnqrr}srp ilera^o ai{} s}leJ

Je e^oqe Jr{l Jo ,(ue 3o uo4erJe^ 't1a 'sa:e;ralur Jo ,Qru[xord 'aln1e-radurJl 'uoqnl

-os er{}Jo uot}tsodurof :suoqlpuo) s,ruelsds aqtgo uoqelurpour fiala ol alqqda:sns,fua,t ,(1pnsn ere sale8arSSe asar{l 'uoserr aures er{} roC 'ltt 'tt'g] ,raq}o qlee qlr.^asluaru8e.g Sur8ueq:xa dlsnonueuol aJE lnq sarlquepr luaueu.rad urelureur ]ou op.{aqt 'a}rug a,re sale8arSSe :rpqdrqdrue aqr q8noq}F 'snr{J '[II '0t 'g]

,.sarrog 3ur-soddo;o aldr:urrd,,Jo uorlou aql ur pezrrcuturns suorlfeJalui Je{eel\Jo llnseJ e sereadde.{aq+,(larueu'sarnlfn-rlsoueu JSer{}Jo }asuo aqlJo esner e}euur eq} ot puesapqdrqdrue eqlJo arnlrn4s Ienp ei{t o} per[e sl s1{J re}]eleq) allqel rrer{} sr suoq-nlos snoenbe ur serlquesse1las ]ue+leJ.rns Sur8raure er{}Jo ern+eeJ rgnads aug

),.22 pue suorterluaruot (13ep) a/;or1:a;a luerel;rp lesuorlnlos ale1lns ;bapop urnrpos Jo surraqlosr uorsuel efe/nS t.g .3!l

[ilo*] 'J

n_OI ,_01 n_01

ezrl nunony*s L'g

r{1r.4a JSel 3q} sr,'{1qe1r,raur pporll-uefuol Jellelru

,{aq1 'sarn}fnr}s

-^eqeq ppo srql .-orexg '(7 a,unt)-teJtns re,rol ]ego ,,Q4uenb ra,Lrclrpuenb aq+ uaqeq] uo sradel u-uafuol Jellalrlu

sarlquenb l1lqdnealeld pue slu

[Zg] o>lpnleqrs Junrpos Jo suo4r

-sa,rd aqt ur (':1a-anbe

Jo salrnl r-rqdure roJ sruri

[tt '62 '97] s.ra>1

-pnls tarltee ul '

,(peprrped pueesar{f '[tZ-tZ] raq] lnoqe uorleu

JAer{ suoqnlos fr

lsrl; slr papr,to;d'urn8ehaq

Jo k(-ratrur o,^a}Jo lep(

Jo loher{eq eLIl-eJnseeur ]letrp-pu urlu prnbrl upue ud 00S-0I ;aqt Sur.rnp sefro.

aq] sr uo4elueu

prollor;o dlrpqel-eru e uaaq seq .

'It t-S] s+ue]reJl

-uo eqi sr e)ueu(

apl.^ aql uFIlllK

Jellerrtu o+ur sel ncq

F1

zH0v!

IJUN N t'0 -o-

IJBN l l9'0 -n-

..or l171.url s.1

.,or'..'..'...'...'....'.....'.......'..-.-...-----fltt

^"f'^ |

F I lrr /1/1-

/ 1=ci 1; z-

La

f 90 I S Surfactant Nanostructures in Foam FilmsI

The specific kinetic and thermodynamic properties of thin liquid fi1ms and

especially the disjoining pressure create more additional options for the impact

on existing micellar entities. The role of the disjoining pressure might be re-

garded as an influence of an "outer" background fie1d. Thus, upon drainage of

foam films, which originate from solutions containing self,assembled nano-

structures, the initial bulk and interface size distributions are altered in compar-

ison with the respective values in the prirnary solution. The existing aggregates

are reorgantzed and destroyed. The effect of these events is evidenced through

the specific run of common parameters that characterize the thinning of foam

films 124-27, 36, 37). Hence foam films can serve as very suitable instrumenta-

tion for model studies of micellar solutions. The results obtained via this "dy-

namic" too1, coupled with static and dynamic investigations of adsorption behav-

ior, supply more detailed information about the existence and structure of sur-

factant assemblies in amphiphilic solutions.

The aim of this chapter is to give a survey of recent experimental data and

model considerations that illustrate the impact of amphiphilic nanostructures

on the drainage of microscopic foam fi1ms from aqueous surfactant solutions.

The results obtained support the notion that the microinterferometric setup

equipped with a Scheludko-Exerowa ce1l can serve as a valuable tool for the re-

gistration and investigation of self,assembled structures in surfactant solutions.

8.2Drainage of Microscopic Foam Films

The experiments are performed with sodium dodecyl sulfate (SDS), specially

synthesized for us by Henkel I(GaA, Germany, that does not display a mini-

mum in the surface tension isotherm. The experimental conditions are exactly

the same as in the case of surface tension measurements [28, 291, narnely, aque-

ous solutions of concentration range within C5 t 10 6-10* M SDS- (Cs < Ccrc).

The added electrolyte is sodium chloride (NaCl, Merck), heated at 600'C, and

two concentrations are investigated: C"r:0.5 and 0.1 M. The temperature is

maintained strictly at 22+0.1"C. Triply-distilled water is used with electrical

conduct iv i ty k :1 .0-1.1x 10{ f ) 1 cm 1.

The foam films are studied by the microinterferometric method, which operates

with the measuring cell of Scheludko and Exerowa [13-15]. It is shown schemati-

cally in Fig.8.2a. Microscopic films with radii of about 100 prm are formed in the

middle of a biconcave drop, situated in a glass tube of diameter 0.4 cm, by with-

drawing the liquid from it. In the case of the lowest concentrations and the blank

probe a variant with a supplementary reservoir next to the meniscus is also used

[14, 15]. The classical experimental scheme is additionally modified with video re-

gistrat ion via a CCD camera (Sony, DXC-107P) (Fig.8.2b). The digit ized image is

processed with a powerful PC using a capture video card.

A particular advantage of the film techniques is that the microscopic dimen-

sions of the thin liquid layer allow the possibility of dealing with very low sur-

f n r--l

l*-

/ \ U

r*\t \

a)

b)

Fig.8.2 (a) Microince l l o f Scheludko ar(2) microscope; (3)capture video card,in process ing of the

factant concentra

sibility of tracing

structures rnight

of surfactant asst

to the following

ties on the previ

characteristics th

The investigati

tration provides 1

patterns - dots

:(urg Suruurql punorS>1teq eLIl ur pauasqo ere - stods pue strop - suraped>pelq alqelsun) suorlelrrsqo a^rie4lenb (1) :sllnser;o sad,Q o.^q sapho-rd uoqe.rl-uefuor luelleJJns o1 1:adsa; qlF a8eureJp rullJ rueoJ er{1Jo uorle8qsa,rul aq1

'saJnl)n.rlsoueu Ipqdrqdrue Jo aluesard aql ol a^rlrsuos aJE ter{l sfrlsrJalfe.rer{frulg eql PuU ot (Z) pt" sllnsrr uolsuet ereJrns peurelqo disnor,ra,rd eqt uo serl-;adord a8eure:p urlu rueo; aq] asodelxnf ol (1) :s4se1 rgnads Surrrrollog rr{t otpelnper se,^a srulg tueoJ rrdorsoDru go a8eurerp eql uo sarlquesse luepeJrns Jot:edurr ar{} aull}no ol tule 1e;aua8 eql 'e.roJereql 'para}sr8ar ac1 }r{8rur se-rn}lnJ}s.re11a:rur(a,rd) go lesuo Frtrur aqt erar{^\ suoqrpuor eri} o} >1teq 8ur:er1go .Qrpqrs-sod aqt saa,r8 srql 'suoqnlos :rpqdrqdure &eurud eq+ Jo suorlertuoruo) luepeJ

'Surpro:ar oepr^ eql 1o Surssato.ro urseBels eqlJo wet?etp lrlewaqrS (q) 'rapro:ar (il, b) lpre: oaprn arnlder

tll!/v\ fd (g) :rar;dr1;nuuoloqd (y) lerau,re: oapr^ C)J (E) lado:sorr!ui (Z)larrnep Surlelsou.laql ul llal Sur.rnseayl (1) 'emorax3 pue o)pnlaqls Jo llal

Suunseau-r aLll qlr^\ dnlas ;e1uau;uedxa:rllaurore1lelurorftn (e) Z.g.fllJ

--rns rltol dre^ rlU,-ueurp :rdorsort

sr a8erur pazqrS4-el oaph l.llllY\ pal

pesn osle sr snfsr

{uelq eq} pue su(-Llll^a .{q 'ur:7'g .

eql ur peturoJ erl-qEtuer{fs u,AAorls

sale,rado Llllq,\\'p

Ielu]lrla r{}uL p;sI eJnJeredural ;

PUP 'JO009 +e p.

.()r,{)J > sf,) -SC-anbe dlaureu '[6

d1}:exa aJe suorlr-lulu e ,{eldsrp Id11er:ads '(SCS)

'suorlnlos luellr-rr ar-Il roJ Ioo] a

dnlas frJleruoJeJ.'suorlnios

luelrejsernllnJlsoueu f

pue elep Fluelur

-Jns Jo eJnlfnrls-^er{aq uorld.rospt-,{p,, srq} erl peur-eluJurn4sur elqr

rueoJ go Suruurql

q8no:qt paruepusa1e8a.r83e 8urlsl-.reduo: ur peJell-oueu palquresse

3:o a8eure.rp uodn-Jr aq lq8rur a-rn

lrediur eq] loJ sr

pue surlg ppbll

(q

i '**=#r+++J I l---..-.,.e-*tl--- - -- --i

Itstl su.r1t1 wool ctdocsotcllltl lo aSourotg 7'g

ITItIIII

(e

., 1..*iI

\.J

lJ/2l 8 Surfactant Nanostructures in Foam FilmsI

(2) specific drainage characteristics (evolution of fi1m thickness values, film

drainage times).

8 .2 .1Black Patterns

The observed black patterns may formally be classified as of two types. The first

type (spots, black films) is characteristic of higher concentration ranges of the am-

phiphile used and are precursors of the classical black films [common black films

(CBFs) and Newton black films (NBFs)l [13-15, 38, 39]. These patterns generally

evolve into films that survive within longer time intervals (minutes, hours). They

are very well described and have been related to the lifetimes and the stability of

liquid films [13-15]. The common feature of the surfactant systems where these

precursors of black fi1ms are observed is that the adsorption surfactant coverage

on the liquid/air interface of the initial solutions is almost ciose packed. From this

point of view these black formations mark a specific stage of the evolution of black

(plane-para11e1) fiims, namely the transition to a new thickness of relatively stable

configuration: CBF or NBF. This thickness transition has been denoted the critical

thickness h., and the surfactant concentration at which the onset of this type of

black patterns is observed is C61 [74, 15,39].

With certain amphiphilic solutions, however, black patterns of a second typ",

dots and unstable biack spots, are observed [2a-291. The unstable black forma-

tions appear when there is some deficiency of the surfactant in the adsorption

coverage on the interfaces for miscellaneous reasons. These formations have

lifetimes of no more than several seconds. The respective foam films drain

quickly and survive for at most a minute or two. Their onset is also closely re-

lated to the specific structure of the surfactant. There are no systematic data in

this sense, but it seems that, as a rule, the stabiliztng arnphiphile should have a

long hydrophobic tail as opposed to a comparatively sma1l hydrophilic head [40,a1]. This surfactant structure ensures the formation of foam films at lower sur-

factant concentrations, which, although of shorter lifetime, still live long enough

for it to be possible to investigate them.

The black dots (Fig. 8.3) appear at the lowest surfactant concentrations [atabout (2-3)x10-6 M SDSI. They live for 3-10 s and do not grow in size. It

should be noted that the minimum concentration for the first onset of these

black patterns does not depend on the electrolyte concentration. V/ithin the

range of electrolyte concentrations added here, the "criticaL' value is at about

(2.0-2.5\x10-6 M SDS 1271. The spots (Fig. 8.a) are characteristic of higher am-

phiphile concentrations. They live for less than 1 s but quickly grow in size.

Upon increase of the amphiphile concentration both their number and the

probability of their onset rise (Figs. 8.5 and 8.6).

In Figs. 8.3 and 8.4 are presented typical pictures of the foam fi1ms and re-

sults from the respective image analysis. The morphological difference between

the two biack formations is well distinguished. The "b1ack dots" (Fig.8.3b) are

shallow local thinnings with irregular thickness. The "spots" are thinner black

a)

?

P z ox

a-o r nc

; 5xiI

0

b) Pi

patterns and ma'

background foam

Although the

nuances in their

higher electrolyte

and are well obsr

a more subtle dil

first observed wh

teau portions of 1

rise in the surfac

accompanied by

change in size, br

The basic resul

of the onset and

in the draining f<

sion isotherms. T

-elrpur ue se pereprsuor aq tq8rur s+op {lelq Jo efuereJdde aq1 'srureq}osr uors-url efeJrns aql ur suor8a.r nealeld pue {uDI eql pue surlu ureoJ Sururerp eqt ur(slods pue slop {relq) sura}ted {relq elqe}sun er{l Jo sargadord pue tresuo ar{+ Jo,{uorqru,{s uor}eJluefuol eq} sr suor}elrrsqo a^rletglenb er{t Jo }lnsel rrseq aql

's1ods alqelsun ta8rel uroJ pue ,tnor8 ueql lnq 'ezrs ur a8ueq:

lnoqlr.^a spuofes le-re^as roJ e^rl r{llr{A\ 's1op zvrau Jo }asuo aqt ,(q parueduro::eseurqauros sr Jequrnu lods ur eseeJfur aql 'uorleJluafuof ]uetleJJns ar{l ur JSrJ

e qlt,/n '(t'S'3lg ur ]esur er{r aes) rurer{losr uorsua} eleJrns ar{}Jo suor}rod neal-e1d aq+;o a8uer Jq] uro! eJE suorleJluefuof ]uelfeJ.rns eql urr{,^a pa^resqo tsrusr lop e Jo tasuo aq1 's1ods ar{t pue s}op aq} uea^\}aq eruerelJrp ei}qns erotu esr eraqt '(lf"N

I I I'0) uorlerluatuor aldlortrale rr^\ol }V 'pauasqo IIa./!\ ere pue

auq ra8uol e roJ a^rl slop eql '(lfeN IAI S'0) uorlerlueruor a1d1o.rpa1a ,raq8rq

1e '.(1arue51 '.Qr1uenb tFS pappe aqt o1 ]radsa; Lllyv\ saturleJll rleql ur seruenuauros eJe ereq] 'aures Jr{l sr a8ue; uor}eJ}uafuof }ue}feJ.rns aqt q8noqtly

'(qt'g'3tg) urru ureoJ punorS4:ec1ar{} ulqll^\ (surlgor:nu) suorpod 1a11ered-aue1d se peaar^ aq deru pue suralled

uorlrsod loxrd001

&-,o o''''..,--.,-,.._r. r..i 4

>llelq Jeuurr{} Jrr

a.re (qg'g'3rg) ,,s.uea^\lJq elueralJ-aJ pue s[ulu urr

aql pue raqrunu'azrs ur mo.r8 dp-ure raq8rr{ Jo rrl

lnoqe }e sr anlel

aq] urqlrdruorl

eseq+ Jo l3suo ls

1l 'ezIS ut ,tno;3

1e] suorle.rluefuo

q8noua 3uo1 a.tr1-rns Je,^Aol ]e slul'0t] pear{ rqrqdo.

e a^Er{ plnoqs rlr

ur elep rqeuralsl-ar .,{1asop osle sr

urerp slulu rueo

JAer{ suor}elujoJ

uorld.rospe eqt u-eruroJ Trelq elqr'ad(1 puo:es e Jo

3o adll srr{t Jo lal

IefrlrJf ar{} pe}ou:

elqels ,(1a,,r4e1ar 3<>llelqJo uorlnlo^;

sIql luorc 'pe{le(

a8e.ra'ror luelleJresaql eJeq,^ slue

3o ,Qrpqels aql prdt,{I '(s-rnoq'sa1r

(leraua8 sure+tre(

surlu Pelq uouru-rue ei{}Jo sa8ue;

]srg er{J 'sadl+ o

(q'10P )lrelq

1o srsl;eue e8eu-rr (q) :lop )relq :suratled 1te;qelqelsun Jo uortnlo^e aql;o a;duex3 (e) g'8'8lJ

3^Xso

3'ul o

-9.

xll/ J

Od,

(e

ruII} 'ssnle^ ssJr

Itetl sw1r1 utool ctdotsottlytl{o aSoutotg 7'g

l94l 8 Surfactant Nanostructures in Foam FilmsI

a

o t 0a

(F

L X()-o--C)hr)

()a)

t=0.12 s t=0.44 s t=0.80 s

Fig.8.4 (a) Example for the evolut ion of unstableb lack pa t te rns : b lack spo t ; (b ) image ana lys i s o fb lack spo t .

tor for the presence of amphiphilic structures in the initial surfactant solutionsfrom which the respective foam films are formed 137), while the onset and evo-

lution of the black spots mark the crucial change in the interrelation betweenthe bulk-film drainage properties and the change in the adsorption layers on

the interfaces [25, 271. The persistent emergence of, although unstable, clearlydistinguished black patterns (dots and spots) influences the drainage behaviorof the foam films.

8 .2 .2Drai nage Characteristics

The video recording and the image analysis permit closer examination of the

drainage evolution of the foam films within the entire concentration interval

that is investigated. The foam fi1ms studied do not reach equilibrium thickness

[25, 26]. Provided that the investigated foam films originate from surfactant so-

a ) 0

'tfeN v\ s 0 (q) 'r'0 (e):r"f'PeArasqo sl anrnf uolsuatr efej

-.rns eLll;o uorpod neale;d aql

araq/v\ lEAralul uollellua)uol

aqt salouaP a13ue1rar PeqsBPaqf 'uollerlualuof 1uetrf eJJns

snsJe^ surailed ))elq elqelsun

Surnrasqo 1o &r;rqeqord 9'8'3ll

'Pa^lesqo are

eAJnl uorsual efe]Jns 3ql u!

s)ur) eql eJeq/v\ slB^ralul uolle.ll

-ueluo) aqtr elouaP sa;8ue]

-rer PeqseP aql 'uorlErlual

-uol luelle]rns snsla^ sloos

Jo requrnu aBereny S'8'3ll

,rrl ,*,,, u,oo1 trdocsottrl4l {o aSourotgZ'8

[ilout] 'J

roI

J"ZZ=1i13e11II9'0:SCS

[ylo-] 'J or

J"ZZ-1:IJ?NIII'0:SCS

Ll/lorrl J

{ +. to

+

J"ZT, = 1:lJ€N IAII'0:SCS

n-o I , !)l

-os lue+reJrns ruo{

sseu>lllql unIlqIIIn

Ie^lelur uollelluslt

aql Jo uoqeulluexa

Jor^eqJq e8eurerp

,{1.reap 'a1qe1sun ql

uo s.ra,(e1 uorldrosl

ueJ^\lJq uollelellJl-o^a pue lasuo Jq]

suorlnlos luel)eJJnl

o(Q

07.

0t

09

08

{ 00 I .-o

.,_0 I ,_01(e

;o srs(;eue a8eu.rr (q

alqelsun jo uollnlo^a 0f

09

08

€ 001 \.

,_01 .-0 I ,,01

.o '' -.1

oq(D

36(D

R- -o

to'o

0l q

s 08'0=l

SDS: 0. lM NaCl: t-22"C

u C,:1xt0.\,1 V*, C,:3x10-"M

c C.=2x10-"M - - -VRL, C,:2x10-tM

^ C.:2.5x1g-uM -V*r. C,:2xl04M

v C":3x10 ol!{

,l

o C:2x10- 'M w

s Y

< c=3xlo-tM n r)

- $ . Y

o C:8x10-sM ve ^s f l , l . "O @

r c.:2xro-rrr4 oouf*^ rf 4 +

. . i .^i+f,{.Hr#**er'+-;ofl ' tt" ' * '

I

^.fl*q=* vftft1re1erafii{1ti : i' -'-' --=r= - -

195 | S Surfactant Nanostructures in Foam FilmsI

n 10C)-

1<n

?.20E

t

- 100E?{

;80

70ha)

. " �20

ir.

;

80

lnml

C.=2.10-6M

C":3. | 0 "IVT

c,-4.1o'oM

C,:5.10-"I,{

c*:6-lo uN'l

c , l . lo - tM

C:,<.10-'N{

SDS; 0.5M NaCl: t :22"C

- - - V * . , C . : 2 . 1 ( ) o M'J

-V*.. C,:5.10 :Vl

oc

30 40 50 60 70 80b) h [nm]

Fig.8 .7 Exper imenta l th inn ing ve loc i ty resu l ts versus actua l f i lm th icknessfor cer ta in sur factant concent ra t ions.C. r : (a) 0 . . l and (b) 0 .5 M NaCl .

*: im"r.: : : : the calculated values for the Reynolds drainage in the

lutions of concentrations that are lower than both the close packing value andthe CMC values, they drain quickly and rupture within 1min. The film drain-age itself is performed in a regime of increased tangential mobility of the filminterfaces, as can be seen from the representative results for the drainage veloc-ity against the fi1m thickness shown in Fig.8.7.

Particularly informative are the following drainage characteristics of the stud-ied fi1ms: (1) the evolution of fi1m thickness with time and (21 film drainagetimes asainst the surfactant concentration of the initial solutions.

10

a)

Fig. 8.8 Mean thickn

The evolution ,

pending on the s

characteristic "br<

disjoining pressul

lou'er thickness v

be expected, the

out wide. These b

the concentration

served. Thus, in

consists of three

plateau and the I

trolyte concentrat

surface tension is

The film drain

thin film until thr

dependence ofthr

u.^aor{s a;e urd 00I Jo rrper rul5 rog (-z) seruq a8eure.rp ueeur aq} Jo aruapuadap

er{} roJ s}lnsrr a^rteinunl aril. 'a,rn1dn,r ,ro }ods {lelq Jo }asuo aql Flun rul5 ulrll

e Jo uorleurroJ Jo luJurour JI{} uro4 pagr:ads ale saurl} a8eurerp ur15 eql'(qS'g'8tg) o^l lsnI a.re sar{runq arrrlradsar eql'surrar{}osl uolsual r]eJrns

eql ur uorSar nealeld +lurlsrp auo dluo sr erer{} sE reJosul 'suorJe.r}ue:uor ap(1o.t1-ra1a .raq8lq roJ pe^-resqo sr aures aril'(eS'S'3lg) suor8ar >lul>l rr{t pue nealeld

er{} Jo s}asuo Jqt e}elrpul ot se os padnor8 'seq)unq }lul}slp aarql Jo s}slsuof

,,ruooJq,, eql 'uoqeJluefuol a1,(1or1:a1a rJ.^aol eq+ Jo esel eql uI 'snl{f 'pa^-ras

-qo aJe sel;nf uorsua] efeJrns eql ur sJqrrerlnfed aqt JJJI{,I suol}e.r}ualuo) eql

Jo r{lunel aqtr se}elrpur }eqt de'l e qlns uI padnor8 aJe ser{funq asrql 'epl^\ }noLIllJJtrs ]eq} 'seqrunq lluqslp preles olul seleredas ,.urooJq,, eq] 'papadxa aq

o1 sr JJnssard Sururofsrp aqt 3o lredurr elqelou e ueq.AA 'sanlel ssau>l]Ii{l rJ,llol

1y raqraSol qlunq e ur urrT salJn) eql 'alrleJado 1qs ]ou sr a.rnssard Surutolsrp

eq] uJi{.l senlel ssau{rrql q8rq lV 'peurJoJ sr selrnf Jo ,,urooJq,, frJSrJJ}feJeI{l

e 1eq1 .{errr e qfns ur unJ selJnl aql 'uoqeJ}uefuol }ue}feJJns aq} uo Surpuad-aCI '8'8'8tC ul paluasard sr eurrl qlu!\ sseu{llt{} urlg eq} Jo uoqnlo^a el{f

'lfeN y\ S'0 (q) pue ['0 (e):1": roJ eurl r]11/v\ uoltnlo^e ssaulrrql ueay\ 8'g'3ll

(q [sl r (ea7,0t0Ew0tw0I

bt

a8eurerp uru (Z)-pnls Jrl] Jo sfrlsl

-lolel a8eurerp arrulu rr{};o .Qrpqr-urErp ruru eql'pue enle^ 3ur4:e

***F**n*I{"OIX{I'E:J

si L-01\02:J o

$01x0 f=J :jl

tr^r1.r0lxg.Z=) Es

tr{',t}l}:0'Z= 3 o

0l\l't:3 ItceN w f'0 :sos

09

08

H

H

001E

08

00[*

t4{.-0lxE:'J

hl.-0lxl=J

t&"0IxFJ

hl,,()lxS=)

l,Al*0txf:'i

l,^{.,0lxi:"J

W.,oItZ:)

0sz,

UUL *E,

[s] t

lceN y\ L'0 :sos

Irctl sut1t1 u.loo1 ttdotsotc11111{o a?outotq 7'g

f 93 | S Surfactant Nanostructures in Foam FilmsI

4.(l

tr

tr

3 0 b

C 5 0e

P

SDS: 0. lM NaCl: t :22"C

Aa"

N/t

/' ./'n-t -x/ /'''

L ^r"- ,//// ^ '/' / n - '/ /'-

N"/ j-'

l\ r-,/nA I n - t i

n--41 o.=tr

--.1-.l

a- -n-E--a- t r /Lr

8.3Understanding th

The major result

First, all the film

a remarkable cor

sion currres. Seco

and the probabil

the other rise in r

rnarrze, the "irrel

in the state of th

the surfactant co

the drainage cha

tervals, where th

In an attempt

of the possible

was first abandc

ness of the filmr

shown in F ig .8 .

mains virtually ,

va1. The run of t

respective surfac

There is alwal

the state of the

the quantity of t

of equilibrium f

and quickly witt

age due the Ma

[42, 431and one

mass transfer o

- t

1o- ' l o l

C, [mol/U

Fig. 8.9 Mean drainage t imes of foam f i lms against the surfactantconcentrat ion of in i t ia l sodium dodecvl sul fate solut ionsa t C"1 :0 .1 M NaCl .

l 0 - o ' - - - - - - - - - - - l

0 5 l 0 rC, lmoVll

F ig .8 .10 Mean d ra inage t imes o f foam f i lms aga ins t the su r fac tan tconcen t ra t i on o f i n i t i a l sod ium dodecy l su l fa te so lu t i ons a tC ' : 0 . 5 M N a C l .

in Figs. 8.9 and 8.10. The experimental results for the kinetics of foam film

drainage are juxtaposed on the concentration peculiarities of the surface tension

isotherms for the same surfactant systems. As one can see, there is a marked

concentration coincidence of the run of foam film drainage times and the kink

and plateaus in the respective surface tension isotherms.

1 0''

40E

E3 0 ;

a50

EP

SDS: 0.5M NaCl: t:22oC

I ,F'l , /I Fl / 'l / '

I ' / -. '] 'n nl-'

, f L ] 4.-n aA-_tr

! !

fytorul "

0t ,_013o-ol

'uorlelluaf uof

tuellBjins eql Jo uolllunJ e se sullu

ureoJ Jo sseu)trr..l1 lErrllr1 tt'8'3ll

>iuPi aqt pue saur[ i

pe{reu e sI areq} '.

uoisuel slejrns aql Jurlu ureoJ Jo slqau

tlnu wE o-'"1 o

IJ*N L{r o-'"J .

: islr Fimr-'l r --r-t+?8 T ITI

O?E:l

1e^a^\oq .ruole lleJ slql .lgy-wl luelfeJlns Surzrlqels rID Jo r+sueIl sseul

eql pue s:rureudporpdr{ urp 3o Suqdnot eql roJ lunof)e ppoqs auo pue ltv 'zvl

afieurerp aq] uo tla;Jr luelrodurr ue a^eq lsnlu lleJ;e ruo8uerel4l aql anp a8e

-relof luepe;Jns .qf tt sa8ueqt eq] 'elo;ereql 'os Jo ulur I ulqu'^a dp1:rnb pue

dlsnonuquor ulerp .(aqt pue alqelsun ere surlu tueoJ aql 'stulg urnuqrpnba 3o

uoqeurJoJ aq] a.rnsua o1 luJr)uJnsur sI luepeJIns Surzrpqels aID Jo fiquenb aqt

,aset lelntrlred rno uI 'Safe;JJlul t1rlu aql uo ra.(e1 uo4dJospe el{l Jo e}e}s eq}

pue uoqeurro; uralled {relq eq} ura^qaq drqsuopelrr esolf e sLenle sI eleql

'sllnsar a8euterp url5 rueo; ar{} pue uolsue} efeJrns a'ulradsar

aql 01 palelel eq lq8ru leq] +re4 Lue trqrqxa lou seop se^-Inr aql Jo unr 3qI 'F^

-Jalur uoqe4ualuof luelfeJrns pale8qse^ul Jql ulqlyv\ lue+suof ''(1enpn suleul

-ar pue fiirerlnlad lluqslp ou s.tn,oqs sseu{llq} FII}Irr aql 'II'8'8lC ut u1v\or{s

Jre suoqeJlueluof a1d1or1ra1a qlocl JoJ s]lnsal aI{I 'apelu eJsA\ sullu eq} Jo ssJu

_{tlql lefr}rrf arD Jo slueureJnseeur fr}eulalsds 'a.roSJlJI{I 'Psuopueqe }sru se^\

suoqnlos Frlrui eql ul sarnlfnrtsoueu luelfeJrns Jo afuJlslxe elqlssod aqt 3o

1da:uot eql lo1leqecl ,JetuIouqe,, SIr{} Jo uoqeueldxa ue TeaS o} }dura}}e ue ul

.pe^tasqo are sluJerfiosr uorsuel efeJJns JiD JO .,Saque1n3alll,, el{l aJsI{/( 'sle^Je}

-ur uolleJlueruof eIIIeS eql uIqlIA\ ,(pualsrsrad readde SfllslJalfeieq: a8eurelp JID

ur saflueqt asr,u.dals 'S1uaul.radxe iulu JIp ul laI{UnC 'uoqefluafuof luepe}lns aq}

Jo aseerfur uodn efeJralul uo4nlos/r1e arfi uo ra,(e1 uo4drospe aql Jo e]e]s eq] uI""8,r"q,3

e3o uSrs.reap e sr salfnl uorsuJl afeJins aqlJo unt ,1e1nBaIJI,, aql 'ezrleuJ

-urns oI 'uolleJluJfuol aql o1 lradsa.r qlIA\ JauuerJJpezruotqluLs e uI eSIJ larilo JI{}

uo s11rlg arpJo arullaJll eqt pue pueq auo eql uo lesuo rlerllJo dtrpqeclord aq] pue

suraUed >pelq eqlJo Jequlnu 3q1 'SluJulr.radxa rulg aql ulqltu A 'Puofas 'selln) uoIS

-uel eleJrns eqiJo saruadord ppo aql qll1\\ eluaplfulof uolleJluefuol slqe{Ieluar e

ldoris (sarurlagil'sel.Inf (1)q 'su;aped >pe1q) selluellnfed a8eure-rp uqg aq] 11e ']sIIC

.8ur,u.o1o; er{} ale s}uarurradxa uIIU uleoJ :i}eura}s.{s eq} ulo4 s}lnser roleur aq1

sllnsau ;eluaur.radxf aql 3ulpue1slapu6g'8

Ieetl vlntty loluautuadxl aq1 Surpuolstapun t'8

SDS: 0 .5M NaCl : t - 22 ' 'C

r - r r r , / i - ??--r-? ??

200 | S Surfactant Nanostructures in Foam FilmsI

7, t4oa

P l 2 o

to 5 c, hrrol/I1

To start, three

analysis of the fo;

1. amphiphilic na2. surface forces a3. the films are d

terfaces and thi

8 . 3 . 1Premicellar Concel

The starting poin

understanding thsurfactant solutio

at concentrations

what different frc

originating from

Generally, the orcipriori restrictions

the onset of self,ation of weaker "o

ist, the general sesibility for model

them as symmetr

An attempt to crbased on this ide;

8 .3 .2Surface Forces in t

Applied to the forits most importar

Foam films are rcontains self,asserfilm itself is modt

terfaces) 123,491.in all the phases

cal equilibrium.

The specific buJ

:1,t"" curve of tl

Xl : Yo'b;'rnt'bX

r 0 0

a)

a

P - . - "

SDS.0 lMNaCl : t -22"C

Iv/I

./tI,V-I

--r I/\+-silT'r - r _ [ - -- Eryennent

' N H

-d-_ 60t--

SDS: O.5MNaCl.t-22"C

t/5I

-'- E{rcd're't- - - v N t t

I +/ '

. . .

b)1 0 "

l 0 ' l 0 r 1 0 6 l 0 - 5C" frmlA]

F ig .8 .12 Exper imen ta l da ta and d ra inage t ime accord ing to conven t iona lf i lm hydrodynamics. (a) Inf luence of Marangoni ef fect (notat ions accordingto [a3 b]) : V-oulVn. : 1 +b+h, I h; b : - (3 a q I fq()os I Ac) ; hs:16ry (0 fs I Ac) II 's(doslA c) j ; Vn": (2h3 LPl3ryR') . (U) Inf luence of non-homogenei t ies inf i lm th i ckness ; Vp6 i s the ve loc i t y acco rd ing to the law in [47 ] .

C" [rnoVl]

would just back up the general tendency of the overall rise of the drainage timeagainst the surfactant concentration. It cannot explain the stepwise changes inthe foam film drainage experiments and their concentration coincidence withthe peculiarities of the surface tension results with increase in the overall am-phiphile quantity. The inadequacy of the common fi1m hydrodynamic approachis illustrated by an attempt to relate the drainage times to the known hydrody-namic factors that are fu1ly operative in our case also, namely the influence ofthe Marangoni effect [43] and the impact of thickness non-homogeneities onthe film hydrodynamics (Fig. 8.12) 147).

Hence the coupled peculiarities of the "static" surface-tension measurementsand of the "dynamic" foam film drainage characteristics cannot be understoodwithin the premise of the monomolecular state of the amphiphile inside thefilm bulk. Therefore, a different notion is needed to correlate these two types ofexperiments.

o,]xo'nixo,,#xq ffx - {x

{1,'q aLI} rog sar:ads rellarrur er{t Jo a^rnf ""lJ;e qlr.^a petouap are sarlrluenb >1pq rgnads eq1

rnr-rqrpnba p:-rurrrer{r pue Ielrueqletu

'Fu.req} ur e.re re}}el aqt '[Ot, 'L€ 'gt] saseqd eq] Ue uralqrssod sr dlqruasse1lrs apqdrqdure eq+ ]eqt prurnsa.rd sr 1I '[6t 'g7] (sategral-ur prnbrl/le) saseqd areJrns CZ o"^Al pue aseqd {1nq e se peleporu sr Jles+r urluaql 'suoqnqulsrp ezrs Jlruuap {q pezlreperer{l saqque pelqurasse3les sure}uofdle4rur leql uoqnlos lue]leJ.rns e uro4 pauretqo se papre8ar eJe surlu rueoC'[Ot 'Lt '9g] a.rnssa-rd Sututofsrp aqt dlarueu 'frlsrJal]eJerp ]ueuodurr lsour s1rroJ stunor:e dlqurasse1les lpqdrqdue go ,fuoaql eq] 'urlu ureoJ eql ot pallddy

sarlquassEJles luepelns puB sulll eql u! se)loJ a)e#ns

z't'8

'[17] alqrsneld d1p:ria3;aua sr uor]ou e q)ns leqt s^\oqs eepr srq+ uo paseqsarnlfnrlsoueu :rFqdrqdure Jo uo4nql4slp azrs eqt lfn4suol ol ldura+le uv'[17] sarpoq nealeld prller-os aq+ e{rl sale8a-r88e dlqrun-rr Ierrrtrruurds se ruall}

luasard o1 sr a1e8a.r38e rellarrruerd aqt go l;lauoa8 aql Surlaporu roJ ,ql[qls-sod auo arueH 'paretle rcl lou ppoqs saldr:ur,rd Surlqurasse1les praua8 rr{l '}sr

-xa ppol sa1e8a,r88e Jellelruard 3r 'aro;aJar{f ',,selro; Sursoddo,, ;a>lean Jo uoq

-re aqt Jo ]lnser E sr suoqnlos trpqdrqdrue ur sar:ads pelquresse1las Jo lasuo aql

leq] selels 1sn[ 11 '[6] sale8arSSe aqtJo JZrs urnurrurur eq] uo suor]fr4set uoudn lue asod 31as1r ur ]ou seop uor]euroJ allrllru Jo d-roaqi &eurpro aqt .(11e-raua3'[St]

fy,lf aql e^oqe suor]er]uefuol ]e suoqnlos truelfeJ.rns urorg Suqeur8uoslulu peurle4s Jo sesef prleler ur saqllue rellalru enr+ er{} ruo4 }uereJJlp ter{^\-euros eJe seJnpnJlsoueu essrlJ 'anle^

fl^lf ar{l ueq} Ja1(ol suor}eJ}uJluof }ereadde .{eur (sa11a:nuard) sernpnls pelqurrsse1las relleurs suoqnlos }ue}reJrns

IeIlIuI Jql uI suoqlpuof pluaurrradxa Jelnfrued aql rapun lei{} Surpue}sJepunaql sI suoqe^rasqo Flueuruadxa er{} Jo uorle}ard,ralur aq} go lurod Surpels aq1

lderuol rella)ruard

L'E'8

sarlrauaSouoq-uou ssau{ln{} pue saleJJJt-ul uilu er{t Jo d+Uclou IerreJ-re}ur q8lq Jo aurr8a.r e ur Sururerp rre surlg eq}'€

larnssard Sururolsrp sleed\ Jap uel aqt ,(q petreuruop e.re saf]oJ eleJlns'Z:suoqnlos luelfeJJns leqrur eql ur lsrxa uef seJnpnJlsoueu lr[qdrqdure'1

:strlnser a8eurerp url5 ureoJ eqt Jo srs,(1euepue uollelardralur ar{l JoJ Ier}uassa ,(ltsoru aJe s}uaruour ,(a>1 eel{l 'ue1s of

I tOz I stlnsay lo\uautuadxl aqt Surpuolstapun t'8

(r)

paluasa;d aq .(eur urlg rqt Jo-lrlslp ezrs er{J 'q }dursradns

;o sadfi o,^ 1 eseql

aqtr epISuI eg{dlq

poolsJapun eq lorsluJrue.Inseeur uo

uo sarlreuaSouroq

Jo eruangur aq+ {-dporpdq u^\oDI r

q:eordde :rueu,(p-[ue IFre^o ar{} uI

r{}r.^a sruapllulol

ur sa8ueqr asvurd.

arurl a8eurerp eql

6L

[l,4oru] "J

2O2l 8 Surfactant Nanostructures in Foam FilmsI

where

v b N l y b : N l ,An

N* + I , r l ' A* -

Ng + | ,N|i i

and

Xlo- (x lb)"" . r ( * ; * ,

Xft'o : ""P \(*i '- , t) ' lkTVs

b T A "

In the above, { and *, "r" the mole fractions of the bulk solution aggregates

and the solvent, respectively. The details of the theoretical scheme and the first

two multipiiers in Eq. (1) are reported elsewhere 133, 34,36, 50, 51]. The most

important advantage of Eqs. (1) to (3) is that the bulk micelle formation and in-

teraction influence are effectively decoupled from the interface adsorption and

specific film effects. In the above expressions, trz?'o and 1tf;'b are the standard

chemical potentials of a monomer and an n-rner, respectively.

The size distribution curve of the 2D arnphiphilic structures is obtained in

complete analogy with the buik micellization [35, 36, 52, 53]. All quantities char-

acterizing the interfaces are denoted with a superscript s. The result is

rzs - rz0.s 17int .s 17J .s1\n - 1\n nn At.,

where

Xioo-*r (#)

XIo:*r{#eos(h)+rr(h)ht (,ffi ffi) }

x,?'-(xi)"*r(- ff#t)

l@"\,- ui,i)Nij

)(zr nt.s- ' n - nai' \-

zkrA? a-,

( 3 . )

(3 d )

(s)

(6 ")

Lo'"- na\- ai (6 b)

c l L aX i " : e x P l - ;

L l l ,

tI

x e x p l -

LAgain, the intersl

are effectively dec

of the interface n-

a monomer and a

formation about 1

phile on the inter

For thinning fc

very important (se

centration is high

fectively depresse

Waals constituent

disjoining pressul

seliassembled str

in thinner films

comparison with

as the film draina

8 . 3 . 3Foam Film Hydrod

The films drain q

of this is that thr

equilibrium film

is well known tha

and the mass tra

the monomolecul

source of amphip.

Further, the unr

neities in the cou

the onset of loca

and the amphiphi

patterns) is accorr

and by an increas

black formations

the background t

opportunities are

the film hydrodyn

Hence in thinn

retardation is the

(2 )

( 3 a )

(3 b )

(4)

- N :\,z5 11

n" Ni + )._ tNij

'i;'i4lI

:"to I

'ZVl k;g

'3tg) -tg Surure.rp lalpred-aue1d a8rel ur se rures aqt sr uoqeprelersrql Jo ursrueqleru eql 'papreleJ sr ./v\og Floi aql 'suor8eJ Jauurql ur afuaH

reJsuerl sseur tuepeJlns eql pue srrureu,tpo"rp,(q urg aqlgo Surldnor eql uI seruareTJlp Ielol Jo r{lunel eql roJ pe}eell ere serlrun+roddoe.rour 'surlu:or)nu eseqt ul 'urlu ureoJ lalpred-aue1d Suruulqt punorbpeq aqtult{lr,/lt (surlgonnu) sqtprm de8 raleurs go sareld eqt rzrlensrl suoqeurroJ >llelqalqetsun pa^resqo aqt '(Ot'g pue 6'g

's8lg) saurl+aJll rulrJ ul eseerrur ue dq pue,Qrto1a,t Suruurql urlu Ilera^o eqt Jo u.^ op 8ur.,vro1s e ,(q paruedruotre sr (sura11ed

{lelq) saqrauaSouoq-uou aseql Jo }esuo eqI 'raJsuerJ sseur apqdrqdure aq+ pues:rureu,(porp,(q u4g 3o Surldnor praua8 aql ur sa)uareJJrp le)ol Jo tesuo eql.ro3 uorldo eJlxe ue seleeJf srql 'a8eulerp uriu rueoJ or{l Jo asJnof eql ur ser}reu-aSoruoq-uou ssau{rlr{} Jo u8rs reep e ere surelled >pe1q elqelsun aq+ taqung

'sa11acrulatd arl] :sap)e1oru rrpqdrqdrue Jo ef.rnos

Fuolllppe uB sI alel{l erai{ ta^el\oq '}ue}feJrns eql Jo e}e}s Jelnlalououoru eq}

Jo eser ar{t a{rpn 'lr)t-Zt} }ue}leJrns Surzrpqels ar{} Jo .raJsuer} sseru aq+ puestrrueudporpdq utp;o Surldnor tgr:ads e ur stlnser lreJ sn{l leql u1\\ou>l IIa.^a sr

1r 'suorleSpse^ur aSeure;p ullu a^rsueue eql tuotc 'sseu{lrql urlrJ runuqrpnba

Jo ]asuo rql roJ lusrllJJnsur sr ,{14uenb aFqdrqdute lpra^o aqt }eql sr srr{} Joesnel ar-lJ. &l[qoru Fr]eJratur Fquetsqns 3o aun8a-r e ur ,(14trnb urelp surl5 rr{I

srrueu{po.rp{g ru;r1 ueol

t'€'8

'spaarord a8eure.rp url5 eqt sesesee.rfur sJeurouour aeu er{} Jo raqunu eq} pue surlu JeTlrql qlr^\ uosrreduro:ur pasee.r)ep sl se4r+uJ luepeJ.rns ra3re1 er{} Jo uorlfeu ar{} slulu rauurql urefurH 'safeJra+ur ulrJ er{l le pue {pct uIIU er{} ur q+oq sernpnlts palqluessejlesSutlsxa eql Jo uolpn4sap pe)uet{ue Jo uorlfaJrp ei{l ur slre arnssard Sururolsrpsleed\ rep ue^ eqt'lL€'9g] sraded snonard ur u1v\or{s sV *If }uanutsuo) sleed\rep ue^ eql sr sefroJ efEJrns aql Jo ru-ra1 Surpeel eql pue passerdap d1a,rr1raJ

Je sl arnsserd Sururofsrp eI{} Jo luauodurof )I]eJsor}lela ei{} 'r{8li{ sr uoqer}uar-uor a/ior+rala eql perpnls seser eql 11e uI'(]9 pue p€'sbt aas) luegodrur fualsr arnssrrd Sururolslp ar{} Jo t]aJJa er{i '[0+(11)ul slulu tueoJ Suruurql rog

'll uro;; paruroJ sl urlg urqt e eroJeq uorlnlos {1nq e Jo r)eJretur eql uo allqd-rqdrue er{} Jo sarlrado;d Surlqruesse1las efeJrns rrsurr}ur aq} lnoqe uoqeurroJ-uI eq] t{srct d",il flarrrpadsa.r 'saseqd-Cz eqi ur aleBer37e-u ue pue reurouour e

Jo slequatod pluaql prepuels eq] a-re ,,[/ pue ,,j/ pue s]eu-u e)eJulur ar{} Jouo4le]J elotu eleJrns eql sl TX suoqenba e^oqe aql uI 'paldnorap ,(la,upagga a.re>llnq rulg er{l Jo a)uangul rgnads aql pue suor}fe.re}ur sar:adsra}ur eq} 'ure8y

()9)4-l dxa x;0v l

(q q) \n -r"au:

(" g)

(s)

(t)

sr lpsa,-reql seqpuenb 1ur paurelqo sr sa

prepuels aql are

pue uoqdrospe a.-ur pue uorleruJoj

tsoru eql'hS '0S

]sru erll pue ilue

sale8arSSe uoqnll

(p €,)

(, E)

(q s)

(e s)

1,,,ffi)i(z)

nllzl stlnsaa loluautradxl

t(r# ffi")dh)a-"[t '4)''4w ]a"":'ixaqt Burpuoxstapun t'8

ZO+l S Surfactant Nanostructures in Foam FilmsI

surfactnnta

mc

surfactant

P e r < 1 , 6 ' - H r

P,,=Y,o + lt '# l#l#v.(ru1 \= i{ = j[ - D' ̂ # - Utc d = t f - r { , c { = c ^ - c {

surface tensionisotherms

Fig.8 .13 F i lm hydrodynamics is coupled wi th the mass t ransfer o f thestabi l izing surfactant. Schematic diagram of the impact of surfactantnanostructures on the drainase of foam f i lm with unstable black oattern.

43]: The flow sweeps the surfactant molecules outside the black pattern, creat-ing locally a surface tension gradient that causes the onset of a tangential forcethat acts in a direction opposite to the fluid outflow, resulting in effective immo-bilization of the black pattern interfaces. The existing nanostructures in the mi-crofilm bulk are already destroyed and it is depleted of surfactant molecules. Inthe neighboring regions, however, there are still selfassemblies. Upon thinningthey are further on destroyed, providing an additional amount of monomers.The latter could participate in the feed-up of the black pattern interfaces(Fig. 8.13). This extra surfactant flow gives a certain additional time to theemerged local surface tension gradient to be maintained for a while and the in-terface flow to be retarded. This results in retardation of the further thinningwithin the black pattern region. The increase in the overall concentration of theinitial solution leads to the onset of more of these black patterns (Fig.8.5). Thelarger their number, the sharper is the rise of the overall drainage time of thefilm.

The proposed slow-down mechanism couples the presence of amphiphilic na-nostructures with the specific film hydrodynamics and the mass transfer of thesurfactant molecules in thinning foam films. It allows a unified explanation ofthe film drainage behavior and the surface tension measurements (Fig. 8.14).The juxtaposition of the presented results, related to two Wpes of experiments(static and dynamic), shows a synchronized onset of specific peculiarities in therun of the surface tension isotherms and the drainage characteristics of foamfilms against the surfactant concentration. Therefore, it may be regarded as ex-perimental evidence of amphiphilic selfassembly at surfactant concentrationslower than the CMC values.

$films

hydrod-vnamics

8.4Conclusion

This chapter has

of the microinter

Exerowa measurir

that specific filmperiments with inCMC. These para

zation of existinglayers on its inter

the amphiphile c,the presence of ar

The reported reliquid film instru

tool in the study c

References

1 f. McBain, Kolloia2 f . M c B a i n , W . D y

Chem. Soc., 61 (113 Curr. Opin. Collot'

(1996) whole issu4 Curr. Opin. Colloi,

(1997) whole issu5 R. Rajagopalan, C

face Sci.,6 (2001)5 W. Gelbart, A. Be

100 (1996) 1316e.7 P. Mukerjee, K. N

Corucentrations of ,Systems, NSRDS,

8 W. Gelbart, A. Be:(Eds.), Micelles, M

'656I '{ro1 ,^AeN 'sseld uourc8n4'sutygdrnog '1a>1uerC 'S 'epourq5 '; 's1asdntr 'X zt

.266I'}q)erproc 1e.^anlx'69€'lo^'seruerls

ptrs,(q4 pue plrleruaqlehtr :J serras'sJurs

lsv 9IVN 'uo1nps ur sapS

aBBy n1ntapwntdns puo splollo3 3u4tnn7u1 ,I13uot1g {o scnuoulq puo a.mpnryS

'('rpE) eq8e1rel'4 '8ueng '{ 'uaq3'5 rr'0861 'Iro ma51 'la1L41 sauuq

-uaq 7nn3op1g puo sa11otrq {o uolloltl-tog :pafg tqoqdoryl.g aW 'proJue;.')

OL'7661'Smqsralacl']S'eftunqy'suoqnps

rya1tafing w uoltbzlllarlhl '^ouesn6 'V G't66I '{ro .^aeN

'3e1-ran-.ra8uudgsnt{.npuo IN puo suols

-lnwoonrlN'sauuqla2ry'salp)llN' ('spE)xnod 'C '|neqs-uag 'V'UeqlaD '1Y\ 8

' 1 761'uol?qqsetN'SCU SN'swa1slgrynpnltng snoanby to suollu4unuo)

allnlry pt!t!t)'s1asd4 'y 'aa.fra>1nlzycl I'69r€r

\966r) 001''watl) 'snqa '['1neqs-ueg 'V 'ueqla) '

\ 9'/S€ (1002) 9

''ng atol-tatul plollo) 'urdg Ltn3'uepdo8eleg '6 s

'anssr eloq.^a \L661)fu) Z

"tcS an{tas1 plollo) 'ud6,'un) e'enssl aloq./$ (966I)

k) t "ttS atnltaqul ptollo) 'wd6 un1 E

'TZ€. kt6ll L9'2oS'waq)

'wV '['uosuo{ 'S 'ede '41 'ureg:7,tr 'l z'9SZ (€16I) Zt

''Z plol1ox'uresr61 '{ r

suorle4ualuol lut-xe se papre8a.r aq

ureoJ Jo sfllslJellt

Jr{} uI seqlJellnlec

sluaunradxa Jo Sa'(t.f 'S'3rg) sluaur;

Jo uorleueldxa par

3r{} Jo reJsue4 sse-eu :rpqdrqdrue;c

aI{} Jo aruq a8eutt

aril '(S'S'3rg) sur;

eql Jo uoqelluefu

Suruurq] rarlunJ i-ur rr.ll pue elq,u

aql ol 3urll lBuorsereJrJlur uralled'sreurouour

Jo lulSuruurqt uodn 's;

uI 'saplelour luel-[u aq] uI seln]lr-oururr aA4laJJe ur

J)roJ lequa8ue] e-lean 'ura11ed >pt

)uaJejau

'erpetu plng q seJnlrn-rlsoueu ]uelfeJ-rns go dpnls ei{l ur IootSursnuord pue aleudordde l-ra,t e se elJas lq8rur uoqeluJurnrlsur urlg prnbrlurq]:rdo"""'i,L"Jiff

fffiiH j#";iJ,[]Iff :iildffi J;""TjjJj;:r, roJ eluaplla lelueturradxa se pareprsuol aq deur uoqerlualuof apqdrqdrue eLIl

lsure8e srllslrelfeJel{r urlu tueoJ lrteuDl er{} Jo unJ er{I 'sefeJJalur slr uo sra.,te1uoqdrospe eql ur pue urlu eql ur qloq serlquresse luelleJrns Suqsrxa Jo uorlez-rueS-roar rr{} pue strureudp url5 Jo Surldnor aq} +lelter s.ra}aurered asaql ')hl)

FnSn eq] ueql JJ1!\ol uoqe-Ilua)uof luelfeJlns Jo Suoqnlos IeqIuI qlltr sluarurrad-xe url5 rueoJ tqeuralsds aq] urog palfertrxe eq uel sreluueJed -15 tgrtads ]eqtu.^ oqs sl lI {lqurassejles tuel)eJrns er{} Jo (pn1s aqt roj 1ar Sur.rnseeur e/(orex[-o{pnlaq)S e qtLA paddrnba anbruq:a1 rulg ureoJ rrrteruoraJraturorrrur er{} Joprlualod palroldxaun eLIt spre.^aol uoqualle ^\erp o1 palduape seq raldeql slr{J

'sllnsar ;eluauruadxa aql Jo uorlela.rd

-ratul aql p uet?erp rrleu.reqls tL'g'3ll

uotsnlf,uo)

v'8

scrureu,{po.rp,iqstulu

J3JSUUJ] SS€IU

lu€lssJJns

aSuururptul$ ureoJ

-dFffi

$sruJJLllosr

€ uorsuci cJEIJns#@=-#

sozl ,rtr"r"s"y

205 | S Surfactant Nanostructures in Foam FilmsI

t3 A. Scheludko, Adv. Colloid Interface Sci.,1 (1967\ 391.

'f 4 D. Exerowa, P. Kruglyakov, Foqm qnd

Foam Films, Elsevier, Amsterdam, 1998.'15 D. Platikanov, D. Exerowa, in So-ft

Colloids, Fundamentals of Interfoce andColloid Science, Vol. V (Ed. I. Lyklema),Elsevier, The Netherlands, 2005,Chapter 6.

15 B. Derjaguin, N. Churaev, V. Muller,Surfoce Forces, Consultants Bureau,New York, 1987.

17 B. Derjaguin, Theory of Stability ofColloids and Thin Films, ConsultantsBureau, New York, 1989.

18 D. Exerowa, T. Kolarov, Khr. Khristov,Colloids Swrf., 22 (19871 771.

19 T. Kolarov R. Cohen, D. Exerowa,

Colloids Surf., 42 (1989) 49.20 D. Exerowa, D. Kashchiev, D. Platikanov,

B. Toshev Adv. Colloid lnterfoce Sci., 49(1994) 303.

21 D. Exerowa, M. Zacharieva, R. Cohen, D.Platikanov, Colloid Polym. Sci., 257 (L979)1089.

22 D. Exerowa, D. Kashchiev, D. PlatikanovAdv. Colloid Interface Sci., 40 (L992) 207.

B l. de Feijtea in Thin Liquid Films (Ed.I.B. Ivanov), Marcel Dekker, New York,(1e88) r-47.

z+ E. Mileva, D. Exerowa, Adv. CoIIoid Inter-

face Sci., 100-102 (2003) 547.25 P. Tchoukov E. Mileva, D. Exerowa,

Langmuir, 19 (2003) 7215.26 P. Tchoukov E. Mileva, D. Exerowa,

Colloids Surf. A, 238 (2004) 79.27 E. Mileva, P. Tchoukov, D. Exerowa, Adv.

CoIIoid Interfoce Sci., 114-115 (2005) 47.

2s A. Nikolov, G. Martynov, D. Exerowa,

J. CoIIoid Interfoce Sci., 81 (1981) 116.29 A. Nikolov, G. Martynov D. Exerowa,

W. Kaishev KoIIoid Zh., 62 (1980\ 672.30 D. Exerowa, A. Scheludko, Comm.un.

Inst. Phys. Chem. BuIg. Acad. Sci., 3(Le63) 7e.

3l D. Exerowa, A. Nikolov in Swrfoctants in

Solwtion, Vol. 4 (Ed. K.L. Mittal), PlenumPress, New York, L984, p.1313.

32 A. Scheludko, A. Nikolov Colloid Polym.Sci., 253 (1975) 404.

33 D. Blankschtein, G. Benedek, G. Thur-ston, /. Chem. Phys., 85 (1986) 7268.

34 P. Missel, N. Mazer, G. Benedek, C.Young, M. Carey, J. Phys. Chem.,84(r980) 1044.

35 |. Israelachvili, Langmuir, 10 (19941 3774.rs E. Mileva, D. Exerowa, Colloids Surf. A,

14e (1999) 207.37 E. Mileva, D. Exerowa, P. Tchoukov,

Colloids Surf. A, 186 (2001) 83.38 A. Scheludko, D. Exerowa, Conl.mun.

Inst. Phys. Chem. BuIg. Acad. Sci., 1(1960) 203.

39 D. Exerowa, A. Nikolov, M. Zacharieva,

J. Colloid Interfoce Sci., 81(1981) 419.a0 E. Mileva, D. Exerowa, ln Emulsions,

Fo&nxs und Thin Films (Eds. K. L. Mittal,P. Kumar), Marcel Dekker, New York,1999, Chapter 15.

+t E. Mileva, unpublished results.a2 l. Lee, T. Hodgson, Chem. Eng. Sci., 23

(1968) 137s.+r (a) I. Ivanov, D. Dimitrov B. Radoev

Colloid J., 41 (L979) 36; (b) I. Ivanov,Pure Appl. Chent., 52 (L980) 7247.

++ E. Mileva, B. Radoev, Colloids Surf. A, 74(1ee3) 2se.

45 E. Mileva, L. Nikolov, Colloids Surf. A, 74(1993\ 267.

a6 E. Mileva, B. Radoev, in En'tulsiorus: Strwc-ture, Stability and lnteractions (Yol. Ed.D.N. Petsev), Vol. 4 of Interfacial Scienceqnd Technology (Series Ed. A. Hubbard),Elsevier, London, 2004, Chapter 6,pp.215-256.

47 E. Manev R. Tsekov B. Radoev Dispers.Sci. Technol, 18 (1997) 769.

48 D. Langevin, A. Sonin, Adv. Colloid Inter-

face Sci., 51 (1,9941 7.49 A. Rusanov A, Phasengleichgewichte und

Grenzflachenerscheinungen, AkademieVerlag, Berlin, 1978.

50 E. Mileva, J. Colloid lnterface Sci., 178(1ee6) 10.

st E. Mileva, J. Colloid lnterface Sci., 232(2000) 2110.

52 V. Fainerman, R. Miller, Langmuir, 12(1996) 6011.

53 V. Fainerman, E. Aksenenko, R. Miller,

J. Phys. Chem., 104 (2000lr 5744.

9NanoparticlerFormation an

Alexander Kamysht

Abstract

Current approacl

described. The s,

confined structur

emulsions, water

block copolymerrnels of mesopor(

discussed. Examl

presented.

9.'lIntroduction

Nanoparticles art

100-nm range [1entific and practi

cai, electrical, th,

and bulk species

tio of surface are

quantum confin,

products with n<

science and nan

knowledge, whic

and materials sc

and physicochenr

tors, organic cor

tubes, cubes, he

new applications

drug delivery an(

Colloids and InterfaceColloid Stability: The RrCopyright O 2007 WIISBN: 978-3-527-31162


Recommended