+ All Categories
Home > Documents > TESTING ROBUSTNESS AGAINST UNFORESEEN ...

TESTING ROBUSTNESS AGAINST UNFORESEEN ...

Date post: 04-May-2023
Category:
Upload: khangminh22
View: 1 times
Download: 0 times
Share this document with a friend
21
Under review as a conference paper at ICLR 2020 T ESTING ROBUSTNESS AGAINST U NFORESEEN A DVERSARIES Anonymous authors Paper under double-blind review ABSTRACT Most existing defenses against adversarial attacks only consider robustness to L p - bounded distortions. In reality, the specific attack is rarely known in advance and adversaries are free to modify images in ways which lie outside any fixed distortion model; for example, adversarial rotations lie outside the set of L p - bounded distortions. In this work, we advocate measuring robustness against a much broader range of unforeseen attacks, attacks whose precise form is unknown during defense design. We propose several new attacks and a methodology for evaluating a defense against a diverse range of unforeseen distortions. First, we construct novel ad- versarial JPEG, Fog, Gabor, and Snow distortions to simulate more diverse adver- saries. We then introduce UAR, a summary metric that measures the robustness of a defense against a given distortion. Using UAR to assess robustness against existing and novel attacks, we perform an extensive study of adversarial robust- ness. We find that evaluation against existing L p attacks yields redundant informa- tion which does not generalize to other attacks; we instead recommend evaluating against our significantly more diverse set of attacks. We further find that adversar- ial training against either one or multiple distortions fails to confer robustness to attacks with other distortion types. These results underscore the need to evaluate and study robustness against unforeseen distortions. 1 I NTRODUCTION Neural networks perform well on many benchmark tasks (He et al., 2016) yet can be fooled by ad- versarial examples (Goodfellow et al., 2014), slightly distorted inputs designed to subvert a given model. The adversary is frequently assumed to craft adversarial distortions under an L constraint (Goodfellow et al., 2014; Madry et al., 2017; Xie et al., 2018), while other distortions such as adver- sarial geometric transformations, patches, and even 3D-printed objects have also been considered (Engstrom et al., 2017; Brown et al., 2017; Athalye et al., 2017). However, most work on adversar- ial robustness assumes the adversary is fixed and known. Defenses against adversarial attacks often leverage such knowledge when designing the defense, most commonly through adversarial training, which minimizes the adversarial loss against a fixed distortion type (Madry et al., 2017). In practice, adversaries can modify their attacks and construct distortions whose precise form is not known to the defense designers. In this work, we propose a methodology for assessing robustness to such unforeseen attacks and use it to study how adversarial robustness transfers to them. To en- sure sufficient diversity, we introduce four novel adversarial attacks (§2) with qualitatively different distortion types: adversarial JPEG, Fog, Gabor, and Snow (sample images in Figure 1). Our methodology (§3) involves evaluating a defense against a diverse set of held-out distortions not involved in the design of the defense; we suggest L , L 1 , Elastic, Fog, and Snow as an initial set to consider. For a fixed, held-out distortion, we then evaluate the defense against the distortion for a calibrated range of distortion sizes whose strength is roughly comparable across distortions. For each fixed distortion, our evaluation yields the summary metric UAR, which measures robustness of a defense against that distortion relative to a model adversarially trained on that distortion. We provide code and calibrations to easily evaluate a defense against our suite of attacks and compute UAR for it at https://github.com/iclr-2020-submission/advex-uar. 1
Transcript

Under review as a conference paper at ICLR 2020

TESTING ROBUSTNESS AGAINSTUNFORESEEN ADVERSARIES

Anonymous authorsPaper under double-blind review

ABSTRACT

Most existing defenses against adversarial attacks only consider robustness to Lp-bounded distortions. In reality, the specific attack is rarely known in advanceand adversaries are free to modify images in ways which lie outside any fixeddistortion model; for example, adversarial rotations lie outside the set of Lp-bounded distortions. In this work, we advocate measuring robustness against amuch broader range of unforeseen attacks, attacks whose precise form is unknownduring defense design.We propose several new attacks and a methodology for evaluating a defenseagainst a diverse range of unforeseen distortions. First, we construct novel ad-versarial JPEG, Fog, Gabor, and Snow distortions to simulate more diverse adver-saries. We then introduce UAR, a summary metric that measures the robustnessof a defense against a given distortion. Using UAR to assess robustness againstexisting and novel attacks, we perform an extensive study of adversarial robust-ness. We find that evaluation against existingLp attacks yields redundant informa-tion which does not generalize to other attacks; we instead recommend evaluatingagainst our significantly more diverse set of attacks. We further find that adversar-ial training against either one or multiple distortions fails to confer robustness toattacks with other distortion types. These results underscore the need to evaluateand study robustness against unforeseen distortions.

1 INTRODUCTION

Neural networks perform well on many benchmark tasks (He et al., 2016) yet can be fooled by ad-versarial examples (Goodfellow et al., 2014), slightly distorted inputs designed to subvert a givenmodel. The adversary is frequently assumed to craft adversarial distortions under an L∞ constraint(Goodfellow et al., 2014; Madry et al., 2017; Xie et al., 2018), while other distortions such as adver-sarial geometric transformations, patches, and even 3D-printed objects have also been considered(Engstrom et al., 2017; Brown et al., 2017; Athalye et al., 2017). However, most work on adversar-ial robustness assumes the adversary is fixed and known. Defenses against adversarial attacks oftenleverage such knowledge when designing the defense, most commonly through adversarial training,which minimizes the adversarial loss against a fixed distortion type (Madry et al., 2017).

In practice, adversaries can modify their attacks and construct distortions whose precise form is notknown to the defense designers. In this work, we propose a methodology for assessing robustnessto such unforeseen attacks and use it to study how adversarial robustness transfers to them. To en-sure sufficient diversity, we introduce four novel adversarial attacks (§2) with qualitatively differentdistortion types: adversarial JPEG, Fog, Gabor, and Snow (sample images in Figure 1).

Our methodology (§3) involves evaluating a defense against a diverse set of held-out distortions notinvolved in the design of the defense; we suggest L∞, L1, Elastic, Fog, and Snow as an initial setto consider. For a fixed, held-out distortion, we then evaluate the defense against the distortion fora calibrated range of distortion sizes whose strength is roughly comparable across distortions. Foreach fixed distortion, our evaluation yields the summary metric UAR, which measures robustnessof a defense against that distortion relative to a model adversarially trained on that distortion. Weprovide code and calibrations to easily evaluate a defense against our suite of attacks and computeUAR for it at https://github.com/iclr-2020-submission/advex-uar.

1

Under review as a conference paper at ICLR 2020

Exi

stin

gA

ttack

s

L∞ L2 L1 Elastic

New

Atta

cks

JPEG Fog Gabor Snow

Figure 1: Attacked images (label “espresso maker”) against adversarially trained models with largeε. Each of the adversarial images above are optimized to maximize the classification loss.

Applying our method to 87 adversarially trained models and 8 different distortion types (§4), we findweaknesses in existing defenses and evaluation practices. Our results show that existing defensesbased on adversarial training do not generalize to unforeseen adversaries, even when restricted tothe 8 distortions in Figure 1. This adds to the mounting evidence that achieving robustness againsta single distortion type is insufficient to impart robustness to unforeseen attacks (Jacobsen et al.,2019; Jordan et al., 2019; Tramer & Boneh, 2019).

Turning to evaluation, our results demonstrate that accuracy against different Lp distortions is highlycorrelated relative to the other distortions we consider, suggesting that the common practice of eval-uating only against Lp distortions can give a misleading account of a model’s adversarial robustness.Our analysis using UAR demonstrates that our full suite of attacks adds signficant diversity and re-veals L∞, L1, Elastic, Fog, and Snow as a set with less correlated accuracy and UAR scores againstheld-out defenses. We suggest these attacks for use when evaluating against unforeseen adversaries.

A natural next approach is to defend against multiple distortion types simultaneously in the hope thatseeing a larger space of distortions provides greater transfer to unforeseen distortions. Unfortunately,we find that defending against even two different distortion types via joint adversarial training isdifficult (§5). Specifically, joint adversarial training leads to overfitting at moderate distortion sizes.

In summary, we make the following contributions:

1. We propose a method UAR to assess robustness of defenses against unforeseen adversaries.2. We introduce 4 novel attacks and apply UAR to assess how robustness transfers to these

attacks and 4 existing ones. Our results demonstrate that existing defense and evaluationmethods do not generalize well to unforeseen attacks.

3. We suggest the use of our more diverse attacks for evaluating novel defenses, highlightingL∞, L1, Elastic, Fog, and Snow as a diverse starting point.

2 A SET OF DIVERSE AND NOVEL ADVERSARIAL ATTACKS

We consider distortions (attacks) applied to an image x ∈ R3×224×224, represented as a vector ofRGB values. Let f : R3×224×224 → R100 be a model mapping images to logits1, and let `(f(x), y)denote the cross-entropy loss. For an input x with true label y and a target class y′ 6= y, ouradversarial attacks attempt to find x′ such that

1. the attacked image x′ is obtained by applying a constrained distortion to x, and2. the loss `(f(x′), y′) is minimized (targeted attack).

1We describe the attacks for ImageNet-100, but they can also be applied to CIFAR-10.

2

Under review as a conference paper at ICLR 2020

Exi

stin

gA

ttack

s

L∞ (4.1m, 11.1k, 32) L2 (1.3m, 4.8k, 99) L1 (224k, 2.6k, 218) Elastic (3.1m, 15.2k, 253)

New

Atta

cks

JPEG (5.4m, 18.7k, 255) Fog (4.1m, 13.2k, 89) Gabor (3.7m, 13.3k, 50) Snow (11.3m, 32.0k, 255)

Figure 2: Scaled pixel-level differences between original and attacked images for each attack (label“espresso maker”). The L1, L2, and L∞ norms of the difference are shown after the attack name.Our novel attacks display behavior which is qualitatively different from that of the Lp attacks. At-tacked images are shown in Figure 1, and unscaled differences are shown in Figure 9, Appendix B.1.

Adversarial training (Goodfellow et al., 2014) is a strong defense baseline against a fixed attack(Madry et al., 2017; Xie et al., 2018) which updates using an attacked image x′ instead of the cleanimage x at each training iteration.

We consider 8 attacks: L∞ (Goodfellow et al., 2014), L2 (Szegedy et al., 2013; Carlini & Wagner,2017), L1 (Chen et al., 2018), Elastic (Xiao et al., 2018), JPEG, Fog, Gabor, and Snow. We showsample attacked images in Figure 1 and the corresponding distortions in Figure 2. The JPEG, Fog,Gabor, and Snow attacks are new to this paper, and the L1 attack uses the Frank-Wolfe algorithm toimprove on previous L1 attacks. We now describe the attacks, whose distortion sizes are controlledby a parameter ε. We clamp output pixel values to [0, 255].

Existing attacks. The Lp attacks with p ∈ {1, 2,∞} modify an image x to an attacked imagex′ = x+δ. We optimize δ under the constraint ‖δ‖p ≤ ε, where ‖·‖p is theLp-norm on R3×224×224.

The Elastic attack warps the image by allowing distortions x′ = Flow(x, V ), where V :{1, . . . , 224}2 → R2 is a vector field on pixel space, and Flow sets the value of pixel (i, j) tothe bilinearly interpolated original value at (i, j) + V (i, j). We construct V by smoothing a vectorfieldW by a Gaussian kernel (size 25×25, std. dev. 3 for a 224×224 image) and optimizeW under‖W (i, j)‖∞ ≤ ε for all i, j. This differs in details from Xiao et al. (2018) but is similar in spirit.

Novel attacks. As discussed in Shin & Song (2017) for defense, JPEG compression applies alossy linear transformation JPEG based on the discrete cosine transform to image space, followedby quantization. The JPEG attack imposes the L∞-constraint ‖JPEG(x)− JPEG(x′)‖∞ ≤ ε on theattacked image x′. We optimize z = JPEG(x′) and apply a right inverse of JPEG to obtain x′.

Original Initialization Optimized

Figure 3: Snow before and after optimization.

Our novel Fog, Gabor, and Snow attacks are ad-versarial versions of non-adversarial distortionsproposed in the literature. Fog and Snow in-troduce adversarially chosen partial occlusionsof the image resembling the effect of mist andsnowflakes, respectively; stochastic versions ofFog and Snow appeared in Hendrycks & Diet-terich (2019). Gabor superimposes adversariallychosen additive Gabor noise (Lagae et al., 2009)onto the image; a stochastic version appeared inCo et al. (2019). These attacks work by optimizing a set of parameters controlling the distortion

3

Under review as a conference paper at ICLR 2020

0 1000 2000 3000 4000 5000

L2 distortion size

0

25

50A

ccu

racy

L2 attack vs. L2-adversarial training

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Elastic distortion size

Elastic attack vs. L2-adversarial training

Figure 4: Accuracies ofL2 and Elastic attacks at different distortion sizes against a ResNet-50 modeladversarially trained against L2 at ε = 9600 on ImageNet-100. At small distortion sizes, the modelappears to defend well against Elastic, but large distortion sizes reveal a lack of transfer.

over an L∞-bounded set. Specifically, values for the diamond-square algorithm, sparse noise, andsnowflake brightness (Figure 3) are chosen adversarially for Fog, Gabor, and Snow, respectively.

Optimization. To handle L∞ and L2 constraints, we use randomly-initialized projected gradientdescent (PGD), which optimizes the distortion δ by gradient descent and projection to the L∞ andL2 balls (Madry et al., 2017). For L1 constraints, this projection is more difficult, and previousL1 attacks resort to heuristics (Chen et al., 2018; Tramer & Boneh, 2019). We use the randomly-initialized Frank-Wolfe algorithm (Frank & Wolfe, 1956), which replaces projection by a simpleroptimization of a linear function at each step (pseudocode in Appendix B.2).

3 MOTIVATION AND DESCRIPTION OF OUR METHODOLOGY

We now propose a method to assess robustness against unforeseen distortions, which relies on eval-uating a defense against a diverse set of attacks that were not used when designing the defense. Ourmethod must address the following issues:

• The range of distortion sizes must be wide enough to avoid the misleading behavior in whichrobustness appears to transfer at low distortion sizes but not at high distortion sizes (Figure 4);• The set of attacks considered must be sufficiently diverse.

We first provide a method to calibrate distortion sizes and then use it to define a summary metricthat assesses the robustness of a defense against a specific unforeseen attack. Using this metric, weare able to assess diversity and recommend a set of attacks to evaluate against.

Calibrate distortion size using adversarial training. As shown in Figure 4, the correlationbetween adversarial robustness against different distortion types may look different for differentranges of distortion sizes. It is therefore critical to evaluate on a wide enough range of distortionsize ε. We choose the minimum and maximum distortion sizes ε using the following principles;sample images at εmin and εmax are shown in Figure 5b.

1. The minimum distortion size εmin is the largest ε for which the adversarial validation ac-curacy against an adversarially trained model is comparable to that of a model trained andevaluated on unattacked data.

2. The maximum distortion size εmax is the smallest ε which either (a) yields images whichconfuse humans when applied against adversarially trained models or (b) reduces accuracyof adversarially trained models to below 25.

In practice, we select εmin and εmax according to these criteria from a sequence of ε which is geomet-rically increasing with ratio 2. We choose to evaluate against adversarially trained models becauseattacking against strong defenses is necessary to produce strong visual distortions (Figure 5a). Weintroduce the constraint that humans recognize attacked images at εmax because we find cases forL1, Fog, and Snow where adversarially trained models maintain non-zero accuracy for distortionsizes producing images incomprehensible to humans. An example for Snow is shown in Figure 5b.

UAR: an adversarial robustness metric. We measure a model’s robustness against a specificdistortion type by comparing it to adversarially trained models, which represent an approximate

4

Under review as a conference paper at ICLR 2020

clean vs. clean vs. ε = 2

vs. ε = 8 vs. ε = 16 vs. ε = 32

(a) The L∞ attack at ε = 32 applied to undefendedmodel and models adversarially trained against L∞at different distortion sizes. Attacking models trainedagainst larger ε produces greater visual distortion.

Min

imum

Dis

tort

ion

JPEG Gabor Snow

Max

imum

Dis

tort

ion

JPEG Gabor Snow

(b) The JPEG, Gabor, and Snow attacks applied to ad-versarially trained models at εmin and εmax. Distortionsare almost imperceptible at εmin, but make the imagebarely recognizable by humans at εmax.

Figure 5: Varying distortion size against adversarially trained models reveals full attack strength.

ceiling on performance with prior knowledge of the distortion type. For distortion typeA and size ε,let the Adversarial Training Accuracy ATA(A, ε) be the best adversarial accuracy on the validationset that can be achieved by adversarially training a specific architecture (ResNet-50 for ImageNet-100, ResNet-56 for CIFAR-10) against A.2 Even when evaluating a defense using an architectureother than ResNet-50 or ResNet-56, we recommend using the ATA values computed with thesearchitectures to allow for uniform comparisons.

Given a set of distortion sizes {ε1, . . . , εn}, we propose the summary metric UAR (UnforeseenAttack Robustness) normalizing the accuracy of a model M against adversarial training accuracy:

UAR(A,M) := 100 ·(

1

n

n∑k=1

Acc(A, εk,M)

)/(1

n

n∑k=1

ATA(A, εk)

). (1)

Here Acc(A, ε,M) is the accuracy of M against distortions of type A and magnitude ε. We expectmost UAR scores to be lower than 100 against held-out distortion types, as an UAR score greater than100 means that a defense is outperforming an adversarially trained model on that distortion. Thenormalizing factor in (1) is required to keep UAR scores roughly comparable between distortions, asdifferent distortions can have different strengths as measured by ATA at the chosen distortion sizes.

Having too many or too few εk values in a certain range may cause an attack to appear artificiallystrong or weak because the functional relation between distortion size and attack strength (measuredby ATA) varies between attacks. To make UAR roughly comparable between distortions, we evaluateat ε increasing geometrically from εmin to εmax by factors of 2 and take the subset of ε whose ATAvalues have minimum `1-distance to the ATA values of the L∞ attack at geometrically increasing ε.

For our 8 distortion types, we provide reference values of ATA(A, ε) on this calibrated range of 6distortion sizes on ImageNet-100 (Table 1, §4) and CIFAR-10 (Table 3, Appendix C.3.2). This al-lows UAR computation for a new defense using 6 adversarial evaluations and no adversarial training,reducing computational cost from 192+ to 6 NVIDIA V100 GPU-hours on ImageNet-100.

Evaluate against diverse distortion types. Since robustness against different distortion types mayhave low or no correlation (Figure 6b), measuring performance on different distortions is importantto avoid overfitting to a specific type, especially when a defense is constructed with it in mind (aswith adversarial training). Our results in §4 demonstrate that choosing appropriate distortion types toevaluate against requires some care, as distortions such as L1, L2, and L∞ that may seem differentcan actually have highly correlated scores against defenses (see Figure 6). We instead recommendevaluation against our more diverse attacks, taking the L∞, L1, Elastic, Fog, and Snow attacks as astarting point.

2As explained in Figure 13 (Appendix C.2), this usually requires training at distortion size ε′ > ε becausethe typical distortion seen during adversarial training is sub-maximal.

5

Under review as a conference paper at ICLR 2020

Table 1: Calibrated distortion sizes and ATA values for different distortion types on ImageNet-100.ATA values for CIFAR-10 are shown in Table 3 (Appendix C.3.2).

Attack ε1 ε2 ε3 ε4 ε5 ε6 ATA1 ATA2 ATA3 ATA4 ATA5 ATA6

L∞ 1 2 4 8 16 32 84.6 82.1 76.2 66.9 40.1 12.9L2 150 300 600 1200 2400 4800 85.0 83.5 79.6 72.6 59.1 19.9L1 9562.5 19125 76500 153000 306000 612000 84.4 82.7 76.3 68.9 56.4 36.1Elastic 0.250 0.500 2 4 8 16 85.9 83.2 78.1 75.6 57.0 22.5JPEG 0.062 0.125 0.250 0.500 1 2 85.0 83.2 79.3 72.8 34.8 1.1Fog 128 256 512 2048 4096 8192 85.8 83.8 79.0 68.4 67.9 64.7Snow 0.062 0.125 0.250 2 4 8 84.0 81.1 77.7 65.6 59.5 41.2Gabor 6.250 12.500 25 400 800 1600 84.0 79.8 79.8 66.2 44.7 14.6

4 UAR REVEALS THE NEED TO EVALUATE AGAINST MORE DIVERSE ATTACKS

We apply our methodology to the 8 attacks in §2 using models adversarially trained against theseattacks. Our results reveal that evaluating against the commonly used Lp-attacks gives highly corre-lated information which does not generalize to other unforeseen attacks. Instead, they suggest thatevaluating on diverse attacks is necessary and identify a set of 5 attacks with low pairwise robustnesstransfer which we suggest as a starting point when assessing robustness to unforeseen adversaries.

Dataset and model. We use two datasets: CIFAR-10 and ImageNet-100, the 100-class subset ofImageNet-1K (Deng et al., 2009) containing every 10th class by WordNet ID order. We use ResNet-56 for CIFAR-10 and ResNet-50 as implemented in torchvision for ImageNet-100 (He et al.,2016). We give training hyperparameters in Appendix A.

Adversarial training and evaluation procedure. We construct hardened models using adversarialtraining (Madry et al., 2017). To train against attack A, for each mini-batch of training images, weselect a uniform random (incorrect) target class for each image. For maximum distortion size ε, weapply the targeted attack A to the current model with distortion size ε′ ∼ Uniform(0, ε) and updatethe model with a step of stochastic gradient descent using only the resulting adversarial images (noclean images). The random size scaling improves performance especially against smaller distortions.We use 10 optimization steps for all attacks during training except for Elastic, where we use 30 stepsdue to its more difficult optimization problem. When PGD is used, we use step size ε/

√steps, the

optimal scaling for non-smooth convex functions (Nemirovski & Yudin, 1978; 1983).

We adversarially train 87 models against the 8 attacks from §2 at the distortion sizes described in§3 and evaluate them on the ImageNet-100 and CIFAR-10 validation sets against 200-step targetedattacks with uniform random (incorrect) target class. This uses more steps for evaluation than train-

L∞ L2

L1

JPE

GE

last

icFo

gG

abor

Snow

Normal Training

L∞ ε = 32

L2 ε = 4800

L1 ε = 612000

JPEG ε = 2

Elastic ε = 16

Fog ε = 8192

Gabor ε = 3200

Snow ε = 8

7 17 22 0 31 16 5 10

88 42 15 14 49 20 55 37

80 88 79 67 48 18 53 38

62 71 89 56 43 18 47 31

65 70 54 92 40 19 52 31

23 25 11 1 91 25 41 40

1 3 8 0 28 91 54 43

11 18 12 0 39 31 89 47

13 15 9 1 39 37 60 93

(a) UAR scores for adv. trained defenses (rows)against attacks (columns) on ImageNet-100. SeeFigure 12 for more ε values and Appendix C.3.2for CIFAR-10 results.

L∞ L2

L1

JPE

GE

last

ic

Fog

Gab

orSn

ow

L∞

L2

L1

JPEG

Elastic

Fog

Gabor

Snow−1.0

−0.5

0.0

0.5

1.0

Correlation

ofU

AR

scores

(b) Correlations between UAR scores in Figure 6a foreach attack (rows and columns). Correlation was com-puted over adversarial defenses in Figure 6a trainedwithout knowledge of the attacks (6 total per pair).

Figure 6: UAR scores demonstrate the need to evaluate against diverse attacks.

6

Under review as a conference paper at ICLR 2020

ing per best practices (Carlini et al., 2019). We use UAR to analyze the results in the remainder ofthis section, directing the reader to Figures 10 and 11 (Appendix C.2) for exhaustive results and toAppendix D for checks for robustness to random seed and number of attack steps.

Existing defense and evaluation methods do not generalize to unforeseen attacks. The manylow off-diagonal UAR scores in Figure 6a make clear that while adversarial training is a strong base-line against a fixed distortion, it only rarely confers robustness to unforeseen distortions. Notably,we were not able to achieve a high UAR against Fog except by directly adversarially training againstit. Despite the general lack of transfer in Figure 6a, the fairly strong transfer between the Lp-attacksis consistent with recent progress in simultaneous robustness to them (Croce & Hein, 2019).

Figure 6b shows correlations between UAR scores of pairs of attacks A and A′ against defensesadversarially trained without knowledge3 of A or A′. The results demonstrate that defenses trainedwithout knowledge of Lp-attacks have highly correlated UAR scores against the different Lp attacks,but this correlation does not extend to their evaluations against other attacks. This suggests that Lp-evaluations offer limited diversity and may not generalize to other unforeseen attacks.

TheL∞, L1, Elastic, Fog, and Snow attacks offer greater diversity. Our results onLp-evaluationsuggest that more diverse attack evaluation is necessary for generalization to unforeseen attacks. Asthe unexpected correlation between UAR scores against the pairs (Fog,Gabor) and (JPEG, L1) inFigure 6b demonstrates, even attacks with very different distortions may have correlated behaviors.Considering all attacks in Figure 6 together results in signficantly more diversity, which we suggestfor evaluation against unforeseen attacks. We suggest the 5 attacks (L∞, L1, Elastic, Fog, and Snow)with low UAR against each other and low correlation between UAR scores as a good starting point.

5 JOINT ADVERSARIAL TRAINING: DEFENDING AGAINST TWO DISTORTIONS

A natural idea to improve robustness against unforeseen adversaries is to adversarially train the samemodel against two different types of distortions simultaneously, with the idea that this will cover alarger portion of the space of distortions. We refer to this as joint adversarial training (Jordan et al.,2019; Tramer & Boneh, 2019). For two attacks A and A′, at each training step, we compute theattacked image under both A and A′ and backpropagate with respect to gradients induced by theimage with greater loss. This corresponds to the “max” loss described in Tramer & Boneh (2019).We jointly train models for (L∞, L2), (L∞, L1), and (L∞,Elastic) using the same setup as before

L∞ L2

L1

JPE

GE

last

ic

Normal Training

L∞ ε = 1, L2 ε = 300

L∞ ε = 2, L2 ε = 600

L∞ ε = 4, L2 ε = 1200

L∞ ε = 8, L2 ε = 2400

L∞ ε = 16, L2 ε = 4800

7 17 22 0 31

110 110 110 110 110

50 60 43 27 41

63 73 53 41 43

73 81 64 53 45

80 87 74 62 48

82 88 79 67 48

L∞ L2

L1

JPE

GE

last

ic

Normal Training

L∞ ε = 1, L1 ε = 38250

L∞ ε = 2, L1 ε = 76500

L∞ ε = 4, L1 ε = 153000

L∞ ε = 8, L1 ε = 306000

L∞ ε = 16, L1 ε = 612000

7 17 22 0 31

110 110 110 110 110

47 61 58 28 41

48 61 66 31 41

51 63 72 35 40

44 56 62 26 36

45 50 35 26 30

L∞ L2

L1

JPE

GE

last

ic

Normal Training

L∞ ε = 1, Elastic ε = 0.5

L∞ ε = 2, Elastic ε = 1

L∞ ε = 4, Elastic ε = 2

L∞ ε = 8, Elastic ε = 4

L∞ ε = 16, Elastic ε = 8

7 17 22 0 31

110 110 110 110 110

43 52 39 24 45

56 62 43 35 54

68 71 46 41 63

35 42 28 10 65

69 54 27 27 43

Figure 7: UAR scores for jointly adv. trained defenses (rows) against distortion types (columns).

Transfer for jointly trained models. Figure 7 reports UAR scores for jointly trained models usingResNet-50 on ImageNet-100; full evaluation accuracies are in Figure 19 (Appendix E). Comparingto Figure 6a and Figure 12 (Appendix E), we see that, relative to training against only L2, joint train-ing against (L∞, L2) slightly improves robustness against L1 without harming robustness againstother attacks. In contrast, training against (L∞, L1) is worse than either training against L1 or L∞separately (except at small ε for L1). Training against (L∞,Elastic) also performs poorly.

Joint training and overfitting. Jointly trained models achieve high training accuracy but poorvalidation accuracy (Figure 8) that fluctuates substantially for different random seeds (Table 4, Ap-pendix E.2). Figure 8 shows the overfitting behavior for (L∞,Elastic): L∞ validation accuracy de-creases significantly during training while training accuracy increases. This contrasts with standardadversarial training (Figure 8), where validation accuracy levels off as training accuracy increases.

3We exclude defenses adversarially trained against A and A′ to ensure that attacks are unforeseen.

7

Under review as a conference paper at ICLR 2020

0 20 40 60 80

Epoch

0

20

40

60

80

Ad

v.a

ccu

racy

Train, elastic ε = 4Train, L∞ ε = 8

Val, elastic ε = 4Val, L∞ ε = 8

0 20 40 60 80

Train, L∞ ε = 8

Val, L∞ ε = 8

Figure 8: Left: train and validation curves for joint training against L∞, ε = 8 and Elastic, ε = 4,Right: train and val curves for standard adversarial training for L∞, ε = 8. The joint validationaccuracy of L∞ decreases as training progresses, indicating overfitting.

Overfitting primarily occurs when training against large distortions. We successfully trained againstthe (L∞, L1) and (L∞,Elastic) pairs for small distortion sizes with accuracies comparable to butslightly lower than observed in Figure 11 for training against each attack individually (Figure 18,Appendix E). This agrees with behavior reported by Tramer & Boneh (2019) on CIFAR-10. Ourintuition is that harder training tasks (more diverse distortion types, larger ε) make overfitting morelikely. We briefly investigate the relation between overfitting and model capacity in Appendix E.3;validation accuracy appears slightly increased for ResNet-101, but overfitting remains.

6 DISCUSSION AND RELATED WORK

We have seen that robustness to one attack provides limited information about robustness to otherattacks, and moreover that adversarial training provides limited robustness to unforeseen attacks.These results suggest a need to modify or move beyond adversarial training. While joint adversarialtraining is one possible alternative, our results show it often leads to overfitting. Even ignoring this,it is not clear that joint training would confer robustness to attacks outside of those trained against.

Evaluating robustness has proven difficult, necessitating detailed study of best practices even for asingle fixed attack (Papernot et al., 2017; Athalye et al., 2018). We build on these best practices byshowing how to choose and calibrate a diverse set of unforeseen attacks. Our work is a supplement toexisting practices, not a replacement–we strongly recommend following the guidelines in (Papernotet al., 2017) and (Athalye et al., 2018) in addition to our recommendations.

Some caution is necessary when interpreting specific numeric results in our paper. Many previousimplementations of adversarial training fell prone to gradient masking (Papernot et al., 2017; En-gstrom et al., 2018), with apparently successful training occurring only recently (Madry et al., 2017;Xie et al., 2018). While evaluating with moderately many PGD steps (200) helps guard against this,(Qian & Wegman, 2019) shows that an L∞-trained model that appeared robust against L2 actuallyhad substantially less robustness when evaluating with 106 PGD steps. If this effect is pervasive,then there may be even less transfer between attacks than our current results suggest.

For evaluating against a fixed attack, DeepFool Moosavi-Dezfooli et al. (2015) and CLEVER Wenget al. (2018) can be seen as existing alternatives to UAR. They work by estimating “empirical ro-bustness”, which is the expected minimum ε needed to successfully attack an image. However, theseapply only to attacks which optimize over an Lp-ball of radius ε, and CLEVER can be susceptibleto gradient masking Goodfellow (2018). In addition, empirical robustness is equivalent to linearlyaveraging accuracy over ε, which has smaller dynamic range than the geometric average in UAR.

Our results add to a growing line of evidence that evaluating against a single known attack typeprovides a misleading picture of the robustness of a model (Sharma & Chen, 2017; Engstrom et al.,2017; Jordan et al., 2019; Tramer & Boneh, 2019; Jacobsen et al., 2019). Going one step further,we believe that robustness itself provides only a narrow window into model behavior; in addition torobustness, we should seek to build a diverse toolbox for understanding machine learning models,including visualization (Olah et al., 2018; Zhang & Zhu, 2019), disentanglement of relevant features(Geirhos et al., 2018), and measurement of extrapolation to different datasets (Torralba & Efros,2011) or the long tail of natural but unusual inputs (Hendrycks et al., 2019). Together, these windowsinto model behavior can give us a clearer picture of how to make models reliable in the real world.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarialexamples. CoRR, abs/1707.07397, 2017. URL http://arxiv.org/abs/1707.07397.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense ofsecurity: Circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420,2018.

Tom B. Brown, Dandelion Mane, Aurko Roy, Martın Abadi, and Justin Gilmer. Adversarial patch.CoRR, abs/1712.09665, 2017. URL http://arxiv.org/abs/1712.09665.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE, 2017.

Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, DimitrisTsipras, Ian J. Goodfellow, Aleksander Madry, and Alexey Kurakin. On evaluating adversarialrobustness. CoRR, abs/1902.06705, 2019. URL http://arxiv.org/abs/1902.06705.

Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. EAD: Elastic-net attacksto deep neural networks via adversarial examples. In Thirty-second AAAI conference on artificialintelligence, 2018.

Kenneth T. Co, Luis Munoz-Gonzalez, and Emil C. Lupu. Sensitivity of deep convolutional net-works to Gabor noise. CoRR, abs/1906.03455, 2019. URL http://arxiv.org/abs/1906.03455.

Francesco Croce and Matthias Hein. Provable robustness against all adversarial lp-perturbations forp ≥ 1. CoRR, abs/1905.11213, 2019. URL http://arxiv.org/abs/1905.11213.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hi-erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,pp. 248–255. IEEE, 2009.

Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. Arotation and a translation suffice: Fooling CNNs with simple transformations. arXiv preprintarXiv:1712.02779, 2017.

Logan Engstrom, Andrew Ilyas, and Anish Athalye. Evaluating and understanding the robustnessof adversarial logit pairing. arXiv preprint arXiv:1807.10272, 2018.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval researchlogistics quarterly, 3(1-2):95–110, 1956.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann, andWieland Brendel. ImageNet-trained CNNs are biased towards texture; increasing shape biasimproves accuracy and robustness. CoRR, abs/1811.12231, 2018. URL http://arxiv.org/abs/1811.12231.

Ian Goodfellow. Gradient masking causes CLEVER to overestimate adversarial perturbation size.arXiv preprint arXiv:1804.07870, 2018.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarialexamples. arXiv preprint arXiv:1412.6572, 2014.

Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training ImageNetin 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residualnetworks. In European conference on computer vision, pp. 630–645. Springer, 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-ruptions and perturbations. In International Conference on Learning Representations, 2019.

9

Under review as a conference paper at ICLR 2020

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarialexamples. arXiv preprint arXiv:1907.07174, 2019.

Jrn-Henrik Jacobsen, Jens Behrmannn, Nicholas Carlini, Florian Tramr, and Nicolas Papernot. Ex-ploiting excessive invariance caused by norm-bounded adversarial robustness, 2019.

Matt Jordan, Naren Manoj, Surbhi Goel, and Alexandros G. Dimakis. Quantifying perceptual dis-tortion of adversarial examples. arXiv e-prints, art. arXiv:1902.08265, Feb 2019.

Ares Lagae, Sylvain Lefebvre, George Drettakis, and Philip Dutre. Procedural noise using sparseGabor convolution. ACM Trans. Graph., 28(3):54:1–54:10, July 2009. ISSN 0730-0301. doi: 10.1145/1531326.1531360. URL http://doi.acm.org/10.1145/1531326.1531360.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,2017.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. DeepFool: a simple andaccurate method to fool deep neural networks. arXiv preprint arXiv:1511.04599, 2015.

Arkadi Nemirovski and D Yudin. On Cezari’s convergence of the steepest descent method forapproximating saddle point of convex-concave functions. In Soviet Math. Dokl, volume 19, pp.258–269, 1978.

Arkadi Nemirovski and D Yudin. Problem Complexity and Method Efficiency in Optimization.Intersci. Ser. Discrete Math. Wiley, New York, 1983.

Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert, Katherine Ye, andAlexander Mordvintsev. The building blocks of interpretability. Distill, 2018. doi: 10.23915/distill.00010. https://distill.pub/2018/building-blocks.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and AnanthramSwami. Practical black-box attacks against machine learning. In Proceedings of the 2017 ACMon Asia conference on computer and communications security, pp. 506–519. ACM, 2017.

Haifeng Qian and Mark N. Wegman. L2-nonexpansive neural networks. In International Conferenceon Learning Representations (ICLR), 2019. URL https://openreview.net/forum?id=ByxGSsR9FQ.

Yash Sharma and Pin-Yu Chen. Attacking the Madry defense model with L1-based adversarialexamples. arXiv e-prints, art. arXiv:1710.10733, Oct 2017.

Richard Shin and Dawn Song. JPEG-resistant adversarial images. In NIPS 2017 Workshop onMachine Learning and Computer Security, 2017.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Antonio Torralba and Alexei A. Efros. Unbiased look at dataset bias. In IEEE Conference onComputer Vision and Pattern Recognition (CVPR), 2011.

Florian Tramer and Dan Boneh. Adversarial training and robustness for multiple perturbations.arXiv e-prints, art. arXiv:1904.13000, Apr 2019.

Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, andLuca Daniel. Evaluating the robustness of neural networks: An extreme value theory approach.arXiv preprint arXiv:1801.10578, 2018.

Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song. Spatially trans-formed adversarial examples. arXiv preprint arXiv:1801.02612, 2018.

Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan Yuille, and Kaiming He. Feature denoisingfor improving adversarial robustness. arXiv preprint arXiv:1812.03411, 2018.

Tianyuan Zhang and Zhanxing Zhu. Interpreting adversarially trained convolutional neural net-works. In International Conference on Machine Learning (ICML), 2019.

10

Under review as a conference paper at ICLR 2020

A TRAINING HYPERPARAMETERS

For ImageNet-100, we trained on machines with 8 NVIDIA V100 GPUs using standard data aug-mentation He et al. (2016). Following best practices for multi-GPU training Goyal et al. (2017),we ran synchronized SGD for 90 epochs with batch size 32×8 and a learning rate schedule with 5“warm-up” epochs and a decay at epochs 30, 60, and 80 by a factor of 10. Initial learning rate afterwarm-up was 0.1, momentum was 0.9, and weight decay was 10−4. For CIFAR-10, we trained on asingle NVIDIA V100 GPU for 200 epochs with batch size 32, initial learning rate 0.1, momentum0.9, and weight decay 10−4. We decayed the learning rate at epochs 100 and 150.

B FURTHER ATTACK DETAILS

B.1 FURTHER EXAMPLES OF ATTACKS

We show the images corresponding to the ones in Figure 2, with the exception that they are notscaled. The non-scaled images are shown in Figure 9.

B.2 L1 ATTACK

We chose to use the Frank-Wolfe algorithm for optimizing the L1 attack, as Projected GradientDescent would require projecting onto a truncated L1 ball, which is a complicated operation. Incontrast, Frank-Wolfe only requires optimizing linear functions g>x over a truncated L1 ball; thiscan be done by sorting coordinates by the magnitude of g and moving the top k coordinates to theboundary of their range (with k chosen by binary search). This is detailed in Algorithm 1.

C FULL EVALUATION RESULTS

C.1 L1-JPEG AND L2-JPEG ATTACKS

We will present results with two additional versions of the JPEG attack which impose L1 or L2

constraints on the attack in JPEG-space instead of theL∞ constraint discussed in Section 2. To avoidconfusion, in this appendix, we denote the original JPEG attack by L∞-JPEG and these variants byL1-JPEG and L2-JPEG, respectively. Comparing the L1-JPEG and L2-JPEG attacks in Figure 10,

Exi

stin

gA

ttack

s

L∞ (4.1m, 11.1k, 32) L2 (1.3m, 4.8k, 99) L1 (224k, 2.6k, 218) Elastic (3.1m, 15.2k, 253)

New

Atta

cks

JPEG (5.4m, 18.7k, 255) Fog (4.1m, 13.2k, 89) Gabor (3.7m, 13.3k, 50) Snow (11.4m, 32.0k, 255)

Figure 9: Differences of the attacked images and original image for different attacks (label “espressomaker”). The L1, L2, and L∞ norms of the difference are shown in parentheses. As shown, ournovel attacks display qualitatively different behavior and do not fall under the Lp threat model.These differences are not scaled and are normalized so that no difference corresponds to white.

11

Under review as a conference paper at ICLR 2020

Algorithm 1 Pseudocode for the Frank-Wolfe algorithm for the L1 attack.

1: Input: function f , initial input x ∈ [0, 1]d, L1 radius ρ, number of steps T .2: Output: approximate maximizer x of f over the truncated L1 ball B1(ρ;x) ∩ [0, 1]d centered

at x.3:4: x(0) ← RandomInit(x) . Random initialization5: for t = 1, . . . , T do6: g ← ∇f(x(t−1)) . Obtain gradient7: for k = 1, . . . , d do8: sk ← index of the coordinate of g by with kth largest norm9: end for

10: Sk ← {s1, . . . , sk}.11:12: for i = 1, . . . , d do . Compute move to boundary of [0, 1] for each coordinate.13: if gi > 0 then14: bi ← 1− xi15: else16: bi ← −xi17: end if18: end for19: Mk ←

∑i∈Sk|bi| . Compute L1-perturbation of moving k largest coordinates.

20: k∗ ← max{k |Mk ≤ ρ} . Choose largest k satisfying L1 constraint.21: for i = 1, . . . , d do . Compute x maximizing g>x over the L1 ball.22: if i ∈ Sk∗ then23: xi ← xi + bi24: else if i = sk∗+1 then25: xi ← xi + (ρ−Mk∗) sign(gi)26: else27: xi ← xi28: end if29: end for30: x(t) ← (1− 1

t )x(t−1) + 1t x . Average x with previous iterates

31: end for32: x← x(T )

Table 2: ATA values for L1-JPEG and L2-JPEG on ImageNet-100.

Attack ε1 ε2 ε3 ε4 ε5 ε6 ATA1 ATA2 ATA3 ATA4 ATA5 ATA6

L2-JPEG 8 16 32 64 128 256 84.8 82.5 78.9 72.3 47.5 3.4L1-JPEG 256 1024 4096 16384 65536 131072 84.8 81.8 76.2 67.1 46.4 41.8

we find that they have extremely similar results, so we omit L1-JPEG in the full analysis for brevityand visibility. Calibration values for these attacks are shown in Table 2.

C.2 FULL EVALUATION RESULTS AND ANALYSIS FOR IMAGENET-100

We show the full results of all adversarial attacks against all adversarial defenses for ImageNet-100in Figure 11. As described, the Lp attacks and defenses give highly correlated information on held-out defenses and attacks respectively. Thus, we recommend evaluating on a wide range of distortiontypes. Full UAR scores are also provided for ImageNet-100 in Figure 12.

We further show selected results in Figure 13. As shown, a wide range of ε is required to see the fullbehavior.

12

Under review as a conference paper at ICLR 2020

L2-J

PE

=2

L2-J

PE

=16

L2-J

PE

=32

L2-J

PE

=64

L2-J

PE

=12

8

L2-J

PE

=25

6L

1-J

PE

=12

8

L1-J

PE

=10

24

L1-J

PE

=40

96

L1-J

PE

=16

384

L1-J

PE

=65

536

L1-J

PE

=13

1072

Attack (evaluation)

Normal training

L∞ ε = 1L∞ ε = 2L∞ ε = 4L∞ ε = 8L∞ ε = 16L∞ ε = 32

L2 ε = 150L2 ε = 300L2 ε = 600L2 ε = 1200L2 ε = 2400L2 ε = 4800

L1 ε = 9562.44L1 ε = 19125

L1 ε = 38250.1L1 ε = 76500L1 ε = 153000L1 ε = 306000L1 ε = 612000

L∞-JPEG ε = 0.03125L∞-JPEG ε = 0.0625L∞-JPEG ε = 0.125L∞-JPEG ε = 0.25L∞-JPEG ε = 0.5L∞-JPEG ε = 1L∞-JPEG ε = 2L∞-JPEG ε = 4

L2-JPEG ε = 2L2-JPEG ε = 4L2-JPEG ε = 8L2-JPEG ε = 16L2-JPEG ε = 32L2-JPEG ε = 64L2-JPEG ε = 128L2-JPEG ε = 256

L1-JPEG ε = 128L1-JPEG ε = 256L1-JPEG ε = 512L1-JPEG ε = 1024L1-JPEG ε = 2048L1-JPEG ε = 4096L1-JPEG ε = 8192L1-JPEG ε = 16384L1-JPEG ε = 32768L1-JPEG ε = 65536L1-JPEG ε = 131072

Elastic ε = 0.25Elastic ε = 0.5

Elastic ε = 1Elastic ε = 2Elastic ε = 4Elastic ε = 8

Elastic ε = 16

Att

ack

(adv

ersa

rial

trai

ning

)

70 0 0 0 0 0 50 0 0 0 0 0

86 10 0 0 0 0 76 5 0 0 0 085 34 1 0 0 0 79 16 0 0 0 084 54 5 0 0 0 79 31 1 0 0 079 43 6 0 0 0 74 33 2 0 0 073 26 3 0 0 0 64 25 3 0 0 068 7 1 0 0 0 56 23 4 0 0 0

85 2 0 0 0 0 73 2 0 0 0 085 17 0 0 0 0 78 7 0 0 0 085 49 2 0 0 0 82 24 0 0 0 082 74 25 0 0 0 81 56 4 0 0 077 74 57 7 0 0 77 68 25 1 0 068 67 62 33 1 0 68 66 49 12 2 3

84 1 0 0 0 0 71 1 0 0 0 084 3 0 0 0 0 78 5 0 0 0 084 20 0 0 0 0 81 18 0 0 0 084 48 4 0 0 0 83 47 2 0 0 080 62 16 0 0 0 80 71 12 0 0 078 68 41 2 0 0 78 74 36 1 0 071 67 53 13 0 0 71 69 52 6 0 0

86 55 3 0 0 0 83 36 0 0 0 087 74 18 0 0 0 85 57 2 0 0 086 81 51 1 0 0 85 72 14 0 0 084 82 73 17 0 0 84 78 43 2 0 081 80 77 57 2 0 80 79 69 28 2 180 79 76 68 32 0 80 79 76 68 48 4878 78 76 67 45 17 78 77 75 69 55 4776 75 72 59 30 8 76 75 73 66 56 50

86 23 0 0 0 0 83 17 0 0 0 086 56 3 0 0 0 84 41 0 0 0 086 76 24 0 0 0 85 64 3 0 0 086 82 61 3 0 0 85 78 24 0 0 084 82 76 29 0 0 84 81 57 3 0 081 80 79 65 4 0 81 80 73 34 2 178 77 76 72 39 0 77 77 75 67 38 3278 77 76 72 47 3 78 77 75 70 56 57

86 40 1 0 0 0 85 48 0 0 0 086 61 6 0 0 0 85 63 2 0 0 086 75 27 0 0 0 85 75 10 0 0 086 81 57 3 0 0 86 80 34 0 0 085 82 73 22 0 0 84 81 57 2 0 083 82 78 50 1 0 83 82 71 18 0 081 80 79 64 6 0 80 80 75 45 4 480 79 78 70 17 0 79 79 76 62 19 1778 77 76 70 22 0 78 77 75 65 31 2675 74 74 68 24 0 75 75 73 67 46 4273 72 71 64 18 0 73 72 71 64 41 37

82 0 0 0 0 0 62 1 0 0 0 084 1 0 0 0 0 67 3 0 0 0 083 4 0 0 0 0 67 6 0 0 0 082 8 0 0 0 0 68 9 0 0 0 078 4 0 0 0 0 61 7 0 0 0 070 1 0 0 0 0 45 3 0 0 0 055 0 0 0 0 0 32 1 0 0 0 0

0.0

0.2

0.4

0.6

0.8

1.0

Adversarial

accuracy

Figure 10: A comparison of L1-JPEG and L2-JPEG attacks.

13

Under review as a conference paper at ICLR 2020

No atta

ckL

=1L

=2L

=4L

=8L

=16L

=32 L2 =15

0L2

=300

L2 =60

0L2

=1200

L2 =24

00L2

=4800

L1 =95

62.44

L1 =19

125

L1 =38

250.1

L1 =76

500

L1 =15

3000

L1 =30

6000

L1 =61

2000

L-JP

EG =0.0

3125

L-JP

EG =0.0

625

L-JP

EG =0.1

25

L-JP

EG =0.2

5

L-JP

EG =0.5

L-JP

EG =1

L-JP

EG =2

L2-JP

EG =2

L2-JP

EG =4

L2-JP

EG =8

L2-JP

EG =16

L2-JP

EG =32

L2-JP

EG =64

L2-JP

EG =12

8

L2-JP

EG =25

6L1

-JPEG

=128

L1-JP

EG =25

6

L1-JP

EG =51

2

L1-JP

EG =10

24

L1-JP

EG =20

48

L1-JP

EG =40

96

L1-JP

EG =81

92

L1-JP

EG =16

384

L1-JP

EG =32

768

L1-JP

EG =65

536

L1-JP

EG =13

1072

Elastic

=0.25

Elastic

=0.5

Elastic

=1

Elastic

=2

Elastic

=4

Elastic

=8

Elastic

=16 Fog =12

8

Fog =25

6

Fog =51

2

Fog =10

24

Fog =20

48

Fog =40

96

Fog =81

92

Fog =16

384

Fog =32

768

Fog =65

536

Gabor

=6.25

Gabor

=12.5

Gabor

=25

Gabor

=50

Gabor

=100

Gabor

=200

Gabor

=400

Gabor

=800

Gabor

=1600

Gabor

=3200

Snow

=0.031

25

Snow

=0.062

5

Snow

=0.125

Snow

=0.25

Snow

=0.5Sn

ow =1

Snow

=2Sn

ow =4

Snow

=8

Snow

=16

Norm

al tr

aini

ng

L

=1

L

=2

L

=4

L

=8

L

=16

L

=32

L 2

=15

0L 2

=

300

L 2

=60

0L 2

=

1200

L 2

=24

00L 2

=

4800

L 1

=95

62.4

4L 1

=

1912

5L 1

=

3825

0.1

L 1

=76

500

L 1

=15

3000

L 1

=30

6000

L 1

=61

2000

L-JP

EG

=0.

0312

5L

-JPEG

=

0.06

25L

-JPEG

=

0.12

5L

-JPEG

=

0.25

L-JP

EG

=0.

5L

-JPEG

=

1L

-JPEG

=

2

L 2-JP

EG

=2

L 2-JP

EG

=4

L 2-JP

EG

=8

L 2-JP

EG

=16

L 2-JP

EG

=32

L 2-JP

EG

=64

L 2-JP

EG

=12

8L 2

-JPEG

=

256

L 1-JP

EG

=12

8L 1

-JPEG

=

256

L 1-JP

EG

=51

2L 1

-JPEG

=

1024

L 1-JP

EG

=20

48L 1

-JPEG

=

4096

L 1-JP

EG

=81

92L 1

-JPEG

=

1638

4L 1

-JPEG

=

3276

8L 1

-JPEG

=

6553

6L 1

-JPEG

=

1310

72

Elas

tic

=0.

25El

astic

=

0.5

Elas

tic

=1

Elas

tic

=2

Elas

tic

=4

Elas

tic

=8

Elas

tic

=16

Fog

=12

8Fo

g =

256

Fog

=51

2Fo

g =

1024

Fog

=20

48Fo

g =

4096

Fog

=81

92Fo

g =

1638

4Fo

g =

3276

8Fo

g =

6553

6

Gabo

r =

6.25

Gabo

r =

12.5

Gabo

r =

25Ga

bor

=50

Gabo

r =

100

Gabo

r =

200

Gabo

r =

400

Gabo

r =

800

Gabo

r =

1600

Gabo

r =

3200

Snow

=

0.03

125

Snow

=

0.06

25Sn

ow

=0.

125

Snow

=

0.25

Snow

=

0.5

Snow

=

1Sn

ow

=2

Snow

=

4Sn

ow

=8

Snow

=

16

8725

1 0

0 0

057

11 0

0 0

061

29 5

0 0

0 0

20 1

0 0

0 0

070

25 1

0 0

0 0

050

20 3

0 0

0 0

0 0

0 0

7947

6 0

0 0

054

15 1

0 0

0 0

0 0

012

3 1

0 0

0 0

0 0

064

32 7

1 0

0 0

0 0

0

8684

7014

0 0

086

8148

2 0

080

6635

5 0

0 0

8471

13 0

0 0

086

8466

10 0

0 0

076

6028

5 0

0 0

0 0

0 0

8475

36 3

0 0

074

47 9

0 0

0 0

0 0

074

28 4

1 0

0 0

0 0

080

6829

4 0

0 0

0 0

085

8581

50 2

0 0

8583

7118

0 0

8172

5218

1 0

084

8148

1 0

0 0

8584

7734

1 0

0 0

7969

4616

2 0

0 0

0 0

084

7852

7 0

0 0

7347

10 0

0 0

0 0

0 0

8159

12 1

0 0

0 0

0 0

7973

44 9

1 0

0 0

0 0

8483

8274

22 0

084

8379

48 2

080

7561

32 6

0 0

8482

6910

0 0

084

8379

54 5

0 0

079

7358

31 7

1 0

0 0

0 0

8379

6215

1 0

070

43 9

1 0

0 0

0 0

082

7537

3 0

0 0

0 0

079

7456

18 3

1 0

0 0

080

7979

7659

6 0

7978

7350

7 0

7264

4927

6 1

079

7759

12 0

0 0

7978

7043

6 0

0 0

7467

5433

11 2

0 0

0 0

079

7666

31 2

0 0

6333

6 1

1 0

0 0

1 0

7977

6417

1 0

0 0

0 0

7472

6231

9 2

0 0

0 0

7574

7473

6734

173

7163

30 3

058

4324

8 1

0 0

7367

37 3

0 0

073

7059

26 3

0 0

064

5642

2511

3 0

0 0

0 0

7371

6642

11 1

055

25 4

1 1

0 0

0 0

074

7368

44 4

0 0

0 0

068

6659

4017

6 1

0 0

071

7170

6962

40 8

6960

33 5

0 0

3721

8 2

0 0

065

42 8

0 0

0 0

6861

34 7

1 0

0 0

5647

3623

11 4

1 0

0 0

070

6862

4415

2 0

5529

5 1

0 0

0 0

0 0

7069

6349

16 2

2 1

0 0

6360

5437

17 5

1 0

0 0

8782

53 3

0 0

085

7834

1 0

080

6936

5 0

0 0

8151

2 0

0 0

085

8148

2 0

0 0

073

4815

2 0

0 0

0 0

0 0

8371

28 1

0 0

073

4610

0 0

0 0

0 0

062

15 3

0 0

0 0

0 0

078

6020

3 0

0 0

0 0

085

8474

22 0

0 0

8582

65 8

0 0

8276

5718

1 0

084

7522

0 0

0 0

8583

7317

0 0

0 0

7866

35 7

0 0

0 0

0 0

083

7643

3 0

0 0

7447

11 0

0 0

0 0

0 0

7739

6 1

0 0

0 0

0 0

7967

33 5

0 0

0 0

0 0

8484

8156

4 0

084

8377

40 1

083

8071

44 9

0 0

8481

60 3

0 0

085

8480

49 2

0 0

082

7559

24 3

0 0

0 0

0 0

8379

56 9

0 0

072

4511

1 0

0 0

0 0

081

6517

2 0

0 0

0 0

078

7246

11 1

0 0

0 0

082

8281

7428

0 0

8282

8069

15 0

8280

7765

32 4

082

8176

34 0

0 0

8282

8174

25 0

0 0

8180

7356

24 4

0 0

0 0

081

7866

23 1

0 0

6740

8 1

0 0

0 0

0 0

8175

42 5

0 0

0 0

0 0

7672

5722

3 1

0 0

0 0

7777

7674

56 6

077

7776

7350

277

7675

7157

23 1

7776

7563

9 0

077

7676

7457

7 0

077

7673

6852

25 5

1 0

0 0

7674

6838

4 0

059

30 6

1 1

1 0

1 0

076

7461

16 1

0 0

0 0

070

6858

3510

2 0

0 0

068

6868

6761

28 1

6868

6867

5920

6968

6866

6144

1368

6867

6437

2 0

6868

6867

6233

1 0

6868

6866

6149

3012

4 2

368

6663

4711

1 0

4923

5 1

1 1

0 1

0 0

6867

6130

3 1

1 0

0 0

6058

5440

17 5

2 1

0 0

8671

24 1

0 0

082

6414

0 0

083

7753

13 0

0 0

6718

0 0

0 0

084

7122

1 0

0 0

071

4411

1 0

0 0

0 0

0 0

8266

19 1

0 0

068

33 3

0 0

0 0

0 0

041

9 2

0 0

0 0

0 0

073

5014

2 0

0 0

0 0

086

7841

3 0

0 0

8474

32 1

0 0

8481

6832

3 0

076

41 2

0 0

0 0

8479

48 3

0 0

0 0

7863

28 5

0 0

0 0

0 0

083

7128

1 0

0 0

6936

4 0

0 0

0 0

0 0

5617

3 0

0 0

0 0

0 0

7559

22 2

0 0

0 0

0 0

8581

6211

0 0

084

8055

6 0

084

8277

5412

0 0

8164

14 0

0 0

084

8268

20 0

0 0

081

7551

18 3

0 0

0 0

0 0

8275

41 3

0 0

070

39 6

0 0

0 0

0 0

071

32 5

1 0

0 0

0 0

077

6430

4 0

0 0

0 0

084

8271

28 1

0 0

8381

6720

0 0

8483

8172

40 4

082

7545

3 0

0 0

8482

7648

4 0

0 0

8380

7247

14 2

0 0

0 0

082

7752

6 0

0 0

6837

5 0

0 0

0 0

0 0

7750

12 1

0 0

0 0

0 0

7667

34 8

1 0

0 0

0 0

8179

7243

3 0

080

7869

35 2

081

8079

7664

26 1

7974

6017

0 0

080

7976

6216

0 0

080

8078

7145

12 1

0 0

0 0

7975

5712

0 0

065

36 5

0 0

0 0

0 0

077

6123

3 0

0 0

0 0

073

6644

12 1

0 0

0 0

079

7772

5310

0 0

7877

7146

6 0

7978

7875

6945

777

7466

40 3

0 0

7877

7568

41 2

0 0

7878

7774

6436

7 1

0 0

077

7362

21 1

0 0

6132

4 0

0 0

0 0

0 0

7665

35 6

0 0

0 0

0 0

7065

4920

4 1

0 0

0 0

7271

6959

24 1

072

7169

5518

072

7271

7067

5524

7169

6551

15 0

071

7170

6753

13 0

071

7170

6964

5224

6 1

0 0

7068

6133

3 0

050

24 5

0 0

0 0

0 0

069

6242

12 1

0 0

0 0

060

5646

24 8

2 0

0 0

1

8775

28 1

0 0

083

58 7

0 0

075

5014

1 0

0 0

8683

54 2

0 0

086

8682

55 3

0 0

083

8067

36 7

0 0

0 0

0 0

8365

14 0

0 0

067

28 2

0 0

0 0

0 0

034

6 1

0 0

0 0

0 0

072

4411

1 0

0 0

0 0

087

8047

3 0

0 0

8471

19 0

0 0

7760

24 2

0 0

086

8475

17 0

0 0

8786

8474

18 0

0 0

8582

7657

21 2

0 0

0 0

083

7020

1 0

0 0

6933

3 0

0 0

0 0

0 0

5111

2 0

0 0

0 0

0 0

7551

13 1

0 0

0 0

0 0

8683

6814

0 0

084

7943

2 0

080

6737

7 0

0 0

8585

8357

1 0

086

8685

8151

1 0

085

8381

7247

14 1

0 0

0 0

8373

28 1

0 0

066

30 3

0 0

0 0

0 0

069

27 4

1 0

0 0

0 0

077

5920

3 0

0 0

0 0

084

8377

42 3

0 0

8381

6613

0 0

8073

5318

2 0

084

8483

7714

0 0

8484

8482

7317

0 0

8483

8278

6843

13 2

0 0

082

7540

3 0

0 0

6530

3 0

0 0

0 0

0 0

7852

13 1

0 0

0 0

0 0

7664

29 5

1 0

0 0

0 0

8180

7866

17 1

080

7974

41 3

078

7462

35 7

0 0

8181

8079

64 0

081

8181

8077

57 2

080

8080

7976

6952

28 9

2 1

8076

52 7

0 0

063

30 3

0 0

0 0

0 0

079

6935

6 1

0 0

0 0

074

6746

11 2

0 0

0 0

079

7977

6827

1 0

7978

7450

7 0

7775

6850

21 3

080

7979

7773

34 0

8079

7979

7668

32 0

8079

7979

7876

7368

6148

4878

7558

12 0

0 0

6129

3 0

0 0

0 0

0 0

7871

4712

1 0

0 0

0 0

7167

4817

4 1

0 0

0 0

7877

7663

19 1

078

7773

47 5

077

7568

4817

2 0

7878

7775

6235

178

7878

7876

6745

1778

7878

7777

7573

6965

5547

7774

5711

0 0

060

29 4

0 0

0 0

0 0

077

7044

14 2

0 0

0 0

070

6545

16 4

1 0

0 0

1

8764

12 0

0 0

080

44 2

0 0

072

4310

1 0

0 0

8571

15 0

0 0

086

8574

23 0

0 0

083

7654

17 1

0 0

0 0

0 0

8259

10 0

0 0

064

24 2

0 0

0 0

0 0

022

4 1

0 0

0 0

0 0

070

40 9

1 0

0 0

0 0

087

7526

1 0

0 0

8359

8 0

0 0

7552

16 1

0 0

086

8249

1 0

0 0

8686

8256

3 0

0 0

8481

7041

8 0

0 0

0 0

082

6515

0 0

0 0

6727

2 0

0 0

0 0

0 0

33 6

1 0

0 0

0 0

0 0

7444

10 1

0 0

0 0

0 0

8681

50 4

0 0

084

7424

1 0

079

6428

3 0

0 0

8685

7415

0 0

086

8684

7624

0 0

085

8379

6428

3 0

0 0

0 0

8369

19 1

0 0

068

33 3

0 0

0 0

0 0

050

11 2

0 0

0 0

0 0

075

5214

1 0

0 0

0 0

085

8370

15 0

0 0

8480

50 3

0 0

8173

4610

0 0

086

8582

56 1

0 0

8685

8582

61 3

0 0

8584

8378

6024

2 0

0 0

083

7330

1 0

0 0

6935

4 0

0 0

0 0

0 0

6825

4 0

0 0

0 0

0 0

7759

20 3

0 0

0 0

0 0

8483

7844

3 0

083

8270

18 0

081

7762

25 2

0 0

8484

8375

14 0

084

8484

8276

29 0

084

8383

8175

5722

3 0

0 0

8276

42 3

0 0

068

35 4

0 0

0 0

0 0

077

4710

1 0

0 0

0 0

077

6732

5 1

0 0

0 0

081

8179

6717

0 0

8180

7649

4 0

8077

7045

11 1

081

8181

7958

0 0

8181

8180

7965

4 0

8181

8180

7873

6034

10 2

180

7654

9 0

0 0

6634

5 0

0 0

0 0

0 0

7968

31 4

0 0

0 0

0 0

7569

4513

2 0

0 0

0 0

7778

7672

40 3

078

7775

6316

077

7571

5726

3 0

7877

7776

7119

078

7877

7776

7239

077

7777

7776

7572

6755

3832

7775

6219

1 0

061

29 4

0 0

0 0

0 0

076

7248

11 1

0 0

0 0

071

6855

23 6

1 0

0 0

177

7776

7136

2 0

7777

7562

15 0

7776

7159

30 5

078

7777

7671

40 0

7878

7877

7672

47 3

7878

7777

7775

7470

6356

5777

7564

19 1

0 0

6029

4 0

0 0

0 0

0 0

7671

4713

1 0

0 0

0 0

6966

5325

7 1

0 0

0 1

8766

15 0

0 0

081

51 5

0 0

077

5517

1 0

0 0

8369

16 0

0 0

086

8579

40 1

0 0

085

8375

4812

0 0

0 0

0 0

8158

10 0

0 0

064

24 1

0 0

0 0

0 0

024

4 1

0 0

0 0

0 0

071

40 8

1 0

0 0

0 0

086

7427

1 0

0 0

8363

11 0

0 0

7963

26 2

0 0

085

7838

1 0

0 0

8686

8261

6 0

0 0

8584

8063

26 2

0 0

0 0

081

6313

0 0

0 0

6830

2 0

0 0

0 0

0 0

34 7

1 0

0 0

0 0

0 0

7443

10 1

0 0

0 0

0 0

8679

47 3

0 0

084

7426

1 0

081

7138

5 0

0 0

8582

64 8

0 0

086

8584

7527

0 0

085

8482

7549

10 0

0 0

0 0

8267

18 0

0 0

068

30 3

0 0

0 0

0 0

048

11 2

0 0

0 0

0 0

076

5214

2 0

0 0

0 0

086

8366

12 0

0 0

8480

51 3

0 0

8275

5313

1 0

085

8477

36 0

0 0

8686

8581

57 3

0 0

8685

8480

6634

4 0

0 0

083

7329

2 0

0 0

6934

4 0

0 0

0 0

0 0

6321

3 0

0 0

0 0

0 0

7861

19 2

0 0

0 0

0 0

8482

7534

1 0

084

8167

13 0

082

7863

27 2

0 0

8484

8166

6 0

085

8484

8273

22 0

084

8483

8175

5722

2 0

0 0

8275

39 3

0 0

069

35 5

0 0

0 0

0 0

074

39 7

1 0

0 0

0 0

078

6631

4 0

0 0

0 0

083

8279

55 5

0 0

8381

7534

1 0

8178

6939

6 0

083

8382

7632

0 0

8383

8382

7850

1 0

8383

8382

7971

4918

3 0

081

7650

6 0

0 0

6634

5 0

0 0

0 0

0 0

7956

16 2

0 0

0 0

0 0

7668

38 7

1 0

0 0

0 0

8180

7864

14 0

080

8076

48 3

080

7770

4812

1 0

8180

8077

54 1

081

8180

8079

64 6

080

8180

8079

7567

4517

4 4

7975

55 9

0 0

065

33 4

0 0

0 0

0 0

078

6726

3 0

0 0

0 0

074

6947

12 2

0 0

0 0

080

7978

7026

1 0

7979

7658

8 0

7876

7153

18 1

080

7979

7766

3 0

8079

7979

7870

17 0

7979

7979

7876

7362

4119

1779

7658

12 0

0 0

6228

3 0

0 0

0 0

0 0

7871

39 6

0 0

0 0

0 0

7369

5017

3 1

0 0

0 0

7777

7771

33 1

078

7775

6011

077

7570

5622

2 0

7878

7777

68 6

078

7878

7776

7022

078

7777

7777

7573

6551

3126

7774

6015

1 0

059

27 3

0 0

0 0

0 0

077

7244

9 1

0 0

0 0

071

6750

21 4

1 0

0 0

076

7574

6937

2 0

7575

7359

13 0

7472

6854

22 2

075

7575

7468

9 0

7575

7574

7468

24 0

7575

7475

7473

7267

5946

4274

7157

16 1

0 0

5222

2 0

0 0

0 0

0 0

7570

5214

1 0

0 0

0 0

6663

4921

5 1

0 0

0 1

7273

7165

29 2

073

7269

5410

072

7065

5019

2 0

7373

7272

64 5

073

7373

7271

6418

073

7373

7272

7169

6455

4137

7269

5413

1 0

047

17 2

0 0

0 0

0 0

072

6744

11 1

0 0

0 0

063

5943

16 3

1 0

0 0

1

8763

14 0

0 0

079

44 4

0 0

072

4814

2 0

0 0

6414

0 0

0 0

082

5811

0 0

0 0

062

33 9

1 0

0 0

0 0

0 0

8578

45 2

0 0

070

35 4

0 0

0 0

0 0

039

10 2

1 0

0 0

0 0

075

5220

3 0

0 0

0 0

087

7325

1 0

0 0

8258

10 0

0 0

7658

25 4

0 0

076

34 1

0 0

0 0

8471

25 1

0 0

0 0

6743

17 3

0 0

0 0

0 0

086

8369

15 0

0 0

7242

8 0

0 0

0 0

0 0

5621

5 1

0 0

0 0

0 0

7661

30 8

1 0

0 0

0 0

8577

40 3

0 0

082

6721

1 0

077

6335

9 1

0 0

8054

9 0

0 0

083

7641

4 0

0 0

067

4722

6 1

0 0

0 0

0 0

8483

7851

3 0

072

4711

0 0

0 0

0 0

071

4214

3 0

0 0

0 0

076

6843

16 4

1 0

0 0

084

7849

7 0

0 0

8171

30 2

0 0

7562

3711

1 0

079

5611

0 0

0 0

8276

45 8

0 0

0 0

6852

29 9

2 0

0 0

0 0

084

8381

7332

1 0

7350

15 1

0 0

0 0

0 0

7655

22 5

1 0

0 0

0 0

7669

5126

9 2

1 1

0 0

8174

47 8

0 0

078

6727

2 0

066

4925

7 1

0 0

7036

4 0

0 0

078

6831

4 0

0 0

061

4221

7 1

0 0

0 0

0 0

8180

7978

7117

068

4613

1 0

0 0

0 0

075

5932

9 2

1 1

1 0

072

6855

3415

5 3

1 1

178

6939

5 0

0 0

7354

15 1

0 0

4728

10 2

0 0

053

13 1

0 0

0 0

7046

12 1

0 0

0 0

4527

11 3

0 0

0 0

0 0

078

7676

7576

57 4

6342

13 1

0 0

0 0

0 0

7159

3512

3 1

1 1

0 0

6663

5436

19 9

5 2

1 1

7458

22 2

0 0

063

32 5

0 0

031

14 4

1 0

0 0

27 3

0 0

0 0

055

22 2

0 0

0 0

032

16 4

1 0

0 0

0 0

0 0

7473

7271

7057

2160

3812

1 0

0 0

0 0

068

5229

10 3

1 1

1 0

063

6052

3824

14 9

4 1

1

8740

2 0

0 0

069

16 0

0 0

062

26 4

0 0

0 0

23 1

0 0

0 0

074

27 1

0 0

0 0

049

18 2

0 0

0 0

0 0

0 0

8154

9 0

0 0

083

6933

3 0

0 0

0 0

019

3 1

0 0

0 0

0 0

077

4712

1 0

0 0

0 0

088

40 2

0 0

0 0

6817

0 0

0 0

6024

3 0

0 0

017

1 0

0 0

0 0

7122

1 0

0 0

0 0

4515

2 0

0 0

0 0

0 0

082

5812

0 0

0 0

8578

5921

2 0

0 0

0 0

25 5

1 0

0 0

0 0

0 0

8057

19 2

0 0

0 0

0 0

8729

1 0

0 0

059

12 0

0 0

054

19 2

0 0

0 0

9 0

0 0

0 0

057

11 0

0 0

0 0

030

6 0

0 0

0 0

0 0

0 0

8261

14 1

0 0

086

8274

5116

2 1

1 1

131

6 1

0 0

0 0

0 0

081

6527

4 0

0 0

0 0

086

23 1

0 0

0 0

50 9

0 0

0 0

4916

2 0

0 0

0 6

0 0

0 0

0 0

45 8

0 0

0 0

0 0

29 7

1 0

0 0

0 0

0 0

082

6316

1 0

0 0

8684

7867

4316

5 2

1 1

40 9

2 0

0 0

0 0

0 0

8268

39 8

1 0

0 0

0 0

8517

1 0

0 0

042

6 0

0 0

046

16 2

0 0

0 0

4 0

0 0

0 0

035

5 0

0 0

0 0

027

7 1

0 0

0 0

0 0

0 0

8163

19 1

0 0

084

8379

7156

3416

7 3

152

16 3

1 0

0 0

0 0

080

7244

11 2

0 0

0 0

078

8 0

0 0

0 0

24 2

0 0

0 0

26 5

0 0

0 0

0 2

0 0

0 0

0 0

23 2

0 0

0 0

0 0

15 3

0 0

0 0

0 0

0 0

074

6019

1 0

0 0

7978

7672

6758

4629

10 3

6234

9 2

0 0

0 0

0 0

7569

5019

4 1

0 0

0 0

69 4

0 0

0 0

012

1 0

0 0

025

8 2

0 0

0 0

4 0

0 0

0 0

012

2 0

0 0

0 0

0 5

1 0

0 0

0 0

0 0

0 0

6549

11 0

0 0

070

7070

6868

6865

5739

1768

6663

4815

2 3

1 0

067

6560

4930

12 2

0 0

062

3 0

0 0

0 0

9 1

0 0

0 0

18 6

1 0

0 0

0 3

0 0

0 0

0 0

8 1

0 0

0 0

0 0

4 1

0 0

0 0

0 0

0 0

056

38 6

0 0

0 0

6465

6565

6464

6462

5333

6261

5952

27 6

3422

10 2

6159

5648

3619

6 1

0 0

51 3

0 0

0 0

0 8

1 0

0 0

022

9 2

0 0

0 0

4 0

0 0

0 0

0 8

1 0

0 0

0 0

0 5

2 0

0 0

0 0

0 0

0 0

4726

3 0

0 0

056

5757

5757

5755

5141

2354

5452

4521

427

1910

353

5146

3928

14 3

1 0

042

5 1

0 0

0 0

10 2

0 0

0 0

20 9

3 1

0 0

0 6

1 0

0 0

0 0

12 3

0 0

0 0

0 0

7 3

1 0

0 0

0 0

0 0

041

26 5

0 0

0 0

5150

5150

5049

4845

3928

4646

4538

19 4

2618

8 2

4744

4034

2211

3 0

0 0

8655

9 0

0 0

075

33 2

0 0

066

3911

1 0

0 0

35 2

0 0

0 0

064

16 1

0 0

0 0

030

8 1

0 0

0 0

0 0

0 0

8373

34 2

0 0

074

4912

0 0

0 0

0 0

082

6622

4 0

0 0

0 0

080

7141

9 1

0 0

0 0

085

37 3

0 0

0 0

6417

1 0

0 0

6029

6 1

0 0

016

1 0

0 0

0 0

42 5

0 0

0 0

0 0

15 3

0 0

0 0

0 0

0 0

083

7438

2 0

0 0

7552

17 1

0 0

0 0

0 0

8479

5614

1 0

0 0

0 0

8075

5418

3 1

0 0

0 0

8524

2 0

0 0

051

10 0

0 0

050

22 5

1 0

0 0

8 0

0 0

0 0

032

3 0

0 0

0 0

012

3 0

0 0

0 0

0 0

0 0

8273

37 3

0 0

072

4912

0 0

0 0

0 0

083

8072

41 7

0 0

0 0

079

7457

29 6

1 0

0 0

084

21 2

0 0

0 0

48 9

0 0

0 0

4919

4 1

0 0

0 8

0 0

0 0

0 0

31 3

0 0

0 0

0 0

12 3

0 0

0 0

0 0

0 0

081

7440

3 0

0 0

7144

9 0

0 0

0 0

0 0

8280

8064

23 2

1 1

0 0

7871

5730

11 2

1 0

0 0

8323

2 0

0 0

050

9 0

0 0

045

18 3

0 0

0 0

9 0

0 0

0 0

038

5 0

0 0

0 0

017

4 1

0 0

0 0

0 0

0 0

8072

39 4

0 0

070

43 6

0 0

0 0

0 0

081

7773

6961

12 9

2 0

076

7052

2710

2 0

0 0

083

33 3

0 0

0 0

5713

1 0

0 0

4517

3 0

0 0

014

1 0

0 0

0 0

5112

1 0

0 0

0 0

27 9

2 0

0 0

0 0

0 0

080

7238

4 0

0 0

6839

5 0

0 0

0 0

0 0

8076

7066

6253

21 2

0 0

7670

5225

6 1

0 0

0 0

8234

4 0

0 0

058

15 1

0 0

041

15 2

0 0

0 0

16 1

0 0

0 0

058

16 1

0 0

0 0

029

8 1

0 0

0 0

0 0

0 0

7971

42 6

0 0

068

40 6

0 0

0 0

0 0

077

7367

6157

4729

3 0

075

6951

25 7

1 0

0 0

081

37 4

0 0

0 0

5915

1 0

0 0

4015

2 0

0 0

017

1 0

0 0

0 0

5916

1 0

0 0

0 0

3210

2 0

0 0

0 0

0 0

078

7043

9 0

0 0

6943

9 0

0 0

0 0

0 0

7872

6457

5250

46 9

0 0

7571

5525

7 2

0 0

0 0

7938

5 0

0 0

060

16 1

0 0

041

14 2

0 0

0 0

22 1

0 0

0 0

063

21 1

0 0

0 0

031

10 2

0 0

0 0

0 0

0 0

7769

4510

0 0

069

4713

1 0

0 0

0 0

076

7162

5447

4961

28 3

074

7160

3210

3 0

0 0

077

35 5

0 0

0 0

5615

1 0

0 0

3612

2 0

0 0

021

1 0

0 0

0 0

5920

1 0

0 0

0 0

3110

2 0

0 0

0 0

0 0

075

6847

13 1

0 0

6950

21 4

1 0

0 0

0 0

7469

6153

4651

6645

15 1

7473

6750

23 8

2 0

0 0

8246

5 0

0 0

068

24 1

0 0

058

29 7

1 0

0 0

27 1

0 0

0 0

068

27 1

0 0

0 0

041

15 2

0 0

0 0

0 0

0 0

7552

13 1

0 0

074

5113

0 0

0 0

0 0

032

7 2

0 0

0 0

0 0

085

7633

4 0

0 0

0 0

081

47 6

0 0

0 0

6726

1 0

0 0

5830

7 0

0 0

026

1 0

0 0

0 0

6524

1 0

0 0

0 0

4618

3 0

0 0

0 0

0 0

074

5516

1 0

0 0

7659

22 2

0 0

0 0

0 0

5114

3 1

0 0

0 0

0 0

8683

6316

1 0

0 0

0 0

7943

7 0

0 0

062

23 2

0 0

053

26 6

0 0

0 0

20 1

0 0

0 0

054

16 1

0 0

0 0

033

11 1

0 0

0 0

0 0

0 0

7357

23 2

0 0

075

6028

4 0

0 0

0 0

065

30 6

1 0

0 0

0 0

085

8479

5110

1 0

0 0

078

31 4

0 0

0 0

5114

1 0

0 0

4418

4 1

0 0

014

1 0

0 0

0 0

39 8

1 0

0 0

0 0

22 6

1 0

0 0

0 0

0 0

074

6128

3 0

0 0

7563

3610

1 0

0 0

0 0

7353

17 3

0 0

0 0

0 0

8584

8174

40 9

1 0

0 0

7627

4 0

0 0

043

11 1

0 0

036

15 4

1 0

0 0

13 1

0 0

0 0

036

8 1

0 0

0 0

019

6 1

0 0

0 0

0 0

0 0

7263

32 4

0 0

074

6440

14 2

0 0

0 0

074

6535

8 2

0 0

0 0

082

8281

7869

3913

2 0

074

22 3

0 0

0 0

34 7

1 0

0 0

26 9

2 0

0 0

0 7

0 0

0 0

0 0

25 5

0 0

0 0

0 0

19 6

1 0

0 0

0 0

0 0

069

5831

4 0

0 0

7260

35 8

1 0

0 0

0 0

6958

29 6

1 0

0 0

0 0

8080

7769

4926

10 2

0 0

7125

4 0

0 0

028

6 0

0 0

012

3 1

0 0

0 0

9 1

0 0

0 0

024

4 0

0 0

0 0

016

5 1

0 0

0 0

0 0

0 0

6860

38 9

1 0

070

6036

12 2

0 0

0 0

070

6753

24 5

1 1

1 0

079

7876

7465

5140

20 4

067

24 5

1 0

0 0

25 6

1 0

0 0

11 4

1 0

0 0

0 7

1 0

0 0

0 0

20 4

1 0

0 0

0 0

15 6

1 0

0 0

0 0

0 0

063

5942

14 1

0 0

6655

3413

4 1

0 0

0 0

6462

5329

9 2

2 2

1 0

7575

7472

6761

4834

16 3

6634

10 2

0 0

041

14 2

0 0

025

11 3

1 0

0 0

15 3

0 0

0 0

029

8 2

0 0

0 0

020

8 3

1 0

0 0

0 0

0 0

6462

5327

3 0

065

5637

17 7

2 1

0 1

065

6563

5535

1413

9 6

272

7271

7170

6966

6041

861

3413

3 0

0 0

4219

4 1

0 0

3016

6 2

0 0

027

8 1

0 0

0 0

4017

4 1

0 0

0 0

2211

4 1

0 0

0 0

0 0

060

5852

31 6

1 0

6153

3519

7 3

1 1

1 1

6161

5954

4221

1914

8 3

6565

6464

6362

5954

36 9

0.0

0.2

0.4

0.6

0.8

1.0

Adversarial accuracy

Figu

re11

:Acc

urac

yof

adve

rsar

iala

ttack

(col

umn)

agai

nsta

dver

sari

ally

trai

ned

mod

el(r

ow)o

nIm

ageN

et-1

00.

14

Under review as a conference paper at ICLR 2020

L∞ L2

L1

L∞

-JP

EG

L2-J

PE

GE

last

ic

Fog

Gab

orSn

ow

Normal Training

L∞ ε = 1

L∞ ε = 2

L∞ ε = 4

L∞ ε = 8

L∞ ε = 16

L∞ ε = 32

L∞-JPEG ε = 0.0625

L∞-JPEG ε = 0.125

L∞-JPEG ε = 0.25

L∞-JPEG ε = 0.5

L∞-JPEG ε = 1

L∞-JPEG ε = 2

Fog ε = 128

Fog ε = 256

Fog ε = 512

Fog ε = 2048

Fog ε = 4096

Fog ε = 8192

7 17 22 0 0 31 16 5 10

110 110 110 110 110 110 110 110 110

46 54 37 24 21 40 29 29 25

60 64 42 36 30 42 29 41 31

72 74 48 45 37 44 27 53 37

83 72 42 42 32 47 23 60 41

89 60 27 30 24 49 19 58 41

88 42 15 14 11 49 20 55 37

110 110 110 110 110 110 110 110 110

36 44 34 49 48 38 23 17 16

46 52 38 63 59 39 22 27 20

56 61 43 73 69 40 22 39 24

67 69 48 85 80 41 21 50 30

69 72 56 96 91 41 21 53 32

65 70 54 92 98 40 19 52 31

110 110 110 110 110 110 110 110 110

12 21 22 0 0 34 41 6 15

11 22 21 0 0 35 50 8 19

8 18 18 0 0 36 58 10 23

5 12 15 0 0 36 78 20 31

2 7 8 0 0 34 90 29 34

1 3 8 0 0 28 91 54 43L∞ L2

L1

L∞

-JP

EG

L2-J

PE

GE

last

ic

Fog

Gab

orSn

ow

Normal Training

L2 ε = 150

L2 ε = 300

L2 ε = 600

L2 ε = 1200

L2 ε = 2400

L2 ε = 4800

L2-JPEG ε = 8

L2-JPEG ε = 16

L2-JPEG ε = 32

L2-JPEG ε = 64

L2-JPEG ε = 128

L2-JPEG ε = 256

Gabor ε = 6.25

Gabor ε = 12.5

Gabor ε = 25

Gabor ε = 400

Gabor ε = 800

Gabor ε = 1600

7 17 22 0 0 31 16 5 10

110 110 110 110 110 110 110 110 110

38 49 38 15 13 39 29 22 20

50 60 44 27 24 40 29 33 26

62 72 53 40 36 42 28 44 31

73 82 65 54 49 46 26 54 37

80 88 75 63 58 48 22 57 40

80 88 79 67 63 48 18 53 38

110 110 110 110 110 110 110 110 110

37 46 36 49 50 38 23 17 17

47 55 41 63 62 39 24 26 20

57 63 46 72 74 40 24 36 25

67 73 53 84 84 41 23 48 31

74 77 59 90 93 43 21 53 36

72 76 61 96 96 43 21 53 36

110 110 110 110 110 110 110 110 110

17 28 26 1 0 39 30 46 30

11 20 22 0 0 40 32 59 36

7 15 18 0 0 39 29 64 39

10 18 14 0 0 39 25 68 36

11 19 14 0 0 39 27 73 37

12 19 14 0 0 39 29 82 40

L∞ L2

L1

L∞

-JP

EG

L2-J

PE

GE

last

ic

Fog

Gab

orSn

ow

Normal Training

L1 ε = 9562

L1 ε = 19125

L1 ε = 76500

L1 ε = 153000

L1 ε = 306000

L1 ε = 612000

Elastic ε = 0.25

Elastic ε = 0.5

Elastic ε = 2

Elastic ε = 4

Elastic ε = 8

Elastic ε = 16

Snow ε = 0.0625

Snow ε = 0.125

Snow ε = 0.25

Snow ε = 2

Snow ε = 4

Snow ε = 8

7 17 22 0 0 31 16 5 10

110 110 110 110 110 110 110 110 110

26 40 43 5 6 37 22 14 16

33 47 49 12 14 39 23 21 20

50 63 70 34 35 41 24 38 27

54 66 81 42 42 41 24 44 30

59 70 87 51 50 43 21 48 33

62 71 89 56 55 43 18 47 31

110 110 110 110 110 110 110 110 110

21 32 30 4 3 41 24 14 18

27 38 34 10 7 46 27 22 24

37 46 37 19 15 68 30 42 36

36 44 30 11 9 81 29 46 40

31 36 19 4 3 91 26 45 39

23 25 11 1 1 91 25 41 40

110 110 110 110 110 110 110 110 110

15 24 22 0 0 32 35 18 39

14 22 20 0 0 33 36 28 52

10 16 16 0 0 34 39 39 59

8 9 4 0 0 34 38 52 71

8 8 4 0 0 34 36 50 78

13 15 9 1 0 39 37 60 93

Figure 12: UAR scores (multiplied by 100) for adv. trained defenses (rows) against distortion types(columns) for ImageNet-100.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

L∞-JPEG distortion size for adversarial training

0

20

40

60

80

Ad

vers

aria

la

ccu

racy

L∞-JPEG attacks against L∞-JPEG

No attack

ε = 0.125

ε = 0.25

ε = 0.5

ε = 1

0 5 10 15 20 25 30

L∞ distortion size for adversarial training

L∞-attacks against L∞

No attack

ε = 2

ε = 4

ε = 8

ε = 16

Figure 13: Adversarial accuracies of attacks on adversarially trained models for different distortionsizes on ImageNet-100. For a given attack ε, the best ε′ to train against satisfies ε′ > ε because therandom scaling of ε′ during adversarial training ensures that a typical distortion during adversarialtraining has size smaller than ε′.

C.3 FULL EVALUATION RESULTS AND ANALYSIS FOR CIFAR-10

C.3.1 FULL RESULTS FOR CIFAR10

We show the results of adversarial attacks and defenses for CIFAR-10 in Figure 14. We experienceddifficulty training theL2 andL1 attacks at distortion sizes greater than those shown and have omittedthose runs, which we believe may be related to the small size of CIFAR-10 images.

C.3.2 ATA AND UAR FOR CIFAR-10

The ε calibration procedure for CIFAR-10 was similar to that used for ImageNet-100. We startedwith the perceptually small εmin values in Table 3 and increased ε geometrically with ratio 2 untiladversarial accuracy of an adversarially trained model dropped below 40. Note that this threshold

15

Under review as a conference paper at ICLR 2020

Table 3: Calibrated distortion sizes and ATA values for ResNet-56 on CIFAR-10

Attack ε1 ε2 ε3 ε4 ε5 ε6 ATA1 ATA2 ATA3 ATA4 ATA5 ATA6

L∞ 1 2 4 8 16 32 91.0 87.8 81.6 71.3 46.5 23.1L2 40 80 160 320 640 2560 90.1 86.4 79.6 67.3 49.9 17.3L1 195 390 780 1560 6240 24960 92.2 90.0 83.2 73.8 47.4 35.3L∞-JPEG 0.03125 0.0625 0.125 0.25 0.5 1 89.7 87.0 83.1 78.6 69.7 35.4L1-JPEG 2 8 64 256 512 1024 91.4 88.1 80.2 68.9 56.3 37.7Elastic 0.125 0.25 0.5 1 2 8 87.4 81.3 72.1 58.2 45.4 27.8

is higher for CIFAR-10 because there are fewer classes. The resulting ATA and UAR values forCIFAR10 are shown in Table 3 and Figure 15. We omitted calibration for the L2-JPEG attackbecause we chose too small a range of ε for our initial training experiments, and we plan to addressthis issue in the future.

D ROBUSTNESS OF OUR RESULTS

D.1 REPLICATION

We replicated our results for the first three rows of Figure 11 with different random seeds to see thevariation in our results. As shown in Figure 16, deviations in results are minor.

D.2 CONVERGENCE

We replicated the results in Figure 11 with 50 instead of 200 steps to see how the results changedbased on the number of steps in the attack. As shown in Figure 17, the deviations are minor.

E FURTHER RESULTS FOR JOINT TRAINING

E.1 FULL EXPERIMENTAL RESULTS

We show the evaluation accuracies of jointly trained models in Figure 18.

We show all the attacks against the jointly adversarially trained defenses in Figure 19.

E.2 DEPENDENCE ON RANDOM SEED

In Table 4, we study the dependence of joint adversarial training to random seed. We find that atlarge distortion sizes, joint training for certain pairs of distortions does not produce consistent resultsover different random initializations.

Table 4: Train and val accuracies for joint adversarial training at large distortion are dependent onseed. For train and val, ε′ is chosen uniformly at random between 0 and ε, and we used 10 steps forL∞ and L1 and 30 steps for elastic. Single adversarial training baselines are also shown.

Training parameters (ResNet-50) L∞ train other train L∞ val other valL∞ ε = 8,Elastic ε = 4, Seed 1 90 89 35 74L∞ ε = 8,Elastic ε = 4, Seed 2 89 90 47 44L∞ ε = 8,Elastic ε = 4, Seed 3 90 89 29 63L∞ ε = 16, L1 ε = 612000, Seed 1 86 87 22 16L∞ ε = 16, L1 ε = 612000, Seed 2 88 87 16 24L∞ ε = 8 81 – 74 –L∞ ε = 16 68 – 63 –Elastic ε = 4 – 88 – 76L1 ε = 612000 – 75 – 59

16

Under review as a conference paper at ICLR 2020

Table 5: Training and validation numbers for ResNet-101 and ResNet-50 for joint training againstL∞, ε = 8 and elastic, ε = 4.

Training parameters L∞ train other train L∞ val other valL∞ ε = 8,Elastic ε = 4, ResNet-50 Seed 1 90 89 35 74L∞ ε = 8,Elastic ε = 4, ResNet-50 Seed 2 89 90 47 44L∞ ε = 8,Elastic ε = 4 ResNet-101 90 91 49 46

E.3 OVERFITTING AND MODEL CAPACITY

As a first test to understand the relationship between model capacity and overfitting, we trainedResNet-101 models using the same procedure as in Section 5. Briefly, overfitting still occurs, butResNet-101 achieves a few percentage points higher than ResNet-50.

We show the training curves in Figure 20 and the training and validation numbers in Table 5.

17

Under review as a conference paper at ICLR 2020

No atta

ckL

=1 L =2 L =4 L =8

L =16 L =32

L2 =10 L2 =20 L2 =40 L2 =80

L2 =16

0L2

=320

L2 =64

0L2

=1280

L2 =25

60L2

=5120 L1

=195

L1 =39

0L1

=780

L1 =15

60L1

=3120

L1 =62

40

L1 =12

480

L1 =24

960

L1 =49

920

L-JP

EG =0.0

3125

L-JP

EG =0.0

625

L-JP

EG =0.1

25

L-JP

EG =0.2

5

L-JP

EG =0.5

L-JP

EG =1

L2-JP

EG =0.0

625

L2-JP

EG =0.1

25

L2-JP

EG =0.2

5

L2-JP

EG =0.5

L2-JP

EG =1

L2-JP

EG =2

L2-JP

EG =4

L2-JP

EG =8

L1-JP

EG =1

L1-JP

EG =2

L1-JP

EG =4

L1-JP

EG =8

L1-JP

EG =16

L1-JP

EG =32

L1-JP

EG =64

L1-JP

EG =12

8

L1-JP

EG =25

6

L1-JP

EG =51

2

L1-JP

EG =10

24Ela

stic =0.1

25

Elastic

=0.25

Elastic

=0.5Ela

stic =1

Elastic

=2Ela

stic =4

Elastic

=8

Elastic

=16

Norm

al tr

aini

ng

L

=1

L

=2

L

=4

L

=8

L

=16

L

=32

L 2

=10

L 2

=20

L 2

=40

L 2

=80

L 2

=16

0L 2

=

320

L 2

=64

0L 2

=

1280

L 2

=25

60L 2

=

5120

L 1

=19

5L 1

=

390

L 1

=78

0L 1

=

1560

L 1

=31

20L 1

=

6240

L 1

=12

480

L 1

=24

960

L 1

=49

920

L-JP

EG

=0.

0312

5L

-JPEG

=

0.06

25L

-JPEG

=

0.12

5L

-JPEG

=

0.25

L-JP

EG

=0.

5L

-JPEG

=

1

L 2-JP

EG

=0.

0625

L 2-JP

EG

=0.

125

L 2-JP

EG

=0.

25L 2

-JPEG

=

0.5

L 2-JP

EG

=1

L 2-JP

EG

=2

L 2-JP

EG

=4

L 2-JP

EG

=8

L 1-JP

EG

=1

L 1-JP

EG

=2

L 1-JP

EG

=4

L 1-JP

EG

=8

L 1-JP

EG

=16

L 1-JP

EG

=32

L 1-JP

EG

=64

L 1-JP

EG

=12

8L 1

-JPEG

=

256

L 1-JP

EG

=51

2L 1

-JPEG

=

1024

Elas

tic

=0.

125

Elas

tic

=0.

25El

astic

=

0.5

Elas

tic

=1

Elas

tic

=2

Elas

tic

=4

Elas

tic

=8

Elas

tic

=16

9359

9 0

0 0

091

8349

5 1

3 4

3 3

185

7139

9 0

0 0

0 0

21 0

0 0

0 0

9291

8350

5 0

2 2

8982

6124

2 0

0 0

0 0

0 9

0 0

0 0

0 0

0

9389

7937

1 0

092

9289

7425

0 2

2 2

190

8673

44 9

0 0

0 0

8350

3 0

0 0

9292

9188

7222

0 0

9190

8466

28 3

0 0

0 0

067

11 0

0 0

0 0

093

9186

6412

0 0

9292

9083

50 4

0 2

2 1

9087

7854

17 1

0 0

087

6914

0 0

092

9291

9081

41 1

092

9186

7339

7 0

0 0

0 0

7826

1 0

0 0

0 1

9190

8878

40 1

091

9190

8567

17 0

0 1

090

8880

6228

3 0

0 0

8879

40 1

0 0

9190

9089

8459

8 0

9089

8677

5216

1 0

0 0

083

50 3

0 0

0 0

089

8887

8263

13 0

8888

8785

7433

0 0

0 0

8786

8065

35 5

0 0

086

8053

4 0

088

8888

8783

6616

088

8785

7757

24 3

0 0

0 0

8366

12 0

0 0

0 0

8383

8280

7139

283

8382

8175

49 4

0 0

083

8178

6948

16 1

0 0

8178

6420

0 0

8383

8382

8071

33 1

8382

8176

6539

11 1

0 0

080

7234

3 0

0 0

184

8382

7766

4723

8484

8280

6943

10 0

0 0

8178

7363

4827

8 1

082

7762

29 6

184

8484

8379

6636

884

8381

7666

4932

18 9

4 1

8066

22 2

0 0

0 1

9281

48 4

0 0

091

8980

42 3

3 5

5 3

189

8263

27 2

0 0

0 0

5910

0 0

0 0

9291

8979

37 1

2 3

9087

7442

8 0

0 0

0 0

038

1 0

0 0

0 0

094

8867

13 0

0 0

9392

8762

8 0

3 3

2 1

9185

7035

4 0

0 0

074

22 0

0 0

093

9391

8655

4 0

192

8980

5312

0 0

0 0

0 0

51 3

0 0

0 0

0 0

9390

8142

1 0

093

9290

7832

1 3

3 2

192

8879

5315

0 0

0 0

8555

4 0

0 0

9392

9289

7626

0 1

9290

8569

30 3

0 0

0 0

069

13 0

0 0

0 0

092

9086

6613

0 0

9291

9085

61 9

0 3

2 1

9189

8468

33 4

0 0

088

7730

0 0

092

9291

9085

58 6

091

9087

7851

14 1

0 0

0 0

7932

1 0

0 0

0 0

9089

8777

38 1

090

9089

8675

33 0

0 1

089

8886

7752

16 1

0 0

8884

60 7

0 0

9090

9089

8775

25 0

9089

8782

6431

5 0

0 0

082

55 5

0 0

0 0

087

8685

8060

11 0

8786

8685

8057

8 0

0 0

8686

8480

6736

5 0

085

8476

37 1

086

8686

8685

8156

686

8685

8376

5824

3 0

0 0

8266

18 1

0 0

0 0

8079

7977

6834

180

8080

7977

6732

0 0

080

7979

7773

5724

1 0

7979

7562

14 0

7979

8079

7977

6930

7979

7978

7669

5123

4 0

077

7038

6 1

0 0

173

7373

7166

4914

7373

7373

7166

5015

0 0

7373

7271

6962

4721

173

7270

6447

1473

7373

7372

7267

5473

7373

7271

6861

5037

2516

7267

5123

6 2

2 3

6969

6867

6349

3369

6868

6867

6250

3217

468

6868

6765

5846

3424

6868

6661

4834

6969

6868

6867

6452

6868

6868

6764

5849

4035

3268

6452

3421

11 6

777

7674

6855

30 7

7776

7574

6754

24 3

0 0

7676

7471

6450

3116

576

7469

5216

177

7776

7675

7261

2676

7676

7471

6447

2711

4 2

7364

33 4

1 0

2 4

9384

55 6

0 0

092

9084

52 5

1 4

4 3

191

8875

44 8

0 0

0 0

6817

0 0

0 0

9392

9184

50 4

0 2

9189

8155

15 1

0 0

0 0

041

2 0

0 0

0 0

094

8662

13 0

0 0

9392

8560

10 0

3 3

3 1

9290

8363

28 3

0 0

074

29 1

0 0

093

9391

8662

11 0

192

9187

7338

7 0

0 0

0 0

47 3

0 0

0 0

0 0

9373

31 2

0 0

092

8770

25 1

1 2

3 2

192

9083

6631

3 0

0 0

5510

0 0

0 0

9392

8976

35 2

0 1

9290

8467

29 3

0 0

0 0

034

1 0

0 0

0 0

094

5614

1 0

0 0

9182

48 8

0 0

1 2

2 1

9289

8368

37 8

0 0

040

4 0

0 0

092

9186

6419

1 0

191

8983

6943

11 0

0 0

0 0

25 0

0 0

0 0

0 0

9449

15 1

0 0

088

7440

8 0

0 1

2 2

190

8781

7045

14 0

0 0

38 5

0 0

0 0

9291

8561

20 1

0 0

9187

7758

28 6

0 0

0 0

026

1 0

0 0

0 0

093

5413

1 0

0 0

8978

43 7

0 0

0 1

2 1

9086

7962

35 9

1 0

039

6 0

0 0

092

9084

6119

1 0

090

8779

6338

14 2

0 0

0 0

35 1

0 0

0 0

0 0

9266

20 1

0 0

090

8255

12 0

0 0

0 1

190

8782

7045

15 1

0 0

44 9

0 0

0 0

9190

8462

22 2

0 0

8986

7757

3010

2 0

0 0

046

3 0

0 0

0 0

089

7748

12 1

0 0

8884

7139

8 0

0 0

1 0

8886

8374

5527

4 0

067

34 7

1 0

089

8885

7853

17 2

088

8682

7152

2810

2 0

0 0

6319

1 0

0 0

0 0

4646

4744

3720

245

4546

4642

3416

2 0

046

4646

4747

4742

26 4

4849

4539

25 3

4748

4849

4948

4535

5052

5457

5756

5446

3014

640

3423

8 1

0 0

1

9288

7531

1 0

091

9086

6414

0 3

3 2

188

8162

27 3

0 0

0 0

9083

50 2

0 0

9191

9190

8770

17 0

9190

8882

6329

5 0

0 0

057

5 0

0 0

0 0

191

8879

46 3

0 0

9089

8774

30 1

1 2

2 1

8883

6838

7 0

0 0

090

8776

28 0

090

9090

9089

8456

590

9089

8780

6130

5 0

0 0

6611

0 0

0 0

0 0

8987

8159

10 0

088

8886

7844

4 0

2 1

187

8373

4813

1 0

0 0

8887

8363

5 0

8989

8988

8886

7737

8988

8887

8578

6332

5 0

071

21 0

0 0

0 0

086

8480

6522

1 0

8585

8378

5612

0 1

1 0

8481

7456

23 2

0 0

085

8583

7530

086

8686

8585

8480

6386

8585

8584

8173

5424

4 0

7233

1 0

0 0

0 0

8381

7970

39 4

082

8281

7864

27 1

0 0

082

8075

6337

7 0

0 0

8282

8279

61 3

8383

8382

8282

8074

8383

8282

8280

7769

5228

1173

47 5

0 0

0 0

080

7977

6944

6 0

7979

7875

6530

2 0

0 0

7978

7462

38 9

0 0

079

7978

7770

3580

8080

7979

7977

7380

8080

7979

7876

7469

6253

7251

8 0

0 0

0 0

9474

23 0

0 0

092

8763

11 0

2 2

2 2

186

7035

5 0

0 0

0 0

50 4

0 0

0 0

9393

9075

25 0

1 1

9186

7136

4 0

0 0

0 0

014

0 0

0 0

0 0

193

7730

0 0

0 0

9288

7018

0 2

3 3

2 0

8672

40 7

0 0

0 0

069

15 0

0 0

093

9391

8448

2 0

291

8878

5111

0 0

0 0

0 0

21 0

0 0

0 0

0 1

9386

58 7

0 0

093

9181

42 2

1 2

2 2

188

7852

15 0

0 0

0 0

8348

2 0

0 0

9393

9289

7422

0 1

9290

8567

28 3

0 0

0 0

037

1 0

0 0

0 0

093

8871

20 0

0 0

9291

8661

9 0

2 2

2 1

8982

6325

2 0

0 0

089

7627

0 0

093

9392

9187

60 6

092

9189

8260

22 2

0 0

0 0

53 2

0 0

0 0

0 1

9186

6921

0 0

091

8985

6313

0 2

2 2

188

8266

31 3

0 0

0 0

9085

62 7

0 0

9291

9191

8880

39 1

9191

9087

7854

17 1

0 0

058

5 0

0 0

0 0

090

8780

51 5

0 0

8988

8676

38 2

1 2

2 1

8784

7346

11 0

0 0

089

8779

44 1

090

8989

8988

8572

2090

8989

8885

7755

19 1

0 0

6714

0 0

0 0

0 0

8886

8161

15 0

088

8785

7952

7 0

1 2

086

8477

5622

2 0

0 0

8787

8470

15 0

8888

8888

8786

8156

8888

8887

8682

7349

15 1

071

26 0

0 0

0 0

085

8380

6830

2 0

8584

8378

6219

0 0

1 0

8482

7763

34 5

0 0

085

8483

7848

085

8585

8584

8481

7285

8585

8483

8279

6947

16 3

7340

2 0

0 0

0 0

9379

37 1

0 0

092

8974

26 1

1 3

3 2

187

7750

13 0

0 0

0 0

7121

0 0

0 0

9393

9186

58 6

0 1

9290

8566

26 2

0 0

0 0

024

0 0

0 0

0 0

093

8560

10 0

0 0

9290

8350

5 1

4 4

3 1

8982

6326

2 0

0 0

083

52 5

0 0

093

9291

8979

35 1

292

9189

8157

17 1

0 0

0 0

43 2

0 0

0 0

0 0

9178

44 4

0 0

090

8777

40 2

0 2

2 2

187

8060

21 1

0 0

0 0

8875

29 0

0 0

9292

9291

8667

14 0

9291

9087

7645

9 0

0 0

043

1 0

0 0

0 0

091

8775

34 1

0 0

9089

8670

23 0

1 2

1 1

8885

7242

8 0

0 0

089

8359

9 0

091

9190

9088

8047

291

9090

8883

6937

5 0

0 0

60 8

0 0

0 0

0 0

8987

7947

4 0

089

8886

7637

1 1

3 2

188

8576

5114

0 0

0 0

8886

7534

0 0

8989

8989

8884

6921

8989

8988

8679

6022

1 0

066

13 0

0 0

0 0

088

8579

54 8

0 0

8787

8577

46 4

0 2

1 1

8684

7756

20 1

0 0

087

8580

55 5

088

8888

8787

8577

4388

8787

8785

8271

4712

0 0

6818

0 0

0 0

0 0

8886

8160

14 0

087

8785

7953

7 0

2 2

186

8478

6025

2 0

0 0

8786

8367

16 0

8888

8887

8785

8058

8888

8787

8683

7659

27 3

071

25 0

0 0

0 0

086

8481

6420

0 0

8685

8479

5812

0 0

1 0

8583

7863

30 3

0 0

086

8582

7232

086

8686

8685

8581

6686

8686

8584

8379

6946

15 2

7231

1 0

0 0

0 0

8584

8167

27 1

085

8483

7962

18 0

0 1

084

8378

6534

5 0

0 0

8584

8275

45 1

8585

8585

8584

8170

8585

8585

8483

8073

5936

1372

38 2

0 0

0 0

084

8380

7138

2 0

8483

8279

6728

0 0

0 0

8382

7868

43 9

0 0

084

8382

7756

484

8484

8484

8381

7484

8484

8483

8280

7666

4926

7548

4 0

0 0

0 0

8281

7971

40 3

082

8281

7867

31 1

0 0

081

8077

6744

11 0

0 0

8282

8176

59 9

8282

8282

8281

7973

8282

8282

8281

7975

6956

3874

50 6

0 0

0 0

0

9385

6013

0 0

092

9082

50 8

0 2

2 2

189

8264

32 6

0 0

0 0

6519

1 0

0 0

9291

8769

24 2

0 0

8879

5723

3 0

0 0

0 0

086

60 5

0 0

0 0

091

8462

17 1

0 0

9088

8154

12 0

0 0

0 0

8782

6738

10 1

0 0

070

29 2

0 0

090

8986

7132

3 0

086

7958

26 4

0 0

0 0

0 0

8778

33 0

0 0

0 0

8781

6525

2 0

087

8579

5718

1 0

0 0

084

7966

4215

2 0

0 0

7343

8 0

0 0

8786

8474

45 9

0 0

8477

6135

10 1

0 0

0 0

085

8162

8 0

0 0

082

7867

36 6

0 0

8280

7659

23 3

0 0

0 0

7770

5636

15 3

0 0

073

5219

3 0

081

8180

7454

20 2

079

7464

4520

6 1

0 0

0 0

8179

7240

7 1

0 0

8175

6542

15 1

080

7870

4817

2 0

0 0

070

5945

3118

9 3

1 0

6847

20 4

0 0

7878

7770

5020

3 0

7773

6447

2610

3 1

0 0

079

7671

5837

1911

776

7164

4519

2 0

7573

6647

18 3

0 0

0 0

6354

3925

15 8

3 0

064

4619

4 1

074

7473

6649

21 4

072

6961

4627

11 4

1 0

0 0

7472

6858

4533

2310

6865

5941

14 1

068

6659

4217

3 0

0 0

054

4533

2010

3 1

0 0

5841

16 3

0 0

6867

6559

4319

4 0

6562

5440

2411

4 1

0 0

068

6763

5342

3428

1561

5853

3813

1 0

6059

5339

15 2

0 0

0 0

5041

3119

9 3

0 0

053

3714

2 0

060

5958

5339

17 3

058

5549

3721

8 2

1 0

0 0

6160

5849

3929

2318

0.0

0.2

0.4

0.6

0.8

1.0

Adversarial accuracy

Figu

re14

:Acc

urac

yof

adve

rsar

iala

ttack

(col

umn)

agai

nsta

dver

sari

ally

trai

ned

mod

el(r

ow)o

nC

IFA

R-1

0.

18

Under review as a conference paper at ICLR 2020

L∞ L2

L1

L∞

-JP

EG

L1-J

PE

GE

last

ic

Normal Training

L∞ ε = 1

L∞ ε = 2

L∞ ε = 4

L∞ ε = 8

L∞ ε = 16

L∞ ε = 32

L∞-JPEG ε = 0.03125

L∞-JPEG ε = 0.0625

L∞-JPEG ε = 0.125

L∞-JPEG ε = 0.25

L∞-JPEG ε = 0.5

L∞-JPEG ε = 1

17 16 48 5 25 3

110110110110110110

51 49 69 31 37 21

63 59 73 38 39 28

74 67 76 47 40 36

83 72 77 50 39 43

89 75 78 55 40 51

94 72 76 58 48 45

110110110110110110

48 43 61 51 42 17

54 50 66 63 49 21

59 55 69 74 58 25

63 59 71 81 64 29

68 64 73 88 79 34

68 64 71 94 99 35

L∞ L2

L1

L∞

-JP

EG

L1-J

PE

GE

last

ic

Normal Training

L2 ε = 40

L2 ε = 80

L2 ε = 160

L2 ε = 320

L2 ε = 640

L2 ε = 2560

L1-JPEG ε = 2

L1-JPEG ε = 8

L1-JPEG ε = 64

L1-JPEG ε = 256

L1-JPEG ε = 512

L1-JPEG ε = 1024

17 16 48 5 25 3

110110110110110110

53 53 74 32 38 22

64 63 80 44 40 30

73 73 84 54 41 38

80 81 88 64 46 45

84 86 88 70 51 52

87 85 86 78 71 66

110110110110110110

39 37 62 32 41 12

49 47 68 54 51 18

60 58 73 76 66 26

65 62 75 84 85 30

68 66 76 87 92 34

68 66 75 88 96 35

L∞ L2

L1

L∞

-JP

EG

L1-J

PE

GE

last

ic

Normal Training

L1 ε = 195

L1 ε = 390

L1 ε = 780

L1 ε = 1560

L1 ε = 6240

L1 ε = 49920

Elastic ε = 0.125

Elastic ε = 0.25

Elastic ε = 0.5

Elastic ε = 1

Elastic ε = 2

Elastic ε = 8

17 16 48 5 25 3

110110110110110110

36 38 70 19 34 12

40 41 79 24 39 13

26 26 79 15 37 9

18 15 80 10 37 7

17 13 77 10 36 10

49 47 61 47 51 29

110110110110110110

40 37 63 19 24 41

41 38 65 23 25 53

43 40 65 28 27 64

47 41 57 33 29 75

49 35 51 32 29 89

45 31 37 27 25 86

Figure 15: UAR scores on CIFAR-10. Displayed UAR scores are multiplied by 100 for clarity.

No

atta

ckL∞ε

=1

L∞ε

=2

L∞ε

=4

L∞ε

=8

L∞ε

=16

L∞ε

=32

L2ε

=15

0L

=30

0L

=60

0L

=12

00L

=24

00L

=48

00L

=95

62.4

4

L1ε

=19

125

L1ε

=76

500

L1ε

=15

3000

L1ε

=30

6000

L1ε

=61

2000

L∞

-JP

EGε

=0.

0312

5

L∞

-JP

EGε

=0.

125

L∞

-JP

EGε

=0.

25

L∞

-JP

EGε

=0.

5

L∞

-JP

EGε

=1

L2-J

PE

=2

L2-J

PE

=16

L2-J

PE

=32

L2-J

PE

=64

L2-J

PE

=12

8

L2-J

PE

=25

6E

last

icε

=0.

25E

last

icε

=1

Ela

sticε

=2

Ela

sticε

=4

Ela

sticε

=8

Ela

sticε

=16

Attack (evaluation)

L∞ ε = 1

L∞ ε = 2

L∞ ε = 4

L∞ ε = 8

L∞ ε = 16

L∞ ε = 32

L2 ε = 150

L2 ε = 300

L2 ε = 600

L2 ε = 1200

L2 ε = 2400

L2 ε = 4800

L1 ε = 9562.44

L1 ε = 19125

L1 ε = 38250.1

L1 ε = 76500

L1 ε = 153000

L1 ε = 306000

L1 ε = 612000

Att

ack

(adv

ersa

rial

trai

ning

)

87 84 70 13 0 0 0 85 81 47 2 0 0 80 66 6 0 0 0 84 13 0 0 0 86 10 0 0 0 0 85 38 3 0 0 0

85 85 81 50 2 0 0 85 83 71 18 0 0 81 72 18 1 0 0 84 50 1 0 0 85 33 1 0 0 0 84 52 7 0 0 0

84 83 82 74 23 0 0 84 83 78 47 2 0 80 74 29 5 0 0 83 67 7 0 0 84 49 3 0 0 0 83 62 16 1 0 0

80 80 79 77 59 6 0 80 78 73 46 5 0 72 62 23 6 0 0 79 54 8 0 0 79 41 5 0 0 0 79 66 30 3 0 0

74 74 74 73 67 34 1 74 72 64 35 3 0 61 48 10 2 0 0 73 41 4 0 0 73 29 4 0 0 0 74 67 43 10 1 0

71 71 70 69 63 40 8 69 62 35 6 0 0 40 22 2 0 0 0 65 9 0 0 0 69 8 1 0 0 0 70 64 46 15 1 0

87 82 54 3 0 0 0 85 79 33 0 0 0 81 68 5 0 0 0 82 2 0 0 0 85 2 0 0 0 0 84 31 2 0 0 0

86 84 74 21 0 0 0 85 82 65 8 0 0 82 76 19 1 0 0 84 20 0 0 0 85 14 0 0 0 0 83 44 4 0 0 0

85 84 80 56 3 0 0 84 83 78 41 1 0 83 79 44 8 0 0 84 59 3 0 0 84 51 2 0 0 0 83 57 10 0 0 0

82 82 80 73 28 0 0 82 81 79 68 15 0 81 80 65 32 4 0 82 75 33 0 0 82 73 24 0 0 0 81 65 21 1 0 0

77 77 76 74 56 6 0 77 77 76 73 48 2 77 76 71 56 22 1 77 75 62 9 0 77 75 57 6 0 0 77 68 37 3 0 0

69 69 68 67 61 27 1 69 69 69 67 60 20 69 69 66 61 45 14 69 68 63 38 2 69 68 63 34 2 0 69 63 48 12 1 0

87 70 22 0 0 0 0 82 63 13 0 0 0 84 77 13 1 0 0 66 0 0 0 0 84 1 0 0 0 0 82 18 0 0 0 0

86 77 43 3 0 0 0 84 74 33 1 0 0 84 81 33 3 0 0 76 2 0 0 0 84 3 0 0 0 0 83 29 1 0 0 0

85 80 60 10 0 0 0 84 79 54 5 0 0 84 83 53 12 0 0 81 13 0 0 0 84 17 0 0 0 0 83 40 2 0 0 0

84 81 70 29 1 0 0 83 80 66 21 0 0 83 83 71 41 5 0 81 42 3 0 0 83 46 3 0 0 0 82 52 6 0 0 0

82 80 75 47 4 0 0 81 79 72 40 2 0 81 81 76 63 24 1 80 63 20 0 0 81 64 20 0 0 0 80 59 13 0 0 0

78 77 72 51 10 0 0 78 76 70 45 6 0 78 78 75 67 40 4 77 65 35 2 0 78 67 35 2 0 0 77 62 22 1 0 0

74 73 68 52 15 0 0 73 72 67 46 9 0 73 73 71 66 47 12 72 62 44 9 0 73 63 45 8 0 0 72 59 26 2 0 00.0

0.2

0.4

0.6

0.8

1.0

Adversarial

accuracy

Figure 16: Replica of the first three block rows of Figure 11 with different random seeds. Deviationsin results are minor.

19

Under review as a conference paper at ICLR 2020

No atta

ckL

=1L

=2L

=4L

=8L

=16L

=32 L2 =15

0L2

=300

L2 =60

0L2

=1200

L2 =24

00L2

=4800

L1 =95

62.44

L1 =19

125

L1 =38

250.1

L1 =76

500

L1 =15

3000

L1 =30

6000

L1 =61

2000

L-JP

EG =0.0

3125

L-JP

EG =0.0

625

L-JP

EG =0.1

25

L-JP

EG =0.2

5

L-JP

EG =0.5

L-JP

EG =1

L-JP

EG =2

L2-JP

EG =2

L2-JP

EG =4

L2-JP

EG =8

L2-JP

EG =16

L2-JP

EG =32

L2-JP

EG =64

L2-JP

EG =12

8

L2-JP

EG =25

6L1

-JPEG

=128

L1-JP

EG =25

6

L1-JP

EG =51

2

L1-JP

EG =10

24

L1-JP

EG =20

48

L1-JP

EG =40

96

L1-JP

EG =81

92

L1-JP

EG =16

384

L1-JP

EG =32

768

L1-JP

EG =65

536

L1-JP

EG =13

1072

Elastic

=0.25

Elastic

=0.5

Elastic

=1

Elastic

=2

Elastic

=4

Elastic

=8

Elastic

=16 Fog =12

8

Fog =25

6

Fog =51

2

Fog =10

24

Fog =20

48

Fog =40

96

Fog =81

92

Fog =16

384

Fog =32

768

Fog =65

536

Gabor

=6.25

Gabor

=12.5

Gabor

=25

Gabor

=50

Gabor

=100

Gabor

=200

Gabor

=400

Gabor

=800

Gabor

=1600

Gabor

=3200

Snow

=0.031

25

Snow

=0.062

5

Snow

=0.125

Snow

=0.25

Snow

=0.5Sn

ow =1

Snow

=2Sn

ow =4

Snow

=8

Snow

=16

Norm

al tr

aini

ng

L

=1

L

=2

L

=4

L

=8

L

=16

L

=32

L 2

=15

0L 2

=

300

L 2

=60

0L 2

=

1200

L 2

=24

00L 2

=

4800

L 1

=95

62.4

4L 1

=

1912

5L 1

=

3825

0.1

L 1

=76

500

L 1

=15

3000

L 1

=30

6000

L 1

=61

2000

L-JP

EG

=0.

0312

5L

-JPEG

=

0.06

25L

-JPEG

=

0.12

5L

-JPEG

=

0.25

L-JP

EG

=0.

5L

-JPEG

=

1L

-JPEG

=

2

L 2-JP

EG

=2

L 2-JP

EG

=4

L 2-JP

EG

=8

L 2-JP

EG

=16

L 2-JP

EG

=32

L 2-JP

EG

=64

L 2-JP

EG

=12

8L 2

-JPEG

=

256

L 1-JP

EG

=12

8L 1

-JPEG

=

256

L 1-JP

EG

=51

2L 1

-JPEG

=

1024

L 1-JP

EG

=20

48L 1

-JPEG

=

4096

L 1-JP

EG

=81

92L 1

-JPEG

=

1638

4L 1

-JPEG

=

3276

8L 1

-JPEG

=

6553

6L 1

-JPEG

=

1310

72

Elas

tic

=0.

25El

astic

=

0.5

Elas

tic

=1

Elas

tic

=2

Elas

tic

=4

Elas

tic

=8

Elas

tic

=16

Fog

=12

8Fo

g =

256

Fog

=51

2Fo

g =

1024

Fog

=20

48Fo

g =

4096

Fog

=81

92Fo

g =

1638

4Fo

g =

3276

8Fo

g =

6553

6

Gabo

r =

6.25

Gabo

r =

12.5

Gabo

r =

25Ga

bor

=50

Gabo

r =

100

Gabo

r =

200

Gabo

r =

400

Gabo

r =

800

Gabo

r =

1600

Gabo

r =

3200

Snow

=

0.03

125

Snow

=

0.06

25Sn

ow

=0.

125

Snow

=

0.25

Snow

=

0.5

Snow

=

1Sn

ow

=2

Snow

=

4Sn

ow

=8

Snow

=

16

8728

2 0

0 0

058

13 0

0 0

070

4413

2 0

0 0

22 1

0 0

0 0

072

28 2

0 0

0 0

059

32 9

1 0

0 0

0 0

0 0

8050

9 0

0 0

070

37 6

0 0

0 0

0 0

018

5 2

1 0

0 0

0 0

064

3710

1 0

0 0

0 0

0

8684

7015

0 0

085

8250

3 0

081

7043

10 1

0 0

8472

16 0

0 0

086

8468

13 0

0 0

077

6436

10 1

0 0

0 0

0 0

8475

39 4

0 0

078

6023

3 0

0 0

0 0

075

34 6

1 0

0 0

0 0

080

6733

7 1

0 0

0 0

085

8580

51 3

0 0

8583

7121

0 0

8174

5724

3 0

084

8149

2 0

0 0

8584

7738

1 0

0 0

7971

5222

4 0

0 0

0 0

084

7953

10 0

0 0

7656

19 2

1 1

0 1

0 0

8162

16 2

0 0

0 0

0 0

8073

4714

2 0

0 0

0 0

8484

8274

24 0

084

8379

50 3

081

7664

39 9

1 0

8382

7013

0 0

084

8380

56 6

0 0

079

7462

3811

1 0

0 0

0 0

8379

6218

1 0

073

5015

2 1

1 1

1 1

082

7741

5 0

0 0

0 0

079

7659

23 4

1 1

0 0

080

7979

7659

7 0

7978

7352

9 0

7365

5331

9 1

080

7760

15 0

0 0

7978

7146

8 0

0 0

7470

5939

16 4

1 0

0 0

079

7766

34 4

0 0

6640

9 1

1 1

1 1

1 1

7978

6518

1 0

0 0

0 0

7573

6538

11 3

1 1

1 1

7574

7473

6735

173

7164

32 4

059

4627

10 2

0 0

7368

39 5

0 0

074

7058

29 4

0 0

064

5846

3115

5 1

0 0

0 0

7371

6544

12 1

058

29 6

1 1

1 1

1 1

074

7369

46 5

1 1

1 0

068

6661

4421

8 2

1 0

071

7170

6963

4314

6860

35 7

0 0

3924

9 3

0 0

065

4511

1 0

0 1

6860

35 9

2 0

1 1

5951

4127

15 7

2 0

0 0

070

6863

4616

2 0

5833

9 1

1 1

1 1

1 0

7069

6452

18 3

3 2

1 1

6361

5641

21 7

2 1

0 0

8782

53 4

0 0

085

7836

1 0

080

7143

10 1

0 0

8153

3 0

0 0

085

8151

3 0

0 0

075

5523

4 0

0 0

0 0

0 0

8472

32 2

0 0

077

5619

2 0

0 0

0 0

065

21 4

1 0

0 0

0 0

078

6124

4 0

0 0

0 0

085

8473

23 0

0 0

8582

6610

0 0

8377

6126

3 0

084

7625

0 0

0 0

8584

7320

0 0

0 0

7969

4211

1 0

0 0

0 0

084

7645

5 0

0 0

7655

20 2

0 0

0 0

0 0

7845

8 1

0 0

0 0

0 0

7969

35 7

1 0

0 0

0 0

8484

8158

4 0

084

8378

41 1

083

8073

5013

0 0

8481

61 4

0 0

084

8480

52 3

0 0

081

7661

30 6

0 0

0 0

0 0

8379

5812

0 0

075

5216

2 0

0 0

0 0

081

6720

2 0

0 0

0 0

079

7350

14 2

0 0

0 0

082

8281

7429

0 0

8282

8068

17 0

8180

7767

38 6

082

8176

37 0

0 0

8282

8174

28 0

0 0

8180

7459

28 6

0 0

0 0

081

7867

24 2

0 0

6945

12 1

0 1

1 1

0 1

8176

45 6

0 0

1 0

0 0

7672

6026

5 1

0 0

1 0

7777

7673

57 7

077

7676

7249

377

7675

7158

26 3

7676

7564

13 0

077

7776

7458

8 0

077

7674

6956

29 8

1 0

0 0

7674

6839

5 1

061

34 8

1 1

0 0

1 0

176

7461

19 1

0 1

1 0

069

6861

3812

3 1

1 1

168

6868

6761

28 1

6868

6867

6020

6868

6866

6146

1668

6867

6438

2 0

6868

6867

6336

2 0

6868

6866

6251

3315

6 3

368

6763

4912

1 0

5127

6 1

1 1

1 1

1 1

6867

6131

3 1

1 1

1 1

6059

5542

19 6

2 1

1 1

8671

26 1

0 0

082

6516

0 0

083

7961

21 1

0 0

6920

1 0

0 0

084

7225

1 0

0 0

074

5320

3 0

0 0

0 0

0 0

8267

22 1

0 0

074

4810

1 0

0 0

0 0

047

13 3

1 0

0 0

0 0

073

5318

2 0

0 0

0 0

086

7843

3 0

0 0

8475

34 1

0 0

8481

7241

5 0

077

43 3

0 0

0 0

8479

49 5

0 0

0 0

8068

4010

1 0

0 0

0 0

083

7132

2 0

0 0

7449

12 1

0 0

0 0

0 0

6122

4 1

0 0

0 0

0 0

7558

23 3

1 0

0 0

0 0

8581

6313

0 0

084

8057

7 0

085

8378

5818

1 0

8166

19 1

0 0

084

8269

23 1

0 0

082

7759

26 5

0 0

0 0

0 0

8375

43 4

0 0

074

5113

1 0

0 0

0 0

073

38 7

1 0

0 0

0 0

076

6532

6 1

0 0

0 0

084

8271

31 1

0 0

8381

6923

0 0

8483

8173

43 5

082

7548

5 0

0 0

8482

7751

5 0

0 0

8381

7453

19 3

0 0

0 0

082

7853

8 0

0 0

7248

12 1

0 0

0 0

0 0

7855

16 2

0 0

0 0

0 0

7667

39 9

1 0

0 0

0 0

8179

7346

4 0

080

7970

39 2

081

8079

7764

24 1

7976

6320

1 0

080

7977

6420

1 0

080

7978

7044

13 1

0 0

0 0

7975

5814

0 0

069

4511

0 0

0 0

0 0

078

6327

4 0

0 0

0 0

072

6646

15 2

0 0

0 1

179

7773

5412

0 0

7877

7249

8 0

7979

7876

7149

877

7569

47 4

0 0

7877

7569

45 4

0 0

7878

7774

6638

9 1

0 0

077

7462

23 1

0 0

6439

9 1

0 0

0 0

0 0

7567

39 8

1 0

0 0

0 0

6964

4921

5 1

1 0

1 1

7271

6960

28 1

072

7168

5722

172

7271

7067

5724

7170

6654

18 0

072

7170

6756

17 0

071

7170

6965

5025

7 1

1 0

7068

6135

4 0

053

30 8

1 1

0 1

0 0

069

6243

14 2

1 1

0 0

060

5646

25 9

2 1

1 1

1

8775

29 1

0 0

083

60 9

0 0

077

5825

4 0

0 0

8683

57 3

0 0

086

8682

57 4

0 0

084

8171

4613

1 0

0 0

0 0

8266

18 1

0 0

075

4811

1 0

0 0

0 0

041

9 2

1 0

0 0

0 0

073

4713

2 0

0 0

0 0

087

8148

3 0

0 0

8471

21 0

0 0

7965

33 6

0 0

086

8576

20 0

0 0

8786

8474

21 0

0 0

8583

7862

30 5

0 0

0 0

083

7122

1 0

0 0

7551

13 1

0 0

0 0

0 0

5515

3 1

0 0

0 0

0 0

7451

18 3

0 0

0 0

0 0

8683

6816

0 0

084

7844

3 0

080

7144

11 1

0 0

8685

8360

2 0

086

8685

8155

2 0

085

8381

7451

20 3

0 0

0 0

8373

31 2

0 0

075

5113

1 0

0 0

0 0

071

33 6

1 0

0 0

0 0

076

5823

4 1

0 0

0 0

084

8377

43 3

0 0

8381

6616

0 0

8074

5624

3 0

084

8483

7720

0 0

8484

8482

7321

0 0

8483

8279

7049

18 4

1 0

083

7543

4 0

0 0

7349

13 1

0 0

0 0

0 0

7856

18 3

0 0

0 0

0 0

7665

34 6

1 0

0 0

0 1

8180

7866

19 1

080

7974

42 3

079

7565

3910

1 0

8181

8079

66 1

081

8180

8077

59 3

081

8080

7976

7157

3513

3 2

7975

5310

0 0

070

4612

1 0

0 0

0 0

079

7241

8 1

0 0

0 0

074

6848

15 2

1 0

0 0

079

7977

6830

2 0

7978

7453

9 0

7775

6954

24 4

080

7979

7773

41 0

8080

8079

7669

39 1

8079

7978

7776

7469

6253

4879

7559

14 1

0 0

6744

11 1

0 0

0 0

0 0

7873

5016

3 1

1 0

0 0

7168

5321

5 1

1 0

0 1

7877

7664

20 1

078

7773

50 8

077

7569

5222

4 0

7878

7876

7061

1378

7878

7877

7265

5378

7878

7877

7674

7269

6560

7774

5713

1 0

065

4210

1 0

0 0

0 0

077

7149

18 4

1 1

1 0

070

6549

20 6

2 1

0 1

1

8764

14 0

0 0

080

45 3

0 0

075

5319

2 0

0 0

8472

17 0

0 0

086

8576

26 0

0 0

083

7861

27 5

0 0

0 0

0 0

8161

14 1

0 0

075

5012

1 0

0 0

0 0

028

6 2

0 0

0 0

0 0

071

4413

2 0

0 0

0 0

087

7528

1 0

0 0

8260

9 0

0 0

7760

25 4

0 0

086

8151

2 0

0 0

8786

8259

4 0

0 0

8482

7450

15 1

0 0

0 0

082

6618

1 0

0 0

7548

11 0

0 0

0 0

0 0

38 9

2 1

0 0

0 0

0 0

7445

14 2

0 0

0 0

0 0

8681

50 4

0 0

084

7426

1 0

080

6737

7 0

0 0

8684

7519

0 0

086

8684

7727

0 0

085

8380

6838

7 0

0 0

0 0

8370

23 1

0 0

075

5013

1 0

0 0

0 0

054

15 3

1 0

0 0

0 0

075

5519

2 0

0 0

0 0

085

8370

17 0

0 0

8481

52 4

0 0

8175

5216

1 0

085

8582

57 1

0 0

8585

8582

63 4

0 0

8584

8279

6330

5 0

0 0

083

7433

2 0

0 0

7551

14 1

0 0

0 0

0 0

7030

6 1

0 0

0 0

0 0

7660

25 4

0 0

0 0

0 1

8482

7846

3 0

083

8170

20 0

081

7764

30 4

0 0

8484

8376

17 0

084

8484

8377

33 0

084

8383

8175

6028

6 1

0 0

8275

44 4

0 0

074

4813

1 0

0 0

0 0

078

5214

2 0

0 0

0 0

077

6636

7 1

0 0

0 0

081

8179

6719

0 0

8180

7650

4 0

7978

7049

15 1

081

8181

7960

1 0

8181

8180

7966

6 0

8181

8080

7874

6240

15 3

180

7656

10 1

0 0

7044

11 1

0 0

0 0

0 0

8069

35 6

1 1

0 0

0 0

7570

4915

2 1

0 0

1 1

7777

7671

40 3

077

7776

6418

076

7572

6030

5 0

7878

7776

7226

078

7777

7776

7244

177

7777

7776

7572

6857

4133

7774

6221

2 0

065

38 9

1 0

0 0

0 0

077

7351

13 2

1 1

1 0

070

6856

27 7

2 1

0 1

177

7776

7138

2 0

7777

7561

16 0

7775

7260

34 7

078

7777

7672

48 0

7878

7777

7673

5514

7877

7777

7675

7371

6458

5577

7564

22 1

0 0

6438

10 1

0 1

0 1

0 0

7672

5015

2 1

0 0

0 0

7067

5730

9 2

1 0

1 1

8767

17 1

0 0

080

53 6

0 0

078

6327

3 0

0 0

8470

19 0

0 0

086

8579

43 2

0 0

086

8476

5618

2 0

0 0

0 0

8160

12 1

0 0

073

44 8

0 0

0 0

0 0

031

7 2

0 0

0 0

0 0

070

4410

2 0

0 0

0 0

086

7430

1 0

0 0

8364

13 0

0 0

8168

36 5

0 0

085

7841

2 0

0 0

8685

8363

8 0

0 0

8584

8168

35 5

0 0

0 0

082

6316

0 0

0 0

7448

10 0

0 0

0 0

0 0

4110

2 0

0 0

0 0

0 0

7349

13 2

0 0

0 0

0 0

8679

49 4

0 0

083

7429

1 0

081

7245

9 1

0 0

8582

6510

0 0

086

8584

7631

0 0

085

8583

7554

17 1

0 0

0 0

8268

22 1

0 0

075

4811

1 0

0 0

0 0

054

16 3

1 0

0 0

0 0

074

5316

2 0

0 0

0 0

086

8267

13 0

0 0

8580

50 4

0 0

8377

5719

1 0

086

8478

39 1

0 0

8685

8582

59 4

0 0

8685

8480

7040

7 1

0 0

082

7332

2 0

0 0

7550

14 1

0 0

0 0

0 0

6727

5 1

0 0

0 0

0 0

7662

23 4

1 0

0 0

0 0

8483

7534

1 0

084

8167

14 0

082

7866

33 4

0 0

8484

8166

8 0

085

8584

8274

25 0

084

8483

8276

6128

5 1

0 0

8275

41 4

0 0

074

4914

1 0

0 0

0 0

075

43 9

1 0

0 0

0 0

077

6634

6 1

0 0

0 0

083

8279

56 6

0 0

8382

7535

1 0

8178

7044

9 0

083

8382

7636

0 0

8383

8382

7952

1 0

8383

8282

7972

5322

4 1

081

7652

8 0

0 0

7145

13 1

0 0

0 0

0 0

7960

20 2

0 0

0 0

0 0

7669

4310

1 0

0 0

0 0

8180

7866

15 0

080

8075

49 3

079

7772

5216

1 0

8181

8078

58 1

081

8180

8078

65 9

081

8080

8079

7668

4922

6 3

7975

5511

0 0

069

4311

1 0

0 0

0 0

078

6832

5 1

0 0

0 0

075

7050

16 3

1 0

0 0

180

7978

7027

1 0

7979

7658

9 0

7877

7255

23 2

080

7979

7868

7 0

8079

7979

7871

25 0

8079

7979

7877

7364

4423

1878

7559

14 1

0 0

6640

9 1

1 0

0 0

0 0

7872

43 9

1 0

0 0

0 0

7469

5221

4 1

1 0

1 1

7777

7671

34 2

077

7775

6113

077

7671

5826

3 0

7878

7877

7012

078

7878

7776

7132

078

7777

7777

7573

6754

3628

7774

6017

1 0

064

37 7

1 0

1 0

0 0

177

7348

12 1

0 0

0 0

070

6853

25 6

2 1

1 0

176

7574

6938

2 0

7574

7360

15 0

7473

6857

28 4

075

7575

7469

22 0

7575

7575

7469

40 1

7575

7575

7474

7268

6150

4574

7158

17 1

0 0

5831

6 1

1 1

0 1

1 0

7572

5619

2 1

1 0

0 0

6764

5224

7 2

1 1

1 1

7273

7164

31 2

073

7269

5411

072

7166

5224

4 0

7373

7372

6617

073

7373

7371

6636

173

7373

7372

7169

6557

4642

7269

5414

1 0

052

25 5

1 1

1 0

1 1

172

6849

15 2

1 1

0 0

064

6047

21 5

1 1

0 1

1

8763

15 0

0 0

079

45 4

0 0

075

5826

5 0

0 0

6516

1 0

0 0

082

6013

0 0

0 0

068

4417

3 0

0 0

0 0

0 0

8578

47 4

0 0

077

5315

1 0

0 0

0 0

045

15 4

1 0

0 0

0 0

074

5526

5 1

0 0

0 0

187

7428

1 0

0 0

8260

12 0

0 0

7864

3711

1 0

077

36 2

0 0

0 0

8472

28 2

0 0

0 0

7052

26 7

1 0

0 0

0 0

086

8369

19 0

0 0

7757

22 2

0 0

0 0

0 0

6025

7 2

0 0

0 0

0 0

7562

3411

2 1

0 0

0 0

8577

42 4

0 0

082

6824

1 0

077

6846

19 3

0 0

8057

11 0

0 0

083

7644

6 0

0 0

071

5632

10 2

0 0

0 0

0 0

8483

7852

4 0

076

5824

3 0

0 0

0 0

073

4818

4 1

0 0

0 0

076

6849

21 6

2 1

0 0

084

7851

9 0

0 0

8272

34 3

0 0

7666

4619

4 0

079

5814

0 0

0 0

8276

4910

1 0

0 0

7159

3817

3 0

0 0

0 0

084

8381

7430

1 0

7559

25 4

0 0

0 0

0 0

7659

29 7

1 1

1 1

0 0

7669

5429

10 4

1 1

1 1

8175

4910

0 0

078

6729

3 0

068

5432

12 2

0 0

7039

5 0

0 0

078

6834

5 0

0 0

064

5030

11 2

0 0

0 0

0 0

8180

7978

6714

172

5322

3 0

0 0

0 0

075

6338

13 3

1 1

1 1

172

6855

3515

6 2

1 1

178

6942

6 0

0 0

7356

17 1

0 0

5235

16 5

1 0

055

16 1

0 0

0 0

7148

13 1

0 0

0 0

5134

18 5

1 0

0 0

0 0

077

7776

7675

5415

6749

21 4

0 0

0 0

0 0

7262

4217

4 1

1 1

1 1

6663

5438

20 9

4 2

1 1

7459

24 2

0 0

064

35 6

0 0

036

20 7

2 0

0 0

30 4

0 0

0 0

056

24 3

0 0

0 0

039

23 8

2 0

0 0

0 0

0 0

7473

7272

7063

5064

4419

4 1

0 0

0 0

069

5737

18 6

2 1

1 1

163

6052

3823

12 5

2 1

1

8742

2 0

0 0

070

19 1

0 0

068

4011

2 0

0 0

25 1

0 0

0 0

074

31 1

0 0

0 0

058

29 7

1 0

0 0

0 0

0 0

8157

12 1

0 0

085

7852

12 1

0 0

0 0

024

7 2

1 0

0 0

0 0

076

4917

2 0

0 0

0 0

088

41 3

0 0

0 0

6919

1 0

0 0

6637

9 1

0 0

020

0 0

0 0

0 0

7225

1 0

0 0

0 0

5625

5 0

0 0

0 0

0 0

082

6116

1 0

0 0

8782

7140

6 0

0 0

1 0

32 8

2 1

0 0

0 0

0 0

7959

23 3

0 0

0 0

0 0

8731

2 0

0 0

062

14 0

0 0

064

33 7

1 0

0 0

10 0

0 0

0 0

059

13 0

0 0

0 0

042

13 2

0 0

0 0

0 0

0 0

8262

19 1

0 0

086

8480

6632

6 1

1 1

137

9 2

0 0

0 0

0 0

081

6430

6 0

0 0

0 0

086

25 1

0 0

0 0

5310

0 0

0 0

6131

7 0

0 0

0 7

0 0

0 0

0 0

48 9

0 0

0 0

0 0

4315

2 0

0 0

0 0

0 0

082

6421

2 0

0 0

8685

8276

6030

8 2

1 1

4814

4 1

0 0

0 0

0 0

8168

39 9

1 0

0 0

0 0

8519

1 0

0 0

044

8 0

0 0

058

30 6

1 0

0 0

5 0

0 0

0 0

038

5 0

0 0

0 0

041

14 2

0 0

0 0

0 0

0 0

8166

23 2

0 0

084

8482

7870

5430

12 3

160

25 6

1 0

0 0

0 0

081

7244

11 1

0 0

0 0

078

9 0

0 0

0 0

26 3

0 0

0 0

3712

1 0

0 0

0 2

0 0

0 0

0 0

25 3

0 0

0 0

0 0

25 7

1 0

0 0

0 0

0 0

074

6023

2 0

0 0

7979

7876

7368

5838

12 3

6746

18 4

1 0

0 0

0 0

7570

5020

4 0

0 0

0 0

69 4

0 0

0 0

014

2 0

0 0

036

16 4

1 0

0 0

5 0

0 0

0 0

014

2 0

0 0

0 0

0 9

2 0

0 0

0 0

0 0

0 0

6450

12 1

0 0

070

7070

7069

6967

6145

2468

6764

5323

6 8

6 4

166

6558

4421

4 1

0 0

062

3 0

0 0

0 0

10 1

0 0

0 0

2712

3 0

0 0

0 3

0 0

0 0

0 0

9 1

0 0

0 0

0 0

8 2

0 0

0 0

0 0

0 0

056

38 7

0 0

0 0

6565

6666

6666

6664

5535

6261

6055

3618

4439

2915

6160

5444

2810

1 0

0 1

51 3

1 0

0 0

0 9

1 0

0 0

029

14 4

1 0

0 0

4 0

0 0

0 0

0 8

1 0

0 0

0 0

0 8

3 1

0 0

0 0

0 0

0 0

4627

3 0

0 0

057

5859

5859

5957

5343

2454

5453

4728

1235

3224

1453

5146

3618

5 1

0 0

042

6 1

0 0

0 0

10 2

0 0

0 0

2614

5 1

0 0

0 7

1 0

0 0

0 0

12 3

1 0

0 0

0 0

12 4

1 0

0 0

0 0

0 0

041

26 5

0 0

0 0

5151

5251

5151

4947

4029

4747

4641

2412

3530

2212

4745

4030

16 4

1 0

0 0

8656

10 0

0 0

075

35 3

0 0

070

5122

4 0

0 0

37 3

0 0

0 0

065

20 1

0 0

0 0

043

16 3

0 0

0 0

0 0

0 0

8373

37 3

0 0

078

6125

3 0

0 0

0 0

083

7132

7 1

0 0

0 0

080

7144

12 2

0 0

0 0

085

39 4

0 0

0 0

6419

1 0

0 0

6642

15 3

0 0

018

1 0

0 0

0 0

46 6

0 0

0 0

0 0

27 7

1 0

0 0

0 0

0 0

082

7441

4 0

0 0

7863

31 7

1 0

0 0

0 0

8481

6525

4 1

1 1

0 0

8075

5823

4 1

0 0

0 0

8526

2 0

0 0

053

12 1

0 0

060

3512

2 0

0 0

10 0

0 0

0 0

034

4 0

0 0

0 0

021

6 1

0 0

0 0

0 0

0 0

8274

41 4

0 0

076

5823

3 0

0 0

0 0

083

8279

5413

1 1

1 1

079

7561

33 8

2 0

0 0

084

23 2

0 0

0 0

5010

1 0

0 0

5834

11 2

0 0

010

1 0

0 0

0 0

34 4

0 0

0 0

0 0

22 6

1 0

0 0

0 0

0 0

082

7343

5 0

0 0

7557

21 2

0 0

0 0

0 0

8382

8178

48 5

4 3

2 0

7874

6239

15 4

1 0

0 0

8326

2 0

0 0

052

10 1

0 0

057

30 9

1 0

0 0

10 0

0 0

0 0

040

6 0

0 0

0 0

028

9 2

0 0

0 0

0 0

0 0

8073

41 5

0 0

075

5619

1 0

0 0

0 0

081

8079

8078

4228

20 8

277

7157

3513

4 1

0 0

083

34 4

0 0

0 0

5715

1 0

0 0

5329

9 1

0 0

017

1 0

0 0

0 0

5314

1 0

0 0

0 0

3916

4 1

0 0

0 0

0 0

080

7242

7 0

0 0

7353

17 1

0 0

0 0

0 0

8179

7879

8078

6436

8 1

7771

5531

10 2

0 0

0 0

8236

4 0

0 0

058

16 1

0 0

050

24 7

1 0

0 0

18 1

0 0

0 0

059

18 1

0 0

0 0

039

17 4

1 0

0 0

0 0

0 0

7971

44 8

0 0

072

5418

1 0

0 0

0 0

079

7776

7676

7873

4511

176

7056

32 9

3 1

0 0

181

38 5

0 0

0 0

6017

1 0

0 0

4923

6 1

0 0

019

1 0

0 0

0 0

6018

1 0

0 0

0 0

4220

5 1

0 0

0 0

0 0

078

7145

11 0

0 0

7355

21 2

0 0

0 0

0 0

7976

7473

7577

7762

24 3

7571

5830

10 3

1 0

0 0

7940

6 0

0 0

060

18 1

0 0

049

24 6

0 0

0 0

24 1

0 0

0 0

063

23 2

0 0

0 0

041

18 5

1 0

0 0

0 0

0 0

7670

4713

0 0

072

5525

5 1

0 0

0 0

077

7471

7072

7679

7349

1275

7162

3715

5 2

0 0

077

36 6

0 0

0 0

5717

1 0

0 0

4419

4 1

0 0

023

1 0

0 0

0 0

6021

2 0

0 0

0 0

4019

5 1

0 0

0 0

0 0

074

6848

16 1

0 0

7158

3110

2 1

1 1

0 0

7572

7069

6975

7875

6536

7473

6952

2610

4 1

0 0

8247

6 0

0 0

069

26 1

0 0

062

4114

3 0

0 0

29 2

0 0

0 0

068

29 2

0 0

0 0

048

24 5

1 0

0 0

0 0

0 0

7454

17 2

0 0

078

6532

5 0

0 0

0 0

037

11 3

1 0

0 0

0 0

085

7537

6 1

0 0

0 0

081

48 8

0 0

0 0

6829

2 0

0 0

6339

14 2

0 0

028

1 0

0 0

0 0

6527

2 0

0 0

0 0

5228

7 1

0 0

0 0

0 0

075

5520

3 0

0 0

7969

39 8

0 0

0 0

0 0

5620

5 1

0 0

0 0

0 0

8682

6518

2 0

0 0

0 0

7944

8 0

0 0

063

25 2

0 0

058

3613

2 0

0 0

22 2

0 0

0 0

056

18 1

0 0

0 0

041

17 4

1 0

0 0

0 0

0 0

7458

28 4

0 0

078

6842

12 2

0 0

0 0

067

3810

3 1

0 0

0 0

085

8480

53 9

1 0

0 0

078

33 5

0 0

0 0

5316

1 0

0 0

5129

10 2

0 0

015

1 0

0 0

0 0

4110

1 0

0 0

0 0

3012

3 0

0 0

0 0

0 0

074

6131

5 0

0 0

7869

4518

4 1

0 0

0 0

7560

25 7

1 0

1 0

0 0

8584

8376

44 8

1 0

0 0

7627

5 0

0 0

044

12 1

0 0

043

23 7

2 0

0 0

16 2

0 0

0 0

038

9 1

0 0

0 0

028

12 3

1 0

0 0

0 0

0 0

7363

36 6

0 0

076

6948

22 6

1 1

1 0

074

6844

14 3

1 1

1 0

082

8281

7971

4410

1 0

074

23 4

0 0

0 0

35 8

1 0

0 0

3414

4 1

0 0

0 8

1 0

0 0

0 0

27 5

0 0

0 0

0 0

2812

3 0

0 0

0 0

0 0

069

6033

6 0

0 0

7466

4518

4 1

0 0

0 0

7061

3914

4 2

2 1

1 0

8080

7769

5130

14 2

0 0

7127

5 0

0 0

030

6 1

0 0

018

6 2

0 0

0 0

9 1

0 0

0 0

025

5 1

0 0

0 0

025

11 3

1 0

0 0

0 0

0 0

6860

4011

1 0

072

6445

21 6

1 1

1 0

070

6859

35 9

3 3

2 2

178

7878

7564

5039

19 3

167

26 6

1 0

0 0

27 6

1 0

0 0

17 6

2 0

0 0

0 9

1 0

0 0

0 0

21 5

1 0

0 0

0 0

2511

3 1

0 0

0 0

0 0

064

5842

16 2

0 0

6760

4119

7 2

1 0

1 1

6562

5741

18 8

8 5

3 2

7575

7472

6860

5139

14 2

6636

11 2

0 0

041

16 3

0 0

032

17 6

1 0

0 0

16 3

0 0

0 0

030

9 2

0 0

0 0

029

15 6

2 0

0 0

0 0

0 0

6461

5429

4 1

066

6043

22 9

3 1

1 1

165

6563

5842

2523

2016

1172

7272

7170

6967

5934

961

3514

3 1

0 0

4320

5 1

0 0

3622

10 4

1 0

029

9 2

0 0

0 0

4118

4 1

0 0

0 0

3017

7 2

1 0

0 0

0 0

060

5851

32 7

1 0

6256

3922

9 4

1 1

1 1

6161

5955

4633

3128

2417

6565

6464

6362

5951

34 8

0.0

0.2

0.4

0.6

0.8

1.0

Adversarial accuracy

Figu

re17

:Rep

lica

ofFi

gure

11w

ith50

step

sin

stea

dof

200

atev

alua

tion

time.

Dev

iatio

nsin

resu

ltsar

em

inor

.

20

Under review as a conference paper at ICLR 2020

L∞ε = 1

L∞ε = 2

L∞ε = 4

L∞ε = 8

L∞ε = 16

L2 ε = 300

L2 ε = 600

L2 ε = 1200

L2 ε = 2400

L2 ε = 4800

84 81 73 60 110

84 81 73 59 110

82 80 73 58 110

76 76 74 57 110

110 110 110 110 29

L∞ attacking jointly trained (L∞, L2)

L∞ε = 1

L∞ε = 2

L∞ε = 4

L∞ε = 8

L∞ε = 16

L1 ε = 38250.1

L1 ε = 76500

L1 ε = 153000

L1 ε = 306000

L1 ε = 612000

82 75 71 51 110

81 69 32 55 110

80 72 34 2 110

75 66 25 1 110

110 110 110 110 0

L∞ attacking jointly trained (L∞, L1)

L∞ε = 1

L∞ε = 2

L∞ε = 4

L∞ε = 8

L∞ε = 16

Elastic ε = 0.5

Elastic ε = 1

Elastic ε = 2

Elastic ε = 4

Elastic ε = 8

83 81 73 58 110

81 78 72 58 110

79 75 69 55 110

77 74 55 0 110

110 110 110 110 7

L∞ attacking jointly trained (L∞, Elastic)

L∞ε = 1

L∞ε = 2

L∞ε = 4

L∞ε = 8

L∞ε = 16

L2 ε = 300

L2 ε = 600

L2 ε = 1200

L2 ε = 2400

L2 ε = 4800

83 83 83 79 110

78 79 79 76 110

68 69 68 69 110

49 49 48 48 110

110 110 110 110 19

L2 attacking jointly trained (L∞, L2)

L∞ε = 1

L∞ε = 2

L∞ε = 4

L∞ε = 8

L∞ε = 16

L1 ε = 38250.1

L1 ε = 76500

L1 ε = 153000

L1 ε = 306000

L1 ε = 612000

77 76 70 60 110

69 68 71 33 110

48 56 50 53 110

19 17 8 4 110

110 110 110 110 0

L1 attacking jointly trained (L∞, L1)

L∞ε = 1

L∞ε = 2

L∞ε = 4

L∞ε = 8

L∞ε = 16

Elastic ε = 0.5

Elastic ε = 1

Elastic ε = 2

Elastic ε = 4

Elastic ε = 8

82 82 80 77 110

78 78 76 73 110

73 72 70 63 110

72 24 3 45 110

110 110 110 110 0

Elastic attacking jointly trained (L∞, Elastic)

Figure 18: Evaluation accuracies of jointly trained models. Attack and training ε values are equal.

No

atta

ck

L∞ε

=1

L∞ε

=2

L∞ε

=4

L∞ε

=8

L∞ε

=16

L∞ε

=32

L2ε

=15

0L

=30

0L

=60

0L

=12

00L

=24

00L

=48

00L

=0.

0635

26

L1ε

=0.

1270

53

L1ε

=0.

2541

06

L1ε

=0.

5082

11L

=1.

0164

2L

=2.

0328

4L

=4.

0656

9L∞

-JP

EGε

=0.

0312

5

L∞

-JP

EGε

=0.

0625

L∞

-JP

EGε

=0.

125

L∞

-JP

EGε

=0.

25

L∞

-JP

EGε

=0.

5

L∞

-JP

EGε

=1

L∞

-JP

EGε

=2

L2-J

PE

=2

L2-J

PE

=4

L2-J

PE

=8

L2-J

PE

=16

L2-J

PE

=32

L2-J

PE

=64

L2-J

PE

=12

8

L2-J

PE

=25

6L

1-J

PE

=12

8

L1-J

PE

=25

6

L1-J

PE

=51

2

L1-J

PE

=10

24

L1-J

PE

=20

48

L1-J

PE

=40

96

L1-J

PE

=81

92

L1-J

PE

=16

384

L1-J

PE

=32

768

L1-J

PE

=65

536

L1-J

PE

=13

1072

Ela

sticε

=0.

25E

last

icε

=0.

5E

last

icε

=1

Ela

sticε

=2

Ela

sticε

=4

Ela

sticε

=8

Ela

sticε

=16

L∞ ε = 1, L2 ε = 300

L∞ ε = 2, L2 ε = 600

L∞ ε = 4, L2 ε = 1200

L∞ ε = 8, L2 ε = 2400

L∞ ε = 16, L2 ε = 4800

L∞ ε = 1, L1 ε = 0.254106

L∞ ε = 2, L1 ε = 0.508211

L∞ ε = 4, L1 ε = 1.01642

L∞ ε = 8, L1 ε = 2.03284

L∞ ε = 16, L1 ε = 4.06569

L∞ ε = 1, Elastic ε = 0.5

L∞ ε = 2, Elastic ε = 1

L∞ ε = 4, Elastic ε = 2

L∞ ε = 8, Elastic ε = 4

L∞ ε = 16, Elastic ε = 8

86 84 75 24 0 0 0 85 83 65 8 0 0 82 75 55 17 1 0 0 84 75 21 0 0 0 0 85 84 73 17 0 0 0 0 79 66 35 6 0 0 0 0 0 0 0 84 77 42 4 0 0 0

85 84 80 59 4 0 0 85 83 78 43 1 0 83 81 70 44 8 0 0 84 82 62 4 0 0 0 85 84 81 53 3 0 0 0 81 76 60 27 4 0 0 0 0 0 0 83 79 57 10 0 0 0

82 81 80 73 31 1 0 81 81 79 68 16 0 81 79 75 64 33 4 0 81 80 75 34 0 0 0 81 81 80 72 25 0 0 0 80 77 72 55 24 4 0 0 0 0 0 80 78 66 22 1 0 0

77 76 76 73 58 7 0 76 76 75 72 48 2 76 76 74 69 55 21 1 76 76 74 62 9 0 0 76 76 76 73 55 6 0 0 76 75 74 67 51 22 5 1 0 0 0 75 74 68 39 4 0 0

69 68 68 67 62 30 1 69 69 69 67 59 19 69 68 68 66 60 42 12 69 68 68 64 38 1 0 69 69 69 68 62 33 1 0 69 68 68 66 61 49 29 12 5 2 3 68 66 63 48 11 1 0

85 82 70 19 0 0 0 84 82 65 12 0 0 84 82 76 55 12 0 0 83 72 26 1 0 0 0 84 83 74 30 1 0 0 0 82 75 55 20 2 0 0 0 0 0 0 83 76 44 4 0 0 0

84 81 69 25 0 0 0 83 80 65 17 0 0 83 83 80 69 32 2 0 81 72 36 2 0 0 0 83 82 74 40 2 0 0 0 82 79 69 44 12 1 0 0 0 0 0 82 76 48 5 0 0 0

82 79 70 33 1 0 0 80 78 67 26 1 0 81 80 79 72 49 9 0 78 71 48 8 0 0 0 81 79 73 50 8 0 0 0 80 79 75 63 33 7 0 0 0 0 0 79 73 52 8 0 0 0

77 73 62 22 1 0 0 75 73 58 16 0 0 76 74 72 61 33 4 0 73 62 28 2 0 0 0 76 73 64 33 3 0 0 0 74 71 62 43 18 3 0 0 0 0 0 73 67 43 5 0 0 0

67 64 54 20 1 0 0 66 63 51 13 0 0 65 63 58 41 12 1 0 64 54 20 1 0 0 0 66 64 56 24 1 0 0 0 63 57 45 22 5 1 0 0 0 0 0 64 57 34 4 0 0 0

86 83 65 9 0 0 0 84 79 44 2 0 0 79 68 41 9 1 0 0 84 72 14 0 0 0 0 85 82 59 8 0 0 0 0 71 52 23 4 0 0 0 0 0 0 0 85 82 67 15 0 0 0

85 84 78 40 1 0 0 84 82 68 14 0 0 80 72 55 22 2 0 0 84 80 45 1 0 0 0 84 83 72 27 1 0 0 0 74 62 38 12 2 0 0 0 0 0 0 84 83 78 47 2 0 0

83 83 81 69 14 0 0 83 81 75 41 1 0 78 71 56 30 7 0 0 82 80 62 5 0 0 0 83 82 75 40 3 0 0 0 74 64 44 19 4 0 0 0 0 0 0 83 82 80 70 19 0 0

76 70 49 9 0 0 0 72 63 29 2 0 0 61 46 22 5 1 0 0 64 33 3 0 0 0 0 73 63 30 2 0 0 0 0 56 38 16 4 1 0 0 0 0 0 0 74 73 70 65 45 3 0

69 68 67 62 45 7 0 68 66 55 26 3 0 48 42 27 12 3 0 0 66 60 33 4 0 0 0 68 64 50 21 2 0 0 0 59 51 37 21 8 2 0 0 0 0 0 67 64 58 33 6 0 0

Figure 19: All attacks (columns) vs. jointly adversarially trained defense (rows).

0 20 40 60 80

Epoch

25

50

75

Ad

v.a

ccu

racy

Train, elastic ε = 4Train, L∞ ε = 8

Val, elastic ε = 4Val, L∞ ε = 8

Figure 20: Train and validation curves for joint training against L∞, ε = 4 and elastic, ε = 8using ResNet-101. As shown, the validation accuracies decrease as training progresses, indicatingoverfitting.

21


Recommended