+ All Categories
Home > Documents > Treating the donor

Treating the donor

Date post: 01-May-2023
Category:
Upload: sgul
View: 1 times
Download: 0 times
Share this document with a friend
26
Treating the donor Dr Dermot W McKeown (corresponding author) Consultant Anaesthetist and Honorary Clinical Senior Lecturer Scottish Liver Transplant Unit Edinburgh Royal Infirmary [email protected] +44 (0)7980994293 Dr Jonathan Ball Consultant and Honorary Senior Lecturer in General and Neuro Intensive Care St George's Hospital and Medical School, London, UK
Transcript

Treating  the  donor    

 

Dr  Dermot  W  McKeown  (corresponding  author)  

Consultant  Anaesthetist  and  Honorary  Clinical  Senior  Lecturer  

Scottish  Liver  Transplant  Unit  

Edinburgh  Royal  Infirmary  

 

[email protected]  

 

+44  (0)7980994293  

 

Dr  Jonathan  Ball  

Consultant  and  Honorary  Senior  Lecturer  in  General  and  Neuro  Intensive  Care  

St  George's  Hospital  and  Medical  School,  London,  UK  

 

Abstract.  

 

Purpose  of  Review:  

 

Current  pressures  of  organ  supply  and  demand  require  maximisation  of  potential  for  organ  

donation.  The  donor  population  is  older  and  has  more  significant  comorbidity  than  in  the  

past.    

 

Optimal  management  of  the  donor  after  brain  death  (DBD)  is  essential  to  ensure  that  the  

greatest  number  of  organs  can  be  transplanted  per  donor.  Defining  evidence-­‐based  drugs  and  

techniques  to  assist  this  has  never  been  more  important.  

 

Recent  findings:  

 

Care  of  patients  with  catastrophic  brain  injury  incorporating  supportive  therapy  targeted  at  

specific  goals  and  delivered  by  experienced  specialists  provides  the  best  donation  outcomes.    

Such  pathways  represent  best  practice  critical  care  applied  to  this  population.    In  this  context,  

the  value  of  some  previously  recommended  therapies  appears  questionable  and  warrants  

reassessment.    Prolonged  (>24  hours)  in-­‐corporeal  organ  conditioning  may  have  significant  

benefits.  

 

Extra-­‐corporeal  support  in  the  resuscitation  arena  is  emerging  and,in  patients  who  fail  to  

respond,  may  yield  a  new  source  of  donors.    

 

Summary:  

 

Early  identification  of  potential  DBD,  best  practice  critical  care,  and  achieving  defined  

treatment  goals  are  associated  with  more  transplantable  organs.  

 

Study  of  a  complex  intervention  like  donor  management  presents  significant  problems  of  

organisation,  ethics  and  consent.  This  is  recognised  internationally  and  progress  is  being  

made.  

 

Keywords:  

 

Organ  donor,  brain  death,  management,  transplantation  

 

Introduction  

 

Increasing  demand  for  transplants  has  mandated  organisational  change  aimed  at  early  

identification  and  active  support  of  possible  organ  donors  to  maximise  the  potential  for,  and  

function  of,  transplantable  organs.        Changes  in  public  safety,  management  of  critically  ill  

patients,  medical  and  surgical  advances  have  all  contributed  to  a  change  in  the  demographics  

of  deceased  donors  with  a  trend  towards  older  donors  with  more  comorbidities[1**2**3**].    

 

Donation  from  the  heartbeating  donor  after  brain  death  (DBD)  provides  more  organs  per  

donor  than  donation  after  circulatory  death  (DCD).    Meticulous  organ  donor  management  

(ODM)  –  essentially  continued  high  quality  critical  care  -­‐  is  needed  to  maximise  this  potential.  

The  shift  of  focus  from  treatment  aimed  at  patient  survival  with  best  possible  functional  

outcome  to  ODM  should  be  seamless.    

 

ODM  directed  by  specialists  has  shown  that  the  principles  of  treatment  of  the  critically  ill  are  

entirely  applicable  to  DBD,  with  resulting  improvements  in  organ  numbers  and  quality.  Drug  

and  hormone  treatments  derived  from  animal  studies  and  used  specifically  for  donor  pre-­‐

treatment  are  being  reassessed.        

 

There  is  variation  in  the  delivery  of  ODM,  though  senior  staff  commitment  to  achieving  Donor  

Management  Goals  (DMG)  can  increase  the  number  of  good  quality  transplantable  organs.  

 

New  treatments  developed  in  animal  studies  will  need  to  be  tested  in  donors.  Organisational  

and  ethical  challenges  are  likely.  High  quality  audit  and  registries  of  donors,  their  

management  and  transplant  outcomes  will  assist.    

 

 

Early  identification  of  donors  

 

Early  identification  of  patients  who  may  become  organ  donors  must  involve  co-­‐operation  with  

colleagues  in  the  intensive  care  unit  (ICU)  and  emergency  department  (ED)[4**,  5**].  This  is  

of  increasing  importance  with  early  application  of  advanced  resuscitation  techniques  such  as  

extracorporeal  support[6*,  7*]  -­‐  even  pre-­‐hospital[8*].      These  can  produce  good  results  for  

patients  in  previously  unsurvivable  circumstances,  but  many  fail  to  respond  to  treatment,  

suffer  severe  brain  injury,  or  become  brain  dead.    Appropriate  techniques  for  diagnosis  of  

brain  death  are  required.  In  one  study  of  Extracorporeal  Cardiopulmonary  Resuscitation  (E-­‐

CPR)  commenced  in  the  pre-­‐hospital  phase,  three  of  seven  patients  developed  brain  death  in  

the  ICU  after  admission  and  two  of  those  became  organ  donors[8*].    An  ED  study  found  two  of  

eight  patients  receiving  E-­‐CPR  had  absent  brain  perfusion  later  in  the  ICU[7*].  Maintaining  the  

potential  for  donation  in  end-­‐of-­‐life  care  is  a  major  challenge,  but  could  provide  increased  

numbers  of  transplantable  organs.  

 

Patients  who  have  been  resuscitated  and  whose  trachea  is  intubated  before  neurological  

deterioration  have  less  time  pressure  for  perhaps  hurried  decisions  to  be  made  on  

termination  of  life  support.    It  is  also  important  not  to  rush  identification  of  patients  as  donors  

before  a  considered  evaluation,  perhaps  including  further  observation  in  ICU.    

 

Clinical  guidelines  for  the  early  management  of  neurological  disturbance  are  therefore  

particularly  important  for  patients  and  possible  donors.    Use  of  catastrophic  brain  injury  

guidelines  (CBIG)  with  organisational  change  seems  consistently  associated  with  more  donors  

and  a  higher  chance  of  meeting  early  donor  management  goals  (DMG)[5**,  9**,  10*].  

(table  1)  

Initial  Support  and  Brain  death  testing  

 

Best  practice  ICU  methods  for  patients  are  also  entirely  applicable  to  donors[11]  so  there  is  no  

ethical  conflict  or  change  of  focus  until  brainstem  death  is  confirmed.  Full  critical  care  is  

necessary  to  ensure  adequate  conditions  for  brainstem  death  testing.    A  ‘ventilator  bundle’  of  

care  is  continued  with  optimised  PEEP.    Effective  circulating  volume  is  ensured  and  after  

initial  resuscitation  fluid  is  limited  to  avoid  organ  oedema,  especially  in  lung.    Cardiovascular  

support  may  include  vasoconstrictors  or  inotropes  and  should  be  guided  by  both  organ  

specific  and  global  markers  of  adequate  perfusion.    If  diabetes  insipidus  has  developed  DDAVP  

or  vasopressin  are  indicated.    

 

The  preconditions  for  brain  death  testing  must  be  met  –  drug  metabolism  is  markedly  altered  

by  induced  hypothermia,  and  adequate  time  must  be  allowed  for  clearance  of  drug  before  

neurological  assessment.    Therapeutic  hypothermia  treatment  following  cardiac  arrest  

extends  the  duration  of  ICU  care  necessary  before  neurological  examination  is  reliable[12].  

15%  of  patients  treated  with  TH  who  make  a  good  recovery  only  wake  after  >  72  hours  of  ICU  

care.    During  this  time  some  patients  may  become  brain  dead.    

(Figure  1)  

 

Specific  Donor  treatment    

 

Hormonal  resuscitation  (HR)  comprising  variably  of  insulin,  thyroid  supplementation,  

vasopressin  and  corticosteroids  has  traditionally  been  advocated  as  part  of  ODM.    Recent  

reviews  and  meta  analysis  have  shown  that  the  treatment  effects  are  less  dramatic  than  

previously  thought[11,  13*,  14*].    In  early  studies  HR  was  often  introduced  at  the  same  time  

as  guidelines  for  donor  treatment,  or  specific  DMGs,  and  results  may  therefore  reflect  more  

consistent  ODM  rather  than  treatment  effect.    

 

Randomised  Controlled  Trials  (RCT)  of  thyroid  supplementation  in  addition  to  active  ODM  

have  not  demonstrated  a  treatment  effect  in  the  general  population  of  DBD[14*,  15**].    While  

there  might  be  an  effect  in  cardiovascularly  unstable  donors,  the  evidence  for  this  is  not  

strong,  and  demonstrating  benefit  would  require  a  large,  appropriately  powered  RCT  

concentrating  on  marginal  donors.      

 

Methylprednisolone  is  given  for  anti-­‐inflammatory  effects.  Inflammatory  processes  triggered  

by  brain  death  are  associated  with  immune  changes  and  worse  transplant  outcomes  in  

comparison  to  live  donation[16*-­‐18].    This  is  an  appropriate  target  for  treatment,  but  multi-­‐

organ  procurement  operations  have  been  shown  to  be  associated  with  marked  rises  in  both  

pro-­‐inflammatory  and  anti-­‐inflammatory  cytokines  and  chemokines  even  when  

methylprednisolone  is  given[19**].      The  balance  between  these  transmitters  could  be  a  target  

for  manipulation  in  the  future.    If  the  rationale  for  steroid  administration  is  to  improve  

cardiovascular  response,  only  small  doses  of  a  steroid  with  mineralocorticoid  effect  such  as  

hydrocortisone  are  required[20*].  Methylprednisolone  has  no  mineralocorticoid  effect.  

 

Early  arginine  vasopressin  use  is  advocated  in  many  guidelines,  particularly  those  aimed  at  

increasing  lung  procurement,  and  can  allow  cardiovascular  goals  to  be  more  easily  achieved  

without  excessive  fluid  loading  or  high  doses  of  catecholamines.  Of  12,332  donors  from  the  

United  Network  for  Organ  Sharing  (UNOS)  database,  7686  received  vasopressin  (62%)  and  

had  a  significant  increase  (51%  vs.  39%)  in  high  organ  yield  (≥4)  retrievals,  mean  number  of  

organs  (3.75  vs.  3.33),  and  rate  of  lung  recovery  (26.  %  vs.  20%)[21*].  The  vasopressin  group  

were  however  significantly  younger  and  more  likely  to  have  died  following  traumatic  brain  

injury.    The  association  is  strong,  but  this  is  a  retrospective  analysis  and  indications  and  

application  of  HR  and  ODM  may  have  varied.    Vasopressin  use  may  be  a  proxy  marker  of  

commitment  to  ODM.  Terlipressin,  which  is  more  widely  available,  is  probably  a  non-­‐inferior  

alternative.  

 

Good  rates  of  thoracic  organ  retrieval  can  also  be  achieved  without  universal  use  of  

vasopressin.    One  group  quadrupled  their  numbers  of  transplantable  lungs  with  the  

introduction  of  an  intensive  ODM  programme  including  experienced  support,  cardiac  output  

monitoring,  methylprednisolone,  l-­‐thyroxine  and  cardiovascular  support  in  >90%  with  

catecholamines[22**].      Vasopressin  or  desmopressin  were  not  mandatory  and  their  use  was  

not  specified.    Physiological  goals  were  achieved  with  low  CVP  values  and  limited  fluids,  and  

there  was  no  apparent  deleterious  effect  on  abdominal  organ  retrieval  or  function.    These  

results  may  reflect  that  committed  ODM  including  advanced  cardiovascular  monitoring  based  

on  general  ICU  principles  is  more  important  than  specific  drugs  or  hormones.  

 

Physiological  targets  for  donor  management  are  broadly  similar  across  organisations  and  

countries.    There  is  an  increasing  recognition  where  ODM  occurs  that  these  are  guidelines,  

and  that  some  such  as  central  venous  pressure,  (CVP)  may  be  of  limited  value[23**]and  

should  be  considered  secondary  to  an  overall  management  plan  based  on  protective  

ventilation,  adequate  intravascular  volume  to  ensure  effective  cardiac  output,  and  avoidance  

of  excessive  lung  water[11].    Older  patients  with  more  comorbidities  may  require  

modification  of  goals.  

 

(Table  2)  

 

Implementation  

 

Reliably  implementing  ODM  with  DMGs  as  quickly  and  effectively  as  possible  presents  the  

same  challenges  for  critical  care  as  other  complex  interventions  such  as  management  of  

sepsis[24**].  There  is  variation  in  application  of  evidence-­‐based  techniques-­‐protective  

ventilation  for  example  is  still  underused  in  ICU[25*,  26].  Improvement  science  techniques  

have  been  used  to  enhance  compliance  with  guidelines,  with  improved  outcomes[27**].  More  

consistent  delivery  of  the  general  critical  care  components  of  ODM  will  provide  information  

on  the  utility  of  treatments  like  methylprednisolone  and  HR  from  good  quality  large  audits  of  

donor  physiology,  treatments  given,  goals  achieved  and  outcomes  of  transplanted  organs.      

 

Goals  

 

Suggested  physiological  goals  of  ODM  have  been  derived  from  historic  practices  and  expert  

opinion.      Eight  Organ  Procurement  Organisations  (OPO)  in  UNOS  Region  5  created  a  checklist  

of  nine  DMGs  to  be  achieved  as  soon  as  possible  after  brain  death  and  maintained  until  

retrieval  procedure.    Achieving  DMG  at  the  time  of  consent  (after  diagnosis  of  brain  death)  

may  reflect  either  a  stable  donor,  or  active  management  of  brain  death  related  physiological  

disturbance.    Only  15%  of  380  standard  criteria  donors  had  >  7  of  9  DMG  met  at  the  time  of  

consent,  but  this  increased  to  33%  at  12-­‐18  hours  later,  and  38%  prior  to  organ  

recovery[28**].  Donors  with  ≥4  organs  transplanted  had  more  DMG  met  at  all  the  time  points.    

If  >7  DMG  were  met  at  the  time  of  consent  there  was  an  odds  ratio  of  2.03  for  ≥4  organs  

transplanted.  Increase  in  achieved  DMG  from  consent  to  12-­‐18  hours  later  gave  increased  

odds  ratio  for  ≥4  organs  transplanted  of  1.13  per  additional  goal.    

 

Practically  this  emphasises  the  need  for  early  identification  and  support  of  the  brain  injured  

using  CBIG,  and  the  value  of  active  ODM  in  increasing  numbers  of  transplantable  organs.    In  

another  study[9**]  this  group  showed  that  meeting  more  (>7)  DMG  at  the  time  of  consent  was  

associated  with  less  requirement  for  dialysis  in  the  first  week  (17%  vs.  30%,  p=0.007)  

following  renal  transplants.  

 

It  may  take  time  to  achieve  DMG,  and  there  is  a  debate  on  whether  it  is  more  advantageous  to  

remove  organs  as  soon  as  possible  from  a  hostile  physiological  environment  triggered  by  

brain  death,  or  if  in-­‐corporeal  repair  and  recovery  can  occur.  In  a  prospective  study  58  of  100  

donors  had  active  ODM  for  more  than  20  hours  from  diagnosis  of  brain  death  and  provided  

more  transplanted  organs  per  donor  than  those  managed  <20  hours[29**].  This  was  

particularly  evident  for  heart  donation(26  vs.  5,  p<0.01)  and  lungs  (40  vs.  6).  There  was  no  

significant  difference  between  the  groups  in  terms  of  DMG  achieved.  

 

Prolonged  ODM  may  have  particular  advantages  for  the  heart  to  allow  recovery  from  stress  

cardiomyopathy[30]  resulting  from  the  sympathetic  storm  at  the  time  of  brain  death.      As  

proof  of  this  concept  a  series  of  15  brain  dead  donors  who  were  haemodynamically  unsuitable  

for  cardiac  donation  were  treated  with  vasopressin,  tri-­‐iodothyronine,  methylprednisolone  

and  insulin  as  well  as  an  active  ODM  protocol[31**].    Serial  cardiac  evaluations  were  

performed  over  48  hours  of  treatment.    Norepinephrine  infusions  were  either  not  required  or  

stopped  within  12  hours.  Ultimately  8  cardiac  transplants  were  performed  with  no  primary  

graft  failure  and  100%  6  month  survival.      Although  this  is  a  single  centre  report  it  

demonstrates  that  prolonged  treatment  may  be  practical  and  effective.          

 

Prolonged  treatment  may  permit  active  treatment  to  reduce  lung  water  and  improve  results  

in  recipients[32].  Lungs  can  however  also  now  be  treated  after  retrieval  by  ex  vivo  perfusion.    

 

New  donor  sources  

 

In  addition  to  increased  numbers  of  DBD  following  cerebrovascular  disease,  there  has  been  

re-­‐evaluation  of  DBD  donation  from  cardiac  arrest  patients[33**].    In  the  United  States  organs  

retrieved  from  donors  who  had  undergone  CPR  comprised  5.5  %  of  the  donor  pool.  Between  

1999  and  2011  with  appropriate  selection  at  least  1000  organs  per  year  were  transplanted  

and  had  graft  survival  not  significantly  different  to  non-­‐CPR  organs[34-­‐36].      

 

Organisational  change  

 

In  one  large  hospital  organisational  changes  over  a  20-­‐year  period    stabilised  falling  donor  

numbers  and  improved  organ  recovery  rates  and  transplant  numbers  despite  increases  in  

donor  age  and  comorbidity[5**].  Donor  identification,  conversion  of  potential  to  actual  

donors,  and  protection  of  organs  during  the  procurement  phase  were  targeted  for  

intervention.    

 

Specialist  support  by  intensivists,  dedicated  retrieval  teams,  remote  monitoring  and  advice,  

and  movement  of  donors  to  dedicated  facilities  have  all  been  introduced  or  rediscovered  in  

order  to  provide  high  quality  ODM[5**,  22**,  37*,38,39**].    

 

Future  research  

 

Study  of  ODM  in  a  heterogenous  population  of  donors  who  have  had  variable  aetiologies  of  

brain  death  and  durations  of  treatment  before  diagnosis  has  many  difficulties.    There  is  

variable  application  of  ODM  and  associated  treatments,  different  timings  of  retrieval  

operation,  skills  of  surgeons  and  level  of  intraoperative  support.  Preservation,  transport,  

recipient  selection,  implantation  and  post-­‐transplant  management  also  affect  outcomes.        

 

These,  and  issues  of  consent  for  donor  pre-­‐treatment  and  recipients  of  subsequent  organs  are  

complex[40**-­‐42],  but  it  is  important  that  we  find  ways  of  dealing  with  the  barriers  to  allow  

interventions  which  have  good  evidence  in  animal  models  to  be  tested  in  the  clinical  

environment.      Some  more  general  critical  care  interventions  have  already  been  tested[43,  

44**].    In  the  study  of  Beta  Agonists  for  Oxygenation  in  Donors  (BOLD)  consent  for  

randomized  donor  management  was  obtained,  but  recipient  consent  was  not  deemed  to  be  

required  as  the  risks  would  be  minimal[45].  The  MOnIToR  study  of  fluid  therapy  in  donors  

guided  by  stroke  volume  variation  has  completed  recruitment  but  results  of  ensuing  

transplant  operations  are  not  yet  available[46].      Randomized  studies  of  pre-­‐retrieval  induced  

hypothermia,  and  remote  ischaemic  preconditioning  in  retrieval  procedures  are  in  progress,  

and  several  other  strategies  are  ready  to  be  assessed  clinically[16*].  

 

We  might  learn  from  methods  used  in  the  study  of  cardiac  arrest-­‐another  complex  

intervention  where  use  of  standard  reporting  systems  for  both  clinical  details  and  linked  

laboratory  research  (The  ‘Utstein  Style’)  has  facilitated  promotion  of  guidelines  and  

assessment  of  effectiveness  of  clinical  and  organisational  changes  internationally.    

 

Conclusion  

 

If  we  are  to  maximise  the  potential  for  DBD  organ  donation,  optimal  treatment  needs  to  be  

delivered  at  an  early  stage  to  all  critically  ill  patients,  particularly  those  with  neurological  

injury.    If  these  patients  deteriorate  and  are  suspected  to  be  brain-­‐dead,  full  support  should  be  

continued  under  the  close  supervision  of  an  experienced  specialist  until  the  diagnosis  can  be  

confirmed  and  wishes  with  regard  to  organ  donation  ascertained.  

 

When  ODM  based  on  best  practice  critical  care  techniques  is  properly  applied,  the  additional  

benefit  of  some  previously  recommended  drugs  and  hormones  may  be  marginal.  The  duration  

of  ODM  should  be  determined  by  changes  in  organ  performance.    Data  relating  to  the  process  

should  be  collected  with  a  common  international  dataset.  

 

Specific  donor  pre-­‐treatments  identified  as  effective  in  laboratory  studies  should  be  

introduced  in  ways  which  will  allow  their  utility  to  be  evaluated  prospectively  by  RCT.  

 

Key  Points:  

 

• Organisational  change  allows  early  identification  of  potential  donors  and  prevents  

donor  loss.  

• When  patients  become  potential  organ  donors,  high  quality  critical  care  must  be  

continued.  

• Specialist  involvement  and  standard  critical  care  techniques  are  the  most  important  

components  of  organ  donor  management.  

• Standard  donor  and  recipient  datasets  would  aid  study  of  new  donor  therapies  aimed  

at  improved  transplant  outcomes    

 

References  

 

[1]  **Sela  N,  Croome  KP,  Chandok  N  et  al.  Changing  Donor  Characteristics  in  Liver  

Transplantation  Over  the  Last  10  Years  in  Canada.  Liver  Transplantation  2013.  19:  1236-­‐

1244.    Changes  in  liver  donor  characteristics  over  10  years  with  more  cerebrovascular  accident  

and  older  donors.  Organisational  change  to  reduce  cold  ischaemic  times  maintained  good  

recipient  outcomes  

 

[2]  **NHS  Blood  and  Transplant  website.  

http://www.organdonation.nhs.uk/statistics/latest_statistics/  (accessed  2th  November  

2013)  Continually  updated  results  of  donation  and  transplantation  activity  in  United  Kingdom.  

 

[3]  **  Halldorson  J,  Roberts  JP.  Decadal  Analysis  of  Deceased  Organ  Donation  in  Spain  and  the  

United  States  Linking  an  Increased  Donation  Rate  and  the  Utilization  of  Older  Donors.  Liver  

Transplantation  2013.  19  (9):981-­‐986.Comparison  of  changes  in  donation  in  Spain  and  US  

1989-­1999  and  1999-­2009.  US  had  a  greater  increase  in  deceased  donation  per  million  

population  (25.8%  vs.  2.4%)  but  donors  aged  >70  in  Spain  increased  by  132%  and  comprise  25%  

of  Spanish  organ  donors  in  comparison  to  4.4%  in  the  US.  Increasing  US  utilization  rates  might  

focus  on  improved  utilisation  rates  for  older  donors.  

 

[4]  **  Kutsogiannis  DJ,  Asthana  S,  Townsend  DR  et  al.  The  incidence  of  potential  missed  organ  

donors  in  intensive  care  units  and  emergency  rooms:  a  retrospective  cohort.  Intensive  Care  

Medicine  2013;  39:1452-­‐1459.Retrospective  cohort  study  of  four  large  hospitals  over  3  years  

found  64  patients  who  had  had    a  high  probability  of  progression  to  heartbeating  donation  who  

were  not  referred.  Documentation  of  brainstem  reflexes  was  in  <60%  of  records.    ‘Missed’  

potential  DBD  and  DCD  donors  might  represent  up  to  7.5  donors  per  million  population.  

 

[5]  **  Billeter  AT,  Sklare  S,  Franklin  GA  et  al.  Sequential  improvements  in  organ  procurement  

increase  the  organ  donation  rate.  Injury  2012;  43:1805-­‐1810.Good  description  of  

organisational  changes  over  a  20-­year  period  in  a  single  intensive  care  unit  showing  

improvements  in  identification,  conversion  and  support  of  donors.  

 

[6]*  Maekawa  K,  Tanno  K,  Hase  M  et  al.  Extracorporeal  Cardiopulmonary  Resuscitation  for  

Patients  With  Out-­‐of-­‐Hospital  Cardiac  Arrest  of  Cardiac  Origin.  Crit  Care  Med.  2013  May;  

41(5):1186-­‐96.    Extracorporeal  CPR  may  improve  neurological  outcome  after  prolonged  out-­of-­

hospital  CPR  but  significant  early  mortality.    It  is  likely  to  be  a  therapy  in  larger  EDs  and  plans  

for  end-­of-­life  care  might  include  donation.  

 

[7]*  Bellezzo  JM,  Shinar  Z,  Davis  DP  et  al.  Emergency  physician-­‐initiated  extracorporeal  

cardiopulmonary  resuscitation.  Resuscitation  2012;  83:966-­‐970.Extracorporeal  CPR  instituted  

in-­hospital  by  emegency  physicians.  Of  8  patients  where  bypass  was  successfully  initiated,  5  

survived  to  hospital  discharge  with  good  neurological  outcome,  treatment  was  withdrawn  from  

1  after  family  discussion  and  2  had  absent  brain  perfusion  in  ICU.      

 

[8]*  Lamhaut  L,  Jouffroy  R,  Soldan  M  et  al.  Safety  and  feasibility  of  prehospital  extra  corporeal  

life  support  implementation  by  non-­‐surgeons  for  out-­‐of-­‐hospital  refractory  cardiac  arrest.  

Resuscitation  2013.  Nov;84(11):  1525-­‐9.  Prehospital  extracorporeal  life  support  is  feasible.  

Three  of  seven  patients  developed  brain  death.    Donation  potential  was  considered  and  two  

became  donors.  

 

[9]**  Malinoski  DJ,  Patel  MS,  Ahmed  O  et  al.  The  Impact  of  Meeting  Donor  Management  Goals  

on  the  Development  of  Delayed  Graft  Function  in  Kidney  Transplant  Recipients.  American  

Journal  of  Transplantation  2013;  13:993-­‐1000.Meeting  donor  manaagement  goals  at  the  time  

of  consent  was  associated  with  lower  rates  of  DGF  for  kidney  transplants.    Useful  discussion  on  

how  catastrophic  brain  injury  guidelines  might  impact  on  this.  

 

[10]*  Quinn  L,  McTague  W,  Orlowski  JP.  Impact  of  Catastrophic  Brain  Injury  Guidelines  on  

Donor  Management  Goals  at  a  Level  I  Trauma  Center.  Transplantation  Proceedings  2012;  

44:2190-­‐2192.Retrospective  analysis  of  pre-­  and  post-­introduction  of  catastrophic  brain  injury  

guidelines  showed  more  DMGs  were  met  after  introduction  of  CBIG.    

 

[11]  McKeown  DW,  Bonser  RS,  Kellum  JA.  Management  of  the  heartbeating  brain-­‐dead  organ  

donor.  Br  J  Anaesth  2012;  108  Suppl  1:i96-­‐107.  

 

[12]  Grossestreuer  AV,  Abella  BS,  Leary  M  et  al.  Time  to  arousal  and  neurologic  outcome  in  

therapeutic  hypothermia-­‐treated  cardiac  arrest  patients.  Resuscitation  2013.  

Dec;84(12):1741-­‐6.    Time  to  wakening  for  post-­cardiac  arrest  patients  after  therapeutic  

hypothermia  is  highly  variable.  Implications  for  prolonged  ICU  care.  

 

[13]  *Rech  TH,  Moraes  RB,  Crispim  D  et  al.  Management  of  the  Brain-­‐Dead  Organ  Donor:  A  

Systematic  Review  and  Meta-­‐Analysis.  Transplantation  2013;  95:966-­‐974.Confirms  lack  of  

good  evidence  for  drug  or  hormonal  interventions.  Suggests  good  critical  care  directed  by  senior  

physicians  might  produce  best  outcomes.  

 

[14]  *Dikdan  GS,  Mora-­‐Esteves  C,  Koneru  B.  Review  of  Randomized  Clinical  Trials  of  Donor  

Management  and  Organ  Preservation  in  Deceased  Donors.  Transplantation  2012;  94:425-­‐

441.Review  of  RCTs  completed,  current  and  proposed.  Encouraged  by  increase  in  trials,  

concerned  that  previous  ones  often  inadequately  powered.    Discusses  problems  of  research.  

 

[15]  **  Macdonald  PS,  Åneman  A,  Bhonagiri  D  et  al.  A  systematic  review  and  meta-­‐analysis  of  

clinical  trials  of  thyroid  hormone  administration  to  brain  dead  potential  organ  donors*.  Crit  

Care  Med  2012;  40:1635-­‐1644.Systematic  review  of  thyroid  hormone  trials  confirms  all  RCTs  

show  no  benefit  either  alone  or  in  combination  with  other  therapies.  Notes  that  the  positive  case  

series  often  included  aggressive  donor  management  instituted  with  thyroid  hormone.  

 

[16]  *  de  Vries  DK,  Wijermars  LGM,  Reinders  MEJ  et  al.  Donor  pre-­‐treatment  in  clinical  kidney  

transplantation:  a  critical  appraisal.  Clin  Transplant  2013Oct  16.  Doi:  10.1111/ctr.  12261.  

[Epub  ahead  of  print]  Review  of  donor  management  and  potential  compounds  for  study,  

problems  with  study  design  and  implementation.  

 

[17]  Danobeitia  JS,  Sperger  JM,  Hanson  MS  et  al.  Early  activation  of  the  inflammatory  response  

in  the  liver  of  brain-­‐dead  non-­‐human  primates.  JSurg  Res  2012  Aug(2);  176:639-­‐648.  

 

[18]  Floerchinger  B,  Oberhuber  R,  Tullius  SG.  Effects  of  brain  death  on  organ  quality  and  

transplant  outcome.  Transplant  Rev  2012  Apr;  26:54-­‐59.  

 

[19]  **Auråen  H,  Mollnes  TE,  Bjørtuft  Ø  et  al.  Multiorgan  procurement  increases  systemic  

inflammation  in  brain  dead  donors.  Clin  Transplant  2013  Jul-­‐Aug;  27(4):613-­‐8.  Procurement  

operations  are  associated  with  upregulation  of  inflammation.  Relevance  of  this  on  outcomes  

requires  study.  Balance  of  pro-­  and  anti-­inflammatory  cytokines  might  be  manipulated.  

 

[20]  *Dhar  R,  Cotton  C,  Coleman  J  et  al.  Comparison  of  high-­‐  and  low-­‐dose  corticosteroid  

regimens  for  organ  donor  management.  J  Crit  Care  2013  Feb;  28(1):  111.e1-­‐7.Case  series  with  

historic  controls.Low-­dose  hydrocortisone  introduced  to  replace  high-­dose  methylprednisolone.  

No  apparent  detriment  to  organs  retrieved,  improved  glucose  control  in  donors.    

 

[21]  *Callahan  DS,  Neville  A,  Bricker  S  et  al.  The  effect  of  arginine  vasopressin  on  organ  donor  

procurement  and  lung  function.  J  Surg  Res  2013  Oct7.  Doi:  10.1016/j.jss.2013.09.028.  [Epub  

ahead  of  print]  OPTN  database.  AVP  use  was  associated  with  more  high  yield  donations,  mean  

number  of  organs  retrieved,  and  lung  recovery.  Not  randomised,  strong  association  but  AVP  use  

may  be  a  proxy  for  more  active  ODM.  

 

[22]  **Miñambres  E,  Ballesteros  MA,  Rodrigo  E  et  al.  Aggressive  lung  donor  management  

increases  graft  procurement  without  increasing  renal  graft  loss  after  transplantation.  Clin  

Transplant  2013;  27:52-­‐59.Cohort  study.  Introduction  of  active  ODM  with  cardiac  output  

monitoring  aimed  at  increasing  lung  transplantation  .  No  adverse  effects  on  renal  outcomes  

despite  older  donors  and  restrictive  fluid.  May  be  related  to  intensive  management  and  

monitoring.  

 

[23]  **Marik  PE,  Cavallazzi  R.  Does  the  Central  Venous  Pressure  Predict  Fluid  

Responsiveness?  An  Updated  Meta-­‐Analysis  and  a  Plea  for  Some  Common  Sense.  Crit  Care  

Med  2013;  41:1774-­‐1781.  CVP  does  not  predict  fluid  responsiveness  and  should  not  be  used  for  

directing  fluid  resuscitation.  

 

[24]  **Dellinger  RP,  Levy  MM  et  al.  Surviving  Sepsis  Campaign:  International  Guidelines  for  

Management  of  Severe  Sepsis  and  Septic  Shock,  2012.  Intensive  Care  Medicine  2013;  39:165-­‐

228.Classic  example  of  a  complex  intervention  in  ICU.  Heterogenous  patient  group,  multiple  body  

systems  with  time-­sensitive  physiological  goals.  Analagous  to  ODM.  

 

[25]  *Walkey  AJ,  Wiener  RS.  Risk  factors  for  underuse  of  lung-­‐protective  ventilation  in  acute  

lung  injury.  J  Crit  Care  2012;  27:323.e321-­‐329.Secondary  analysis  of  ARDSNet  trial.  Simple  

interventions  could  improve  compliance  with  protective  ventilator  settings  for  patients  (and  

donors).      

[26]  Pronovost  PJ,  Murphy  DJ,  Needham  DM.  The  Science  of  Translating  Research  into  Practice  

in  Intensive  Care.  Am  J  Respir  Crit  Care  Med  2010  Dec  15;  182(12):1463-­‐4.  

 

[27]  **Miller  RR,  Dong  L,  Nelson  NC  et  al.  Multicenter  implementation  of  a  severe  sepsis  and  

septic  shock  treatment  bundle.  Am  J  Respir  Crit  Care  Med2013;  188:77-­‐82.Quality  

improvement  interventions  improved  compliance  with  elements  of  a  complex  intervention  and  

there  was  an  associated  reduction  in  hospital  mortality.  

 

[28]  **Malinoski  DJ,  Patel  MS,  Daly  MC  et  al.  The  impact  of  meeting  donor  management  goals  

on  the  number  of  organs  transplanted  per  donor.  Crit  Care  Med  2012;  40:2773-­‐

2780.Prospective  introduction  of  DMG.  Meeting  DMGs  at  consent  and  organ  recovery  are  both  

associated  with  more  high  yield  organs  transplanted  per  donor.  Only  15%  of  donors  met  DMG  at  

consent  but  they  had  double  the  chance  of  high-­yield  donation.  Catastrophic  brain  injury  

guidelines  may  increase  liklihood  of  meeting  DMG  at  consent.  

 

[29]**  Christmas  AB,  Bogart  TA,  Etson  KE  et  al.  The  reward  is  worth  the  wait:  a  prospective  

analysis  of  100  consecutive  organ  donors.  Am  Surg  2012  Mar;  78(3):296-­‐299.Small  series,  

active  ODM  practiced.  Longer  duration  of  management  was  associated  with  increased  organ  

procurement  and  transplant  rates,  particularly  thoracic  organs.    

 

[30]  Berman  M,  Ali  A,  Ashley  E  et  al.  Is  stress  cardiomyopathy  the  underlying  cause  of  

ventricular  dysfunction  associated  with  brain  death?  J  Heart  Lung  Transplant  2010;  29:957-­‐

965.  

 

[31]  **Casartelli  M,  Bombardini  T,  Simion  D  et  al.  Wait,  treat  and  see:  echocardiographic  

monitoring  of  brain-­‐dead  potential  donors  with  stunned  heart.  Cardiovascular  Ultrasound  

2012;  10(1):1-­‐8.Single  centre  experience.  48  hours  of  active  management  and  monitoring  

allowed  8  of  15  hearts  previously  defined  as  untransplantable  to  be  transplanted.  Needs  

confirmed.      

 

[32]  Munshi  L,  Keshavjee  S,  Cypel  M.  Donor  management  and  lung  preservation  for  lung  

transplantation.  The  Lancet  Respir  Med  2013;  1:318-­‐328.  

 

[33]  **Orioles  A,  Morrison  WE,  Rossano  JW  et  al.  An  Under-­‐Recognized  Benefit  of  

Cardiopulmonary  Resuscitation.  Crit  Care  Med  2013  Aug  14  [Epub  ahead  of  print].  

Confirmation  of  significant  contribution  to  transplantation  from  donors  who  received  CPR.  

 

[34]  Elaffandi  AH,  Bonney  GK,  Gunson  B  et  al.  Increasing  the  donor  pool;  the    

consideration  of  pre-­‐hospital  cardiac  arrest  in  controlled  DCD  donation  for  liver  

transplantation.  Liver  Transpl.  2013  Oct  18.doi:  10.1002/lt.23772.  [Epub  ahead  of  print]  

 [35]  Castleberry  AW,  Worni  M,  Osho  AA  et  al.  Use  of  Lung  Allografts  from  Brain-­‐Dead  Donors  

after  Cardiopulmonary  Arrest  and  Resuscitation.  Am  J  Respir  Crit  Care  Med.  2013  Aug  

15;188(4):466-­‐73.  

 

[36]  Southerland  KW,  Castleberry  AW,  Williams  JB  et  al.  Impact  of  donor  cardiac  arrest  on  

heart  transplantation.  Surgery  2013  Aug;  154(2):312-­‐319.  

 

[37]  *Fukushima  N,  Ono  M,  Saito  S  et  al.  Japanese  strategies  to  maximize  heart  and  lung  

availabilities:  experience  from  100  consecutive  brain-­‐dead  donors.  Transplantation  2013;  

45:2871-­‐2874.Active  ODM  including  experienced  medical  consultant.    Changing  lung  

management  improved  numbers  retrieved.  

 

[38]  Najafizadeh  K,  Ghobadi  O,  Ghorbani  F  et  al.  Transfer  protocol  of  brain-­‐dead  patients  to  

specialized  donor  management  unit.  Transplant  2012;  94:e6-­‐8.  

 

[39]  **Singbartl  K,  Murugan  R,  Kaynar  A.  Intensivist�Led  Management  of  Brain�Dead  Donors  

Is  Associated  with  an  Increase  in  Organ  Recovery  for  Transplantation.  Am  J  Transplant.  2011  

Jul;11(7):1517-­‐21.Increasing  commitment  by  ICU  specialists  to  donor  management  increased  

number  of  organs  transplanted  (particularly  lungs  and  kidneys)  over  historic  controls.    

 

[40]  **Al-­‐Khafaji  A,  Murugan  R,  Kellum  JA.  What’s  new  in  organ  donation:  better  care  of  the  

dead  for  the  living.  Intensive  Care  Medicine  2013  Nov;39(11):  2031-­‐3.Discussion  of  potential  

for  organ  donor  research  and  introduction  of  MOnIToR    

 

[41]  Abt  PL,  Marsh  CL,  Dunn  TB  et  al.  Challenges  to  research  and  innovation  to  optimize  

deceased  donor  organ  quality  and  quantity.  Am  J  Transplant  2013  Jun;  13(6):1400-­‐4.  

 

[42]  Mone  T,  Heldens  J,  Niemann  CU.  Deceased  Organ  Donor  Research:  The  Last  Research  

Frontier?  Liver  Transpl  2013  Feb;  19(2):118-­‐121.  

 

[43]  Ware  LB,  Landeck  M,  Koyama  T  et  al.  A  Randomized  Trial  of  Nebulized  Albuterol  To  

Enhance  Resolution  of  Pulmonary  Edema  in  506  Brain  Dead  Organ  Donors.  J  Heart  Lung  

Transplant  2012;  31:S116.  

 

[44]  **Mascia  L,  Pasero  D,  Slutsky  AS  et  al.  Effect  of  a  lung  protective  strategy  for  organ  

donors  on  eligibility  and  availability  of  lungs  for  transplantation:  a  randomized  controlled  

trial.  JAMA  2010;  304(23):2620-­‐2627.Important  RCT  in  donor  management  confirming  lung  

protective  strategy  as  part  of  ODM  

 

[45]  Ware  LB,  Koyama  T,  Billheimer  D  et  al.  Advancing  donor  management  research:  design  

and  implementation  of  a  large,  randomized,  placebo-­‐controlled  trial.  Ann  Intensive  Care  2011  

Jun  14;  1:20.  

 

[46]  Kellum  J.  Personal  communication.  October  2013.  

 

 

Table 1. Example of a catastrophic brain injury screening tool

Brainstem death should be suspected if:

The pupils are fixed and dilated

The Glasgow coma score is 3/15

There is no triggering / patient interaction with the mechanical ventilator

There are no potentially reversible cause for these clinical findings

No depressant drugs

Core temperature >34°C

No obvious reversible circulatory, metabolic or endocrine cause

No neuromuscular blocking agents or other reversible causes of apnoea

Blood levels

Sodium 115 -160mmol/L

Potassium >2mmol/L

Phosphate 0.5 - 3.0mmol/L

Magnesium 0.5 - 3.0mmol/L

Glucose 3.0 - 20.0mmol/L

Figure 1. A Suggested Timeline for Physiological Optimisation Following Catastrophic Brain Injury.

Modified version of figure published in: Ball J: Optimal management of the potential organ donor following catastrophic brain injury. ICU Management 2013, 13:10-13. http://healthmanagement.org/download/ICU_v13_i2_WEB.pdf


Recommended